1
|
Barichello Â, Capoani GT, Comachio FM, Kielb GG, Colpani GL, Fiori MA, Gutiérrez MV, Zanetti M, Silva Corralo VD, Roman Junior WA. Toxicological effects of acute and repeated doses (180 days) of fruits from Malpighia emarginata (acerola) in rodents. Toxicon 2024; 237:107550. [PMID: 38061671 DOI: 10.1016/j.toxicon.2023.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Malpighia emarginata has a high amount of vitamin C with pharmacological or food preservation potential. However, despite its wide use and application possibilities its toxicity in repeated doses and for a long time (6 months) has not yet been studied. In this context, this study aimed to evaluate the acute toxicity and repeated doses from fruits of this plant. The extract was produced with the pulp (EMe) of the lyophilized fruit and submitted to chromatographic and spectroscopic analysis (HPLC and ESI-IT-MSn). In the acute test, the EMe was administered orally and parenterally to rodents (mice and rats) for 14 days, at a dose of 2000 mg/kg. Subsequently, the repeated dose toxicity test was administered orally for 180 days at doses of 50, 300 or 1000 mg/kg. The HPLC assay revealed a high concentration of vitamin C (16.3%), and spectroscopic analyses pointed to the presence of five other polyphenolic compounds. In the acute test, the plant extract showed no apparent toxicity or lethality in rodents. The LD50 was estimated to be greater than 2000 mg/kg and falls into category 5 (low toxicity). In the repeated dose assay, there was no evidence of toxicity, and no differences were observed in water intake, food, weight development, or behavior of the animals in relation to the vehicle group (water). However, hematological and biochemical evaluations pointed out some nonconformities in the levels of cholesterol, leukocytes, and neutrophils of the male rats, but overall, these results did not reveal significant toxicity. Therefore, the Level of Unobserved Adverse Effects (NOAEL) was 1000 mg/kg. Together, the results suggest that the extract obtained from the fruits of M. emarginata does not present representative toxicity in rodents.
Collapse
Affiliation(s)
- Ângela Barichello
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, Brazil
| | - Giovana T Capoani
- Pharmacognosy Laboratory, Community University of Chapecó Region, Brazil
| | - Flavia M Comachio
- Postgraduate Program in Technology and Innovation Management, Community University of Chapecó Region, Chapecó, Brazil
| | - Guilherme G Kielb
- Department of Chemical Engineering and Food Engineering, Community University of Chapecó Region, Chapecó, Brazil
| | - Gustavo L Colpani
- Postgraduate Program in Technology and Innovation Management and Graduate Program in Environmental Sciences, Community University of Chapecó Region Chapecó, Brazil
| | - Márcio A Fiori
- Department of Physics, Federal Technological University of Paraná, Pato Branco, Brazil
| | - Max V Gutiérrez
- Department of Chemical, Biological and Agricultural Sciences, University of Sonora, Navojoa Sonora, Mexico
| | - Micheli Zanetti
- Postgraduate Program in Technology and Innovation Management, Community University of Chapecó Region, Chapecó, Brazil
| | - Vanessa da Silva Corralo
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, Brazil
| | - Walter A Roman Junior
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, Brazil.
| |
Collapse
|
2
|
Bogacka A, Sobczak-Czynsz A, Balejko E, Heberlej A, Ciechanowski K. Effect of Diet and Supplementation on Serum Vitamin C Concentration and Antioxidant Activity in Dialysis Patients. Nutrients 2022; 15:78. [PMID: 36615736 PMCID: PMC9824265 DOI: 10.3390/nu15010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Loss of vitamin C, especially in conjunction with an inadequate supply, can lead to decreased plasma concentrations of vitamin C. This in turn can lead to overt or subclinical deficiency. The present study aimed to evaluate the effects of diet and supplementation on vitamin C concentrations and serum antioxidant activity (FRAP) in hemodialysis (HD) patients. Sixty-eight HD patients participated in the study. In all of them, the diet was initially determined, and they were divided into five groups according to the diet and supplementation used. Group 1 received an unchanged diet, considered by them to be optimal; in group 2, the standard diet used in HD patients was introduced; in group 3, a standard diet enriched with natural antioxidants was employed; in group 4, a standard diet as in group 2 was used, but enriched with supplements (vitamin C, vitamin E, Se, and Zn). In contrast, group 5 consisted of HD patients with coexisting diabetes. Vitamin C serum levels were determined by high-performance liquid chromatography HPLC and antioxidant activity by The Ferric Reducing Ability of Plasma FRAP. The study shows that a well-chosen diet can slow the build-up of malnutrition and increase antioxidant activity as measured by the FRAP method in the blood of hemodialysis patients. Vitamin C supplementation can improve antioxidant status in hemodialysis patients. * The results presented in this paper complement our study, which assessed the effect of diet on the activity of erythrocyte antioxidant enzymes: Catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), but also on the concentrations of non-enzymatic antioxidants (tocopherols, carotenoids, and vitamin C) in hemodialysis patients. In the study, plasma malondialdehyde (MDA) concentrations were assessed as an indicator of oxidative damage.
Collapse
Affiliation(s)
- Anna Bogacka
- Department of Commodity Quality Assessment Process Engineering and Human Nutrition, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 71459 Szczecin, Poland
| | - Anna Sobczak-Czynsz
- Department of Commodity Quality Assessment Process Engineering and Human Nutrition, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 71459 Szczecin, Poland
| | - Edyta Balejko
- Department of Commodity Quality Assessment Process Engineering and Human Nutrition, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 71459 Szczecin, Poland
| | - Angelika Heberlej
- Department of Commodity Quality Assessment Process Engineering and Human Nutrition, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 71459 Szczecin, Poland
| | - Kazimierz Ciechanowski
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, 70111 Szczecin, Poland
| |
Collapse
|
3
|
Manica‐Cattani MF, Hoefel AL, Azzolin VF, Montano MAE, da Cruz Jung IE, Ribeiro EE, Azzolin VF, da Cruz IBM. Amazonian fruits with potential effects on COVID-19 by inflammaging modulation: A narrative review. J Food Biochem 2022; 46:e14472. [PMID: 36240164 PMCID: PMC9874877 DOI: 10.1111/jfbc.14472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 01/27/2023]
Abstract
The COVID-19 pandemic had a great impact on the mortality of older adults and, chronic non- transmissible diseases (CNTDs) patients, likely previous inflammaging condition that is common in these subjects. It is possible that functional foods could attenuate viral infection conditions such as SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causal agent of COVID-19 pandemic. Previous evidence suggested that some fruits consumed by Amazonian Diet from Pre-Colombian times could present relevant proprieties to decrease of COVID-19 complications such as oxidative-cytokine storm. In this narrative review we identified five potential Amazonian fruits: açai berry (Euterpe oleracea), camu-camu (Myrciaria dubia), cocoa (Theobroma cacao), Brazil nuts (Bertholletia excelsa), and guaraná (Paullinia cupana). Data showed that these Amazonian fruits present antioxidant, anti-inflammatory and other immunomodulatory activities that could attenuate the impact of inflammaging states that potentially decrease the evolution of COVID-19 complications. The evidence compiled here supports the complementary experimental and clinical studies exploring these fruits as nutritional supplement during COVID-19 infection. PRACTICAL APPLICATIONS: These fruits, in their natural form, are often limited to their region, or exported to other places in the form of frozen pulp or powder. But there are already some companies producing food supplements in the form of capsules, in the form of oils and even functional foods enriched with these fruits. This practice is common in Brazil and tends to expand to the international market.
Collapse
Affiliation(s)
- Maria F. Manica‐Cattani
- Open University Foundation for the Third Age (FUnATI)ManausAmazonasBrazil,FSG University Center (FSG)Nutrition SchoolCaxias do SulRio Grande do SulBrazil
| | - Ana L. Hoefel
- FSG University Center (FSG)Nutrition SchoolCaxias do SulRio Grande do SulBrazil
| | | | | | | | - Euler E. Ribeiro
- Open University Foundation for the Third Age (FUnATI)ManausAmazonasBrazil
| | - Vitória F. Azzolin
- Open University Foundation for the Third Age (FUnATI)ManausAmazonasBrazil
| | - Ivana B. M. da Cruz
- Post‐Graduate Program in Pharmacology, Department of Physiology and PharmacologyFederal University of Santa Maria (UFSM)Santa MariaRio Grande do SulBrazil,Post‐Graduate Program in GerontologyFederal University of Santa Maria (UFSM)Santa MariaRio Grande do SulBrazil
| |
Collapse
|
4
|
Pinho N, Bombaça AC, Wiśniewski JR, Dias-Lopes G, Saboia-Vahia L, Cupolillo E, de Jesus JB, de Almeida RP, Padrón G, Menna-Barreto R, Cuervo P. Nitric Oxide Resistance in Leishmania ( Viannia) braziliensis Involves Regulation of Glucose Consumption, Glutathione Metabolism and Abundance of Pentose Phosphate Pathway Enzymes. Antioxidants (Basel) 2022; 11:277. [PMID: 35204161 PMCID: PMC8868067 DOI: 10.3390/antiox11020277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 11/16/2022] Open
Abstract
In American Tegumentary Leishmaniasis production of cytokines, reactive oxygen species and nitric oxide (NO) by host macrophages normally lead to parasite death. However, some Leishmania braziliensis strains exhibit natural NO resistance. NO-resistant strains cause more lesions and are frequently more resistant to antimonial treatment than NO-susceptible ones, suggesting that NO-resistant parasites are endowed with specific mechanisms of survival and persistence. To tests this, we analyzed the effect of pro- and antioxidant molecules on the infectivity in vitro of L. braziliensis strains exhibiting polar phenotypes of resistance or susceptibility to NO. In addition, we conducted a comprehensive quantitative mass spectrometry-based proteomics analysis of those parasites. NO-resistant parasites were more infective to peritoneal macrophages, even in the presence of high levels of reactive species. Principal component analysis of protein concentration values clearly differentiated NO-resistant from NO-susceptible parasites, suggesting that there are natural intrinsic differences at molecular level among those strains. Upon NO exposure, NO-resistant parasites rapidly modulated their proteome, increasing their total protein content and glutathione (GSH) metabolism. Furthermore, NO-resistant parasites showed increased glucose analogue uptake, and increased abundance of phosphotransferase and G6PDH after nitrosative challenge, which can contribute to NADPH pool maintenance and fuel the reducing conditions for the recovery of GSH upon NO exposure. Thus, increased glucose consumption and GSH-mediated redox capability may explain the natural resistance of L. braziliensis against NO.
