1
|
Monti DA, Vedaei F, Tobia A, Navarreto E, Hriso C, Ross R, Raja R, Wintering N, Zabrecky GP, Mohamed F, Newberg AB. Brain functional connectivity changes on fMRI in patients with chronic pelvic pain treated with the Neuro Emotional Technique: a randomised controlled trial. J OBSTET GYNAECOL 2025; 45:2472767. [PMID: 40083279 DOI: 10.1080/01443615.2025.2472767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Chronic pelvic pain is a substantial clinical challenge that profoundly impacts quality of life for many women. The Neuro Emotional Technique (NET) is a novel mind-body intervention designed to attenuate emotional arousal of distressing thoughts and pain. This study evaluated functional connectivity changes in key areas of the brain in patients with chronic pelvic pain receiving the NET intervention. The goal was to assess whether the NET intervention was associated with functional connectivity (FC) changes in the brain related to reductions in emotional distress and pain, particularly in the limbic areas, sensory/pain regions, and cerebellum. METHODS This is a prospectively designed study that included twenty-six patients with a diagnosis of chronic pelvic pain who were randomised to either the NET intervention or a waitlist control. To evaluate the primary outcome of neurophysiological effects, all participants received resting state functional blood oxygen level dependent (BOLD) magnetic resonance imaging (rs-fMRI) before and after the NET intervention or waitlist control period. Pain, mood, anxiety, and quality of life also were assessed. RESULTS Compared to the control group, the NET group demonstrated significant improvements in pain interference and pain intensity, and in emotional measures such anxiety and depression. Functional connectivity in the NET group compared to controls, was significantly decreased in the amygdala, cerebellum, and postcentral gyrus. There were also significant correlations between FC changes and changes in clinical measures. CONCLUSIONS This study is an initial step towards describing a neurological signature of reducing emotional distress in women with chronic pelvic pain. Specifically, FC changes between the cerebellum and the amygdala and sensory areas appears to be associated with a reduction in pain and the effects of that pain. Future, larger clinical trials are warranted to further evaluate these mechanisms and NET as a potential therapeutic intervention in patients with chronic pelvic pain.
Collapse
Affiliation(s)
- Daniel A Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Anna Tobia
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Emily Navarreto
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Chloe Hriso
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Reneita Ross
- Department Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Rohit Raja
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - George P Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Feroze Mohamed
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew B Newberg
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Teixeira GP, Rocha L, Faria RX. The impact of membrane receptors on modulating empathic pain. Neuropharmacology 2025; 274:110471. [PMID: 40254122 DOI: 10.1016/j.neuropharm.2025.110471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/28/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Humans can estimate each other's pain and provide adapted care to reduce it. Empathetic skills are crucial for caregivers involved in pain management; consequently, educational programs and theories have emphasized the positive role of empathy in reducing pain intensity. It is also widely assumed that if caregivers lack empathy, they will underestimate pain intensity in their patients, and this unempathetic attitude can negatively influence pain intensity perception. Empathy for pain is thought to activate the affective‒motivational components of the pain matrix, which includes the anterior insula, middle and anterior cingulate cortices and amygdala, as indicated by functional magnetic resonance imaging and other methodologies. Activity in this core neural network reflects the affective experience that activates our responses to pain and lays the neural foundation for our understanding of our own emotions and those of others. Additionally, a variety of factors can regulate the intensity of empathy for pain, such as oxytocin and vasopressin receptors. Therefore, we selectively review the molecular mechanisms by which membrane receptors modulate this pain modality.
Collapse
Affiliation(s)
- Guilherme Pegas Teixeira
- Laboratory for Evaluation and Promotion of Environmental Health, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Post-Graduation Program in Vegetal Biotechnology and Bioprocesses, Rio de Janeiro Federal University, Rio de Janeiro, CEP, 21941-902, Brazil.
| | - Leandro Rocha
- Laboratory of Natural Products Technology, Faculty of Pharmacy, Fluminense Federal University, Rua Doutor Mário Viana 523, Santa Rosa, Niterói, CEP, 24241-002, Brazil; Post-Graduation Program in Vegetal Biotechnology and Bioprocesses, Rio de Janeiro Federal University, Rio de Janeiro, CEP, 21941-902, Brazil.
| | - Robson Xavier Faria
- Laboratory for Evaluation and Promotion of Environmental Health, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Tao Y, Pan Q, Cai T, Lu ZH, Haque M, Dottorini T, Colvin LA, Smith BH, Meng W. A genome-wide association study identifies novel genetic variants associated with neck or shoulder pain in the UK biobank (N = 430,193). Pain Rep 2025; 10:e1267. [PMID: 40291381 PMCID: PMC12026381 DOI: 10.1097/pr9.0000000000001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/11/2025] [Accepted: 02/09/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Neck and shoulder pain are prevalent musculoskeletal disorders that significantly affect the quality of life for a substantial portion of the global population. Studies have shown that women are more susceptible than men. Objective This study aims to discover genetic variants associated with neck or shoulder pain through a genome-wide association study (GWAS), using data from 430,193 participants in the UK Biobank. Methods A genome-wide association study was performed adjusting for age, sex, BMI, and 8 population principal components. Significant and independent genetic variants were replicated by FinnGen. Results The primary GWAS revealed 5 significant genetic loci (including 2 novel) associated with neck or shoulder pain, with the most significant single nucleotide polymorphism (SNP) being rs9889282 (P = 2.63 × 10-12) near CA10 on chromosome 17. Two novel significant associations were detected on chromosomes 18 and 14, with the top SNPs being rs4608411 (P = 8.20 × 10-9) near TCF4 and rs370565192 (P = 3.80 × 10-8) in DCAF5, respectively. Our secondary GWAS identified a single novel genetic locus in SLC24A3 among males and 2 genetic loci (including one novel near LINC02770) among females. In the replication stage, the SLC39A8 locus was weakly supported by the FinnGen cohort. The tissue expression analysis revealed a significant association between brain tissues and neck or shoulder pain. Conclusion In summary, this study has identified novel genetic variants for neck or shoulder pain. Sex-stratified GWAS also suggested that sex played a role in the occurrence of the phenotype.
Collapse
Affiliation(s)
- Yiwen Tao
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Qi Pan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Tengda Cai
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Zen Huat Lu
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - Mainul Haque
- School of Mathematical Sciences, University of Nottingham Ningbo China, Ningbo, China
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Lesley A. Colvin
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Blair H. Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Weihua Meng
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
- Center for Public Health, Faculty of Medicine, Health and Life Sciences, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
4
|
Lee S, Edwards S. Alcohol and cannabis use for pain management: Translational findings of relative risks, benefits, and interactions. Physiol Behav 2025; 294:114867. [PMID: 40023207 DOI: 10.1016/j.physbeh.2025.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/08/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Chronic pain affects over 20% of the global population and contributes to the vast burden of psychiatric illness. While effective treatments for chronic pain remain limited, both alcohol and cannabis have been used for centuries to manage pain and closely associated negative affective symptoms. However, persistent misuse of alcohol and/or cannabis in such a negative reinforcement fashion is hypothesized to increase the risk of severity of substance use disorders (SUDs). The current review describes neurobiological evidence for the analgesic efficacy of alcohol and primary cannabis constituents and how use or co-use of these substances may influence SUD risk.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 2020 Gravier St. Room 734, New Orleans, LA 70112, USA
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 2020 Gravier St. Room 734, New Orleans, LA 70112, USA.
| |
Collapse
|
5
|
Kim J, Lim KH, Kim E, Kim S, Kim HJ, Lee YH, Kim S, Choi J. Machine Learning-Based Diagnosis of Chronic Subjective Tinnitus With Altered Cognitive Function: An Event-Related Potential Study. Ear Hear 2025; 46:770-781. [PMID: 40232877 DOI: 10.1097/aud.0000000000001623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
OBJECTIVES Due to the absence of objective diagnostic criteria, tinnitus diagnosis primarily relies on subjective assessments. However, its neuropathological features can be objectively quantified using electroencephalography (EEG). Despite the existing research, the pathophysiology of tinnitus remains unclear. The objective of this study was to gain a deeper comprehension of the neural mechanisms underlying tinnitus through the comparison of cognitive event-related potentials in patients with tinnitus and healthy controls (HCs). Furthermore, we explored the potential of EEG-derived features as biomarkers for tinnitus using machine learning techniques. DESIGN Forty-eight participants (24 patients with tinnitus and 24 HCs) underwent comprehensive audiological assessments and EEG recordings. We extracted N2 and P3 components of the midline electrodes using an auditory oddball paradigm, to explore the relationship between tinnitus and cognitive function. In addition, the current source density for N2- and P3-related regions of interest was computed. A linear support vector machine classifier was used to distinguish patients with tinnitus from HCs. RESULTS The P3 peak amplitudes were significantly diminished in patients with tinnitus at the AFz, Fz, Cz, and Pz electrodes, whereas the N2 peak latencies were significantly delayed at Cz electrode. Source analysis revealed notably reduced N2 activities in bilateral fusiform gyrus, bilateral cuneus, bilateral temporal gyrus, and bilateral insula of patients with tinnitus. Correlation analysis revealed significant associations between the Hospital Anxiety and Depression Scale-Depression scores and N2 source activities at left insula, right insula, and left inferior temporal gyrus. The best classification performance showed a validation accuracy of 85.42%, validation sensitivity of 87.50%, and validation specificity of 83.33% in distinguishing between patients with tinnitus and HCs by using a total of 18 features in both sensor- and source-level. CONCLUSIONS This study demonstrated that patients with tinnitus exhibited significantly altered neural processing during the cognitive-related oddball paradigm, including lower P3 amplitudes, delayed N2 latency, and reduced source activities in specific brain regions in cognitive-related oddball paradigm. The correlations between N2 source activities and Hospital Anxiety and Depression Scale-Depression scores suggest a potential link between the physiological symptoms of tinnitus and their neural impact on patients with tinnitus. Such findings underscore the potential diagnostic relevance of N2- and P3-related features in tinnitus, while also highlighting the interplay between the temporal lobe and occipital lobe in tinnitus. Furthermore, the application of machine learning techniques has shown reliable results in distinguishing tinnitus patients from HCs, reinforcing the viability of N2 and P3 features as biomarkers for tinnitus.
Collapse
Grants
- IITP-2024-RS-2022- 00156439 Ministry of Science and ICT, South KoreaMSIT (Ministry of Science and ICT), Korea, under the ICAN (ICT Challenge and Advanced Network of HRD) program, Grant of the Medical data-driven hospital support project through the Korea Health Information Service (KHIS), funded by the Ministry of Health and Welfare, Republic of Korea, Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety), Ansan-Si hidden champion fostering and supporting project funded by Ansan city
Collapse
Affiliation(s)
- Jihoo Kim
- Department of Interdisciplinary Robot Engineering Systems, Hanyang University, Ansan, Republic of Korea
- These authors contributed equally to this work as first authors
| | - Kang Hyeon Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Republic of Korea
- These authors contributed equally to this work as first authors
| | - Euijin Kim
- Department of Human-Computer Interaction, Hanyang University, Ansan, Republic of Korea
| | - Seunghu Kim
- Department of Applied Artificial Intelligence, Hanyang University, Ansan, Republic of Korea
| | - Hong Jin Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Republic of Korea
| | - Ye Hwan Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Republic of Korea
| | - Sungkean Kim
- Department of Interdisciplinary Robot Engineering Systems, Hanyang University, Ansan, Republic of Korea
- Department of Human-Computer Interaction, Hanyang University, Ansan, Republic of Korea
- Department of Applied Artificial Intelligence, Hanyang University, Ansan, Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Republic of Korea
- Department of Medical Informatics, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Nikolova S, Chong C, Li J, Wu T, Dumkrieger G, Esterov D, Ross K, Starling A, Thomas A, Leonard M, Smith D, Schwedt TJ. Periaqueductal gray functional connectivity abnormalities associated with acute post-traumatic headache. J Neurol 2025; 272:356. [PMID: 40266360 DOI: 10.1007/s00415-025-13098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND The purpose of this study was to investigate pain network and periaqueductal gray matter (PAG) functional connectivity (FC) in participants with acute post-traumatic headache (PTH) due to mild traumatic brain injury (mTBI) compared to healthy controls (HC). METHODS Ninety-eight participants with acute PTH and 85 HC underwent 3 T magnetic resonance imaging. Static FC among regions of the pain matrix and between PAG to the rest of the brain were examined. Correlations between FC and clinical parameters were investigated using linear regression. PTH outcomes (improved or not improved) were determined at 3 months post-enrollment. RESULTS Stronger FC between the PAG and right somatosensory and left lingual areas, and weaker FC between left thalamus and left caudate were found in the PTH group compared to HC. Whole-brain analysis showed increased PAG FC, primarily with somatosensory, motor, and occipital areas of participants with PTH relative to HC. These differences had associations with headache frequency, state anxiety, and time since mTBI. A PAG FC model for PTH improvement at 3 months had a sensitivity of 82% and a specificity of 100%. Participants with PTH who did not improve at 3 months had stronger baseline FC from the PAG to the right temporal region and the left insula relative to the improved group or to HC. CONCLUSION PAG FC could serve as an early biomarker identifying participants with acute PTH at risk of developing persistent PTH.
