1
|
Mosharaf MK, Gomes RL, Cook S, Alam MS, Rasmusssen A. Wastewater reuse and pharmaceutical pollution in agriculture: Uptake, transport, accumulation and metabolism of pharmaceutical pollutants within plants. CHEMOSPHERE 2024; 364:143055. [PMID: 39127189 DOI: 10.1016/j.chemosphere.2024.143055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The presence of pharmaceutical pollutants in water sources has become a growing concern due to its potential impacts on human health and other organisms. The physicochemical properties of pharmaceuticals based on their intended therapeutical application, which include antibiotics, hormones, analgesics, and antidepressants, is quite diverse. Their presence in wastewater, sewerage water, surface water, ground water and even in drinking water is reported by many researchers throughout the world. Human exposure to these pollutants through drinking water or consumption of aquatic and terrestrial organisms has raised concerns about potential adverse effects, such as endocrine disruption, antibiotic resistance, and developmental abnormalities. Once in the environment, they can persist, undergo transformation, or degrade, leading to a complex mixture of contaminants. Application of treated wastewater, compost, manures or biosolids in agricultural fields introduce pharmaceutical pollutants in the environment. As pharmaceuticals are diverse in nature, significant differences are observed during their uptake and accumulation in plants. While there have been extensive studies on aquatic ecosystems, the effect on agricultural land is more disparate. As of now, there are few reports available on the potential of plant uptake and transportation of pharmaceuticals within and between plant organs. This review summarizes the occurrence of pharmaceuticals in aquatic water bodies at a range of concentrations and their uptake, accumulation, and transport within plant tissues. Research gaps on pharmaceutical pollutants' specific effect on plant growth and future research scopes are highlighted. The factors affecting uptake of pharmaceuticals including hydrophobicity, ionization, physicochemical properties (pKa, logKow, pH, Henry's law constant) are discussed. Finally, metabolism of pharmaceuticals within plant cells through metabolism phase enzymes and plant responses to pharmaceuticals are reviewed.
Collapse
Affiliation(s)
- Md Khaled Mosharaf
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom; Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, NG7 2RD, United Kingdom
| | - Sarah Cook
- Water and Environmental Engineering, School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Mohammed S Alam
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| | - Amanda Rasmusssen
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| |
Collapse
|
2
|
Cai H, Shen C, Xu H, Qian H, Pei S, Cai P, Song J, Zhang Y. Seasonal variability, predictive modeling and health risks of N-nitrosamines in drinking water of Shanghai. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159530. [PMID: 36270378 DOI: 10.1016/j.scitotenv.2022.159530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/25/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The prevalence of carcinogenic N-nitrosamines in drinking water is of significant concern. In the present study, eight N-nitrosamines from three representative drinking water treatment plants (DWTPs) in Shanghai, China were monitored for an entire year to evaluate their seasonal variability, probabilistic cancer risk and the resulting disease burden. The possibility of employing routinely monitored water quality parameters as predictors of N-nitrosamines was also examined. The results showed that the Taipu River-fed reservoir suffered more serious N-nitrosamine contamination than the Yangtze River-fed reservoirs. Winter witnessed higher levels of N-nitrosamines in both source and finished water. N-nitrosamine concentrations increased from source water to finished water in autumn or winter, but no spatial variations were observed in summer. The total lifetime cancer risk (LCR) posed by N-nitrosamines in finished water was within the acceptable range (1.00 × 10-6 to 1.00 × 10-4), with N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) being the main contributors. Winter and autumn were found to have higher total LCR values. The average individual disability-adjusted life years (DALYs) lost was 4.43 × 10-6 per person-year (ppy), exceeding the reference risk level (1.00 × 10-6 ppy). Liver cancer accounted for 97.1 % of the total disease burden, while bladder and esophagus cancers made a little contribution (2.9 %). A multiple regression model was developed to estimate the total N-nitrosamines in finished water as a function of water quality parameters, and the R2 value was 0.735. This study not only provides fundamental data for public health policy development, but also reveals the necessity to incorporate a seasonal control strategy in DWTPs to minimize the associated health risks induced by N-nitrosamines.
Collapse
Affiliation(s)
- Hongquan Cai
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Chaoye Shen
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Huihui Xu
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Hailei Qian
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Saifeng Pei
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Ping Cai
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Jun Song
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Yun Zhang
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China.
| |
Collapse
|
3
|
Yan D, Huang Y, Wang Z, Chen Q, Zhang J, Dong J, Fan Z, Yan H, Mao F. Key role of suspended particulate matter in assessing fate and risk of endocrine disrupting compounds in a complex river-lake system. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128543. [PMID: 35228078 DOI: 10.1016/j.jhazmat.2022.128543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Endocrine-disrupting compounds (EDCs) enter lakes mainly through river inflow. However, the occurrence, transport and fate of EDCs in the overlying water, suspended particulate matter (SPM) and sediment of inflowing rivers remain unclear. This study investigated the load of seven EDCs in a complex river-lake system of the Taihu Lake Basin during different seasons, with the aims of revealing the transport routes of EDCs and identifying the contributions from different sources. The results indicated that the levels of the seven EDCs in the wet season with high temperature and dilution effects were generally lower than those in the other seasons. EDC enrichment in the sediment was largely affected by the transport and fate of SPM. Moreover, the estrogenic activity and risks of EDCs were the highest in SPM. The mass loadings of particulate EDCs carried by SPM were 2.6 times that of overlying water. SPM plays a vital role in the transport and fate of EDCs in complex river-lake systems and thereby deserves more attention. Nonpoint sources, particularly animal husbandry activities and untreated domestic sewage, were the main sources of EDCs, amounting to 61.5% of the total load.