Collapse
Affiliation(s)
- Nathalia Pinho
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (N.P.); (L.S.-V.); (E.C.); (G.P.)
| | - Ana Cristina Bombaça
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, 82152 Planegg, Germany;
| | - Geovane Dias-Lopes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Leonardo Saboia-Vahia
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (N.P.); (L.S.-V.); (E.C.); (G.P.)
| | - Elisa Cupolillo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (N.P.); (L.S.-V.); (E.C.); (G.P.)
| | - José Batista de Jesus
- Departamento de Medicina, Universidade Federal de São João Del Rei, São João del Rei 35501-296, MG, Brazil;
| | - Roque P. de Almeida
- Department of Medicine, Hospital Universitário, EBSERH, Universidade Federal de Sergipe, Aracaju 49100-000, SE, Brazil;
| | - Gabriel Padrón
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (N.P.); (L.S.-V.); (E.C.); (G.P.)
| | - Rubem Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (N.P.); (L.S.-V.); (E.C.); (G.P.)
| |
Collapse
|
5
|
Stokowa-Soltys K, Kierpiec K, Wieczorek R. May Cu(II) binding, DNA cleavage and radicals production by YadA fragments be involved in the promotion of F. nucleatum related cancers? Dalton Trans 2022; 51:7040-7052. [DOI: 10.1039/d2dt00328g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In many cases, human microbiota is associated with cancer progression. It was concluded that Fusobacterium nucleatum increases neoplastic changes. This bacterium is naturally present in the human dental plaque. However,...
Collapse
|
6
|
Nieva-Echevarría B, Goicoechea E, Sopelana P, Guillén MD. Different Effects of Vitamin C-Based Supplements on the Advance of Linseed Oil Component Oxidation and Lipolysis during In Vitro Gastrointestinal Digestion. Foods 2021; 11:58. [PMID: 35010183 PMCID: PMC8750871 DOI: 10.3390/foods11010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Although widely consumed, dietary supplements based on Vitamin C contain high doses of this compound, whose impact on lipid oxidation during digestion needs to be addressed. Therefore, the effect of seven commercial supplements and of pure l-ascorbic acid and ascorbyl palmitate on linseed oil during in vitro gastrointestinal digestion was tackled. The advance of lipid oxidation was studied through the generation of oxidation compounds, the degradation of polyunsaturated fatty acyl chains and of gamma-tocopherol, by employing Proton Nuclear Magnetic Resonance. Supplements containing exclusively l-ascorbic acid enhanced the advance of linseed oil oxidation during digestion. This was evidenced by increased formation of linolenic-derived conjugated hydroxy-dienes and alkanals and by the generation of conjugated keto-dienes and reactive alpha,beta-unsaturated aldehydes, such as 4,5-epoxy-2-alkenals; moreover, gamma-tocopherol was completely degraded. Conversely, supplements composed of mixtures of ascorbic acid/salt with citric acid and carotenes, and of ascorbyl palmitate, protected linseed oil against oxidation and reduced gamma-tocopherol degradation. The study through Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry of the volatile compounds of the digests corroborated these findings. Furthermore, a decreased lipid bioaccessibility was noticed in the presence of the highest dose of l-ascorbic acid. Both the chemical form of Vitamin C and the presence of other ingredients in dietary supplements have shown to be of great relevance regarding oxidation and hydrolysis reactions occurring during lipid digestion.
Collapse
Affiliation(s)
| | | | | | - María D. Guillén
- Food Technology, Lascaray Research Center, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (B.N.-E.); (E.G.); (P.S.)
| |
Collapse
|
7
|
Jordan AC, Perry CGR, Cheng AJ. Promoting a pro-oxidant state in skeletal muscle: Potential dietary, environmental, and exercise interventions for enhancing endurance-training adaptations. Free Radic Biol Med 2021; 176:189-202. [PMID: 34560246 DOI: 10.1016/j.freeradbiomed.2021.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
Accumulating evidence now shows that supplemental antioxidants including vitamin C, vitamin E and N-Acetylcysteine consumption can suppress adaptations to endurance-type exercise by attenuating reactive oxygen and nitrogen species (RONS) formation within skeletal muscle. This emerging evidence points to the importance of pro-oxidation as an important stimulus for endurance-training adaptations, including mitochondrial biogenesis, endogenous antioxidant production, insulin signalling, angiogenesis and growth factor signaling. Although sustained oxidative distress is associated with many chronic diseases, athletes have, on average, elevated levels of certain endogenous antioxidants to maintain redox homeostasis. As a result, trained athletes may have a better capacity to buffer oxidants during and after exercise, resulting in a reduced oxidative eustress stimulus for adaptations. Thus, higher levels of RONS input and exercise-induced oxidative stress may benefit athletes in the pursuit of continuous endurance training redox adaptations. This review addresses why athletes should be looking to enhance exercise-induced oxidative stress and how it can be accomplished. Methods covered include high-intensity interval training, hyperthermia and heat stress, dietary antioxidant restriction and modified antioxidant timing, dietary antioxidants and polyphenols as adjuncts to exercise, and vitamin C as a pro-oxidant.
Collapse
Affiliation(s)
- Adam C Jordan
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada
| | - Christopher G R Perry
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada
| | - Arthur J Cheng
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada.
| |
Collapse
|
8
|
Wang N, Zeng Q, Zhang R, Xing D, Zhang T. Eradication of solid tumors by chemodynamic theranostics with H 2O 2-catalyzed hydroxyl radical burst. Am J Cancer Res 2021; 11:2334-2348. [PMID: 33500728 PMCID: PMC7797687 DOI: 10.7150/thno.49277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/21/2020] [Indexed: 11/29/2022] Open
Abstract
Activatable theranostics, integrating high diagnostic accuracy and significant therapeutic effect, holds great potential for personalized cancer treatments; however, their chemodynamic modality is rarely exploited. Herein, we report a new in situ activatable chemodynamic theranostics PAsc/Fe@Cy7QB to specifically recognize and eradicate cancer cells with H2O2-catalyzed hydroxyl radical (•OH) burst cascade. Methods: The nanomicelles PAsc/Fe@Cy7QB were constructed by self-assembly of acid-responsive copolymers incorporating ascorbates and acid-sensitive Schiff base-Fe2+ complexes as well as H2O2-responsive adjuvant Cy7QB. Results: Upon systematic delivery of PAsc/Fe@Cy7QB into cancer cells, the acidic microenvironment triggered disassembly of the nanomicelles. The released Fe2+ catalyzed the oxidation of ascorbate monoanion (AscH-) to efficiently produce H2O2. The released H2O2, together with the endogenous H2O2, could be converted into highly active •OH via the Fenton reaction, resulting in enhanced Fe-mediated T1 magnetic resonance imaging (MRI). The synchronously released Cy7QB was activated by H2O2 to produce a glutathione (GSH)-scavenger quinone methide to boost the •OH yield and recover the Cy7 dye for fluorescence and photoacoustic imaging. Conclusion: The biodegradable PAsc/Fe@Cy7QB designed for tumor-selective multimodal imaging and high therapeutic effect provides an exemplary paradigm for precise chemodynamic theranostic.
Collapse
|
9
|
Abstract
Ascorbic acid is the most well-known vitamin found in different types of food. It has
tremendous medical applications in several different fields such as in pharmaceuticals, cosmetics,
and in organic synthesis. Ascorbic acid can be used as a substrate or mediator in organic synthesis.
In this review, we report ascorbic acid-catalyzed reactions in organic synthesis. Several examples
are included in this review to demonstrate that ascorbic acid is a versatile catalyst for the synthesis
of diverse organic compounds. Reactions catalyzed by ascorbic acid are performed in organic or
aqueous media. The ready availability and easy handling features of ascorbic acid make these procedures
highly fascinating.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| | - Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur-222003 (UP), India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| |
Collapse
|
10
|
Jiménez E, Pimentel E, Cruces MP, Amaya-Chávez A. Radioprotective effect of chloropyllin, protoporphyrin-IX and bilirubin compared with amifostine® in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103464. [PMID: 32750419 DOI: 10.1016/j.etap.2020.103464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The identification of substances that prevent or minimize the detrimental effects of ionizing radiation is an essential undertaking. The aim of this paper was to evaluate and compare the radioprotective potential of chlorophyllin, protoporphyrin and bilirubin, with amifostine®, an US Food & Drug Administration approved radioprotector Using the somatic mutation and recombination assay in the Drosophila melanogaster wing, it was found that pretreatment (1-9 h) with any of the porphyrins or amifostine® alone, did not affect the larva-adult viability or the basal frequency of mutation. However, they were associated with significant reductions in frequency of somatic mutation and recombination compared with the gamma-irradiated (20 Gy) control as follows: bilirubin (69.3 %)> chlorophyllin (40.0 %)> protoporphyrin (39.0 %)> amifostine® (19.7 %). Bilirubin also caused a 16 % increase in larva-adult viability with 3 h of pretreatment respect to percentage induced in 20 Gy control group. Whilst amifostine® was associated with lower genetic damage after pre-treatment of 1 and 3 h, this did not attain significance. These findings suggest that the tested porphyrins may have some potential as radioprotectant agents.
