1
|
Trimpin S, Yenchick FS, Lee C, Hoang K, Pophristic M, Karki S, Marshall DD, Lu IC, Lutomski CA, El-Baba TJ, Wang B, Pagnotti VS, Meher AK, Chakrabarty S, Imperial LF, Madarshahian S, Richards AL, Lietz CB, Moreno-Pedraza A, Leach SM, Gibson SC, Elia EA, Thawoos SM, Woodall DW, Jarois DR, Davis ETJ, Liao G, Muthunayake NS, Redding MJ, Reynolds CA, Anthony TM, Vithanarachchi SM, DeMent P, Adewale AO, Yan L, Wager-Miller J, Ahn YH, Sanderson TH, Przyklenk K, Greenberg ML, Suits AG, Allen MJ, Narayan SB, Caruso JA, Stemmer PM, Nguyen HM, Weidner SM, Rackers KJ, Djuric A, Shulaev V, Hendrickson TL, Chow CS, Pflum MKH, Grayson SM, Lobodin VV, Guo Z, Ni CK, Walker JM, Mackie K, Inutan ED, McEwen CN. New Processes for Ionizing Nonvolatile Compounds in Mass Spectrometry: The Road of Discovery to Current State-of-the-Art. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39374043 DOI: 10.1021/jasms.3c00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This Perspective covers discovery and mechanistic aspects as well as initial applications of novel ionization processes for use in mass spectrometry that guided us in a series of subsequent discoveries, instrument developments, and commercialization. Vacuum matrix-assisted ionization on an intermediate pressure matrix-assisted laser desorption/ionization source without the use of a laser, high voltages, or any other added energy was simply unbelievable, at first. Individually and as a whole, the various discoveries and inventions started to paint, inter alia, an exciting new picture and outlook in mass spectrometry from which key developments grew that were at the time unimaginable, and continue to surprise us in its simplistic preeminence. We, and others, have demonstrated exceptional analytical utility. Our current research is focused on how best to understand, improve, and use these novel ionization processes through dedicated platforms and source developments. These ionization processes convert volatile and nonvolatile compounds from solid or liquid matrixes into gas-phase ions for analysis by mass spectrometry using, e.g., mass-selected fragmentation and ion mobility spectrometry to provide accurate, and sometimes improved, mass and drift time resolution. The combination of research and discoveries demonstrated multiple advantages of the new ionization processes and established the basis of the successes that lead to the Biemann Medal and this Perspective. How the new ionization processes relate to traditional ionization is also presented, as well as how these technologies can be utilized in tandem through instrument modification and implementation to increase coverage of complex materials through complementary strengths.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Frank S Yenchick
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Chuping Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Khoa Hoang
- MSTM, LLC, Newark, Delaware 19711, United States
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Milan Pophristic
- MSTM, LLC, Newark, Delaware 19711, United States
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Darrell D Marshall
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - I-Chung Lu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan
| | - Corinne A Lutomski
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Tarick J El-Baba
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Beixi Wang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Vincent S Pagnotti
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Shubhashis Chakrabarty
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Lorelei F Imperial
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sara Madarshahian
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Alicia L Richards
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christopher B Lietz
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - Samantha M Leach
- Department of Forensic Sciences (DFS), Washington, D.C. 20024, United States
| | - Stephen C Gibson
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Efstathios A Elia
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Shameemah M Thawoos
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Daniel W Woodall
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Dean R Jarois
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Eric T J Davis
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Guochao Liao
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - McKenna J Redding
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Christian A Reynolds
- Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Thilani M Anthony
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - Paul DeMent
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Adeleye O Adewale
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Lu Yan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - James Wager-Miller
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Thomas H Sanderson
- Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Karin Przyklenk
- Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Arthur G Suits
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Srinivas B Narayan