Collapse
Affiliation(s)
- Dandan Yan
- Yangtze Institute for Conservation and Green Development, Hohai University, Nanjing 210098, China; Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Yu Huang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Zhiyuan Wang
- Yangtze Institute for Conservation and Green Development, Hohai University, Nanjing 210098, China; Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Qiuwen Chen
- Yangtze Institute for Conservation and Green Development, Hohai University, Nanjing 210098, China; Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
| | - Jianyun Zhang
- Yangtze Institute for Conservation and Green Development, Hohai University, Nanjing 210098, China
| | - Jianwei Dong
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Zhaohang Fan
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Hanlu Yan
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Feijian Mao
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| |
Collapse
|
4
|
Dai C, Li S, Duan Y, Leong KH, Tu Y, Zhou L. Human health risk assessment of selected pharmaceuticals in the five major river basins, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149730. [PMID: 34467938 DOI: 10.1016/j.scitotenv.2021.149730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 05/13/2023]
Abstract
Pharmaceuticals in aquatic environment have raised wide attention in recent years due to their potential adverse effects and bioaccumulation in biota. China has been a major producer and consumer of pharmaceuticals, however, the potential human health risk of these chemicals is yet to be determined in China. In this study, we evaluated available exposure data for twenty pharmaceuticals in surface waters from Chinese five major river basins (the Yangtze, Haihe, Pearl, Songliao, and Yellow River Basins), and human health risk assessment was performed. Based on the concentration data and risk data, we conducted research on the source, cause, and control measures of the pharmaceuticals. The twenty pharmaceuticals were found to be ubiquitous in China with median concentrations between 0.09 and 304 ng/L. The estimated daily intake of pharmaceuticals from drinking water and eating fish was calculated. The intake via drinking water was significantly lower than that via eating fish. The risk quotients via water intake and fish consumption ranged from 0 to 17.2, with estrogen and sulfapyridine highest among the twenty pharmaceuticals. High risks of exposure were mainly in North China, including the Haihe and Songliao River Basins. This is the first analysis in Chinese major river basins that has filled the gaps in the research on the human health risks of pharmaceuticals. The results of the study provide basic information of pharmaceutical intake from drinking water and eating fish in China and provide insights into the risk management guidance of pharmaceuticals, and will facilitate the optimization of health advisories and policy making.
Collapse
Affiliation(s)
- Chaomeng Dai
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Si Li
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yanping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, PR China; Yangtze Delta Wetland Ecosystem National Filed Scientific Observation and Research Station, PR China.
| | - Kah Hon Leong
- Univ Tunku Abdul Rahman, Fac Engn & Green Technol, Dept Environm Engn, Kampar 31900, Perak, Malaysia
| | - Yaojen Tu
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, PR China; Yangtze Delta Wetland Ecosystem National Filed Scientific Observation and Research Station, PR China
| | - Lang Zhou
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX 78712, USA
| |
Collapse
|
5
|
Khan AH, Aziz HA, Khan NA, Dhingra A, Ahmed S, Naushad M. Effect of seasonal variation on the occurrences of high-risk pharmaceutical in drain-laden surface water: A risk analysis of Yamuna River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148484. [PMID: 34217082 DOI: 10.1016/j.scitotenv.2021.148484] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/29/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of pharmaceutical residues in the aquatic ecosystem is an emerging concern of environmentalists. This study primarily investigated the seasonal variation of high-priority pharmaceutical residues in the Yamuna River, accompanied by 22 drains discharge from different parts of Delhi. Five sampling sites were selected for analyzing high-priority pharmaceuticals along with physico-chemical and biological parameters for 3 season's viz. pre-monsoon (PrM), monsoon (DuM), and post-monsoon (PoM), respectively. The maximum occurrences were detected during the PoM, compared to the PrM and DuM seasons. The maximum concentration of BOD, COD, and Phosphate was detected at the last sampling station (SP-5). Similarly, all targeted pharmaceuticals concentration were maximum at the last sampling point i.e. Okhla barrage (SP-5, max: DIC = 556.1 ng/l, IBU = 223.4 ng/l, CAR = 183.1 ng/l, DIA = 457.8 ng/l, OFL = 1726.5 ng/l, FRU = 312.2 ng/l and SIM = 414.9 ng/l) except at Barapulla downstream (SP-4, max: ERY = 178.1 ng/l). The mean concentrations of Fecal coliform (FC) ranged from 1700 to 6500 CFU/100 ml. The maximum colonies were detected in PrM season (6500 CFU/100 ml) followed by PoM (5800 CFU/100 ml) and least in DuM (1700 CFU/100 ml). Risk quotient (RQ) analysis of high-priority pharmaceuticals indicated high ecotoxicological risks exposure (>1) from DIC, DIA, OFL, and SIM in all seasons at all the sampling sites. However, lower risk was predicted for IBU, CAR, ERY, and FRU, respectively. This risk assessment indicated an aquatic ecosystem potentially exposed to high risks from these pharmaceutical residues. Moreover, seasonal agricultural application, rainfall, and temperature could influence the levels and compositions of pharmaceutical residue in the aquatic ecosystem. Hence, attention is required particularly to this stream since it is only a local lifeline source for urban consumers for domestic water supply and farmers for cultivation.