Collapse
Affiliation(s)
- E Jiménez
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México, C.P. 52750, Mexico
| | - E Pimentel
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México, C.P. 52750, Mexico.
| | - M P Cruces
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México, C.P. 52750, Mexico
| | - A Amaya-Chávez
- Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
11
|
Fomenko OS, Makarova AN, Simakova IV, Eliseev YY, Eliseeva YV, Artemova EN. Experimental studies of the effect of sea buckthorn and wheat bran in food on the physiological status of rats. RUSSIAN OPEN MEDICAL JOURNAL 2020. [DOI: 10.15275/rusomj.2020.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The aim of this research paper was a sanitary-toxicological study of the effectiveness and safety of developed functional property products, such as chopped semi-finished products from chicken with wheat bran and shortbread cake with cottage cheese and sea buckthorn, in preclinical studies on laboratory animals. Methods — The effect of new products on the experimental rats was studied using physiological, biochemical, pathomorphological and histological research methods. As a result, it was discovered that the inclusion of foods with wheat bran and fresh sea buckthorn into the diet of experimental animals had a positive effect on the behavioral reactions of rats, the increase of appetite and the rapid growth of animals. Results — The improvement in the metabolic processes physiology of the studied rats was noted in the biochemical and morphological blood parameters. In the experimental group of rats where carbohydrates were partially substituted with cottage cheese shortbread cake and sea buckthorn, a significant decrease in the total bilirubin content was noted; the level of cholesterol in the blood serum of experimental animals from group which received chicken cutlets with bran was 1.4-1.7 times lower than the cholesterol content in animals of the control and other experimental groups. At the same time, statistically significant differences in the number of red blood cells, white blood cells, platelets and hemoglobin level, the activity of alanine and aspartate aminotransferases, alkaline phosphatase and amylase, the level of total protein and the creatinine content were not revealed in the group of experimental rats compared with the control group of rats, receiving a standard diet. The histological data showed that the liver structure of the experimental animals had a more pronounced beam and capillary structure compared with the control group, and the condition of the villi and epithelium of the small intestine showed the positive physiological effect of the studied herbal additives in food technology with functional properties. Conclusion — The research results allow us to conclude that the developed products are functional, intended for the systematic use in the composition of food rations by all age groups of a healthy population, which reduces the risk of gastrointestinal and liver diseases.
Collapse
|
12
|
Nishida Y, Kumagai Y, Michiba S, Yasui H, Kishimura H. Efficient Extraction and Antioxidant Capacity of Mycosporine-Like Amino Acids from Red Alga Dulse Palmaria palmata in Japan. Mar Drugs 2020; 18:E502. [PMID: 33008002 PMCID: PMC7599624 DOI: 10.3390/md18100502] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Mycosporine-like amino acids (MAAs) are the ultraviolet (UV)-absorbable compounds, which are naturally produced by cyanobacteria and algae. Not only these algae but also marine organisms utilize MAAs to protect their DNA from UV-induced damage. On the other hand, the content of MAAs in algae was changed by the environmental condition and season. In addition to the UV-protected function, the antioxidant capacity of MAAs can apply to the cosmetic sunscreen materials and anti-cancer for human health. In this study, we developed the efficient extraction method of MAAs from red alga dulse in Usujiri (Hokkaido, Japan) and investigated the monthly variation. We also evaluated the antioxidant capacity. We employed the successive extraction method of water and then methanol extraction. Spectrophotometric and HPLC analyses revealed that the yield of MAAs by 6 h water extraction was the highest among the tested conditions, and the content of MAAs in the sample of February was the most (6.930 µmol g-1 dry weight) among the sample from January to May in 2019. Antioxidant capacity of MAAs such as crude MAAs, the purified palythine and porphyra-334 were determined by 2,2'-azinobis(3-ethylbenzothiazoline 6-sulfonic acid) (ABTS) radical scavenging and ferrous reducing power assays in various pH conditions, showing that the highest scavenging activity and reducing power were found at alkaline condition (pH 8.0).
Collapse
Affiliation(s)
- Yuki Nishida
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan; (Y.N.); (S.M.)
| | - Yuya Kumagai
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan;
| | - Shunta Michiba
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan; (Y.N.); (S.M.)
| | - Hajime Yasui
- Laboratory of Humans and the Ocean, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan;
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan;
| |
Collapse
|
13
|
Kolupaev YE, Karpets YV, Kabashnikova LF. Antioxidative System of Plants: Cellular Compartmentalization, Protective and Signaling Functions, Mechanisms of Regulation (Review). APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819050089] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Burkitt MJ. Chemical, Biological and Medical Controversies Surrounding the Fenton Reaction. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967403103165468] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A critical evaluation is made of the role of the Fenton reaction (Fe2+ + H2O2 → Fe3+ + •OH + OH-) in the promotion of oxidative damage in mammalian systems. Following a brief, historical overview of the Fenton reaction, including the formulation of the Haber–Weiss cycle as a mechanism for the catalysis of hydroxyl radical production, an appraisal is made of the biological relevance of the reaction today, following recognition of the important role played by nitric oxide and its congers in the promotion of biomolecular damage. In depth coverage is then given of the evidence (largely from EPR studies) for and against the hydroxyl radical as the active oxidant produced in the Fenton reaction and the role of metal chelating agents (including those of biological importance) and ascorbic acid in the modulation of its generation. This is followed by a description of the important developments that have occurred recently in the molecular and cellular biology of iron, including evidence for the presence of ‘free’ iron that is available in vivo for the Fenton reaction. Particular attention here is given to the role of the iron-regulatory proteins in the modulation of cellular iron status and how their functioning may become dysregulated during oxidative and nitrosative stress, as well as in hereditary haemochromatosis, a common disorder of iron metabolism. Finally, an assessment is made of the biological relevance of ascorbic acid in the promotion of hydroxyl radical generation by the Fenton reaction in health and disease.
Collapse
Affiliation(s)
- Mark J. Burkitt
- Cancer Research UK Free Radicals Research Group, Gray Cancer Institute, PO Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR, UK
| |
Collapse
|
15
|
González E, Cruces MP, Pimentel E, Sánchez P. Evidence that the radioprotector effect of ascorbic acid depends on the radiation dose rate. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:210-214. [PMID: 30081379 DOI: 10.1016/j.etap.2018.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Many studies have revealed that ascorbic acid (Aa) acts as a powerful inhibitor of genetic damage. The objetive of the present study was to evaluate the radioprotector effect of Aa at two diferent radiation dose rates. The somatic mutation and recombination test in Drosophila melanogaster was used. 48 h larvae were treated for 24 h with 25, 50 and 100 mM of Aa. After pretreatment, larvae were irradiated with 20 Gy of gamma rays administered at 36 or 960 Gy/h. Toxicity, development rate and frequency of mutant spots were recorded. Results provide evidence of a radioprotective effect for all tested concentrations of Aa only when 20 Gy were delivered at 36 Gy/h and only with 25 mM using the 960 Gy/h. To consider the use of Aa as radioprotector or therapeutic agent, it is necessary to know its potential under different situations to avoid unwanted injuries.
Collapse
Affiliation(s)
- Elena González
- Universidad Autónoma del Estado de México Campus el Cerrillo Piedras Blancas, Carretera Toluca -Ixtlahuaca Km 15.5, Toluca de Lerdo, 50200, Mexico
| | - Martha P Cruces
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750, Mexico.
| | - Emilio Pimentel
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750, Mexico
| | - Petra Sánchez
- Universidad Autónoma del Estado de México Campus el Cerrillo Piedras Blancas, Carretera Toluca -Ixtlahuaca Km 15.5, Toluca de Lerdo, 50200, Mexico
| |
Collapse
|
16
|
Mousavisani SZ, Raoof JB, Ojani R, Bagheryan Z. An impedimetric biosensor for DNA damage detection and study of the protective effect of deferoxamine against DNA damage. Bioelectrochemistry 2018; 122:142-148. [PMID: 29627666 DOI: 10.1016/j.bioelechem.2018.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 01/17/2023]
Abstract
The detection and inhibition of DNA damage are of great importance in the prevention and treatment of diseases. Developing a simple and sensitive tool for this purpose would be a chance to monitor the DNA damage and could be helpful in introducing some drugs which can prevent this phenomenon. Here, we report a novel and sensitive electrochemical biosensor based on DNA/Au nanoparticles (AuNPs) modified screen printed gold electrode (DNA/AuNPs/SPGE) to investigate the DNA damage process and also to study the protective behavior of deferoxamine (DFO). The proposed biosensor was fabricated by electrodeposition of AuNPs onto SPGE, followed by chemical immobilisation of thiol-terminated DNA. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) have been used to characterise this biosensor. Hydroxyl radical (OH), which is generated during the Fenton reaction, is responsible for the induced damage to DNA. EIS technique was applied to monitor the DNA damage, and the increase in charge transfer resistance (Rct) following the DNA damage, was considered as an indicator. Furthermore, the ability of the electrochemical screening system was proved by the investigation of the antioxidant effect of DFO in prohibiting the DNA damage.