Collapse
Affiliation(s)
- Simona Nikolova
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Catherine Chong
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Phoenix, AZ, USA
| | - Jing Li
- Georgia Tech, School of Industrial and Systems Engineering, Atlanta, GA, USA
| | - Teresa Wu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA
| | - Gina Dumkrieger
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Dmitry Esterov
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | - Amaal Starling
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Aaron Thomas
- Department of Emergency Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Michael Leonard
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Dani Smith
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Todd J Schwedt
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA.
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA.
| |
Collapse
|
7
|
Dembling SJ, Abaya NM, Gianaros PJ, Inagaki TK. The heart of social pain: examining resting blood pressure and neural sensitivity to exclusion. Soc Cogn Affect Neurosci 2025; 20:nsaf025. [PMID: 40160022 PMCID: PMC12000721 DOI: 10.1093/scan/nsaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/07/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Previous work suggests blood pressure (BP) relates to social algesia, where those with higher BP are more tolerant of social pain. The neural correlates of this association, however, are unknown. Based on findings suggesting neural regions involved in physical pain are activated during social pain, the current study explores whether BP relates to subjective and neural responses to social pain, apart from emotional responding. BP was measured, after which participants completed emotional processing and social exclusion functional magnetic resonance imaging (fMRI) paradigms. Results replicated previous findings, with higher systolic BP related to lower trait sensitivity to social pain. However, there were no associations between BP and reported sensitivity to social pain during social exclusion. Moreover, after accounting for adiposity, we found no association between BP and anterior insula (AI) or dorsal anterior cingulate cortex (dACC) activity to exclusion. Finally, there were no reliable associations between BP and reported valence or arousal, or AI and dACC activity to emotional images. Findings partly replicate and extend prior findings on BP and emotional responding to social pain; however, they appear inconsistent with predictions at the neural level. Future experimental manipulation of BP may allow for causal inferences and adjudication of conceptual perspectives on cardiovascular contributions to social algesia.
Collapse
Affiliation(s)
- Sarah J Dembling
- Department of Psychology, San Diego State University, San Diego, CA 92182, United States
- SDSU-UCSD Joint Doctoral Program in Clinical Psychology, San Diego, CA 92182, United States
| | - Nicole M Abaya
- Department of Psychology, San Diego State University, San Diego, CA 92182, United States
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Tristen K Inagaki
- Department of Psychology, San Diego State University, San Diego, CA 92182, United States
- SDSU-UCSD Joint Doctoral Program in Clinical Psychology, San Diego, CA 92182, United States
| |
Collapse
|
8
|
Oishi K, Chotiyanonta JS, Mori S, Troncoso JC, Lenz FA. Identification and characterization of the thalamic ventral posterior complex by 11.7T ex vivo diffusion tensor imaging. Brain Struct Funct 2025; 230:49. [PMID: 40232513 DOI: 10.1007/s00429-025-02915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
The thalamic ventral posterior (VP) nuclear complex includes several subnuclei, including the VPM, VPL, VPI, and VMb, each with distinct inputs, axonal trajectories, and staining properties. Understanding the three-dimensional organization of neuronal fiber structures of the VP complex is crucial for understanding intra-thalamic and thalamocortical connections related to somatosensory processing. In this study, an ex vivo block of the human brain was scanned using mesoscopic Diffusion Tensor Imaging (DTI), and the four VP subnuclei were identified using existing histological atlases as references. The VP subnuclei were characterized using a mean diffusivity (MeanD) map, orientation-coded fractional anisotropy (FA) map, and tractography obtained from DTI. The results demonstrated differential patterns in MeanD and orientation-coded FA maps among the four subnuclei, underscoring the potential of mesoscale imaging to identify and differentiate these subnuclei. The tractography identified patterns of afferent and efferent fibers unique to each nucleus, offering insights into their functional roles in sensory processing. The findings highlighted the advantages of DTI in visualizing the direction of fibrous structures and conducting three-dimensional tractography, offering a foundation for further investigations into in vivo imaging applications and the neural mechanisms of somatosensory disorders, including central pain syndrome.
Collapse
Affiliation(s)
- Kenichi Oishi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine Baltimore, 208 Traylor Building, 720 Rutland Ave, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Ave, Baltimore, MD, 21205, USA.
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Baltimore, MD, USA.
| | - Jill S Chotiyanonta
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine Baltimore, 208 Traylor Building, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Susumu Mori
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine Baltimore, 208 Traylor Building, 720 Rutland Ave, Baltimore, MD, 21205, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Juan C Troncoso
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine Baltimore, Baltimore, MD, USA
| | - Frederick A Lenz
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Härpfer K, Carsten HP, Kausche FM, Riesel A. Enhanced Performance Monitoring as a Transdiagnostic Risk Marker of the Anxiety and Obsessive-Compulsive Spectrum: The Role of Disorder Category, Clinical Status, Family Risk, and Anxiety Dimensions. Depress Anxiety 2025; 2025:9505414. [PMID: 40259892 PMCID: PMC12009682 DOI: 10.1155/da/9505414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/16/2024] [Accepted: 02/14/2025] [Indexed: 04/23/2025] Open
Abstract
In this preregistered study, we investigated the relationship between neural correlates of performance monitoring and disorders of the anxiety and obsessive-compulsive spectrum. Specifically, we aimed at understanding the role of disorder category, clinical status, family risk, and the transdiagnostic symptom dimensions of anxious apprehension and anxious arousal. To this end, we measured event-related potentials (ERPs) of performance monitoring (i.e., error-related negativity, ERN, and correct-response negativity, CRN) in a large sample of 156 participants, including groups of patients with obsessive-compulsive disorder, social anxiety disorder, and specific phobia, as well as a naturalistic control group. Contrary to our initial expectations, we did not observe significant differences in ERPs among the clinical groups, nor in comparison to the naturalistic control group. However, after creating a more strictly defined healthy control group, we found larger ERN amplitudes in the specific phobia compared with the healthy control group. In addition, when comparing participants with and without a lifetime clinical diagnosis of any internalizing disorder, regardless of their main diagnosis, as well as when comparing those with or without a family risk for internalizing psychopathology, we observed larger amplitudes for both ERN and CRN. Subsequently, we combined data from this study and a previously published subclinical study to examine the role of transdiagnostic symptom dimensions (i.e., anxious apprehension and anxious arousal) across a wider severity spectrum. In this joint sample of 246 participants, gender emerged as a moderator of the link between anxious apprehension and enhanced performance monitoring. Specifically, women with increasing anxious apprehension exhibited elevated ERN and CRN amplitudes. In conclusion, our study challenges the notion of a disorder-specific link to performance monitoring. Instead, our findings suggest that enhanced performance monitoring is associated with a higher propensity for anxious apprehension and acts as a broad risk marker for internalizing psychopathology, reflecting vulnerability beyond diagnostic borders within the anxiety- and obsessive-compulsive spectrum.
Collapse
Affiliation(s)
- Kai Härpfer
- Department of Psychology, University of Hamburg, Hamburg 20146, Germany
| | | | | | - Anja Riesel
- Department of Psychology, University of Hamburg, Hamburg 20146, Germany
| |
Collapse
|
10
|
Qiao D, Qi Y, Zhang X, Wen Y, Huang Y, Li Y, Liu P, Li G, Liu Z. The possible effect of inflammation on non-suicidal self-injury in adolescents with depression: a mediator of connectivity within corticostriatal reward circuitry. Eur Child Adolesc Psychiatry 2025:10.1007/s00787-025-02709-6. [PMID: 40186642 DOI: 10.1007/s00787-025-02709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Non-suicidal self-injury (NSSI) in adolescent depression is a prevalent and clinically significant behavior linked to dysregulated peripheral inflammation and corticostriatal circuitry dysfunction. However, the neuroimmune mechanisms bridging these systems remain poorly understood. Here, we combined peripheral cytokine profiling with static/dynamic functional connectivity (sFC/dFC) analysis to investigate the potential influence of inflammaton on corticostriatal circuit related to NSSI. A set of peripheral blood inflammatory markers and resting-state functional magnetic resonance imaging (rs-fMRI) were collected in depression with NSSI (NSSI+), depression without NSSI (NSSI-), and healthy controls (HC). We first ascertain group differences in level of pro- and anti-inflammatory cytokines. And using ventral/dorsal striatal seeds, we compared whole-brain, voxel-wise sFC and dFC differences across three groups. Further, we tested the mediation effects of connectivity in the association between inflammatory markers and NSSI frequency. NSSI+ group exhibited elevated pro-inflammatory cytokines (C-reactive protein (CRP), interleukin (IL)-1, and IL-6) whereas reduced anti-inflammatory cytokines (IL-10), compared to NSSI- and HC. Neuroimaging analysis revealed corticostriatal dysconnectivity mainly characterized by static hyperconnectivity between dorsal striatum and thalamus, dynamic instability in dorsal striatum-lingual pathways, and dynamic rigidity in ventral striatum-prefrontal/temporal/occipital gyrus circuits. Critically, sFC of dorsal striatum-thalamus and dFC of dorsal striatum-lingual gyrus mediated the prospective association between altered CRP and NSSI frequency, establishing corticostriatal circuits as conduits for inflammatory effects on NSSI. By bridging molecular psychiatry with circuit neuroscience, this work advances precision management of NSSI in adolescent depression, prioritizing biomarker-driven strategies to disrupt neuroimmune maladaptation.
Collapse
Affiliation(s)
- Dan Qiao
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Yirun Qi
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Xiaoyu Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Yujiao Wen
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Yangxi Huang
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Yiran Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Gaizhi Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China.
| |
Collapse
|
11
|
Yordanova J, Nicolardi V, Malinowski P, Simione L, Aglioti SM, Raffone A, Kolev V. EEG oscillations reveal neuroplastic changes in pain processing associated with long-term meditation. Sci Rep 2025; 15:10604. [PMID: 40148498 PMCID: PMC11950376 DOI: 10.1038/s41598-025-94223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
The experience of pain is a combined product of bottom-up and top-down influences mediated by attentional and emotional factors. Meditation states and traits are characterized by enhanced attention/emotion regulation and expanded self-awareness that can be expected to modify pain processing. The main objective of the present study was to explore the effects of long-term meditation on neural mechanisms of pain processing. EEG pain-related oscillations (PROs) were analysed in highly experienced practitioners and novices during a non-meditative resting state with respect to (a) local frequency-specific and temporal synchronizing characteristics to reflect mainly bottom-up mechanisms, (b) spatial synchronizing patterns to reflect the neural communication of noxious information, (c) pre-stimulus oscillations to reflect top-down mechanisms during pain expectancy, and (d) the P3b component of the pain-related potential to compare the emotional/cognitive reappraisal of pain events by expert and novice meditators. Main results demonstrated that in experienced (long-term) meditators as compared to non-experienced (short-term) meditators (1) the temporal and spatial synchronizations of multispectral (from theta-alpha to gamma) PROs were substantially suppressed at primary and secondary somatosensory regions contra-lateral to pain stimulation within 200 ms after noxious stimulus; (2) pre-stimulus alpha activity was significantly increased at the same regions, which predicted the suppressed synchronization of PROs in long-term meditators; (3) the decrease of the P3b component was non-significant. These novel observations provide evidence that even when subjected to pain outside of meditation, experienced meditators exhibit a pro-active top-down inhibition of somatosensory areas resulting in suppressed processing and communication of sensory information at early stages of painful input. The emotional/cognitive appraisal of pain is reduced but remains preserved revealing a capacity of experienced meditators to dissociate pro-active and reactive top-down processes during pain control.