Collapse
Affiliation(s)
- Afzal Husain Khan
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia.
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia; Solid Waste Management Cluster, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
| | - Nadeem A Khan
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Aastha Dhingra
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Sirajuddin Ahmed
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Lei K, Pan HY, Zhu Y, Chen W, Lin CY. Pollution characteristics and mixture risk prediction of phenolic environmental estrogens in rivers of the Beijing-Tianjin-Hebei urban agglomeration, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147646. [PMID: 34000540 DOI: 10.1016/j.scitotenv.2021.147646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Phenolic environmental estrogens (PEEs) are ubiquitous in most rivers worldwide and may cause potential endocrine-disrupting effects in aquatic organisms. Three typical PEEs (bisphenol A, BPA; 4-tert-octylphenol,4-t-OP; and nonylphenol, NP) were investigated in the rivers of the Beijing-Tianjin-Hebei urban agglomeration, which is the most urbanized and industrialized area in North China. The target PEEs were detected in 100% of river water samples, and the concentrations ranged from 23 to 255 ng L-1. The concentrations of NP in most river sections were higher than those of BPA and 4-t-OP. The spatiotemporal variations in PEEs indicated that both domestic and industrial wastewater were main sources of PEEs in river water. In addition, rainfall runoff might be an important source of PEEs in the receiving waters, especially in the wet season. The ecotoxicological risk assessment of individual PEE revealed a moderate to high risk for aquatic organisms at most sampling sites. The mixture risk prediction based on the concentration addition method indicated a potential cumulative risk of PEEs in the study area, highlighting the importance of mixture risk assessment in the aquatic environment.
Collapse
Affiliation(s)
- Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, People's Republic of China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Hui-Yun Pan
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
| | - Ying Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wei Chen
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Chun-Ye Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China.
| |
Collapse
|
7
|
Chen Y, Chen W, Huang H, Zeng H, Tan L, Pang Y, Ghani J, Qi S. Occurrence of N-nitrosamines and their precursors in the middle and lower reaches of Yangtze River water. ENVIRONMENTAL RESEARCH 2021; 195:110673. [PMID: 33508261 DOI: 10.1016/j.envres.2020.110673] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The presence of some types of N-nitrosamines in water bodies is of great concern worldwide due to their carcinogenic risks and harmful mutagenic effects on human health. In the present study, eight N-nitrosamines and their formation potentials (FPs) were primarily investigated in Yangtze River surface water to evaluate their spatial distribution, mass loads, and ecological risks. The results showed that of the eight N-nitrosamines investigated, NDMA (<1.5-17 ng/L), NDEA (<1.4-9.5 ng/L), NDPA (1.0 ng/L), NMOR (<1.0-1.3 ng/L), NPIP (<2.1-3.7 ng/L), and NDBA (<3.6-30 ng/L) were detected. The FPs of NDMA (<27-130 ng/L), NDEA (<0.9-2.3 ng/L), NDPA (<1.2-1.9 ng/L), NPYR (<1.4-2.9 ng/L), NMOR (<1.0 ng/L), and NDBA (<1.1-14 ng/L) were significantly identified. NDBA was predominantly observed in surface water, while NDMA was noticeably detected in chloraminated water samples. It was estimated that approximately 5.4 t/y of N-nitrosamines were carried by the Yangtze River to the East China Sea, whereas the input flux of N-nitrosamine precursors was estimated to be approximately 69.5 t/y. Spatial variations were observed due to the input of N-nitrosamines from the upstream dams and lakes. The origin of N-nitrosamine precursors was not associated with the presence of sediment in river water. NDEA could be introduced into river water by the discharge of wastewater. NDBA and its precursors could originate from industrial and aquaculture activities. NDMA and its precursors could result from both of the aforementioned sources. Moreover, the wastewater discharge from small cities, pH value, wastewater treatment ratio, and dilution could be the key factors that influence the occurrence of N-nitrosamines along the Yangtze River. More attention should be paid to the cancer risks posed by N-nitrosamines. The ecological risks posed by N-nitrosamines in the Yangtze River can be ignored.