Collapse
Affiliation(s)
- Seyedeh Zeinab Mousavisani
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Reza Ojani
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Zahra Bagheryan
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
17
|
Braidy N, Izadi M, Sureda A, Jonaidi-Jafari N, Banki A, Nabavi SF, Nabavi SM. Therapeutic relevance of ozone therapy in degenerative diseases: Focus on diabetes and spinal pain. J Cell Physiol 2017; 233:2705-2714. [PMID: 28594115 DOI: 10.1002/jcp.26044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/18/2022]
Abstract
Ozone, one of the most important air pollutants, is a triatomic molecule containing three atoms of oxygen that results in an unstable form due to its mesomeric structure. It has been well-known that ozone has potent ability to oxidize organic compounds and can induce respiratory irritation. Although ozone has deleterious effects, many therapeutic effects have also been suggested. Since last few decades, the therapeutic potential of ozone has gained much attention through its strong capacity to induce controlled and moderated oxidative stress when administered in precise therapeutic doses. A plethora of scientific evidence showed that the activation of hypoxia inducible factor-1α (HIF-1a), nuclear factor of activated T-cells (NFAT), nuclear factor-erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE), and activated protein-1 (AP-1) pathways are the main molecular mechanisms underlying the therapeutic effects of ozone therapy. Activation of these molecular pathways leads to up-regulation of endogenous antioxidant systems, activation of immune functions as well as suppression of inflammatory processes, which is important for correcting oxidative stress in diabetes and spinal pain. The present study intended to review critically the available scientific evidence concerning the beneficial properties of ozone therapy for treatment of diabetic complications and spinal pain. It finds benefit for integrating the therapy with ozone into pharmacological procedures, instead of a substitutive or additional option to therapy.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Grup de Nutrició Comunitària i Estrès Oxidatiu (IUNICS) and CIBEROBN (Physiopathology of Obesity and Nutrition), Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | - Abdolali Banki
- Department of Neurology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed F Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Batra SD, Nandi M, Sikri K, Tyagi JS. Genome-wide expression profiling establishes novel modulatory roles of vitamin C in THP-1 human monocytic cell line. BMC Genomics 2017; 18:252. [PMID: 28335738 PMCID: PMC5364625 DOI: 10.1186/s12864-017-3635-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background Vitamin C (vit C) is an essential dietary nutrient, which is a potent antioxidant, a free radical scavenger and functions as a cofactor in many enzymatic reactions. Vit C is also considered to enhance the immune effector function of macrophages, which are regarded to be the first line of defence in response to any pathogen. The THP-1 cell line is widely used for studying macrophage functions and for analyzing host cell-pathogen interactions. Results We performed a genome-wide temporal gene expression and functional enrichment analysis of THP-1 cells treated with 100 μM of vit C, a physiologically relevant concentration of the vitamin. Modulatory effects of vitamin C on THP-1 cells were revealed by differential expression of genes starting from 8 h onwards. The number of differentially expressed genes peaked at the earliest time-point i.e. 8 h followed by temporal decline till 96 h. Further, functional enrichment analysis based on statistically stringent criteria revealed a gamut of functional responses, namely, ‘Regulation of gene expression’, ‘Signal transduction’, ‘Cell cycle’, ‘Immune system process’, ‘cAMP metabolic process’, ‘Cholesterol transport’ and ‘Ion homeostasis’. A comparative analysis of vit C-mediated modulation of gene expression data in THP-1cells and human skin fibroblasts disclosed an overlap in certain functional processes such as ‘Regulation of transcription’, ‘Cell cycle’ and ‘Extracellular matrix organization’, and THP-1 specific responses, namely, ‘Regulation of gene expression’ and ‘Ion homeostasis’. It was noteworthy that vit C modulated the ‘Immune system’ process throughout the time-course. Conclusions This study reveals the genome-wide effects of physiological levels of vit C on THP-1 gene expression. The multitude of effects impacted by vit C in macrophages highlights its role in maintaining homeostasis of several cellular functions. This study provides a rational basis for the use of the Vitamin C- THP-1 cell model, to study biochemical and cellular responses to stresses, including infection with M. tuberculosis and other intracellular pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3635-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sakshi Dhingra Batra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Malobi Nandi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kriti Sikri
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
19
|
Martinez-Useros J, Li W, Cabeza-Morales M, Garcia-Foncillas J. Oxidative Stress: A New Target for Pancreatic Cancer Prognosis and Treatment. J Clin Med 2017; 6:jcm6030029. [PMID: 28282928 PMCID: PMC5372998 DOI: 10.3390/jcm6030029] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/15/2017] [Accepted: 03/06/2017] [Indexed: 01/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of tumors, and its incidence is rising worldwide. Survival can be improved when tumors are detected at an early stage; however, this cancer is usually asymptomatic, and the disease only becomes apparent after metastasis. Several risk factors are associated to this disease. Chronic pancreatitis, diabetes, and some infectious disease are the most relevant risk factors. Incidence of PDAC has increased in the last decades. It is hypothesized it could be due to other acquired risk habits, like smoking, high alcohol intake, and obesity. Indeed, adipose tissue is a dynamic endocrine organ that secretes different pro-inflammatory cytokines, enzymes, and other factors that activate oxidative stress. Reactive oxygen species caused by oxidative stress, damage DNA, proteins, and lipids, and produce several toxic and high mutagenic metabolites that could modify tumor behavior, turning it into a malignant phenotype. Anti-oxidant compounds, like vitamins, are considered protective factors against cancer. Here, we review the literature on oxidative stress, the molecular pathways that activate or counteract oxidative stress, and potential treatment strategies that target reactive oxygen species suitable for this kind of cancer.
Collapse
Affiliation(s)
- Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute, University Hospital Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain.
| | - Weiyao Li
- Translational Oncology Division, OncoHealth Institute, Health Research Institute, University Hospital Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain.
| | | | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, Health Research Institute, University Hospital Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain.
| |
Collapse
|
20
|
Erudaitius D, Huang A, Kazmi S, Buettner GR, Rodgers VGJ. Peroxiporin Expression Is an Important Factor for Cancer Cell Susceptibility to Therapeutic H2O2: Implications for Pharmacological Ascorbate Therapy. PLoS One 2017; 12:e0170442. [PMID: 28107421 PMCID: PMC5249139 DOI: 10.1371/journal.pone.0170442] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
Cancer cell toxicity to therapeutic H2O2 varies widely depending on cell type. Interestingly, it has been observed that different cancer cell types have varying peroxiporin expression. We hypothesize that variation in peroxiporin expression can alter cell susceptibility to therapeutic H2O2 concentrations. Here, we silence peroxiporin aquaporin-3 (AQP3) on the pancreatic cancer cell line MIA PaCa-2 and compare clonogenic survival response to the wild-type. The results showed a significantly higher surviving fraction in the clonogenic response for siAQP3 MIA PaCa-2 cells at therapeutic H2O2 doses (P < 0.05). These results suggest that peroxiporin expression is significant in modulating the susceptibility of cancer cells to ascorbate therapy.
Collapse
Affiliation(s)
- Dieanira Erudaitius
- Department of Bioengineering, University of California, Riverside, Riverside, California, United States of America
| | - Andrew Huang
- Department of Neuroscience, University of California, Riverside, Riverside, California, United States of America
| | - Sarah Kazmi
- Department of Bioengineering, University of California, Riverside, Riverside, California, United States of America
| | - Garry R. Buettner
- Free Radical & Radiation Biology, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, United States of America
| | - Victor G. J. Rodgers
- Department of Bioengineering, University of California, Riverside, Riverside, California, United States of America
| |
Collapse
|
21
|
Jahanian E, Mahdavi AH, Asgary S, Jahanian R. Effects of dietary inclusion of silymarin on performance, intestinal morphology and ileal bacterial count in aflatoxin-challenged broiler chicks. J Anim Physiol Anim Nutr (Berl) 2017; 101:e43-e54. [DOI: 10.1111/jpn.12556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/24/2016] [Indexed: 01/18/2023]
Affiliation(s)
- E. Jahanian
- Department of Animal Sciences; College of Agriculture; Isfahan University of Technology; Isfahan Iran
| | - A. H. Mahdavi
- Department of Animal Sciences; College of Agriculture; Isfahan University of Technology; Isfahan Iran
| | - S. Asgary
- Isfahan Cardiovascular Research Center; Cardiovascular Research Institute; Isfahan University of Medical Sciences; Isfahan Iran
| | - R. Jahanian
- Department of Animal Sciences; College of Agriculture; Isfahan University of Technology; Isfahan Iran
- Poultry Nutrition Research Center; Bioscitech Research Institute; Isfahan Iran
| |
Collapse
|
22
|
Emara AM, El Kelany RS, Moustafa KA. Comparative study of the protective effect between deferoxamine and deferiprone on chronic iron overload induced cardiotoxicity in rats. Hum Exp Toxicol 2016; 25:375-85. [PMID: 16898166 DOI: 10.1191/0960327106ht637oa] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Patients with iron overload frequently suffer from hemochromatosis of major organs, such as the heart and liver. Heart affection is the most common cause of death in patients with iron overload. Although the beneficial effects of deferoxamine (DFO) on iron-associated mortality are well documented, the role of deferiprone in the management of transfusional iron overload is controversial. The aim of this study was to compare the protective effect of iron chelators (DFO and deferiprone) individually and in combination with the anti-oxidant (vitamin C) in the prevention of myocardial damage. Sixty albino rats were divided into six groups: two control groups (noniron-loaded and iron-loaded) and four iron-loaded groups classified as follows: DFO group, DFO combined with vitamin C group, deferiprone group and deferiprone combined with vitamin C group. Heart tissue and blood samples were taken for histopathological examination of the heart, determination of total iron-binding capacity, 8-OH-deoxyguanosine (8-OH-dG), myocardial lipid peroxidation and glutathione (GSH) content. Less histopathological cardiac changes and a significant decrease in all biochemical parameters, except myocardial GSH, were observed in the deferiprone group. The addition of vitamin C improves the biochemical and histopathological changes in comparison to those rats administered DFO or deferiprone individually.