Collapse
Affiliation(s)
- Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria.
| | | | - Peter Malinowski
- School of Psychology, Research Centre for Brain and Behaviour, Liverpool John Moores University (LJMU), Liverpool, UK
| | - Luca Simione
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
| | - Salvatore M Aglioti
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Neuroscience and Society Lab, Istituto Italiano Di Tecnologia, Rome, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- School of Buddhist Studies, Philosophy and Comparative Religions, Nalanda University, Rajgir, India
| | - Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| |
Collapse
|
12
|
Mathew J, Adhia DB, Smith ML, De Ridder D, Mani R. Closed-Loop Infraslow Brain-Computer Interface can Modulate Cortical Activity and Connectivity in Individuals With Chronic Painful Knee Osteoarthritis: A Secondary Analysis of a Randomized Placebo-Controlled Clinical Trial. Clin EEG Neurosci 2025; 56:165-180. [PMID: 39056313 PMCID: PMC11800731 DOI: 10.1177/15500594241264892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 07/28/2024]
Abstract
Introduction. Chronic pain is a percept due to an imbalance in the activity between sensory-discriminative, motivational-affective, and descending pain-inhibitory brain regions. Evidence suggests that electroencephalography (EEG) infraslow fluctuation neurofeedback (ISF-NF) training can improve clinical outcomes. It is unknown whether such training can induce EEG activity and functional connectivity (FC) changes. A secondary data analysis of a feasibility clinical trial was conducted to determine whether EEG ISF-NF training can significantly alter EEG activity and FC between the targeted cortical regions in people with chronic painful knee osteoarthritis (OA). Methods. A parallel, two-arm, double-blind, randomized, sham-controlled clinical trial was conducted. People with chronic knee pain associated with OA were randomized to receive sham NF training or source-localized ratio ISF-NF training protocol to down-train ISF bands at the somatosensory (SSC), dorsal anterior cingulate (dACC), and uptrain pregenual anterior cingulate cortices (pgACC). Resting state EEG was recorded at baseline and immediate post-training. Results. The source localization mapping demonstrated a reduction (P = .04) in the ISF band activity at the left dorsolateral prefrontal cortex (LdlPFC) in the active NF group. Region of interest analysis yielded significant differences for ISF (P = .008), slow (P = .007), beta (P = .043), and gamma (P = .012) band activities at LdlPFC, dACC, and bilateral SSC. The FC between pgACC and left SSC in the delta band was negatively correlated with pain bothersomeness in the ISF-NF group. Conclusion. The EEG ISF-NF training can modulate EEG activity and connectivity in individuals with chronic painful knee osteoarthritis, and the observed EEG changes correlate with clinical pain measures.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
| | - Divya Bharatkumar Adhia
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Dirk De Ridder
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Boisvert M, Dugré JR, Potvin S. Altered resting-state amplitudes of low-frequency fluctuations in offspring of parents with a diagnosis of bipolar disorder or major depressive disorder. PLoS One 2025; 20:e0316330. [PMID: 39965009 PMCID: PMC11835319 DOI: 10.1371/journal.pone.0316330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/10/2024] [Indexed: 02/20/2025] Open
Abstract
Offspring of parents with bipolar disorder (BD) or major depressive disorder (MDD) are at high biological risk (HR) of these disorders given their significant heritability. Thus, studying neural correlates in youths at HR-MDD and HR-BD appears essential to understand the development of mood disorders before their onset. Resting-state amplitudes of low-frequency fluctuations (ALFF) and fractioned ALFF (fALFF) shows moderate to high test-retest reliability which makes it a great tool to identify biomarkers. However, this avenue is still largely unexplored. Using the Healthy Brain Network biobank, we identified 150 children and adolescents HR-MDD, 50 HR-BD and 150 not at risk of any psychiatric disorder (i.e., the control group). We then examined differences in relative ALFF/fALFF signals during resting-state. At a corrected threshold, participants HR-MDD displayed lower resting-state ALFF signals in the dorsal caudate nucleus compared to the control group. The HR-BD group showed increased fALFF values in the primary motor cortex compared to the control group. Therefore, robust differences were noted in regions that could be linked to important symptoms of mood disorders, namely psychomotor retardation, and agitation. At an uncorrected threshold, differences were noted in the central opercular cortex and the cerebellar. The database is a community-referred cohort and heterogeneous in terms of children's psychiatric diagnosis and symptomatology, which may have altered the results. ALFF and fALFF results for the comparison between both HR groups and the control group overlapped, suggesting good convergence. More studies measuring ALFF/fALFF in HR are needed to replicate these results.
Collapse
Affiliation(s)
- Mélanie Boisvert
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada
- Faculty of Medicine, Department of Psychiatry and Addictology, University of Montreal; Montreal, Canada
| | - Jules R. Dugré
- Centre for Human Brain Health & School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Stéphane Potvin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada
- Faculty of Medicine, Department of Psychiatry and Addictology, University of Montreal; Montreal, Canada
| |
Collapse
|
14
|
Fontaine D, Leplus A, Donnet A, Darmon N, Balossier A, Giordana B, Simonet B, Isan P, Regis J, Lanteri-Minet M. Safety and feasibility of deep brain stimulation of the anterior cingulate and thalamus in chronic refractory neuropathic pain: a pilot and randomized study. J Headache Pain 2025; 26:35. [PMID: 39962366 PMCID: PMC11834684 DOI: 10.1186/s10194-025-01967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Deep Brain Stimulation (DBS) of the anterior cingulum has been recently proposed to treat refractory chronic pain but its safety and its efficacy have not been evaluated in controlled conditions. Our objective was to evaluate the respective feasibility and safety of sensory thalamus (Thal-DBS) combined with anterior cingulate (ACC-DBS) DBS in patients suffering from chronic neuropathic pain. METHODS We conducted a bicentric study (clinicaltrials.gov NCT03399942) in patients suffering from medically-refractory chronic unilateral neuropathic pain surgically implanted with both unilateral Thal-DBS and bilateral ACC-DBS, to evaluate successively: Thal-DBS only; combined Thal-DBS and ACC-DBS; ACC-DBS "on" and "off" stimulation periods in randomized cross-over double-blinded conditions; and a 1-year open phase. Safety and efficacy were evaluated by repeated neurological examination, psychiatric assessment, comprehensive assessment of cognitive and affective functioning. Changes on pain intensity (Visual Analogic Scale) and quality of life (EQ-5D scale) were used to evaluate DBS efficacy. RESULTS All the patients (2 women, 6 men, mean age 52,1) completed the study. Adverse events were: epileptic seizure (2), transient motor or attention (2), persistent gait disturbances (1), sleep disturbances (1). No patient displayed significant cognitive or affective change. Compared to baseline, the quality of life (EQ-5D utility score) was significantly improved during the ACC-DBS "On" stimulation period (p = 0,039) and at the end of the study (p = 0,034). CONCLUSION This pilot study confirmed the safety of anterior cingulate DBS alone or in combination with thalamic stimulation and suggested that it might improve quality of life of patients with chronic refractory neuropathic pain. TRIAL REGISTRATION The study has been registered on 20,180,117 (clinicaltrials.gov NCT03399942).
Collapse
Affiliation(s)
- Denys Fontaine
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France.
- Université Côte d'Azur, UR2CA, Nice, France.
- FHU INOVPAIN, CHU de Nice, Nice, France.
| | - Aurélie Leplus
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France
- Université Côte d'Azur, UR2CA, Nice, France
- FHU INOVPAIN, CHU de Nice, Nice, France
| | - Anne Donnet
- FHU INOVPAIN, CHU de Nice, Nice, France
- Pain Clinic, Hopital La Timone, APHM, Marseille, France
- INSERM U1107 Migraine and Trigeminal Pain, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Nelly Darmon
- Université Côte d'Azur, UR2CA, Nice, France
- Department of Psychiatry, Université Côte d'Azur, CHU de Nice, Nice, France
| | - Anne Balossier
- INSERM (INS) UMR1106, Department of Functional Neurosurgery & Radiosurgery, Aix Marseille University, Marseille, France
| | - Bruno Giordana
- Université Côte d'Azur, UR2CA, Nice, France
- Department of Psychiatry, Université Côte d'Azur, CHU de Nice, Nice, France
| | - Benoit Simonet
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France
- Université Côte d'Azur, UR2CA, Nice, France
- FHU INOVPAIN, CHU de Nice, Nice, France
| | - Petru Isan
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France
- Université Côte d'Azur, UR2CA, Nice, France
- FHU INOVPAIN, CHU de Nice, Nice, France
| | - Jean Regis
- INSERM (INS) UMR1106, Department of Functional Neurosurgery & Radiosurgery, Aix Marseille University, Marseille, France
| | - Michel Lanteri-Minet
- Université Côte d'Azur, UR2CA, Nice, France
- FHU INOVPAIN, CHU de Nice, Nice, France
- INSERM U1107 Migraine and Trigeminal Pain, Université Clermont-Auvergne, Clermont-Ferrand, France
- Université Côte d'Azur, CHU de Nice, Pain Clinic, Nice, France
| |
Collapse
|
15
|
Kollenburg L, Arnts H, Green A, Strauss I, Vinke S, Kurt E. The cingulum: anatomy, connectivity and what goes beyond. Brain Commun 2025; 7:fcaf048. [PMID: 39949403 PMCID: PMC11824423 DOI: 10.1093/braincomms/fcaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/12/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
For over half a century, the cingulum has been the subject of neuroanatomical and therapeutic investigations owing to its wide range of functions and involvement in various neurological and psychiatric diseases. Recent clinical studies investigating neurosurgical techniques targeting the cingulum, like deep brain stimulation of the anterior cingulate cortex and cingulotomy, have further boosted interests in this central 'hub' as a target for chronic intractable pain. Proper targeting within the cingulum is essential to achieve sufficient pain relief. Despite the cingulum being the centre of research for over a century, its structural and functional organization remains a subject to debate, consequently complicating neurosurgical targeting of this area. This study aims to review anatomical and connectivity data of the cingulum from a clinical perspective in order to improve understanding of its role in pain. For the current study, a systematic literature search was performed to assess the anatomy and functional and structural connectivity of the cingulate bundle and cortex. These outcomes focus on MRI and PET data. Articles were searched within the PubMed database, and additional articles were found manually through reviews or references cited within the articles. After exclusion, 70 articles remained included in this analysis, with 50, 29 and 10 studies describing human, monkey and rat subjects, respectively. Outcomes of this analysis show the presence of various anatomical models, each describing other subdivisions within the cingulum. Moreover, connectivity data suggest that the cingulate bundle consists of three distinct fibre projections, including the thalamocortical, cingulate gyrus and anterior frontal and posterior parietal projections. Further, the cingulum is responsible for a variety of functions involved in chronic pain, like sensory processing, memory, spatial functioning, reward, cognition, emotion, visceromotor and endocrine control. Based on the current outcomes, it can be concluded that the cingulum is a central 'hub' for pain processing, because it is a melting pot for memory, cognition and affect that are involved in the complex phenomenon of pain experience, memory, spatial functioning, reward, cognition, emotion, visceromotor and endocrine control. Variability in anatomical and connectivity models complicate proper and standardized neurosurgical targeting, consequently leading to clinicians often being reluctant on stimulation and/or lesioning of the cingulum. Hence, future research should be dedicated to the standardization of these models, to allow for optimal targeting and management of patients with chronic intractable pain.
Collapse
Affiliation(s)
- Linda Kollenburg
- Department of Neurosurgery, Functional Neurosurgery Unit, Radboud University Medical Center, Nijmegen 6525 GA,Netherlands
| | - Hisse Arnts
- Department of Neurosurgery, Functional Neurosurgery Unit, Radboud University Medical Center, Nijmegen 6525 GA,Netherlands
| | - Alexander Green
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Clinical Neuroscience and Surgery, University of Oxford, Oxford OX39DU, UK
| | - Ido Strauss
- Department of Neurosurgery, Functional Neurosurgery Unit, Tel Aviv Medical Center, Tel Aviv 6801298, Israel
| | - Saman Vinke
- Department of Neurosurgery, Functional Neurosurgery Unit, Radboud University Medical Center, Nijmegen 6525 GA,Netherlands
| | - Erkan Kurt
- Department of Neurosurgery, Functional Neurosurgery Unit, Radboud University Medical Center, Nijmegen 6525 GA,Netherlands
- Department of Pain & Palliative Care, Radboud University Medical Center, Nijmegen 6525 GA,Netherlands
| |
Collapse
|
16
|
Antoniazzi E, Cavigioli C, Tang V, Zoccola C, Todisco M, Tassorelli C, Cosentino G. Effects of Repetitive Transcranial Magnetic Stimulation Applied over the Primary Motor Cortex on the Offset Analgesia Phenomenon. Life (Basel) 2025; 15:182. [PMID: 40003592 PMCID: PMC11856385 DOI: 10.3390/life15020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, we investigate the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) applied over the left upper limb primary motor cortex (M1) on the offset analgesia (OA) phenomenon, a measure of endogenous pain modulation. In particular, we aim to determine whether rTMS influences OA differently in the forearm region, corresponding to the stimulated cortical area, compared to the trigeminal region. Twenty-two healthy volunteers underwent three experimental sessions: a baseline session without stimulation, an active rTMS session, and a sham rTMS session. Quantitative sensory testing (QST) paradigms, including warm and cold detection thresholds, heat pain threshold corresponding to a visual analogue scale (VAS) score of approximately 50-60 out of 100 (Pain50-60), and constant and offset trials, were assessed in both the forearm and trigeminal regions. The results revealed that active rTMS significantly enhanced the OA phenomenon in the forearm during the late phase, while no significant effects were observed in the trigeminal region. These findings suggest that rTMS may modulate central pain mechanisms in a body region-specific manner, potentially linked to the somatotopic organization of M1. This study points to possible mechanisms of action of rTMS for pain relief, highlighting the importance of region-specific effects in chronic pain treatment. Further research is needed to investigate the underlying mechanisms and clinical applicability of rTMS in patients with chronic pain conditions, especially when OA is compromised.