Collapse
Affiliation(s)
- Yingjie Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Wenwen Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| | - Huanfang Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Lingzhi Tan
- Changjiang Water Resources Commission of the Ministry of Water Resources, Wuhan, 430012, China
| | - Yu Pang
- School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Junaid Ghani
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
8
|
Kibambe MG, Momba MNB, Daso AP, Van Zijl MC, Coetzee MAA. Efficiency of selected wastewater treatment processes in removing estrogen compounds and reducing estrogenic activity using the T47D-KBLUC reporter gene assay. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 260:110135. [PMID: 32090831 DOI: 10.1016/j.jenvman.2020.110135] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 05/07/2023]
Abstract
The occurrence of endocrine-disrupting compounds (EDCs) consisting of natural and synthetic estrogens, namely estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2) was quantified in wastewater samples. The aim of this study was to assess the removal efficiency for the selected estrogens (E1, E2, E3 and EE2) and reduction of estrogenic activity in wastewater samples from wastewater treatment plants (WWTPs) using different processes. Solid-phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were used to quantify the selected estrogens in wastewater samples. Estrogenic activity was assessed using the T47D-KBluc gene reporter assay. Results revealed a decrease in estrogen concentrations observed in the effluents of all the WWTPs, except for E2 at Daspoort where no removal was noted. In general, the highest removal for total estrogens was observed at Phola (84%) combining three processes (AP, BF and wetland). The AS at Daspoort had a highest removal of 75% for E3; while at Zeekoegat the highest removal reached 61% for EE2. The PST at Daspoort had no removal recorded for all the compounds, except for the EE2 (33%). The AP and BF systems at Phola contributed to a higher removal of selected compounds. Downstream of the wetland at Phola no removal was recorded for E3; while the highest removal reached 61% for E1. The best performance in terms of the overall influent-to-effluent removal efficiency was observed at Phola WWTP, where E1 removal of 85% was recorded. The highest estrogenic activity in the effluent was reported at Phola, with an average estradiol equivalent (EEQ) value of 6.3 ± 6.7 ng/L. However, no anti-estrogenic activity was detected in any of the samples. The daily mass load discharged from the effluent of the three WWTPs was higher for E1 recorded at Zeekoegat (8002.3 ± 6416.3 mg/d), followed by Daspoort (3509.8 ± 849.0 mg/d) and finally Phola (176.1 ± 34.9).
Collapse
Affiliation(s)
- Muyasu Grace Kibambe
- Department of Environmental, Water and Earth Science, Faculty of Science Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| | - Maggie N B Momba
- Department of Environmental, Water and Earth Science, Faculty of Science Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - A P Daso
- Department of Environmental, Water and Earth Science, Faculty of Science Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - M C Van Zijl
- Department of Urology, University of Pretoria, Private Bag X323, Arcadia, 007, Pretoria, South Africa
| | - Marthie A A Coetzee
- Department of Environmental, Water and Earth Science, Faculty of Science Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
9
|
Liu N, Jin X, Feng C, Wang Z, Wu F, Johnson AC, Xiao H, Hollert H, Giesy JP. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system. ENVIRONMENT INTERNATIONAL 2020; 136:105454. [PMID: 32032889 DOI: 10.1016/j.envint.2019.105454] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 05/17/2023]
Abstract
Interest in the risks posed by trace concentrations of pharmaceuticals and personal care products (PPCPs) in surface waters is increasing, particularly with regard to potential effects of long-term, low-dose exposures of aquatic organisms. In most cases, the actual studies on PPCPs were risk assessments at screening-level, and accurate estimates were scarce. In this study, exposure and ecotoxicity data of 50 PPCPs were collected based on our previous studies, and a multiple-level environmental risk assessment was performed. The 50 selected PPCPs are likely to be frequently detected in surface waters of China, with concentrations ranging from the ng L-1 to the low-g L-1, and the risk quotients based on median concentrations ranged from 2046 for nonylphenol to 0 for phantolide. A semi-probabilistic approach screened 33 PPCPs that posed potential risks to aquatic organisms, among which 15 chemicals (nonylphenol, sulfamethoxazole, di (2-ethylhexyl) phthalate, 17β-ethynyl estradiol, caffeine, tetracycline, 17β-estradiol, estrone, dibutyl phthalate, ibuprofen, carbamazepine, tonalide, galaxolide, triclosan, and bisphenol A) were categorized as priority compounds according to an optimized risk assessment, and then the refined probabilistic risk assessment indicated 12 of them posed low to high risk to aquatic ecosystem, with the maximum risk products ranged from 1.54% to 17.38%. Based on these results, we propose that the optimized risk assessment was appropriate for screening priority contaminants at national scale, and when a more accurate estimation is required, the refined probability risk assessment is useful. The methodology and process might provide reference for other research of chemical evaluation and management for rivers, lakes, and sea waters.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Center, Beijing 100012, China.
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Andrew C Johnson
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, UK
| | - Hongxia Xiao
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Regional and Seasonal Distributions of N-Nitrosodimethylamine (NDMA) Concentrations in Chlorinated Drinking Water Distribution Systems in Korea. WATER 2019. [DOI: 10.3390/w11122645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Volatile N-Nitrosamines (NAs), including N-nitrosodimethylamine (NDMA), an emerging contaminant in drinking water, have been reported to induce cancer in animal studies. This study aims to investigate the regional and seasonal distributions of the concentrations of NDMA, one of the most commonly found NAs with high carcinogenicity, in municipal tap water in Korea. NDMA in water samples was quantitatively determined using high-performance liquid chromatography-fluorescence detection (HPLC-FLD) as a 5-dimethylamino-1-naphthalenesulfonyl (dansyl) derivative after optimization to dry the SPE adsorbent and remove dimethylamine prior to derivatization. Tap water samples were collected from 41 sites in Korea, each of which was visited once in summer and once in winter. The average (±standard deviation) NDMA concentration among all the sites was 46.6 (±22.7) ng/L, ranging from <0.13 to 80.7 ng/L. Significant NDMA differences in the regions, excluding the Jeju region, were not found, whereas the average NDMA concentration was statistically higher in winter than in summer. A multiple regression analysis for the entire data set indicated a negative relationship between NDMA concentration and water temperature. High levels of NDMA in Korea may pose excessive cancer risks from the consumption of such drinking water.