Collapse
Affiliation(s)
- A M Emara
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Egypt.
| | | | | |
Collapse
|
23
|
Margaritelis NV. Antioxidants as therapeutics in the intensive care unit: Have we ticked the redox boxes? Pharmacol Res 2016; 111:126-132. [PMID: 27270047 DOI: 10.1016/j.phrs.2016.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 05/29/2016] [Accepted: 06/03/2016] [Indexed: 02/07/2023]
Abstract
Critically ill patients are under oxidative stress and antioxidant administration reasonably emerged as a promising approach to combat the aberrant redox homeostasis in this patient cohort. However, the results of the antioxidant treatments in the intensive care unit are conflicting and inconclusive. The main objective of the present review is to highlight some inherent, yet widely overlooked redox-related issues about the equivocal effectiveness of antioxidants in the intensive care unit, beyond methodological considerations. In particular, the discrepancy in the literature partially stems from: (1) the largely unspecified role of reactive species in disease onset and progression, (2) our fragmentary understanding on the interplay between inflammation and oxidative stress, (3) the complex spatiotemporal specificity of in vivo redox biology, (4) the pleiotropic effects of antioxidants and (5) the divergent effects of antioxidants according to the temporal administration pattern. In addition, two novel and sophisticated practices with promising pre-clinical results are presented: (1) the selective neutralization of reactive species in key organelles after they are formed (i.e., in mitochondria) and (2) the targeted complete inhibition of dominant reactive species sources (i.e., NADPH oxidases). Finally, the reductive potential of NADPH as a key pharmacological target for redox therapies is rationalized. In light of the above, the recontextualization of knowledge from basic redox biology to translational medicine seems imperative to perform more realistic in vivo studies in the fast-growing field of critical care pharmacology.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece; Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| |
Collapse
|
24
|
Abstract
The prognosis for patients diagnosed with pancreatic cancer remains dismal, with less than 3% survival at 5 years. Recent studies have demonstrated that high-dose, intravenous pharmacological ascorbate (ascorbic acid, vitamin C) induces cytotoxicity and oxidative stress selectively in pancreatic cancer cells vs. normal cells, suggesting a promising new role of ascorbate as a therapeutic agent. At physiologic concentrations, ascorbate functions as a reducing agent and antioxidant. However, when pharmacological ascorbate is given intravenously, it is possible to achieve millimolar plasma concentration. At these pharmacological levels, and in the presence of catalytic metal ions, ascorbate can induce oxidative stress through the generation of hydrogen peroxide (H2O2). Recent in vitro and in vivo studies have demonstrated ascorbate oxidation occurs extracellularly, generating H2O2 flux into cells resulting in oxidative stress. Pharmacologic ascorbate also inhibits the growth of pancreatic tumor xenografts and displays synergistic cytotoxic effects when combined with gemcitabine in pancreatic cancer. Phase I trials of pharmacological ascorbate in pancreatic cancer patients have demonstrated safety and potential efficacy. In this chapter, we will review the mechanism of ascorbate-induced cytotoxicity, examine the use of pharmacological ascorbate in treatment and assess the current data supporting its potential as an adjuvant in pancreatic cancer.
Collapse
Affiliation(s)
| | - Joseph J Cullen
- 1528 JCP, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| |
Collapse
|
25
|
Cieslak JA, Sibenaller ZA, Walsh SA, Boles Ponto LL, Du J, Sunderland JJ, Cullen JJ. Fluorine-18-Labeled Thymidine Positron Emission Tomography (FLT-PET) as an Index of Cell Proliferation after Pharmacological Ascorbate-Based Therapy. Radiat Res 2016; 185:31-8. [PMID: 26720803 PMCID: PMC4720529 DOI: 10.1667/rr14203.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pharmacological ascorbate (AscH(-)) induces cytotoxicity and oxidative stress selectively in pancreatic cancer cells compared with normal cells. Positron emission tomography (PET) with the thymidine analog 3'-deoxy-3'-((18)F) fluorothymidine (FLT) enables noninvasive imaging and quantification of the proliferation fraction of tumors. We hypothesized that the rate of tumor proliferation determined by FLT-PET imaging, would be inversely proportional to tumor susceptibility to pharmacological AscH(-)-based treatments. Indeed, there was decreased FLT uptake in human pancreatic cancer cells treated with AscH(-) in vitro, and this effect was abrogated by co-treatment with catalase. In separate experiments, cells were treated with AscH(-), ionizing radiation or a combination of both. These studies demonstrated that combined AscH(-) and radiation treatment resulted in a significant decrease in FLT uptake that directly correlated with decreased clonogenic survival. MicroPET (18)F-FLT scans of mice with pre-established tumors demonstrated that AscH(-) treatment induced radiosensitization compared to radiation treatment alone. These data support testing of pharmacological ascorbate as a radiosensitizer in pancreatic cancer as well as the use of FLT-PET to monitor response to therapy.
Collapse
Affiliation(s)
- John A. Cieslak
- Free Radical and Radiation Biology Program, Department of Radiation Oncology
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Zita A. Sibenaller
- Free Radical and Radiation Biology Program, Department of Radiation Oncology
| | - Susan A. Walsh
- Free Radical and Radiation Biology Program, Department of Radiation Oncology
- Department of Small Animal Imaging Core, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Laura L. Boles Ponto
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Department of Small Animal Imaging Core, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Juan Du
- Free Radical and Radiation Biology Program, Department of Radiation Oncology
| | - John J. Sunderland
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Joseph J. Cullen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Holden Comprehensive Cancer Center, Iowa City, Iowa
- Iowa City Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
26
|
Cobley JN, McHardy H, Morton JP, Nikolaidis MG, Close GL. Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations. Free Radic Biol Med 2015; 84:65-76. [PMID: 25841784 DOI: 10.1016/j.freeradbiomed.2015.03.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 02/07/2023]
Abstract
The exogenous antioxidants vitamin C (ascorbate) and vitamin E (α-tocopherol) often blunt favorable cell signaling responses to exercise, suggesting that redox signaling contributes to exercise adaptations. Current theories posit that this antioxidant paradigm interferes with redox signaling by attenuating exercise-induced reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. The well-documented in vitro antioxidant actions of ascorbate and α-tocopherol and characterization of the type and source of the ROS/RNS produced during exercise theoretically enable identification of redox-dependent mechanisms responsible for the blunting of favorable cell signaling responses to exercise. This review aimed to apply this reasoning to determine how the aforementioned antioxidants might attenuate exercise-induced ROS/RNS production. The principal outcomes of this analysis are (1) neither antioxidant is likely to attenuate nitric oxide signaling either directly (reaction with nitric oxide) or indirectly (reaction with derivatives, e.g., peroxynitrite); (2) neither antioxidant reacts appreciably with hydrogen peroxide, a key effector of redox signaling; (3) ascorbate but not α-tocopherol has the capacity to attenuate exercise-induced superoxide generation; and (4) alternate mechanisms, namely pro-oxidant side reactions and/or reduction of bioactive oxidized macromolecule adducts, are unlikely to interfere with exercise-induced redox signaling. Out of all the possibilities considered, ascorbate-mediated suppression of superoxide generation with attendant implications for hydrogen peroxide signaling is arguably the most cogent explanation for blunting of favorable cell signaling responses to exercise. However, this mechanism is dependent on ascorbate accumulating at sites rich in NADPH oxidases, principal contributors to contraction-mediated superoxide generation, and outcompeting nitric oxide and superoxide dismutase isoforms. The major conclusions of this review are: (1) direct evidence for interference of ascorbate and α-tocopherol with exercise-induced ROS/RNS production is lacking; (2) theoretical analysis reveals that both antioxidants are unlikely to have a major impact on exercise-induced redox signaling; and (3) it is worth considering alternate redox-independent mechanisms.