Collapse
Affiliation(s)
- Elisa Antoniazzi
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Camilla Cavigioli
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Vanessa Tang
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Clara Zoccola
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Massimiliano Todisco
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Giuseppe Cosentino
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
17
|
Moreno-Gómez-Toledano R, Méndez-Mesón I, Aguado-Henche S, Sebastián-Martín A, Grande-Alonso M. How Painful are Lumbar Hernias? A Comprehensive Review of Intervention Strategies. Curr Pain Headache Rep 2025; 29:34. [PMID: 39862368 PMCID: PMC11762575 DOI: 10.1007/s11916-024-01342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 01/27/2025]
Abstract
PURPOSE OF REVIEW Low back pain (LBP) is considered an important issue of public health, with annual prevalence estimations almost achieving 60% of the worldwide population. Available treatments have a limited impact on this condition, although they allow to alleviate pain and recover the patient's quality of life. This review aims to go deeper on the understanding of this condition, providing an updated, brief, and concise whole picture of this common musculoskeletal problem. RECENT FINDINGS Scientific literature, current clinical practice and clinical guidelines are summarized, focusing on three key aspects: classification of LBP, diagnosis of symptomatic lumbar hernia, and intervention strategies (conservative, surgical, and pharmacological). Benefits and drawbacks of each approach are tackled. The most appropriate intervention for LBP suffers is hitherto a conservative treatment based on therapeutic exercise, manual therapy and therapeutic education on the neurophysiological mechanisms of pain. Whether patient's condition is severe, does not improve with conservative treatment, or presents neurological symptoms, then surgical intervention is recommended. The efficiency of pharmaceutical approaches for LBP lacks high-quality evidence-based studies, and still needs to be in-depth explored. Current treatments help to improve symptoms and patient's perspectives. However, further research in the field of herniated discs is essential in order to seek a therapy that could definitely cure or eliminate this condition.
Collapse
Affiliation(s)
- Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá, School of Medicine and Health Sciences, Department of Surgery, Medical and Social Sciences, Area of Human Anatomy and Embryology, Universidad de Alcalá, University Campus - C/ 19 Av de Madrid Km 33 600, 28871, Alcalá de Henares, Madrid, Spain
| | - Irene Méndez-Mesón
- Universidad de Alcalá, School of Medicine and Health Sciences, Department of Surgery, Medical and Social Sciences, Area of Human Anatomy and Embryology, Universidad de Alcalá, University Campus - C/ 19 Av de Madrid Km 33 600, 28871, Alcalá de Henares, Madrid, Spain
- Departamento de Traumatología, Unidad de Columna, Hospital Universitario de Torrejón, Madrid, Spain
| | - Soledad Aguado-Henche
- Universidad de Alcalá, School of Medicine and Health Sciences, Department of Surgery, Medical and Social Sciences, Area of Human Anatomy and Embryology, Universidad de Alcalá, University Campus - C/ 19 Av de Madrid Km 33 600, 28871, Alcalá de Henares, Madrid, Spain
| | - Alba Sebastián-Martín
- Universidad de Alcalá, School of Medicine and Health Sciences, Department of Surgery, Medical and Social Sciences, Area of Human Anatomy and Embryology, Universidad de Alcalá, University Campus - C/ 19 Av de Madrid Km 33 600, 28871, Alcalá de Henares, Madrid, Spain.
- Health Research Institute of Castilla-La Mancha (IDISCAM), Toledo, Spain.
| | - Mónica Grande-Alonso
- Universidad de Alcalá, School of Medicine and Health Sciences, Department of Surgery, Medical and Social Sciences, Area of Human Anatomy and Embryology, Universidad de Alcalá, University Campus - C/ 19 Av de Madrid Km 33 600, 28871, Alcalá de Henares, Madrid, Spain
- Grupo de Investigación Clínico-Docente Sobre Ciencias de La Rehabilitación (INDOCLIN), Centro Superior de Estudios Universitarios La Salle, Madrid, Spain
| |
Collapse
|
18
|
Brooks BM, Cordero FJ, Alchermes SL, Brooks BM. Social pain: A systematic review on interventions. F1000Res 2025; 14:58. [PMID: 40144800 PMCID: PMC11937780 DOI: 10.12688/f1000research.159561.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 03/28/2025] Open
Abstract
Social pain is emotional distress caused by harm or threat to social connections that results in social exclusion, rejection, or loss. Social Pain is also a potentiator of physical pain. Supportive social relationships are widely recognized for their impact on maintaining health and well-being. The Passion of Jesus Christ serves as a quintessential example of social pain (i.e., desertion, betrayal, denial) potentiating physical pain (i.e., beatings, Crown of Thorns, crucifixion). Christ opts to forgive. Although forgiveness is one solution to reduce social pain, other interventions exist. This review seeks to identify and summarize interventions associated with reducing social pain. We conducted a systematic review using Medline (PubMed), Google Scholar, and Cochrane CENTRAL to identify relevant articles. Results: The database searches produced 548 articles. Fourteen randomized controlled trials (RCTs) were included in this systematic review. Acetaminophen, both deceptive and open-label placebos, mindfulness training, and psilocybin were found to reduce social pain. Of note, the combination of acetaminophen and forgiveness yielded superior results compared to either acetaminophen or forgiveness alone. Pharmacological interventions operate on the premise that the neural pathways responsible for physical pain also play a role in social pain. Both pharmacological and non-pharmacological interventions are available for reducing social pain.
Collapse
|
19
|
Deshayes TA, Savoie FA, Pancrate T, Jolicoeur Desroches A, Morais JA, Bernier PM, Léonard G, Simoneau IL, Goulet EDB. Mild hypohydration in healthy older adults increases pain-related brain activity without affecting pain perception: a single-blind study. J Appl Physiol (1985) 2025; 138:238-249. [PMID: 39657025 DOI: 10.1152/japplphysiol.00870.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
Understanding how hydration status influences pain perception is particularly important in older adults, as both dehydration and pain are prevalent in this population. Ten individuals (70 ± 4 yr) completed two randomized and counterbalanced trials. They were exposed to passive heat until they lost 1% body mass through sweat and urine (∼100 min), with the loss either unreplaced (sham infusion, HYPO) or fully replaced via 0.45% saline infusion (EUH). Nociceptive electrical stimulation was applied to the sural nerve 1) before heat exposure (baseline), 2) 60 min following hydration manipulation (R60, ∼160 min after baseline), 3) after mouth rinsing with water (MR, ∼170 min after baseline), and 4) following water ingestion (ING, ∼185 min after baseline). Pain-related event-related potentials were assessed using electroencephalography (EEG) at R60, MR, and ING. After hydration manipulation, body mass loss and plasma osmolality were greater, and plasma volumes were lower in HYPO than in EUH, although thirst did not differ between the conditions. There were no differences between the two conditions regarding pain intensity and unpleasantness. Still, EEG analyses revealed that the peak-to-peak amplitude of the pain-related N200-P300 potential (∼136-310 ms) was significantly greater in HYPO than in EUH (P = 0.036) and significantly greater in R60 compared with both MR (P = 0.01) and ING (P = 0.03), either with HYPO and EUH. These results suggest that mild hypohydration in healthy older adults may influence some neurophysiological processes related to nociception without significantly affecting pain perception.NEW & NOTEWORTHY This study reveals, for the first time, that mild hypohydration equivalent to ∼1% of body mass does not alter pain perception in healthy older adults when they are blinded to their hydration status, despite electroencephalography signals showing modulation of pain-related brain responses.
Collapse
Affiliation(s)
- Thomas A Deshayes
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Félix-Antoine Savoie
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Health Sciences, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Timothée Pancrate
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - José A Morais
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- Division of Geriatric Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Pierre-Michel Bernier
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Guillaume Léonard
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- School of Rehabilitation, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ivan L Simoneau
- Service de soutien à l'enseignement et à la recherche, Cégep of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric D B Goulet
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
20
|
Axelsen JL, Kirk U, Andersen SB, Schmidt JJ, Gaarde MB, Franck CL, van Duinkerken E, Pouwer F. Neural networks involved in painful diabetic neuropathy: A systematic review. Scand J Pain 2025; 25:sjpain-2024-0069. [PMID: 40197380 DOI: 10.1515/sjpain-2024-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025]
Abstract
OBJECTIVES Diabetic distal symmetric polyneuropathy, affecting up to 50% of adults with diabetes, often leads to painful symptoms; yet current treatments are largely ineffective with standard therapies providing limited relief. The aim of this systematic review is to address the knowledge gap in understanding the neural networks associated with painful diabetic polyneuropathy (P-DPN). By synthesizing evidence from neuroimaging studies, it seeks to identify potential targets for neuromodulation-based treatments, ultimately guiding clinicians and researchers in developing novel, more effective therapeutic interventions for P-DPN. CONTENT A comprehensive search following the preferred reporting items for systematic reviews and meta-analysis was conducted across Embase, PsycINFO, and MEDLINE databases to identify relevant neuroimaging studies from 2010 to May 2024. The search focused on studies involving P-DPN and excluded animal research. After the removal of duplicates and irrelevant studies, 18 studies were included and critically appraised for their contributions to understanding the neural correlates of P-DPN. SUMMARY The review highlights that P-DPN is associated with alterations in brain networks involved in pain perception, particularly in the primary somatosensory cortex highlighting its role in sensory and pain perception. Regions such as the anterior cingulate cortex and thalamus exhibit altered functional connectivity, with the former showing responses to pain treatment. The review also identified increased connectivity between the cingulate cortex, medial prefrontal cortex, medial temporal region, and insula in individuals with P-DPN, pointing to the involvement of these regions in the emotional and cognitive aspects of pain processing. OUTLOOK This review provides a foundational understanding of the neural networks involved in P-DPN, offering potential targets for future neuromodulation therapies. Further research is required to deepen the understanding of these brain alterations and to explore how they can be leveraged for more effective P-DPN treatments.
Collapse
Affiliation(s)
| | - Ulrich Kirk
- Department of Psychology, University of Southern Denmark, Odense, Denmark
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States of America
| | | | - Juliana Janeiro Schmidt
- Post-Graduate Program in Neurology, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Beck Gaarde
- Department of Psychology, University of Southern Denmark, Odense, Denmark
| | | | - Eelco van Duinkerken
- Post-Graduate Program in Neurology, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Medical Psychology, Amsterdam University Medical Center, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - François Pouwer
- Department of Psychology, University of Southern Denmark, Odense, Denmark
- Department of Medical Psychology, Amsterdam University Medical Center, Location Vrije Universiteit, Amsterdam, The Netherlands
- Steno Diabetes Center Odense, Odense, Denmark
- School of Psychology, Deakin University, Melbourne, Australia
| |
Collapse
|
21
|
Strath LJ, Meng L, Zhang Y, Rani A, Huo Z, Foster TC, Fillingim RB, Cruz-Almeida Y. Differential DNA methylation profiles of Alzheimer's disease-related genomic pathways in the blood of cognitively-intact individuals with and without high impact chronic pain. J Alzheimers Dis Rep 2024; 8:1549-1557. [PMID: 40034342 PMCID: PMC11863755 DOI: 10.1177/25424823241289376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/14/2024] [Indexed: 03/05/2025] Open
Abstract
Background Chronic pain and Alzheimer's disease (AD) are prevalent in older age and their etiologies remain to be understoodand evidence supports potential associations between the two. Both high impact pain and AD have been previously associated with differences in the epigenome. Interactions with the epigenome may serve as a possible underlying mechanism linking high impact pain and AD. Objective To complete epigenetic canonical pathways analyses related to AD in individuals with and without high-impact knee pain. Methods This manuscript aimed to explore differences in DNA methylation patterns in genes and pathways associated with AD. Blood samples of cognitively intact, community-dwelling adults with high impact knee painmversus pain-free controls were compared on their DNA methylation levels of AD-related genes. Pathway enrichment analysis was performed on significantly different DNA Methylation probes by pain group. Results There were significant DNA methylation differences between the high impact versus the pain-free control groups in genes and pathways associated with AD (p < 0.05). We found a total of 17,563 differentially methylated CpG probes, including 13,411 hypermethylated CpG probes and 4152 hypomethylated CpG probes. Further, pathway analysis revealed these differences were significantly associated with AD-related pathways associated with AD progression. Conclusions This study sample showed AD-related DNA methylation differences and associated potential canonical pathways in those with and without high impact knee pain. These results highlight the need to study overlapping epigenetic modifications underlying high impact pain and AD pathologies. Further studies, including gene expression, are needed to further explore the relationship between epigenetics, chronic pain, and AD.