Collapse
|
11
|
Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT. A review on environmental monitoring of water organic pollutants identified by EU guidelines. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:146-162. [PMID: 29674092 DOI: 10.1016/j.jhazmat.2017.09.058] [Citation(s) in RCA: 385] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/15/2017] [Accepted: 09/30/2017] [Indexed: 05/12/2023]
Abstract
The contamination of fresh water is a global concern. The huge impact of natural and anthropogenic organic substances that are constantly released into the environment, demands a better knowledge of the chemical status of Earth's surface water. Water quality monitoring studies have been performed targeting different substances and/or classes of substances, in different regions of the world, using different types of sampling strategies and campaigns. This review article aims to gather the available dispersed information regarding the occurrence of priority substances (PSs) and contaminants of emerging concern (CECs) that must be monitored in Europe in surface water, according to the European Union Directive 2013/39/EU and the Watch List of Decision 2015/495/EU, respectively. Other specific organic pollutants not considered in these EU documents as substances of high concern, but with reported elevated frequency of detection at high concentrations, are also discussed. The search comprised worldwide publications from 2012, considering at least one of the following criteria: 4 sampling campaigns per year, wet and dry seasons, temporal and/or spatial monitoring of surface (river, estuarine, lake and/or coastal waters) and ground waters. The highest concentrations were found for: (i) the PSs atrazine, alachlor, trifluralin, heptachlor, hexachlorocyclohexane, polycyclic aromatic hydrocarbons and di(2-ethylhexyl)phthalate; (ii) the CECs azithromycin, clarithromycin, erythromycin, diclofenac, 17α-ethinylestradiol, imidacloprid and 2-ethylhexyl 4-methoxycinnamate; and (iii) other unregulated organic compounds (caffeine, naproxen, metolachlor, estriol, dimethoate, terbuthylazine, acetaminophen, ibuprofen, trimethoprim, ciprofloxacin, ketoprofen, atenolol, Bisphenol A, metoprolol, carbofuran, malathion, sulfamethoxazole, carbamazepine and ofloxacin). Most frequent substances as well as those found at highest concentrations in different seasons and regions, together with available risk assessment data, may be useful to identify possible future PS candidates.
Collapse
Affiliation(s)
- João C G Sousa
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana R Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Marta O Barbosa
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
12
|
Wang HY, Qin M, Dong L, Lv JY, Wang X. Genotoxicity of a Low-Dose Nitrosamine Mixture as Drinking Water Disinfection Byproducts in NIH3T3 Cells. Int J Med Sci 2017; 14:961-969. [PMID: 28924367 PMCID: PMC5599919 DOI: 10.7150/ijms.20121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/17/2017] [Indexed: 01/05/2023] Open
Abstract
N-nitrosamines (NAms), which can arise as byproducts of disinfection agents, are reportedly found in drinking water, and their potential carcinogenicity is a concern; however, little research exists regarding the genotoxicity or carcinogenicity of NAms exposure as a low-dose mixture. The three most common NAms components in China's drinking water are N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA) and N-nitrosomethylethylamine (NMEA). Thus, we measured the genotoxic and carcinogenic potential of these compounds and measured the cell cycle and gene expression. The data show that exposure to the NAms-mixture doubled the revertants in the TA98 and TA100 S. typhimurium strains and increased the DNA double-strand breaks and the micronuclear frequency in the NIH3T3 cells compared to a single exposure. After long-term NAms mixture exposure, a malignant transformation of NIH3T3 and a significantly increased G2/M distribution were observed. Furthermore, P53, CDK1, P38, CDC25A and CyclinB expressions were down-regulated in the NAms-mixture exposure group; however, P21 and GADD45A genes were up-regulated. Interestingly, the CHK1/CHK2 and CDC25A genes had two responses, depending on the NAms concentrations. Thus, we observed mutagenic, genotoxic and carcinogenic effects after a low-dose NAms-mixture exposure in drinking water, and DNA repair and apoptosis pathways may contribute to these adverse effects.
Collapse
Affiliation(s)
- Hai-yan Wang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, 130 Dongan Road Shanghai, 200032, China
| | - Ming Qin
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Lei Dong
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, 130 Dongan Road Shanghai, 200032, China
| | - Jia-ying Lv
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xia Wang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, 130 Dongan Road Shanghai, 200032, China
| |
Collapse
|
13
|
Ren D, Huang B, Xiong D, He H, Meng X, Pan X. Photodegradation of 17α-ethynylestradiol in dissolved humic substances solution: Kinetics, mechanism and estrogenicity variation. J Environ Sci (China) 2017; 54:196-205. [PMID: 28391929 DOI: 10.1016/j.jes.2016.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 06/07/2023]
Abstract
17α-Ethynylestradiol (EE2) in natural waters may cause adverse effects on organisms due to its high estrogenic potency. Laboratory studies were performed to study the effects of a local humic acid (LHA), fulvic acid (LFA) and Aldrich humic acid (AHA) on the photochemical behavior and estrogenic potency of EE2. Here photolytic experiments demonstrated that pure aqueous EE2 could undergo direct and self-sensitized photodegradation at a global rate of 0.0068hr-1. Photodegradation rate of EE2 in 5.0mg/L dissolved humic substances (DHS) was determined to be 0.0274, 0.0296 and 0.0254hr-1 for LHA, LFA and AHA, respectively. Reactive oxygen species (ROS) and triplet dissolved humic substances (3DHS*) scavenging experiments indicated that the promotion effect of DHS on EE2 photodegradation was mainly aroused by the reactions of HO (35%-50%), 1O2 (<10%) and 3DHS* (22%-34%). However, the photodegradation of EE2 could also be inhibited when DHS exceeded the threshold of 10mg/L. Three hydroxylation products of EE2 were identified using GC-MS and their formation pathways were also proposed. In vitro estrogenicity tests showed that EE2 was transformed into chemicals without estrogenic potency. These findings could extend our knowledge on the photochemical behaviors of steroid estrogens in sunlit natural waters.