Collapse
Affiliation(s)
- James N Cobley
- Division of Sport and Exercise Sciences, Abertay University, Dundee, UK, DD1 1HG.
| | - Helen McHardy
- Division of Sport and Exercise Sciences, Abertay University, Dundee, UK, DD1 1HG
| | - James P Morton
- Research Institute for Sport and Eqxercise Science, Liverpool John Moores University, Liverpool, UK, L3 3AF
| | - Michalis G Nikolaidis
- School of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Graeme L Close
- Research Institute for Sport and Eqxercise Science, Liverpool John Moores University, Liverpool, UK, L3 3AF
| |
Collapse
|
27
|
Cieslak JA, Strother RK, Rawal M, Du J, Doskey CM, Schroeder SR, Button A, Wagner BA, Buettner GR, Cullen JJ. Manganoporphyrins and ascorbate enhance gemcitabine cytotoxicity in pancreatic cancer. Free Radic Biol Med 2015; 83:227-37. [PMID: 25725418 PMCID: PMC4441864 DOI: 10.1016/j.freeradbiomed.2015.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/23/2015] [Accepted: 02/16/2015] [Indexed: 12/17/2022]
Abstract
Pharmacological ascorbate (AscH(-)) selectively induces cytotoxicity in pancreatic cancer cells vs normal cells via the generation of extracellular hydrogen peroxide (H2O2), producing double-stranded DNA breaks and ultimately cell death. Catalytic manganoporphyrins (MnPs) can enhance ascorbate-induced cytotoxicity by increasing the rate of AscH(-) oxidation and therefore the rate of generation of H2O2. We hypothesized that combining MnPs and AscH(-) with the chemotherapeutic agent gemcitabine would further enhance pancreatic cancer cell cytotoxicity without increasing toxicity in normal pancreatic cells or other organs. Redox-active MnPs were combined with AscH(-) and administered with or without gemcitabine to human pancreatic cancer cell lines, as well as immortalized normal pancreatic ductal epithelial cells. The MnPs MnT2EPyP (Mn(III)meso-tetrakis(N-ethylpyridinium-2-yl) porphyrin pentachloride) and MnT4MPyP (Mn(III)tetrakis(N-methylpyridinium-4-yl) porphyrin pentachloride) were investigated. Clonogenic survival was significantly decreased in all pancreatic cancer cell lines studied when treated with MnP + AscH(-) + gemcitabine, whereas nontumorigenic cells were resistant. The concentration of ascorbate radical (Asc(•-), an indicator of oxidative flux) was significantly increased in treatment groups containing MnP and AscH(-). Furthermore, MnP + AscH(-) increased double-stranded DNA breaks in gemcitabine-treated cells. These results were abrogated by extracellular catalase, further supporting the role of the flux of H2O2. In vivo growth was inhibited and survival increased in mice treated with MnT2EPyP, AscH(-), and gemcitabine without a concomitant increase in systemic oxidative stress. These data suggest a promising role for the use of MnPs in combination with pharmacologic AscH(-) and chemotherapeutics in pancreatic cancer.
Collapse
Affiliation(s)
- John A Cieslak
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Department of Surgery, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Robert K Strother
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Malvika Rawal
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Juan Du
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Claire M Doskey
- Interdisciplinary Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel R Schroeder
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Anna Button
- Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA
| | - Brett A Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA
| | - Joseph J Cullen
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Veterans Affairs Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
28
|
Pereira E, Barros L, Calhelha RC, Dueñas M, Carvalho AM, Santos-Buelga C, Ferreira ICFR. Bioactivity and phytochemical characterization of Arenaria montana L. Food Funct 2014; 5:1848-55. [DOI: 10.1039/c4fo00210e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aqueous extract ofA. montanamay be used as a functional food due to the high antioxidant and cytotoxic activities, and due to the presence of bioactive compounds.
Collapse
Affiliation(s)
- Eliana Pereira
- CIMO-Escola Superior Agrária
- Instituto Politécnico de Bragança
- 5301-855 Bragança, Portugal
- GIP-USAL
- Facultad de Farmacia
| | - Lillian Barros
- CIMO-Escola Superior Agrária
- Instituto Politécnico de Bragança
- 5301-855 Bragança, Portugal
| | - Ricardo C. Calhelha
- CIMO-Escola Superior Agrária
- Instituto Politécnico de Bragança
- 5301-855 Bragança, Portugal
- Centro de Química
- Universidade do Minho
| | - Montserrat Dueñas
- GIP-USAL
- Facultad de Farmacia
- Universidad de Salamanca
- 37007 Salamanca, Spain
| | - Ana Maria Carvalho
- CIMO-Escola Superior Agrária
- Instituto Politécnico de Bragança
- 5301-855 Bragança, Portugal
| | | | | |
Collapse
|
29
|
May JM, Harrison FE. Role of vitamin C in the function of the vascular endothelium. Antioxid Redox Signal 2013; 19:2068-83. [PMID: 23581713 PMCID: PMC3869438 DOI: 10.1089/ars.2013.5205] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/26/2013] [Accepted: 04/14/2013] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Vitamin C, or ascorbic acid, has long been known to participate in several important functions in the vascular bed in support of endothelial cells. These functions include increasing the synthesis and deposition of type IV collagen in the basement membrane, stimulating endothelial proliferation, inhibiting apoptosis, scavenging radical species, and sparing endothelial cell-derived nitric oxide to help modulate blood flow. Although ascorbate may not be able to reverse inflammatory vascular diseases such as atherosclerosis, it may well play a role in preventing the endothelial dysfunction that is the earliest sign of many such diseases. RECENT ADVANCES Beyond simply preventing scurvy, evidence is mounting that ascorbate is required for optimal function of many dioxygenase enzymes in addition to those involved in collagen synthesis. Several of these enzymes regulate the transcription of proteins involved in endothelial function, proliferation, and survival, including hypoxia-inducible factor-1α and histone and DNA demethylases. More recently, ascorbate has been found to acutely tighten the endothelial permeability barrier and, thus, may modulate access of ascorbate and other molecules into tissues and organs. CRITICAL ISSUES The issue of the optimal cellular content of ascorbate remains unresolved, but it appears that low millimolar ascorbate concentrations are normal in most animal tissues, in human leukocytes, and probably in the endothelium. Although there may be little benefit of increasing near maximal cellular ascorbate concentrations in normal people, many diseases and conditions have either systemic or localized cellular ascorbate deficiency as a cause for endothelial dysfunction, including early atherosclerosis, sepsis, smoking, and diabetes. FUTURE DIRECTIONS A key focus for future studies of ascorbate and the vascular endothelium will likely be to determine the mechanisms and clinical relevance of ascorbate effects on endothelial function, permeability, and survival in diseases that cause endothelial dysfunction.
Collapse
Affiliation(s)
- James M May
- Department of Medicine, Vanderbilt University School of Medicine , Nashville, Tennessee
| | | |
Collapse
|
30
|
Inanır A, Sogut E, Ayan M, Inanır S. Evaluation of Pain Intensity and Oxidative Stress
Levels in Patients with Inflammatory and
Non-Inflammatory Back Pain. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2013. [DOI: 10.29333/ejgm/82205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Martani F, Fossati T, Posteri R, Signori L, Porro D, Branduardi P. Different response to acetic acid stress inSaccharomyces cerevisiaewild-type andl-ascorbic acid-producing strains. Yeast 2013; 30:365-78. [DOI: 10.1002/yea.2969] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 12/31/2022] Open
|
32
|
Du J, Cullen JJ, Buettner GR. Ascorbic acid: chemistry, biology and the treatment of cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:443-57. [PMID: 22728050 PMCID: PMC3608474 DOI: 10.1016/j.bbcan.2012.06.003] [Citation(s) in RCA: 489] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 12/14/2022]
Abstract
Since the discovery of vitamin C, the number of its known biological functions is continually expanding. Both the names ascorbic acid and vitamin C reflect its antiscorbutic properties due to its role in the synthesis of collagen in connective tissues. Ascorbate acts as an electron-donor keeping iron in the ferrous state thereby maintaining the full activity of collagen hydroxylases; parallel reactions with a variety of dioxygenases affect the expression of a wide array of genes, for example via the HIF system, as well as via the epigenetic landscape of cells and tissues. In fact, all known physiological and biochemical functions of ascorbate are due to its action as an electron donor. The ability to donate one or two electrons makes AscH(-) an excellent reducing agent and antioxidant. Ascorbate readily undergoes pH-dependent autoxidation producing hydrogen peroxide (H(2)O(2)). In the presence of catalytic metals this oxidation is accelerated. In this review, we show that the chemical and biochemical nature of ascorbate contribute to its antioxidant as well as its prooxidant properties. Recent pharmacokinetic data indicate that intravenous (i.v.) administration of ascorbate bypasses the tight control of the gut producing highly elevated plasma levels; ascorbate at very high levels can act as prodrug to deliver a significant flux of H(2)O(2) to tumors. This new knowledge has rekindled interest and spurred new research into the clinical potential of pharmacological ascorbate. Knowledge and understanding of the mechanisms of action of pharmacological ascorbate bring a rationale to its use to treat disease especially the use of i.v. delivery of pharmacological ascorbate as an adjuvant in the treatment of cancer.
Collapse
Affiliation(s)
- Juan Du
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Joseph J. Cullen
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, USA
- Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Garry R. Buettner
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, USA
| |
Collapse
|
33
|
Afolabi AO, Olotu OO, Alagbonsi IA. Vitamins e and C alleviate the germ cell loss and oxidative stress in cryptorchidism when administered separately but not when combined in rats. ISRN PHARMACOLOGY 2012; 2012:843569. [PMID: 23213563 PMCID: PMC3503317 DOI: 10.5402/2012/843569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 10/10/2012] [Indexed: 11/23/2022]
Abstract
The antioxidant effects of vitamins C and E on cryptorchidism-induced oxidative stress were investigated in male Sprague-Dawley rats. Forty rats (200-250 g) were randomly divided in a blinded fashion into five groups (n = 8). Group 1 was sham operated and treated with vehicle (corn-oil, 10 mL/kg). Groups 2, 3, 4, and 5 were rendered unilaterally cryptorchid and treated with vehicle (10 mL/kg), vitamin E solution (75 mg/kg), vitamin C solution (1.25 g/kg), and combination of vitamin E (75 mg/kg) and vitamin C (1.25 g/kg) solutions, respectively. Germ cell count, superoxide dismutase (SOD), total protein (TP), and testicular weight (TW) were lower, but malondialdhyde (MDA) was higher in the cryptorchid rats than the sham-operated rats. When administered separately, vitamins C and E increased germ cell count, SOD, TP, and TW but did not reduce MDA in the cryptorchid rats when compared to the vehicle-treated cryptorchid rats. However, there was no significant difference in these parameters between vehicle-treated and combined vitamins C- and E-treated rats. This suggests that vitamins E and C alleviate the germ cell loss and oxidative stress in cryptorchidism when administered separately but not when combined in rats.