Collapse
Affiliation(s)
- Larissa J Strath
- Pain Research and Intervention Center of Excellence (PRICE) at the University of Florida, Gainesville, FL, USA
- Department of Health Outcomes and Biomedical Informatics, the University of Florida, Gainesville, FL, USA
| | - Lingsong Meng
- Department of Biostatistics, the University of Florida, Gainesville, FL, USA
| | - Yutao Zhang
- Department of Biostatistics, the University of Florida, Gainesville, FL, USA
| | - Asha Rani
- Department of Neuroscience, the University of Florida, Gainesville, FL, USA
| | - Zhiguang Huo
- Department of Biostatistics, the University of Florida, Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, the University of Florida, Gainesville, FL, USA
| | - Roger B Fillingim
- Pain Research and Intervention Center of Excellence (PRICE) at the University of Florida, Gainesville, FL, USA
- Department of Community Dentistry and Behavioral Science, the University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence (PRICE) at the University of Florida, Gainesville, FL, USA
- Department of Community Dentistry and Behavioral Science, the University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Farmer AL, Febo M, Wilkes BJ, Lewis MH. Environmental Enrichment Attenuates Repetitive Behavior and Alters the Functional Connectivity of Pain and Sensory Pathways in C58 Mice. Cells 2024; 13:1933. [PMID: 39682680 PMCID: PMC11640393 DOI: 10.3390/cells13231933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Restricted repetitive behaviors (RRB) encompass a variety of inflexible behaviors, which are diagnostic for autism spectrum disorder (ASD). Despite being requisite diagnostic criteria, the neurocircuitry of these behaviors remains poorly understood, limiting treatment development. Studies in translational animal models show environmental enrichment (EE) reduces the expression of RRB, although the underlying mechanisms are largely unknown. This study used functional magnetic resonance imaging to identify functional connectivity alterations associated with RRB and its attenuation by EE in C58 mice, an animal model of RRB. Extensive differences were observed between C58 mice and C57BL/6 control mice. Higher RRB was associated with altered connectivity between the somatosensory network and reticular thalamic nucleus and between striatal and sensory processing regions. Animals housed in EE displayed increased connectivity between the somatosensory network and the anterior pretectal nucleus and hippocampus, as well as reduced connectivity between the visual network and area prostriata. These results suggest aberrant sensory perception is associated with RRB in C58 mice. EE may reduce RRB by altering functional connectivity in pain and visual networks. This study raises questions about the role of sensory processing and pain in RRB development and identifies new potential intervention targets.
Collapse
Affiliation(s)
- Anna L. Farmer
- Department of Psychology, University of Florida, Gainesville, FL 32603, USA;
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA;
| | - Bradley J. Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32608, USA;
| | - Mark H. Lewis
- Department of Psychology, University of Florida, Gainesville, FL 32603, USA;
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
23
|
Lisi MP, Fusaro M, Aglioti SM. Visual perspective and body ownership modulate vicarious pain and touch: A systematic review. Psychon Bull Rev 2024; 31:1954-1980. [PMID: 38429591 PMCID: PMC11543731 DOI: 10.3758/s13423-024-02477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
We conducted a systematic review investigating the influence of visual perspective and body ownership (BO) on vicarious brain resonance and vicarious sensations during the observation of pain and touch. Indeed, the way in which brain reactivity and the phenomenological experience can be modulated by blurring the bodily boundaries of self-other distinction is still unclear. We screened Scopus and WebOfScience, and identified 31 articles, published from 2000 to 2022. Results show that assuming an egocentric perspective enhances vicarious resonance and vicarious sensations. Studies on synaesthetes suggest that vicarious conscious experiences are associated with an increased tendency to embody fake body parts, even in the absence of congruent multisensory stimulation. Moreover, immersive virtual reality studies show that the type of embodied virtual body can affect high-order sensations such as appropriateness, unpleasantness, and erogeneity, associated with the touched body part and the toucher's social identity. We conclude that perspective plays a key role in the resonance with others' pain and touch, and full-BO over virtual avatars allows investigation of complex aspects of pain and touch perception which would not be possible in reality.
Collapse
Affiliation(s)
- Matteo P Lisi
- CLN2S@Sapienza, Fondazione Istituto Italiano di Tecnologia (IIT) and Department of Psychology, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
- IRCCS, Santa Lucia Foundation, Via Ardeatina 306, 00179, Rome, Italy.
| | - Martina Fusaro
- CLN2S@Sapienza, Fondazione Istituto Italiano di Tecnologia (IIT) and Department of Psychology, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
- IRCCS, Santa Lucia Foundation, Via Ardeatina 306, 00179, Rome, Italy
| | - Salvatore Maria Aglioti
- CLN2S@Sapienza, Fondazione Istituto Italiano di Tecnologia (IIT) and Department of Psychology, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
- IRCCS, Santa Lucia Foundation, Via Ardeatina 306, 00179, Rome, Italy
| |
Collapse
|
24
|
Coppi S, Jensen KB, Ehrsson HH. Eliciting the rubber hand illusion by the activation of nociceptive C and Aδ fibers. Pain 2024; 165:2240-2256. [PMID: 38787634 PMCID: PMC11404332 DOI: 10.1097/j.pain.0000000000003245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 05/26/2024]
Abstract
ABSTRACT The coherent perceptual experience of one's own body depends on the processing and integration of signals from multiple sensory modalities, including vision, touch, and proprioception. Although nociception provides critical information about damage to the tissues of one's body, little is known about how nociception contributes to own-body perception. A classic experimental approach to investigate the perceptual and neural mechanisms involved in the multisensory experience of one's own body is the rubber hand illusion (RHI). During the RHI, people experience a rubber hand as part of their own body (sense of body ownership) caused by synchronized stroking of the rubber hand in the participant's view and the hidden participant's real hand. We examined whether the RHI can be elicited by visual and "pure" nociceptive stimulation, ie, without tactile costimulation, and if so, whether it follows the basic perceptual rules of the illusion. In 6 separate experiments involving a total of 180 healthy participants, we used a Nd:YAP laser stimulator to specifically target C and Aδ fibers in the skin and compared the illusion condition (congruent visuonociceptive stimulation) to control conditions of incongruent visuonociceptive, incongruent visuoproprioceptive, and no nociceptive stimulation. The illusion was quantified through direct (questionnaire) and indirect (proprioceptive drift) behavioral measures. We found that a nociceptive rubber hand illusion (N-RHI) could be elicited and that depended on the spatiotemporal congruence of visuonociceptive signals, consistent with basic principles of multisensory integration. Our results suggest that nociceptive information shapes multisensory bodily awareness and contributes to the sense of body ownership.
Collapse
Affiliation(s)
| | - Karin B. Jensen
- Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
25
|
Emvalomenos GM, Kang JWM, Jupp B, Mychasiuk R, Keay KA, Henderson LA. Recent developments and challenges in positron emission tomography imaging of gliosis in chronic neuropathic pain. Pain 2024; 165:2184-2199. [PMID: 38713812 DOI: 10.1097/j.pain.0000000000003247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/05/2024] [Indexed: 05/09/2024]
Abstract
ABSTRACT Understanding the mechanisms that underpin the transition from acute to chronic pain is critical for the development of more effective and targeted treatments. There is growing interest in the contribution of glial cells to this process, with cross-sectional preclinical studies demonstrating specific changes in these cell types capturing targeted timepoints from the acute phase and the chronic phase. In vivo longitudinal assessment of the development and evolution of these changes in experimental animals and humans has presented a significant challenge. Recent technological advances in preclinical and clinical positron emission tomography, including the development of specific radiotracers for gliosis, offer great promise for the field. These advances now permit tracking of glial changes over time and provide the ability to relate these changes to pain-relevant symptomology, comorbid psychiatric conditions, and treatment outcomes at both a group and an individual level. In this article, we summarize evidence for gliosis in the transition from acute to chronic pain and provide an overview of the specific radiotracers available to measure this process, highlighting their potential, particularly when combined with ex vivo / in vitro techniques, to understand the pathophysiology of chronic neuropathic pain. These complementary investigations can be used to bridge the existing gap in the field concerning the contribution of gliosis to neuropathic pain and identify potential targets for interventions.
Collapse
Affiliation(s)
- Gaelle M Emvalomenos
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - James W M Kang
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Bianca Jupp
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Kevin A Keay
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Luke A Henderson
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
26
|
Lemos MD, Barbosa LM, Andrade DCD, Lucato LT. Contributions of neuroimaging in central poststroke pain: a review. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-11. [PMID: 39216489 DOI: 10.1055/s-0044-1789225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Central neuropathic poststroke pain (CNPSP) affects up to 12% of patients with stroke in general and up to 18% of patients with sensory deficits. This pain syndrome is often incapacitating and refractory to treatment. Brain computed tomography and magnetic resonance imaging (MRI) are widely used methods in the evaluation of CNPSP. OBJECTIVE The present study aims to review the role of neuroimaging methods in CNPSP. METHODS We performed a literature review of the main clinical aspects of CNPSP and the contribution of neuroimaging methods to study its pathophysiology, commonly damaged brain sites, and possible differential diagnoses. Lastly, we briefly mention how neuroimaging can contribute to the non-pharmacological CNPSP treatment. Additionally, we used a series of MRI from our institution to illustrate this review. RESULTS Imaging has been used to explain CNPSP pathogenesis based on spinothalamic pathway damage and connectome dysfunction. Imaging locations associated with CNPSP include the brainstem (mainly the dorsolateral medulla), thalamus (especially the ventral posterolateral/ventral posteromedial nuclei), cortical areas such as the posterior insula and the parietal operculum, and, more recently, the thalamocortical white matter in the posterior limb of the internal capsule. Imaging also brings the prospect of helping search for new targets for non-pharmacological treatments for CNPSP. Other neuropathic pain causes identified by imaging include syringomyelia, multiple sclerosis, and herniated intervertebral disc. CONCLUSION Imaging is a valuable tool in the complimentary evaluation of CNPSP patients in clinical and research scenarios.
Collapse
Affiliation(s)
- Marcelo Delboni Lemos
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Radiologia, São Paulo SP, Brazil
| | - Luciana Mendonça Barbosa
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil
| | - Daniel Ciampi de Andrade
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil
| | - Leandro Tavares Lucato
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Radiologia, São Paulo SP, Brazil
| |
Collapse
|
27
|
Della Porta D, Scheirman E, Legrain V. Top-down attention does not modulate mechanical hypersensitivity consecutive to central sensitization: insights from an experimental analysis. Pain 2024; 165:2098-2110. [PMID: 38595183 DOI: 10.1097/j.pain.0000000000003225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/08/2024] [Indexed: 04/11/2024]
Abstract
ABSTRACT According to the neurocognitive model of attention to pain, when the attentional resources invested in a task unrelated to pain are high, limited cognitive resources can be directed toward the pain. This is supported by experimental studies showing that diverting people's attention away from acute pain leads to experiencing less pain. Theoretical work has suggested that this phenomenon may present a top-down modulatory mechanism for persistent pain as well. However, conclusive empirical evidence is lacking. To fill this gap, we used a preregistered, double-blind, between-subject study design to investigate whether performing a tailored, demanding, and engaging working memory task unrelated to pain (difficult) vs a task that requires less mental effort to be performed (easy), could lead to lower development of secondary hypersensitivity-a hallmark of central sensitization. Eighty-five healthy volunteers, randomly assigned to one of the 2 conditions, performed a visual task with a different cognitive load (difficult vs easy), while secondary hypersensitivity was induced on their nondominant forearm using high-frequency stimulation. To assess the development of secondary hypersensitivity, sensitivity to mechanical stimuli was measured 3 times: T0, for baseline and 20 (T1) and 40 (T2) minutes after the procedure. We did not observe any significant difference in the development of secondary hypersensitivity between the 2 groups, neither in terms of the intensity of mechanical sensitivity nor its spatial extent. Our results suggest that a top-down modulation through attention might not be sufficient to affect pain sensitization and the development of secondary hypersensitivity.