Collapse
Affiliation(s)
- Dong Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Dan Xiong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiangqi Meng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
14
|
Lou S, Lei B, Feng C, Xu J, Peng W, Wang Y. In vitro toxicity assessment of sediment samples from Huangpu River and Suzhou River, Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15183-15192. [PMID: 27094279 DOI: 10.1007/s11356-016-6683-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Sediments are the ultimate sink for many toxic organic contaminants released into aquatic environment. The present study evaluated the toxicity effect of 13 surface sediment samples from Huangpu River and Suzhou River, East China using two-hybrid yeast bioassays for estrogenic and thyroidal effects and H4IIE rat hepatoma cell bioassay for ethoxyresorufin O-deethylase (EROD) activity. Toxicity was expressed as 17β-estradiol equivalent (E2-EQ), 3,3',5-triiodothyronine equivalent (T3-EQ), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQ). At the same time, the causality between the observed EROD activity and concentrations of polycyclic aromatic hydrocarbons (PAHs) was examined. The results showed that the total estrogenic effects in sediments ranged from 0.06 to 1.21 μg E2-EQ kg(-1) dry weight (dw), the thyroidal effects ranged from 4.68 to 69.9 μg T3-EQ kg(-1) dw, and significantly positive correlations were found between lgT3-EQs and lgE2-EQs. The AhR agonist effects varied from 26.5 to 148.3 ng TEQ kg(-1) dw. Chemical analysis-derived TEQs contributed by PAHs ranged from 13.8 to 66.0 ng kg(-1) dw accounting for 27.2-109.9 % with mean of 48.9 % of TEQbio, indicating that PAHs made important contributions to the EROD effects of sediment extracts from the two rivers. The present study would provide meaningful information for further analysis and risk evaluation for organic pollutants in Huangpu River and Suzhou River.
Collapse
Affiliation(s)
- Shufang Lou
- Commen Subjects Department, Shangqiu Medical College, Hanan, 450000, China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| | - Jie Xu
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wei Peng
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yipei Wang
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
15
|
Wang B, Dong F, Chen S, Chen M, Bai Y, Tan J, Li F, Wang Q. Phenolic endocrine disrupting chemicals in an urban receiving river (Panlong river) of Yunnan-Guizhou plateau: Occurrence, bioaccumulation and sources. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 128:133-42. [PMID: 26921547 DOI: 10.1016/j.ecoenv.2016.02.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/31/2016] [Accepted: 02/15/2016] [Indexed: 05/17/2023]
Abstract
The objectives of this study were to track the occurrence, bioaccumulation and sources of phenolic endocrine disrupting chemicals (EDCs) in a representative urban river (Panlong River) of Yunnan-Guizhou Plateau. It provided more comprehensive fundamental data for risk assessment and contamination control of phenolic EDCs in aquatic environments. Phenolic EDCs, such as nonylphenol-di-ethoxylate (NP2EO), nonylphenol-mono-ethoxylate (NP1EO), 4-nonylphenol (4-NP), bisphenol A (BPA), 4-cumylphenol (4-CP) and 4-tert-octylphenol (4-t-OP), were ubiquitously present in Panlong River. The distribution of phenolic EDCs in the water and sediment tended to assume a shape like an inverted letter "W". The residual levels of phenolic EDCs increased dramatically in certain areas. The concentrations of NP2EO, NP1EO, 4-NP, BPA, 4-CP, 4-t-OP and the total phenolic EDCs (ΣPEDCs) were up to 202, 154, 17, 79, 3.3, 4.6 and 429 ng/L in water, and were up to 352, 316, 124, 18, 14, 4.8 and 813 ng/g in sediment, respectively. However, the concentrations of 4-NP, BPA, 4-CP, 4-t-OP and ΣPEDCs in the three predominant fish species (Carassius auratus, Cyprinus carpio and Anabarilius alburnops) were up to 63, 113, 12, 14 and 201 ng/g, respectively. Distribution characteristics of phenolic EDCs in water were significantly similar to those found in sediment, but different in fish. Occurrence, bioaccumulation and sources of phenolic EDCs were mainly subjected to the distribution characteristics of industry, agriculture and residential areas in Panlong catchment. Moreover, the bioconcentration factors (BCFs) were closely related to the octanol-water partition coefficients (log K(ow)) of phenolic EDCs. Without direct input, the redissolution of phenolic EDCs from sediments seems conceivable. The concentrations of phenolic EDCs in the sections of urban areas were remarkably higher than those in suburban sections, since there could exist a potential risk to aquatic organisms and even to human.
Collapse
Affiliation(s)
- Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, PR China; Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, PR China.