Collapse
Affiliation(s)
- Ayobami Oladele Afolabi
- Department of Physiology, College of Health Sciences, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo, Nigeria
| | | | | |
Collapse
|
34
|
Kazmierska P, Grebowski J, Konopacki J. Does an anti-oxidant ascorbic acid improve the condition of hippocampal formation slice preparations? A micro-EEG approach. Int J Exp Pathol 2012; 93:406-13. [PMID: 23083000 DOI: 10.1111/j.1365-2613.2012.00838.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/01/2012] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to assess whether ascorbic acid (AA), an intracellular anti-oxidant critical for neuronal protection, when added to artificial cerebrospinal fluid (ACSF), is able to protect hippocampal (HPC) formation slice preparations from ageing. In this research, the micro-electroencephalographic (EEG) technique was applied. Experiments were performed on 72 HPC formation slices obtained from 12 male Wistar rats. Two series of experiments were conducted: the control experiment, in which ACSF was used as an incubation medium, and the research one, in which ACSF was supplemented with 200 μM AA. The experimental model of carbachol-induced EEG theta rhythm was applied. The following parameters of theta rhythm after 15, 30 and 45 min of recording were analysed: frequency, power, time duration of theta epochs and time duration of intervals between theta epochs. The results show that AA causes a statistically significant decrease in the power of theta rhythm after 15, 30 and 45 min of recording. The time duration of intervals between theta epochs was almost twice as long in slices incubated in ACSF + AA than in ACSF after 45 min of recording. The data obtained indicate that AA does not improve the condition of HPC slices. On the contrary, it worsens the ability of slice preparations to generate theta oscillations. We hypothesize that our data may result from the Fenton reaction or changes in the conformation of connexins.
Collapse
|
35
|
Theoretical study of the pH-dependent antioxidant properties of vitamin C. J Mol Model 2012; 19:1945-52. [PMID: 22678081 DOI: 10.1007/s00894-012-1465-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/13/2012] [Indexed: 10/28/2022]
Abstract
Molecules acting as antioxidants capable of scavenging reactive oxygen species (ROS) are of utmost importance in the living cell. Vitamin C is known to be one of these molecules. In this study we have analyzed the reactivity of vitamin C toward the [Formula: see text] and [Formula: see text] ROS species, in all acidic, neutral and basic media. In order to do so, density functional theory (DFT) have been used. More concretely, the meta-GGA functional MPW1B95 have been used. Two reaction types have been studied in each case: addition to the ring atoms, and hydrogen/proton abstraction. Our results show that [Formula: see text] is the most reactive species, while [Formula: see text] displays low reactivity. In all three media, vitamin C reactions with two hydroxyl radicals show a wide variety of possible products.
Collapse
|
36
|
Shibasaki‐Kitakawa N, Murakami M, Kubo M, Yonemoto T. A Kinetic Model Describing Antioxidation and Prooxidation of β‐Carotene in the Presence of α‐Tocopherol and Ascorbic Acid. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-011-1980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Masahiko Murakami
- Department of Chemical EngineeringTohoku UniversityAoba‐yama 6‐6‐07, Aoba‐kuSendai980‐8579Japan
| | - Masaki Kubo
- Department of Chemical EngineeringTohoku UniversityAoba‐yama 6‐6‐07, Aoba‐kuSendai980‐8579Japan
| | - Toshikuni Yonemoto
- Department of Chemical EngineeringTohoku UniversityAoba‐yama 6‐6‐07, Aoba‐kuSendai980‐8579Japan
| |
Collapse
|
37
|
Adverse effects of antioxidative vitamins. Int J Occup Med Environ Health 2012; 25:105-21. [PMID: 22528540 DOI: 10.2478/s13382-012-0022-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/07/2012] [Indexed: 11/20/2022] Open
Abstract
High doses of synthetic antioxidative vitamins: A, E, C and β-carotene are often used on long-term basis in numerous preventive and therapeutic medical applications. Instead of expected health effects, the use of those vitamins may however lead to cases of hypervitaminosis and even to intoxication. The article points out main principles of safety which are to be observed during supplementation with antioxidative vitamins. Toxic effects resulting from erroneous administration of high doses of those substances on organs and systems of the organism are also discussed. Attention is drawn to interactions of antioxidative vitamins with concomitantly used drugs, as well as intensification of adverse effects caused by various exogenous chemical factors. Moreover, the article presents the evaluation of supplementation with these vitamins, which was performed in large studies.
Collapse
|
38
|
Abstract
Continued research and development in the field of wound healing holds the potential to affect both quality of life and incidence of mortality. For the health care provider to promote successful wound healing, an understanding of the function of nutrients in inflammation and tissue growth is helpful. The intent of this paper is to discuss the metabolic and cellular pathways crucial to wound healing and identify appropriate nutritional interventions and clinical applications.
Collapse
Affiliation(s)
- A R Sherman
- Department of Nutritional Sciences, Rutgers State University of New Jersey, USA.
| | | |
Collapse
|
39
|
Ye X, Fels D, Tovmasyan A, Aird KM, Dedeugd C, Allensworth JL, Kos I, Park W, Spasojevic I, Devi GR, Dewhirst MW, Leong KW, Batinic-Haberle I. Cytotoxic effects of Mn(III) N-alkylpyridylporphyrins in the presence of cellular reductant, ascorbate. Free Radic Res 2011; 45:1289-306. [PMID: 21859376 DOI: 10.3109/10715762.2011.616199] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Due to the ability to easily accept and donate electrons Mn(III)N-alkylpyridylporphyrins (MnPs) can dismute O(2)(·-), reduce peroxynitrite, but also generate reactive species and behave as pro-oxidants if conditions favour such action. Herein two ortho isomers, MnTE-2-PyP(5+), MnTnHex-2-PyP(5+), and a meta isomer MnTnHex-3-PyP(5+), which differ greatly with regard to their metal-centered reduction potential, E(1/2) (Mn(III)P/Mn(II)P) and lipophilicity, were explored. Employing Mn(III)P/Mn(II)P redox system for coupling with ascorbate, these MnPs catalyze ascorbate oxidation and thus peroxide production. Consequently, cancer oxidative burden may be enhanced, which in turn would suppress its growth. Cytotoxic effects on Caco-2, Hela, 4T1, HCT116 and SUM149 were studied. When combined with ascorbate, MnPs killed cancer cells via peroxide produced outside of the cell. MnTE-2-PyP(5+) was the most efficacious catalyst for peroxide production, while MnTnHex-3-PyP(5+) is most prone to oxidative degradation with H(2) , and thus the least efficacious. A 4T1 breast cancer mouse study of limited scope and success was conducted. The tumour oxidative stress was enhanced and its microvessel density reduced when mice were treated either with ascorbate or MnP/ascorbate; the trend towards tumour growth suppression was detected.
Collapse
Affiliation(s)
- Xiaodong Ye
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bartsch C, Bekhite MM, Wolheim A, Richter M, Ruhe C, Wissuwa B, Marciniak A, Müller J, Heller R, Figulla HR, Sauer H, Wartenberg M. NADPH oxidase and eNOS control cardiomyogenesis in mouse embryonic stem cells on ascorbic acid treatment. Free Radic Biol Med 2011; 51:432-43. [PMID: 21570463 DOI: 10.1016/j.freeradbiomed.2011.04.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 02/07/2023]
Abstract
Ascorbic acid (AA) increases cardiomyogenesis of embryonic stem (ES) cells. Herein we show that treatment of mouse ES cells with AA enhanced cardiac differentiation accompanied by an upregulation of the NADPH oxidase isoforms NOX2 and NOX4, phosphorylation of endothelial nitric oxide synthase (eNOS), and cyclic GMP (cGMP) formation, indicating that reactive oxygen species (ROS) as well as nitric oxide (NO) may be involved in cardiomyogenesis. In whole mount embryoid bodies as well as isolated Flk-1-positive (Flk-1(+)) cardiovascular progenitor cells ROS elevation by AA was observed in early stages of differentiation (Days 4-7), and absent at Day 10. In contrast NO generation following incubation with AA was absent at Day 4 and increased at Days 7 and 10. AA-mediated cardiomyogenesis was blunted by the NADPH oxidase inhibitors diphenylen iodonium (DPI) and apocynin, the free radical scavengers N-(2-mercaptopropionyl)-glycine (NMPG) and ebselen, and the NOS inhibitor L-NAME. Downregulation of NOX4 by short hairpin RNA (shRNA) resulted in significant inhibition of cardiomyogenesis and abolished the stimulation of MHC-ß and MLC2v gene expression observed on AA treatment. Our data demonstrate that AA stimulates cardiomyocyte differentiation from ES cells by signaling pathways that involve ROS generated at early stages and NO at late stages of cardiomyogenesis.
Collapse
Affiliation(s)
- Caroline Bartsch
- Department of Internal Medicine I, Cardiology Division, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Simos Y, Karkabounas S, Verginadis I, Charalampidis P, Filiou D, Charalabopoulos K, Zioris I, Kalfakakou V, Evangellou A. Intra-peritoneal application of catechins and EGCG as in vivo inhibitors of ozone-induced oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:579-585. [PMID: 21111587 DOI: 10.1016/j.phymed.2010.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 09/06/2010] [Accepted: 10/14/2010] [Indexed: 05/30/2023]
Abstract
Oxidative stress is considered as a prominent feature of many acute and chronic diseases as well as of the normal aging process. We examined the effects of intra-peritoneal administration of catechins and EGCG as in vivo inhibitors of oxidative stress induced by ozone administration in two groups of Wistar rats. The first group was treated by intra-peritoneal administration of catechins and EGCG after the administration of ozone and the second group was pretreated by intra-peritoneal administration of catechins and EGCG prior to ozone administration. We determined in blood the activity of the enzymes superoxide dismutase and glutathione peroxidase, total antioxidant capacity, levels of copper and zinc and in urine malonaldehyde contents. Ozone administration resulted in significant reduction of glutathione peroxidase activity, plasma zinc levels and plasma and Red Blood Cells antioxidant capacity. Catechins and EGCG upregulate superoxide dismutase activity and maintain plasma and Red Blood Cells antioxidant capacity. Malonaldehyde levels at the end of the study were significantly increased only in the first group. Our data demonstrate that treatment with catechins and EGCG cannot reverse or prevent the effects of oxidative stress although some modulation occurs.