Collapse
Affiliation(s)
- Delia Della Porta
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Eléonore Scheirman
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
28
|
Antonioni A, Raho EM, Straudi S, Granieri E, Koch G, Fadiga L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neurosci Biobehav Rev 2024; 164:105830. [PMID: 39069236 DOI: 10.1016/j.neubiorev.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum's role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy; Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy
| |
Collapse
|
29
|
Liu Q, Han J, Zhang X. Peripheral and central pathogenesis of postherpetic neuralgia. Skin Res Technol 2024; 30:e13867. [PMID: 39101621 PMCID: PMC11299165 DOI: 10.1111/srt.13867] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Postherpetic neuralgia (PHN) is a classic chronic condition with multiple signs of peripheral and central neuropathy. Unfortunately, the pathogenesis of PHN is not well defined, limiting clinical treatment and disease management. OBJECTIVE To describe the peripheral and central pathological axes of PHN, including peripheral nerve injury, inflammation induction, central nervous system sensitization, and brain functional and structural network activity. METHODS A bibliographic survey was carried out, selecting relevant articles that evaluated the characterization of the pathogenesis of PHN, including peripheral and central pathological axes. RESULTS Currently, due to the complexity of the pathophysiological mechanisms of PHN and the incomplete understanding of the exact mechanism of neuralgia. CONCLUSION It is essential to conduct in-depth research to clarify the origins of PHN pathogenesis and explore effective and comprehensive therapies for PHN.
Collapse
Affiliation(s)
- Qiuping Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Department of Rheumatology and ImmunologyFirst Affiliated Hospital of Army Medical UniversityChongqingChina
| | - Jingxian Han
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
30
|
Cheong Y, Lee S, Okazawa H, Kosaka H, Jung M. Effects of functional polymorphisms of opioid receptor mu 1 and catechol-O-methyltransferase on the neural processing of pain. Psychiatry Clin Neurosci 2024; 78:300-308. [PMID: 38403942 PMCID: PMC11488594 DOI: 10.1111/pcn.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
AIM Pain is reconstructed by brain activities and its subjectivity comes from an interplay of multiple factors. The current study aims to understand the contribution of genetic factors to the neural processing of pain. Focusing on the single-nucleotide polymorphism (SNP) of opioid receptor mu 1 (OPRM1) A118G (rs1799971) and catechol-O-methyltransferase (COMT) val158met (rs4680), we investigated how the two pain genes affect pain processing. METHOD We integrated a genetic approach with functional neuroimaging. We extracted genomic DNA information from saliva samples to genotype the SNP of OPRM1 and COMT. We used a percept-related model, in which two different levels of perceived pain intensities ("low pain: mildly painful" vs "high pain: severely painful") were employed as experimental stimuli. RESULTS Low pain involves a broader network relative to high pain. The distinct effects of pain genes were observed depending on the perceived pain intensity. The effects of low pain were found in supramarginal gyrus, angular gyrus, and anterior cingulate cortex (ACC) for OPRM1 and in middle temporal gyrus for COMT. For high pain, OPRM1 affected the insula and cerebellum, while COMT affected the middle occipital gyrus and ACC. CONCLUSION OPRM1 primarily affects sensory and cognitive components of pain processing, while COMT mainly influences emotional aspects of pain processing. The interaction of the two pain genes was associated with neural patterns coding for high pain and neural activation in the ACC in response to pain. The proteins encoded by the OPRM1 and COMT may contribute to the firing of pain-related neurons in the human ACC, a critical center for subjective pain experience.
Collapse
Grants
- 2022R1A6A3A01086118 National Research Foundation of Korea
- 2022R1F1A1066114 National Research Foundation of Korea
- 20H01766 Ministry of Education, Culture, Sports, Science and Technology
- 20H04272 Ministry of Education, Culture, Sports, Science and Technology
- 23-BR-04-03 Ministry of Science, ICT and Future Planning
- 23-BR-05-01 Ministry of Science, ICT and Future Planning
- 23-BR-04-03 Ministry of Science and ICT
- 23-BR-05-01 Ministry of Science and ICT
- National Research Foundation of Korea
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Yongjeon Cheong
- Cognitive Science Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Seonkyoung Lee
- Cognitive Science Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Hidehiko Okazawa
- Research Centre for Child Mental DevelopmentUniversity of FukuiEiheiji, FukuiJapan
- Division of Developmental Higher Brain Functions, Department of Child Development, United Graduate School of Child DevelopmentUniversity of FukuiFukuiJapan
| | - Hirotaka Kosaka
- Research Centre for Child Mental DevelopmentUniversity of FukuiEiheiji, FukuiJapan
- Division of Developmental Higher Brain Functions, Department of Child Development, United Graduate School of Child DevelopmentUniversity of FukuiFukuiJapan
- Department of NeuropsychiatryUniversity of FukuiFukuiJapan
| | - Minyoung Jung
- Cognitive Science Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| |
Collapse
|
31
|
Bai Y, Pacheco-Barrios K, Pacheco-Barrios N, Liang G, Fregni F. Neurocircuitry basis of motor cortex-related analgesia as an emerging approach for chronic pain management. NATURE. MENTAL HEALTH 2024; 2:496-513. [PMID: 40376387 PMCID: PMC12080556 DOI: 10.1038/s44220-024-00235-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/19/2024] [Indexed: 05/18/2025]
Abstract
Aside from movement initiation and control, the primary motor cortex (M1) has been implicated in pain modulation mechanisms. A large body of clinical data has demonstrated that stimulation and behavioral activation of M1 result in clinically important pain relief in patients with specific chronic pain syndromes. However, despite its clinical importance, the full range of circuits for motor cortex-related analgesia (MCRA) remains an enigma. This review draws on insights from experimental and clinical data and provides an overview of the neurobiological mechanisms of MCRA, with particular emphasis on its neurocircuitry basis. Based on structural and functional connections of the M1 within the pain connectome, neural circuits for MCRA are discussed at different levels of the neuroaxis, specifically, the endogenous pain modulation system, the thalamus, the extrapyramidal system, non-noxious somatosensory systems, and cortico-limbic pain signatures. We believe that novel insights from this review will expedite our understanding of M1-induced pain modulation and offer hope for successful mechanism-based refinements of this interventional approach in chronic pain management.
Collapse
Affiliation(s)
- Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | | | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Chen J, Gao Y, Bao ST, Wang YD, Jia T, Yin C, Xiao C, Zhou C. Insula→Amygdala and Insula→Thalamus Pathways Are Involved in Comorbid Chronic Pain and Depression-Like Behavior in Mice. J Neurosci 2024; 44:e2062232024. [PMID: 38453468 PMCID: PMC11007474 DOI: 10.1523/jneurosci.2062-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
The comorbidity of chronic pain and depression poses tremendous challenges for the treatment of either one because they exacerbate each other with unknown mechanisms. As the posterior insular cortex (PIC) integrates multiple somatosensory and emotional information and is implicated in either chronic pain or depression, we hypothesize that the PIC and its projections may contribute to the pathophysiology of comorbid chronic pain and depression. We show that PIC neurons were readily activated by mechanical, thermal, aversive, and stressful and appetitive stimulation in naive and neuropathic pain male mice subjected to spared nerve injury (SNI). Optogenetic activation of PIC neurons induced hyperalgesia and conditioned place aversion in naive mice, whereas inhibition of these neurons led to analgesia, conditioned place preference (CPP), and antidepressant effect in both naive and SNI mice. Combining neuronal tracing, optogenetics, and electrophysiological techniques, we found that the monosynaptic glutamatergic projections from the PIC to the basolateral amygdala (BLA) and the ventromedial nucleus (VM) of the thalamus mimicked PIC neurons in pain modulation in naive mice; in SNI mice, both projections were enhanced accompanied by hyperactivity of PIC, BLA, and VM neurons and inhibition of these projections led to analgesia, CPP, and antidepressant-like effect. The present study suggests that potentiation of the PIC→BLA and PIC→VM projections may be important pathophysiological bases for hyperalgesia and depression-like behavior in neuropathic pain and reversing the potentiation may be a promising therapeutic strategy for comorbid chronic pain and depression.
Collapse
Affiliation(s)
- Jing Chen
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Department of Anesthesiology, Binhai County People's Hospital, Yancheng 225559, China
| | - Yuan Gao
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Shu-Ting Bao
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying-Di Wang
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Tao Jia
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cui Yin
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng Xiao
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Chunyi Zhou
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
33
|
Hurzeler T, Watt J, Logge W, Towers E, Suraev A, Lintzeris N, Haber P, Morley KC. Neuroimaging studies of cannabidiol and potential neurobiological mechanisms relevant for alcohol use disorders: a systematic review. J Cannabis Res 2024; 6:15. [PMID: 38509580 PMCID: PMC10956336 DOI: 10.1186/s42238-024-00224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/03/2024] [Indexed: 03/22/2024] Open
Abstract
The underlying neurobiological mechanisms of cannabidiol's (CBD) management of alcohol use disorder (AUD) remains elusive.Aim We conducted a systematic review of neuroimaging literature investigating the effects of CBD on the brain in healthy participants. We then theorise the potential neurobiological mechanisms by which CBD may ameliorate various symptoms of AUD.Methods This review was conducted according to the PRISMA guidelines. Terms relating to CBD and neuroimaging were used to search original clinical research published in peer-reviewed journals.Results Of 767 studies identified by our search strategy, 16 studies satisfied our eligibility criteria. The results suggest that CBD modulates γ-Aminobutyric acid and glutamate signaling in the basal ganglia and dorso-medial prefrontal cortex. Furthermore, CBD regulates activity in regions associated with mesocorticolimbic reward pathways; salience, limbic and fronto-striatal networks which are implicated in reward anticipation; emotion regulation; salience processing; and executive functioning.Conclusion CBD appears to modulate neurotransmitter systems and functional connections in brain regions implicated in AUD, suggesting CBD may be used to manage AUD symptomatology.
Collapse
Affiliation(s)
- Tristan Hurzeler
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Joshua Watt
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Warren Logge
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Ellen Towers
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Anastasia Suraev
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, NSW, Australia
| | - Nicholas Lintzeris
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Drug and Alcohol Services, South Eastern Sydney Local Health District, Sydney, Australia
| | - Paul Haber
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Kirsten C Morley
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia.
| |
Collapse
|
34
|
Gui W, Lu F, Fu L, Deng Z, Zhao X, Cheng W, Yang Y, Wang Y. Genetic mechanisms underlying local spontaneous brain activity in episodic migraine. Front Neurosci 2024; 18:1348591. [PMID: 38379763 PMCID: PMC10876778 DOI: 10.3389/fnins.2024.1348591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Advances in neuroimaging techniques during the past few decades have captured impaired functional brain activity in migraine disorders, yet the molecular mechanisms accounting for its alterations in migraine remain largely unknown. A total of 27 patients with episodic migraine (EM) and 30 matched healthy controls (HCs) underwent resting-state functional and structural magnetic resonance imaging (MRI) scans. Regional homogeneity (ReHo), low-frequency fluctuations (ALFF), and fractional amplitude of low-frequency fluctuations (fALFF) of fMRI were compared between the two groups. Based on the Allen Human Brain Atlas and risk genes in migraine, we identified gene expression profiles associated with ReHo alterations in EM. Compared with HCs, patients with EM showed increased ReHo in the left orbital part of the superior frontal gyrus (P < 0.05, cluster-level FWE-corrected). The expression profiles of 16 genes were significantly correlated with ReHo alterations in EM (P < 0.05/5,013, Bonferroni corrected). These genes were mainly enriched for transcription regulation, synaptic transmission, energy metabolism, and migraine disorders. Furthermore, the neural activation was positively correlated with Hamilton Rating Scale for Anxiety (HAMA) scores. To test the stability of our results, we repeated our procedure by using ALFF and fALFF and found these results had a high degree of consistency. Overall, these findings not only demonstrated that regional brain activity was increased in patients with EM, which was associated with emotional regulation but also provided new insights into the genetic mechanisms underlying these changes in migraine.