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, PR China; Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Shu Chen
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, PR China; Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Mengjun Chen
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, PR China; Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Jiangyue Tan
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Fucheng Li
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Qing Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, PR China
| |
Collapse
|
16
|
King OC, van de Merwe JP, McDonald JA, Leusch FDL. Concentrations of levonorgestrel and ethinylestradiol in wastewater effluents: Is the progestin also cause for concern? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1378-85. [PMID: 26554634 DOI: 10.1002/etc.3304] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/15/2015] [Accepted: 11/09/2015] [Indexed: 05/15/2023]
Abstract
Synthetic hormones have been widely reported in treated sewage effluents, and consequently receiving aquatic environments. Ethinylestradiol (EE2) is a potent synthetic estrogen commonly used in conjunction with levonorgestrel in oral contraceptive pills. Both EE2 and levonorgestrel have been identified in the aquatic environment, but although there is a significant amount of literature on EE2, there is much less information on levonorgestrel. Using Australian prescription data as well as excretion and predicted wastewater removal rates, the concentrations of EE2 and levonorgestrel in Australian wastewater were calculated at 0.1 ng/L to 0.5 ng/L and 0.2 ng/L to 0.6 ng/L, respectively. Both compounds were analyzed in treated wastewater and surface water grab samples from 3 Southeast Queensland, Australia sites. The predicted no-effect concentration (PNEC) for EE2 of 0.1 ng/L was exceeded at most sites, with EE2 concentrations up to 2 ng/L in treated effluent, albeit quickly diluted to 0.1 ng/L to 0.2 ng/L in the receiving environment. A provisional PNEC for levonorgestrel of 0.1 ng/L derived in the present study was slightly lower than predicted effluent concentrations of 0.2 ng/L to 0.6 ng/L, indicating a potential risk of endocrine-related effects in exposed aquatic species. The detection limit for levonorgestrel in the present study was 2.5 ng/L, and all samples were below detection limit. The present study's results suggest that improvements in analytical capabilities for levonorgestrel are warranted to more accurately quantify the risk of this compound in the receiving environment. Environ Toxicol Chem 2016;35:1378-1385. © 2015 SETAC.
Collapse
Affiliation(s)
- Olivia C King
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Jason P van de Merwe
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - James A McDonald
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Frederic D L Leusch
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
17
|
Li J, Fu KZ, Vemula S, Le XC, Li XF. Studying developmental neurotoxic effects of bisphenol A (BPA) using embryonic stem cells. J Environ Sci (China) 2015; 36:173-7. [PMID: 26456619 DOI: 10.1016/j.jes.2015.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Jinhua Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Katherine Z Fu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Sai Vemula
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| |
Collapse
|
18
|
Li X, Dai L, Wang Y, Yi L, Deng C, Deng K, Zhou G, Li Q, Liu Z, Deng Y, Zhu J, Li X. Long-term trends and seasonality of omphalocele during 1996-2010 in China: a retrospective analysis based on the hospital-based birth defects surveillance system. BMC Pregnancy Childbirth 2015; 15:102. [PMID: 25909955 PMCID: PMC4456719 DOI: 10.1186/s12884-015-0530-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about secular trends and seasonal variation in the birth prevalence of omphalocele in China. This study aimed to explore the long-term trends and seasonality of this birth defect, to provide insight into the etiology and prevention of omphalocele. METHODS A retrospective analysis of all births with omphalocele (1322 cases in 8.8 million births) registered in the hospital-based Chinese Birth Defects Monitoring Network between January 1996 and September 2010. Negative binomial cyclical regression models were used to analyze the long-term trends and seasonal fluctuations of omphalocele occurrence in the southern and northern regions and urban and rural areas of China. RESULTS The total prevalence of omphalocele was 1.50 cases (95% confidence interval (CI): 1.42-1.58) per 10,000 births. There was no significant secular trend of omphalocele occurrence in China between 1996 and 2010. The observed prevalence of omphalocele in rural areas was 2.03-2.54 cases per 10,000 births between May and August, which was higher than that observed in other months. The highest prevalence of births with omphalocele in rural areas occurred at the end of June; on average, the prevalence of omphalocele at that time point increased by 20% (95% CI: 6-35%) compared with other months. CONCLUSIONS There were no long-term trends found for occurrence of omphalocele in China between 1996 and 2010; however, seasonality was observed for omphalocele in women living in rural areas. These results may help generate hypotheses for further study of environmental factors that vary by season.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, 610041, China. .,National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, 610041, China.
| | - Li Dai
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, 610041, China.
| | - Yanping Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, 610041, China.
| | - Lin Yi
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, 610041, China.
| | - Changfei Deng
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, 610041, China.
| | - Kui Deng
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, 610041, China.
| | - Guangxuan Zhou
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, 610041, China.
| | - Qi Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, 610041, China.
| | - Zheng Liu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, 610041, China.
| | - Ying Deng
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, 610041, China. .,Laboratory of Molecular Epidemiology for Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jun Zhu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, 610041, China.