Collapse
Affiliation(s)
- Y Simos
- Laboratory of Physiology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Effect of ascorbic acid administration on erythrocyte osmotic fragility of pigs transported by road during the hot-dry season. Vet Res Commun 2011; 35:245-54. [DOI: 10.1007/s11259-011-9469-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
|
43
|
Bocci V, Zanardi I, Huijberts MSP, Travagli V. Diabetes and chronic oxidative stress. A perspective based on the possible usefulness of ozone therapy. Diabetes Metab Syndr 2011; 5:45-49. [PMID: 22814842 DOI: 10.1016/j.dsx.2010.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is now well established that hyperglycemia, present in both type 1 and type 2 diabetes, causes a variety of biochemical derangements leading to a diffused vascular damage responsible for several pathologic manifestations. Although preclinical and clinical studies have been performed by an unreliable administration route, the correct approach of oxygen-ozonetherapy may break a vicious circle. Messengers, released by a precise interaction ex vivo of the patient's blood with an equivalent calculated dose of ozone (0.42-0.84 mM), react with a variety of cells after blood infusion and restore a number of functions went astray. This paper aims to open a debate on this new therapy for improving the prognosis of diabetes.
Collapse
Affiliation(s)
- Velio Bocci
- Department of Physiology, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
| | | | | | | |
Collapse
|
44
|
Spasojević I, Stević Z, Nikolić-Kokić A, Jones DR, Blagojević D, Spasić MB. Different roles of radical scavengers--ascorbate and urate in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Redox Rep 2010; 15:81-6. [PMID: 20500989 DOI: 10.1179/174329210x12650506623320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ferrous iron, released from iron deposits in the motor cortex and other brain regions of amyotrophic lateral sclerosis (ALS) patients, participates in the Fenton reaction in cerebrospinal fluid (CSF) alongside H(2)O(2), which is continuously released by neuronal cells. In vivo, the production of notoriously reactive hydroxyl radicals via this reaction could lead to the progression of the disease. Herein, we have examined the effect of ascorbate and uric acid on the production of hydroxyl radicals in CSF from both sporadic ALS patients and control subjects. Electron paramagnetic resonance spectroscopy identified ascorbyl radicals in CSF from ALS patients whereas it was undetectable in control CSF. The addition of H(2)O(2) to the CSF from ALS patients provoked further formation of ascorbyl radicals and the formation of hydroxyl radicals ex vivo. The hydroxyl addition of uric acid to CSF from ALS patients diminished the production of hydroxyl radicals. In conclusion, there are clear differences between the roles of the two examined radical scavengers in the CSF of ALS patients indicating that the use of ascorbate could have unfavourable effects in ALS patients.
Collapse
Affiliation(s)
- Ivan Spasojević
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
45
|
Oxidatively Damaged DNA: A Possible Antigenic Stimulus for Cancer Autoantibodies. Indian J Clin Biochem 2010; 25:244-9. [PMID: 21731195 DOI: 10.1007/s12291-010-0061-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
Reactive oxygen species (ROS) are cytotoxic at higher concentration resulting in cell death, mutations, chromosomal aberrations or carcinogenesis. In this study DNA was modified by singlet oxygen and superoxide anion radicals generated by illumination of riboflavin under 365 nm UV-light. The modified DNA induced high titre antibodies in experimental animals. In enzyme immunoassay, serum antibodies from cancer patients (n = 34) showed a higher recognition of the modified DNA, as compared to the native form. This was further confirmed by the gel-shift assay. Immune IgG were used as a probe to detect oxidative lesions in the DNA of cancer patients. DNA isolated from lymphocytes of cancer patients proved to be an appreciable inhibitor of the experimentally induced antibodies against the ROS-DNA. This indicates the presence of oxidative lesions in the DNA obtained from cancer patients. The results show that ROS induced oxidative damage to DNA in cancer patients generate neo-epitopes that are alien for the immune system, resulting in autoantibody formation.
Collapse
|
46
|
Affiliation(s)
- Barbara Krajewska
- Jagiellonian University, Faculty of Chemistry, 30-060 Kraków, Ingardena 3, Poland
| | - Małgorzata Brindell
- Jagiellonian University, Faculty of Chemistry, 30-060 Kraków, Ingardena 3, Poland
| |
Collapse
|
47
|
Unverdorben M, von Holt K, Winkelmann BR. Smoking and atherosclerotic cardiovascular disease: part II: role of cigarette smoking in cardiovascular disease development. Biomark Med 2010; 3:617-53. [PMID: 20477529 DOI: 10.2217/bmm.09.51] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Potential mechanisms and biomarkers of atherosclerosis related to cigarette smoking - a modifiable risk factor for that disease - are discussed in this article. These include smoking-associated inflammatory markers, such as leukocytes, high-sensitivity C-reactive protein, serum amyloid A, ICAM-1 and IL-6. Other reviewed markers are indicative for smoking-related impairment of arterial endothelial function (transcapillary leakage of albumin, inhibition of endogenous nitric oxide synthase activity and reduced endothelium-dependent vasodilation) or point to oxidative stress caused by various chemicals (cholesterol oxidation, autoantibodies to oxidized low-density lipoprotein, plasma levels of malondialdehyde and F(2)-isoprostanes and reduced antioxidant capacity). Smoking enhances platelet aggregability, increases blood viscosity and shifts the pro- and antithrombotic balance towards increased coagulability (e.g., fibrinogen, von Willebrand factor, ICAM-1 and P-selectin). Insulin resistance is higher in smokers compared with nonsmokers, and hemoglobin A1c is dose-dependently elevated, as is homocysteine. Smoke exposure may influence the kinetics of markers with different response to transient or chronic changes in cigarette smoking behavior.
Collapse
Affiliation(s)
- Martin Unverdorben
- Clinical Research Institute, Center for Cardiovascular Diseases, Heinz-Meise-Strasse 100, 36199 Rotenburg an der Fulda, Germany.
| | | | | |
Collapse
|
48
|
Poljsak B, Pócsi I, Raspor P, Pesti M. Interference of chromium with biological systems in yeasts and fungi: a review. J Basic Microbiol 2010; 50:21-36. [PMID: 19810050 DOI: 10.1002/jobm.200900170] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper deals with the interactions of chromium (Cr) with biological systems, focusing in particular on yeasts and fungi. These interactions are analysed with primarily regard to biochemical functions, but higher levels of organization are also considered. Thus, the morphological and cytological characteristics of selected microorganisms in response to exposure to chromium ions are evaluated. The different oxidation states of chromium and reactive oxygen species (ROS) generated in redox reactions with chromium ions are presented and characterized. The interactions of the most exposed subcellular structures, including the cell wall, plasma membrane and nuclei, have been deeply investigated in recent years, for two major reasons. The first is the toxicity of chromium ions and their strong impact on the metabolism of many species, ranging from microbes to humans. The second is the still disputed usefulness of chromium ions, and in particular trivalent chromium, in the glucose and fat metabolisms. Chromium pollution is still an important issue in many regions of the world, and various solutions have been proposed for the bioremediation of soil and water with selected microbial species. Yeasts and especially moulds have been most widely investigated from this aspect, and the biosorption and bioaccumulation of chromium for bioremediation purposes have been demonstrated. Accordingly, the mechanisms of chromium tolerance or resistance of selected microbes are of particular importance in both bioremediation and waste water treatment technologies. The mechanisms of chromium toxicity and detoxification have been studied extensively in yeasts and fungi, and some promising results have emerged in this area.
Collapse
Affiliation(s)
- Borut Poljsak
- Chair of Environmental Health, Faculty of Health Studies, University of Ljubljana, Slovenia
| | | | | | | |
Collapse
|
49
|
How Does Ozone Act? How and Why Can We Avoid Ozone Toxicity? OZONE 2010. [PMCID: PMC7498872 DOI: 10.1007/978-90-481-9234-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Abstract
The reader may be eager to examine in which diseases ozonetherapy can be proficiently used and she/he will be amazed by the versatility of this complementary approach (Table 9 1). The fact that the medical applications are numerous exposes the ozonetherapist to medical derision because superficial observers or sarcastic sceptics consider ozonetherapy as the modern panacea. This seems so because ozone, like oxygen, is a molecule able to act simultaneously on several blood components with different functions but, as we shall discuss, ozonetherapy is not a panacea. The ozone messengers ROS and LOPs can act either locally or systemically in practically all cells of an organism. In contrast to the dogma that “ozone is always toxic”, three decades of clinical experience, although mostly acquired in private clinics in millions of patients, have shown that ozone can act as a disinfectant, an oxygen donor, an immunomodulator, a paradoxical inducer of antioxidant enzymes, a metabolic enhancer, an inducer of endothelial nitric oxide synthase and possibly an activator of stem cells with consequent neovascularization and tissue reconstruction.
Collapse
Affiliation(s)
- Velio Bocci
- Department of Physiology, University of Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|