Collapse
Affiliation(s)
- Wei Gui
- Department of Neurology, Epilepsy and Headache Group, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fengqing Lu
- Department of Neurology, Epilepsy and Headache Group, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lulan Fu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ziru Deng
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiuxiu Zhao
- Anhui Provincial Stereotactic Neurosurgical Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine University of Science and Technology of China, Hefei, China
| | - Wenwen Cheng
- Anhui Provincial Stereotactic Neurosurgical Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine University of Science and Technology of China, Hefei, China
| | - Ying Yang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine University of Science and Technology of China, Hefei, China
| | - Yu Wang
- Department of Neurology, Epilepsy and Headache Group, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
35
|
Garman A, Ash AM, Kokkinos EK, Nerland D, Winter L, Langreck CB, Forgette ML, Girgenti MJ, Banasr M, Duric V. Novel hippocampal genes involved in enhanced susceptibility to chronic pain-induced behavioral emotionality. Eur J Pharmacol 2024; 964:176273. [PMID: 38135263 DOI: 10.1016/j.ejphar.2023.176273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Altered mood and psychiatric disorders are commonly associated with chronic pain conditions; however, brain mechanisms linking pain and comorbid clinical depression are still largely unknown. In this study, we aimed to identify whether key genes/cellular mechanisms underlie susceptibility/resiliency to development of depressive-like behaviors during chronic pain state. Genome-wide RNA-seq analysis was used to examine the transcriptomic profile of the hippocampus, a limbic brain region that regulates mood and stress responses, from male rats exposed to chronic inflammatory pain. Pain-exposed animals were separated into either 'resilient' or 'susceptible' to development of enhanced behavioral emotionality based on behavioral testing. RNA-seq bioinformatic analysis, followed by validation using qPCR, revealed dysregulation of hippocampal genes involved in neuroinflammation, cell cycle/neurogenesis and blood-brain barrier integrity. Specifically, ADAM Metallopeptidase Domain 8 (Adam8) and Aurora Kinase B (Aurkb), genes with functional roles in activation of the NLRP3 inflammasome and microgliosis, respectively, were significantly upregulated in the hippocampus of 'susceptible' animals expressing increased behavioral emotionality. In addition, genes associated with blood-brain barrier integrity, such as the Claudin 4 (Cldn4), a tight junction protein and a known marker of astrocyte activation, were also significantly dysregulated between 'resilient' or 'susceptible' pain groups. Furthermore, differentially expressed genes (DEGs) were further characterized in rodents stress models to determine whether their hippocampal dysregulation is driven by common stress responses vs. affective pain processing. Altogether these results continue to strengthen the connection between dysregulation of hippocampal genes involved in neuroinflammatory and neurodegenerative processes with increased behavioral emotionality often expressed in chronic pain state.
Collapse
Affiliation(s)
- Adam Garman
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Allison M Ash
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Ellesavette K Kokkinos
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Dakota Nerland
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Lori Winter
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Cory B Langreck
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, 10032, USA
| | - Morgan L Forgette
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06508, USA
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada; Department of Psychiatry, Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Vanja Duric
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA.
| |
Collapse
|
36
|
De Pascalis V. Brain Functional Correlates of Resting Hypnosis and Hypnotizability: A Review. Brain Sci 2024; 14:115. [PMID: 38391691 PMCID: PMC10886478 DOI: 10.3390/brainsci14020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
This comprehensive review delves into the cognitive neuroscience of hypnosis and variations in hypnotizability by examining research employing functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and electroencephalography (EEG) methods. Key focus areas include functional brain imaging correlations in hypnosis, EEG band oscillations as indicators of hypnotic states, alterations in EEG functional connectivity during hypnosis and wakefulness, drawing critical conclusions, and suggesting future research directions. The reviewed functional connectivity findings support the notion that disruptions in the available integration between different components of the executive control network during hypnosis may correspond to altered subjective appraisals of the agency during the hypnotic response, as per dissociated and cold control theories of hypnosis. A promising exploration avenue involves investigating how frontal lobes' neurochemical and aperiodic components of the EEG activity at waking-rest are linked to individual differences in hypnotizability. Future studies investigating the effects of hypnosis on brain function should prioritize examining distinctive activation patterns across various neural networks.
Collapse
Affiliation(s)
- Vilfredo De Pascalis
- Department of Psychology, La Sapienza University of Rome, 00185 Rome, Italy;
- School of Psychology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
37
|
Jaeckel ER, Herrera YN, Schulz S, Birdsong WT. Chronic Morphine Induces Adaptations in Opioid Receptor Signaling in a Thalamostriatal Circuit That Are Location Dependent, Sex Specific, and Regulated by μ-Opioid Receptor Phosphorylation. J Neurosci 2024; 44:e0293232023. [PMID: 37985179 PMCID: PMC10860620 DOI: 10.1523/jneurosci.0293-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Chronic opioid exposure induces tolerance to the pain-relieving effects of opioids but sensitization to some other effects. While the occurrence of these adaptations is well understood, the underlying cellular mechanisms are less clear. This study aimed to determine how chronic treatment with morphine, a prototypical opioid agonist, induced adaptations to subsequent morphine signaling in different subcellular contexts. Opioids acutely inhibit glutamatergic transmission from medial thalamic (MThal) inputs to the dorsomedial striatum (DMS) via activity at μ-opioid receptors (MORs). MORs are present in somatic and presynaptic compartments of MThal neurons terminating in the DMS. We investigated the effects of chronic morphine treatment on subsequent morphine signaling at MThal-DMS synapses and MThal cell bodies in male and female mice. Surprisingly, chronic morphine treatment increased subsequent morphine inhibition of MThal-DMS synaptic transmission (morphine facilitation) in male, but not female, mice. At MThal cell bodies, chronic morphine treatment decreased subsequent morphine activation of potassium conductance (morphine tolerance) in both male and female mice. In knock-in mice expressing phosphorylation-deficient MORs, chronic morphine treatment resulted in tolerance to, rather than facilitation of, subsequent morphine signaling at MThal-DMS terminals, suggesting phosphorylation deficiency unmasks adaptations that counter the facilitation observed at presynaptic terminals in wild-type mice. The results of this study suggest that the effects of chronic morphine exposure are not ubiquitous; rather adaptations in MOR function may be determined by multiple factors such as subcellular receptor distribution, influence of local circuitry, and sex.
Collapse
Affiliation(s)
- Elizabeth R Jaeckel
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yoani N Herrera
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller University, D-07747 Jena, Germany
| | - William T Birdsong
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
38
|
Fauchon C, Bastuji H, Peyron R, Garcia-Larrea L. Fractal Similarity of Pain Brain Networks. ADVANCES IN NEUROBIOLOGY 2024; 36:639-657. [PMID: 38468056 DOI: 10.1007/978-3-031-47606-8_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The conscious perception of pain is the result of dynamic interactions of neural activities from local brain regions to distributed brain networks. Mapping out the networks of functional connections between brain regions that form and disperse when an experimental participant received nociceptive stimulations allow to characterize the pattern of network connections related to the pain experience.Although the pattern of intra- and inter-areal connections across the brain are incredibly complex, they appear also largely scale free, with "fractal" connectivity properties reproducing at short and long-time scales. Our results combining intracranial recordings and functional imaging in humans during pain indicate striking similarities in the activity and topological representation of networks at different orders of temporality, with reproduction of patterns of activation from the millisecond to the multisecond range. The connectivity analyzed using graph theory on fMRI data was organized in four sets of brain regions matching those identified through iEEG (i.e., sensorimotor, default mode, central executive, and amygdalo-hippocampal).Here, we discuss similarities in brain network organization at different scales or "orders," in participants as they feel pain. Description of this fractal-like organization may provide clues about how our brain regions work together to create the perception of pain and how pain becomes chronic when its organization is altered.
Collapse
Affiliation(s)
- Camille Fauchon
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France.
- Université Jean Monnet, Inserm, CRNL, NeuroPain, Saint-Etienne, France.
| | - Hélène Bastuji
- Université Claude Bernard Lyon 1, UJM, Inserm, CRNL, NeuroPain, Bron, France
| | - Roland Peyron
- Université Jean Monnet, Inserm, CRNL, NeuroPain, Saint-Etienne, France
- CHU, centre de la douleur, Saint-Etienne, France
| | - Luis Garcia-Larrea
- Université Claude Bernard Lyon 1, UJM, Inserm, CRNL, NeuroPain, Bron, France
| |
Collapse
|
39
|
Shrivastava M, Ye L. Neuroimaging and artificial intelligence for assessment of chronic painful temporomandibular disorders-a comprehensive review. Int J Oral Sci 2023; 15:58. [PMID: 38155153 PMCID: PMC10754947 DOI: 10.1038/s41368-023-00254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/30/2023] Open
Abstract
Chronic Painful Temporomandibular Disorders (TMD) are challenging to diagnose and manage due to their complexity and lack of understanding of brain mechanism. In the past few decades' neural mechanisms of pain regulation and perception have been clarified by neuroimaging research. Advances in the neuroimaging have bridged the gap between brain activity and the subjective experience of pain. Neuroimaging has also made strides toward separating the neural mechanisms underlying the chronic painful TMD. Recently, Artificial Intelligence (AI) is transforming various sectors by automating tasks that previously required humans' intelligence to complete. AI has started to contribute to the recognition, assessment, and understanding of painful TMD. The application of AI and neuroimaging in understanding the pathophysiology and diagnosis of chronic painful TMD are still in its early stages. The objective of the present review is to identify the contemporary neuroimaging approaches such as structural, functional, and molecular techniques that have been used to investigate the brain of chronic painful TMD individuals. Furthermore, this review guides practitioners on relevant aspects of AI and how AI and neuroimaging methods can revolutionize our understanding on the mechanisms of painful TMD and aid in both diagnosis and management to enhance patient outcomes.
Collapse
Affiliation(s)
- Mayank Shrivastava
- Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Liang Ye
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
40
|
de Matos NMP, Staempfli P, Seifritz E, Preller K, Bruegger M. Investigating functional brain connectivity patterns associated with two hypnotic states. Front Hum Neurosci 2023; 17:1286336. [PMID: 38192504 PMCID: PMC10773817 DOI: 10.3389/fnhum.2023.1286336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
While there's been clinical success and growing research interest in hypnosis, neurobiological underpinnings induced by hypnosis remain unclear. In this fMRI study (which is part of a larger hypnosis project) with 50 hypnosis-experienced participants, we analyzed neural and physiological responses during two hypnosis states, comparing them to non-hypnotic control conditions and to each other. An unbiased whole-brain analysis (multi-voxel- pattern analysis, MVPA), pinpointed key neural hubs in parieto-occipital-temporal areas, cuneal/precuneal and occipital cortices, lingual gyri, and the occipital pole. Comparing directly both hypnotic states revealed depth-dependent connectivity changes, notably in left superior temporal/supramarginal gyri, cuneus, planum temporale, and lingual gyri. Multi-voxel- pattern analysis (MVPA) based seeds were implemented in a seed-to-voxel analysis unveiling region-specific increases and decreases in functional connectivity patterns. Physiologically, the respiration rate significantly slowed during hypnosis. Summarized, these findings foster fresh insights into hypnosis-induced functional connectivity changes and illuminate further knowledge related with the neurobiology of altered consciousness.
Collapse
Affiliation(s)
- Nuno M. P. de Matos
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Philipp Staempfli
- MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics, Department of Child and Adolescent Psychiatry, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Katrin Preller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Mike Bruegger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Yao D, Chen Y, Chen G. The role of pain modulation pathway and related brain regions in pain. Rev Neurosci 2023; 34:899-914. [PMID: 37288945 DOI: 10.1515/revneuro-2023-0037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.
Collapse
Affiliation(s)
- Dandan Yao
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
42
|
Yao J, Li X, Wu GY, Wu B, Long JH, Wang PJ, Liu SL, Gao J, Sui JF. The Anterior Insula and its Projection to the Prelimbic Cortex are Involved in the Regulation of 5-HT-Induced Itch. Neurosci Bull 2023; 39:1807-1822. [PMID: 37553505 PMCID: PMC10661608 DOI: 10.1007/s12264-023-01093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/12/2023] [Indexed: 08/10/2023] Open
Abstract
Itch is an unpleasant sensation that urges people and animals to scratch. Neuroimaging studies on itch have yielded extensive correlations with diverse cortical and subcortical regions, including the insular lobe. However, the role and functional specificity of the insular cortex (IC) and its subdivisions in itch mediation remains unclear. Here, we demonstrated by immunohistochemistry and fiber photometry tests, that neurons in both the anterior insular cortex (AIC) and the posterior insular cortex (PIC) are activated during acute itch processes. Pharmacogenetic experiments revealed that nonselective inhibition of global AIC neurons, or selective inhibition of the activity of glutaminergic neurons in the AIC, reduced the scratching behaviors induced by intradermal injection of 5-hydroxytryptamine (5-HT), but not those induced by compound 48/80. However, both nonselective inhibition of global PIC neurons and selective inhibition of glutaminergic neurons in the PIC failed to affect the itching-scratching behaviors induced by either 5-HT or compound 48/80. In addition, pharmacogenetic inhibition of AIC glutaminergic neurons effectively blocked itch-associated conditioned place aversion behavior, and inhibition of AIC glutaminergic neurons projecting to the prelimbic cortex significantly suppressed 5-HT-evoked scratching. These findings provide preliminary evidence that the AIC is involved, at least partially via aversive emotion mediation, in the regulation of 5-HT-, but not compound 48/80-induced itch.
Collapse
Affiliation(s)
- Juan Yao
- Experimental Center of Basic Medicine, Army Medical University, Chongqing, 400038, China
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Xuan Li
- Experimental Center of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Guang-Yan Wu
- Experimental Center of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Bing Wu
- Experimental Center of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Jun-Hui Long
- Department of Dermatology, The 958th Army Hospital of the People's Liberation Army, Chongqing, 400020, China
| | - Pu-Jun Wang
- Department of Dermatology, The 958th Army Hospital of the People's Liberation Army, Chongqing, 400020, China
| | - Shu-Lei Liu
- Department of Dermatology, The 958th Army Hospital of the People's Liberation Army, Chongqing, 400020, China
| | - Jie Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Centre of the PLA, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Jian-Feng Sui
- Experimental Center of Basic Medicine, Army Medical University, Chongqing, 400038, China.