| | - Xiaosong Li
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
19
|
Zhang A, Wang J, Li Y. Performance of calcium peroxide for removal of endocrine-disrupting compounds in waste activated sludge and promotion of sludge solubilization. WATER RESEARCH 2015; 71:125-139. [PMID: 25613412 DOI: 10.1016/j.watres.2015.01.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/09/2014] [Accepted: 01/02/2015] [Indexed: 06/04/2023]
Abstract
Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using calcium peroxide (CaO2) oxidation. Effects of initial pH and CaO2 dosage were investigated. The impacts of CaO2 treatment on sludge solubilization and anaerobic digestion were also evaluated. Specifically, the role of reactive oxygen species (ROS) in EDC degradation during CaO2 oxidation was tested. Effects of 6 metal ions contained in the sludge matrix on EDC degradation were also evaluated. The results showed that CaO2 treatment can be a promising technology for EDC removal and facilitating sludge reuse. The EDC removal efficiencies increased with the increase in CaO2 dosage. At CaO2 doses of more than 0.34 g per gram of total solid (g g(-1) TS), more than 50% of EDCs were removed in a wide pH range of 2-12. Higher removal efficiencies were achieved at initial pH values of 12 and 2. The products of EDCs during CaO2 oxidation had less estrogenic activity than the originals. Under the conditions of neutral pH and CaO2 dosage = 0.34 g g(-1) TS, the sludge solubilization can be improved by increasing the soluble total organic carbon (STOC) and volatile suspended solids (VSS) reduction by 25% and 27% in 7 d, respectively; the volatile fatty acid (VFA) production was enhanced by 96% in the 15 d following anaerobic digestion. The ROS released by CaO2 are the main factors contributing to EDC removal, among which, hydroxyl radicals (OH) play the most important role. Metal ions contained in the sludge matrix also affected EDC removal. For most cases, Fe, Cu, and Zn had positive effects; Mn and Ag had negative effects; and Mg had an insignificant effect on EDC removal.
Collapse
Affiliation(s)
- Ai Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jie Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
20
|
Uzun H, Kim D, Karanfil T. Seasonal and temporal patterns of NDMA formation potentials in surface waters. WATER RESEARCH 2015; 69:162-172. [PMID: 25481075 DOI: 10.1016/j.watres.2014.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
The seasonal and temporal patterns of N-nitrosodimethylamine (NDMA) formation potentials (FPs) were examined with water samples collected monthly for 21 month period in 12 surface waters. This long term study allowed monitoring the patterns of NDMA FPs under dynamic weather conditions (e.g., rainy and dry periods) covering several seasons. Anthropogenically impacted waters which were determined by high sucralose levels (>100 ng/L) had higher NDMA FPs than limited impacted sources (<100 ng/L). In most sources, NDMA FP showed more variability in spring months, while seasonal mean values remained relatively consistent. The study also showed that watershed characteristics played an important role in the seasonal and temporal patterns. In the two dam-controlled river systems (SW A and G), the NDMA FP levels at the downstream sampling locations were controlled by the NDMA levels in the dams independent of either the increases in discharge rates due to water releases from the dams prior to or during the heavy rain events or intermittent high NDMA FP levels observed at the upstream of dams. The large reservoirs and impoundments on rivers examined in this study appeared serving as an equalization basin for NDMA precursors. On the other hand, in a river without an upstream reservoir (SW E), the NDMA levels were influenced by the ratio of an upstream wastewater treatment plant (WWTP) effluent discharge to the river discharge rate. The impact of WWTP effluent decreased during the high river flow periods due to rain events. Linear regression with independent variables DOC, DON, and sucralose yielded poor correlations with NDMA FP (R(2) < 0.27). Multiple linear regression analysis using DOC and log [sucralose] yielded a better correlation with NDMA FP (R(2) = 0.53).
Collapse
Affiliation(s)
- Habibullah Uzun
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Daekyun Kim
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA.
| |
Collapse
|
21
|
Zhang L, Li Q, Chen L, Zhang A, He J, Wen Z, Wu L. Toxicity of surface water from Huangpu River to luminous bacteria (Vibrio qinghaiensis SP. Q67) and zebrafish (Danio rerio) embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 112:137-143. [PMID: 25463864 DOI: 10.1016/j.ecoenv.2014.10.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/27/2014] [Accepted: 10/30/2014] [Indexed: 06/04/2023]
Abstract
Degradation of water quality is an emerging problem in many developing countries. Bioassay is an effective approach to monitor quality of water in aquatic environments. Studies have used luminescent bacteria and zebrafish embryos as bioassay tools in monitoring river water quality. In this study, luminous bacteria (Vibrio qinghaiensis sp. Q67) assay and zebrafish (Danio rerio) embryo toxicity test were performed to assess the ecotoxicity of surface water from the Huangpu River, China, collected during 2012-2013. River water samples inhibited the luminescence [inhibition rates 0-34.6% (±4.82%)] of Q67 and increased the lethal rates and induced morphological abnormalities in zebrafish embryos. The toxicity to luminous bacteria and zebrafish embryos were higher in winter than in summer months. In addition, samples collected in industrial area, urban sampling sites near drainage outlets, and at the intersection of the tributary that flows into the Huangpu River showed higher toxicity.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Yangtze Water environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Fuzhou Research Academy of Environmental Sciences, Fuzhou 350000, China
| | - Qian Li
- Key Laboratory of Yangtze Water environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ling Chen
- Key Laboratory of Yangtze Water environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ai Zhang
- Key Laboratory of Yangtze Water environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jieni He
- Key Laboratory of Yangtze Water environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhihao Wen
- Key Laboratory of Yangtze Water environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lingling Wu
- Key Laboratory of Yangtze Water environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|