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
43
|
Cosentino G, Antoniazzi E, Cavigioli C, Tang V, Tammam G, Zaffina C, Tassorelli C, Todisco M. Repetitive Transcranial Magnetic Stimulation of the Human Motor Cortex Modulates Processing of Heat Pain Sensation as Assessed by the Offset Analgesia Paradigm. J Clin Med 2023; 12:7066. [PMID: 38002678 PMCID: PMC10672427 DOI: 10.3390/jcm12227066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Offset analgesia (OA), which is defined as a disproportionately large reduction in pain perception following a small decrease in a heat stimulus, quantifies temporal aspects of endogenous pain modulation. In this study on healthy subjects, we aimed to (i) determine the Heat Pain Threshold (HPT) and the response to constant and dynamic heat stimuli assessing sensitization, adaptation and OA phenomena at the thenar eminence; (ii) evaluate the effects of high-frequency repetitive Transcranial Magnetic Stimulation (rTMS) of the primary motor cortex (M1) on these measures. Twenty-four healthy subjects underwent quantitative sensory testing before and after active or sham 10 Hz rTMS (1200 stimuli) of the left M1, during separate sessions. We did not observe any rTMS-related changes in the HPT or visual analogue scale (VAS) values recorded during the constant trial. Of note, at baseline, we did not find OA at the thenar eminence. Only after active rTMS did we detect significantly reduced VAS values during dynamic heat stimuli, indicating a delayed and attenuated OA phenomenon. rTMS of the left M1 may activate remote brain areas that belong to the descending pain modulatory and reward systems involved in the OA phenomenon. Our findings provide insights into the mechanisms by which rTMS of M1 could exert its analgesic effects.
Collapse
Affiliation(s)
- Giuseppe Cosentino
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Elisa Antoniazzi
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Camilla Cavigioli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Vanessa Tang
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giulia Tammam
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Chiara Zaffina
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Massimiliano Todisco
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
44
|
Liu T, Yu CP. How Do Expectations Modulate Pain? A Motivational Perspective. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023; 18:1508-1519. [PMID: 37369088 DOI: 10.1177/17456916231178701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Expectations can profoundly modulate pain experience, during which the periaqueductal gray (PAG) plays a pivotal role. In this article, we focus on motivationally evoked neural activations in cortical and brainstem regions both before and during stimulus administration, as has been demonstrated by experimental studies on pain-modulatory effects of expectations, in the hope of unraveling how the PAG is involved in descending and ascending nociceptive processes. This motivational perspective on expectancy effects on the perception of noxious stimuli sheds new light on psychological and neuronal substrates of pain and its modulation, thus having important research and clinical implications.
Collapse
Affiliation(s)
- Tao Liu
- The Second Teaching Hospital, University of Jilin
| | - Cui-Ping Yu
- Department of Basic Medicine, Changchun Medical College
| |
Collapse
|
45
|
Lin J, Namaky N, Costello M, Uchino BN, Allen JP, Coan JA. Social Regulation of the Neural Threat Response Predicts Subsequent Markers of Physical Health. Psychosom Med 2023; 85:763-771. [PMID: 37531617 PMCID: PMC10837312 DOI: 10.1097/psy.0000000000001238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
OBJECTIVE Social support has been linked to a vast range of beneficial health outcomes. However, the physiological mechanisms of social support are not well characterized. Drawing on functional magnetic resonance imaging and health-related outcome data, this study aimed to understand how neural measures of "yielding"-the reduction of brain activity during social support-moderate the link between social support and health. METHODS We used a data set where 78 participants around the age of 24 years were exposed to the threat of shock when holding the hand of a partner. At ages 28 to 30 years, participants returned for a health visit where inflammatory activity and heart rate variability were recorded. RESULTS Findings showed a significant interaction between dorsal anterior cingulate cortex-related yielding and perceived social support on C-reactive protein levels ( β = -0.95, SE = 0.42, z = -2.24, p = .025, 95% confidence interval = -1.77 to -0.12). We also found a significant interaction between hypothalamus-related yielding and perceived social support on baseline heart rate variability ( β = 0.51, SE = 0.23, z = 2.19, p = .028, 95% confidence interval = 0.05 to 0.97). CONCLUSIONS Greater perceived social support was associated with lower C-reactive protein levels and greater baseline heart rate variability among individuals who were more likely to yield to social support in the dorsal anterior cingulate cortex and hypothalamus years earlier. The current study highlights the construct of yielding in the link between social support and physical health.
Collapse
Affiliation(s)
- Jingrun Lin
- Department of Psychology, University of Virginia
| | - Nauder Namaky
- Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, and RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center
| | | | | | | | | |
Collapse
|
46
|
Zhang JH, Liang J, Yang ZW. Non-invasive brain stimulation for fibromyalgia: current trends and future perspectives. Front Neurosci 2023; 17:1288765. [PMID: 37928733 PMCID: PMC10620708 DOI: 10.3389/fnins.2023.1288765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Fibromyalgia, a common and enduring pain disorder, ranks as the second most prevalent rheumatic disease after osteoarthritis. Recent years have witnessed successful treatment using non-invasive brain stimulation. Transcranial magnetic stimulation, transcranial direct current stimulation, and electroconvulsion therapy have shown promise in treating chronic pain. This article reviews the literature concerning non-invasive stimulation for fibromyalgia treatment, its mechanisms, and establishes a scientific basis for rehabilitation, and discusses the future directions for research and development prospects of these techniques are discussed.
Collapse
Affiliation(s)
- Jia-Hao Zhang
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Jian Liang
- Laboratory of Sports Rehabilitation, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Zhong-Wei Yang
- Laboratory of Sports Rehabilitation, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
47
|
Tesic I, Pigoni A, Moltrasio C, Brambilla P, Delvecchio G. How does feeling pain look like in depression: A review of functional neuroimaging studies. J Affect Disord 2023; 339:400-411. [PMID: 37459979 DOI: 10.1016/j.jad.2023.07.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
INTRODUCTION Major Depression Disorder (MDD) and pain appear to be reciprocal risk factors and sharing common neuroanatomical pathways and biological substrates. However, the role of MDD on pain processing remains still unclear. Therefore, this review aims to focus on the effect of depression on pain anticipation, and perception, before and after treatment, through functional magnetic resonance imaging (fMRI). METHODS A bibliographic search was conducted on PubMed, Scopus and Web of Science, looking for fMRI studies exploring pain processing in MDD patients. RESULTS Amongst the 602 studies retrieved, 12 met the inclusion criteria. In terms of pain perception, studies evidenced that MDD patients generally presented increased activation in brain regions within the prefrontal cortex, insula and in the limbic system (such as amygdala, hippocampus) and occipital cortex. The studies investigating the effect of antidepressant treatment evidenced a reduced activation in areas such as insula, anterior cingulate, and prefrontal cortices. In terms of pain anticipation, contrasting results were evidenced in MDD patients, which presented both increased and decreased activity in the prefrontal cortex, the insula and the temporal lobe, alongside with increased activity in the anterior cingulate cortex, the frontal gyrus and occipital lobes. LIMITATIONS The small number of included studies, the heterogeneous approaches of the studies might limit the conclusions of this review. CONCLUSIONS Acute pain processing in MDD patients seems to involve numerous and different brain areas. However, more specific fMRI studies with a more homogeneous population and rigorous approach should be conducted to better highlight the effect of depression on pain processing.
Collapse
Affiliation(s)
- Isidora Tesic
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessandro Pigoni
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Moltrasio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
48
|
Bonemazzi I, Nosadini M, Pelizza MF, Paolin C, Cavaliere E, Sartori S, Toldo I. Treatment of Frequent or Chronic Primary Headaches in Children and Adolescents: Focus on Acupuncture. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1626. [PMID: 37892289 PMCID: PMC10605007 DOI: 10.3390/children10101626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Acupuncture is a spreading and promising intervention, which has proven to be very useful in the treatment and prevention of chronic pain, in particular chronic headaches, in adults; the literature about the treatment of pediatric chronic headaches is scarce. In addition, few guidelines advise its use in children. The aim of this review is to collect all relevant studies with available data about the use, effect, and tolerability of acupuncture as a treatment for pediatric primary headaches. METHODS This is a narrative review based on eight studies selected from 135 papers including pediatric cases treated with acupuncture for headache. RESULTS Despite the differences in tools, procedures, and application sites, acupuncture demonstrated a positive effect on both the frequency and intensity of headaches and was well tolerated. There are no studies considering the long-term efficacy of acupuncture. CONCLUSION Further additional studies are needed on acupuncture in children and adolescents, with larger series and standardized procedures, in order to better assess efficacy, tolerability, and long-term prognosis and to define guidelines for the use of this promising and safe treatment. It is particularly relevant to identify safe and well-tolerated treatment options in pediatric patients affected by recurrent and debilitating headaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irene Toldo
- Juvenile Headache Center, Department of Woman’s and Child’s Health, University Hospital of Padua, 35128 Padua, Italy; (I.B.); (M.N.); (M.F.P.); (C.P.); (E.C.); (S.S.)
| |
Collapse
|
49
|
Borelli E, Benuzzi F, Ballotta D, Bandieri E, Luppi M, Cacciari C, Porro CA, Lui F. Words hurt: common and distinct neural substrates underlying nociceptive and semantic pain. Front Neurosci 2023; 17:1234286. [PMID: 37829724 PMCID: PMC10565001 DOI: 10.3389/fnins.2023.1234286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Recent studies have shown that processing semantic pain, such as words associated with physical pain, modulates pain perception and enhances activity in regions of the pain matrix. A direct comparison between activations due to noxious stimulation and processing of words conveying physical pain may clarify whether and to what extent the neural substrates of nociceptive pain are shared by semantic pain. Pain is triggered also by experiences of social exclusion, rejection or loss of significant others (the so-called social pain), therefore words expressing social pain may modulate pain perception similarly to what happens with words associated with physical pain. This event-related fMRI study aims to compare the brain activity related to perceiving nociceptive pain and that emerging from processing semantic pain, i.e., words related to either physical or social pain, in order to identify common and distinct neural substrates. Methods Thirty-four healthy women underwent two fMRI sessions each. In the Semantic session, participants were presented with positive words, negative pain-unrelated words, physical pain-related words, and social pain-related words. In the Nociceptive session, participants received cutaneous mechanical stimulations that could be either painful or not. During both sessions, participants were asked to rate the unpleasantness of each stimulus. Linguistic stimuli were also rated in terms of valence, arousal, pain relatedness, and pain intensity, immediately after the Semantic session. Results In the Nociceptive session, the 'nociceptive stimuli' vs. 'non-nociceptive stimuli' contrast revealed extensive activations in SI, SII, insula, cingulate cortex, thalamus, and dorsolateral prefrontal cortex. In the Semantic session, words associated with social pain, compared to negative pain-unrelated words, showed increased activity in most of the same areas, whereas words associated with physical pain, compared to negative pain-unrelated words, only activated the left supramarginal gyrus and partly the postcentral gyrus. Discussion Our results confirm that semantic pain partly shares the neural substrates of nociceptive pain. Specifically, social pain-related words activate a wide network of regions, mostly overlapping with those pertaining to the affective-motivational aspects of nociception, whereas physical pain-related words overlap with a small cluster including regions related to the sensory-discriminative aspects of nociception. However, most regions of overlap are differentially activated in different conditions.
Collapse
Affiliation(s)
- Eleonora Borelli
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Bandieri
- Oncology and Palliative Care Units, Civil Hospital Carpi, USL, Carpi, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Hematology Unit and Chair, Azienda Ospedaliera Universitaria di Modena, Modena, Italy
| | - Cristina Cacciari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Adolfo Porro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fausta Lui
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
50
|
Shaikh A, Li YQ, Lu J. Perspectives on pain in Down syndrome. Med Res Rev 2023; 43:1411-1437. [PMID: 36924439 DOI: 10.1002/med.21954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/08/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Down syndrome (DS) or trisomy 21 is a genetic condition often accompanied by chronic pain caused by congenital abnormalities and/or conditions, such as osteoarthritis, recurrent infections, and leukemia. Although DS patients are more susceptible to chronic pain as compared to the general population, the pain experience in these individuals may vary, attributed to the heterogenous structural and functional differences in the central nervous system, which might result in abnormal pain sensory information transduction, transmission, modulation, and perception. We tried to elaborate on some key questions and possible explanations in this review. Further clarification of the mechanisms underlying such abnormal conditions induced by the structural and functional differences is needed to help pain management in DS patients.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Yun-Qing Li
- Department of Anatomy, Histology, and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|