- Detroit Medical Center: Detroit Hospital (DMC), Detroit, Michigan 48201, United States
| | - Joseph A Caruso
- Institute of Environmental Health Sciences, Wayne State University, Detroit Michigan 48202, United States
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Steffen M Weidner
- Federal Institute for Materials Research and Testing (BAM), Berlin 12489, Germany
| | - Kevin J Rackers
- Automation Techniques, Inc, Greensboro, North Carolina 27407, United States
| | - Ana Djuric
- College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Vladimir Shulaev
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76210, United States
| | - Tamara L Hendrickson
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Scott M Grayson
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | | | - Zhongwu Guo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - J Michael Walker
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Ken Mackie
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
- Mindanao State University Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Charles N McEwen
- MSTM, LLC, Newark, Delaware 19711, United States
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
West RE, Findsen EW, Isailovic D. Analysis of biomolecules by atmospheric pressure visible-wavelength MALDI-ion trap-MS in transmission geometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1467-76. [PMID: 23893434 DOI: 10.1007/s13361-013-0691-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 06/03/2013] [Accepted: 06/08/2013] [Indexed: 05/25/2023]
Abstract
We report the development of a new AP visible-wavelength MALDI-ion trap-MS instrument with significantly improved performance over our previously reported system (Int. J. Mass Spectrom. 315, 66-73 (2012)). A Nd:YAG pulsed laser emitting light at 532 nm was used to desorb and ionize oligosaccharides and peptides in transmission geometry through a glass slide. Limits of detection (LODs) achieved in MS mode correspond to picomole quantities of oligosaccharides and femtomole quantities of peptides. Tandem MS (MS/MS) experiments enabled identification of enzymatically digested proteins and oligosaccharides by comparison of MS/MS spectra with data found in protein and glycan databases. Moreover, the softness of ionization, LODs, and fragmentation spectra of biomolecules by AP visible-wavelength MALDI-MS were compared to those obtained by AP UV MALDI-MS using a Nd:YAG laser emitting light at 355 nm. AP visible-wavelength MALDI appears to be a softer ionization technique then AP UV MALDI for the analysis of sulfated peptides, while visible-wavelength MALDI-MS, MS/MS, and MS/MS/MS spectra of other biomolecules analyzed were mostly similar to those obtained by AP UV MALDI-MS. Therefore, the methodology presented will be useful for MS and MS(n) analyses of biomolecules at atmospheric pressure. Additionally, the AP visible-wavelength MALDI developed can be readily used for soft ionization of analytes on various mass spectrometers.
Collapse
Affiliation(s)
- Raymond E West
- Department of Chemistry, University of Toledo, Toledo, OH, 43606, USA
| | | | | |
Collapse
|
3
|
Borton DJ, Amundson LM, Hurt MR, Dow A, Madden JT, Simpson GJ, Kenttämaa HI. Development of a High-Throughput Laser-Induced Acoustic Desorption Probe and Raster Sampling For Laser-Induced Acoustic Desorption/Atmospheric Pressure Chemical Ionization. Anal Chem 2013; 85:5720-6. [PMID: 23679898 DOI: 10.1021/ac4000333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David J. Borton
- Department of Chemistry, Purdue University, 560 Oval drive, West
Lafayette, Indiana 47907, United States
| | - Lucas M. Amundson
- Department of Chemistry, Purdue University, 560 Oval drive, West
Lafayette, Indiana 47907, United States
| | - Matthew R. Hurt
- Department of Chemistry, Purdue University, 560 Oval drive, West
Lafayette, Indiana 47907, United States
| | - Alex Dow
- Department of Chemistry, Purdue University, 560 Oval drive, West
Lafayette, Indiana 47907, United States
| | - Jeremy T. Madden
- Department of Chemistry, Purdue University, 560 Oval drive, West
Lafayette, Indiana 47907, United States
| | - Garth J. Simpson
- Department of Chemistry, Purdue University, 560 Oval drive, West
Lafayette, Indiana 47907, United States
| | - Hilkka I. Kenttämaa
- Department of Chemistry, Purdue University, 560 Oval drive, West
Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Richards AL, Lietz CB, Wager-Miller JB, Mackie K, Trimpin S. Imaging mass spectrometry in transmission geometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:815-20. [PMID: 21337644 PMCID: PMC3677958 DOI: 10.1002/rcm.4927] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Affiliation(s)
| | | | - James B. Wager-Miller
- Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
- Correspondence to: S. Trimpin, Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
5
|
Zydel F, Trimpin S, McEwen CN. Laserspray ionization using an atmospheric solids analysis probe for sample introduction. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1889-1892. [PMID: 20732821 DOI: 10.1016/j.jasms.2010.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 05/29/2023]
Abstract
A newly introduced high sensitivity laserspray (LSI) mass spectrometry (MS) method that uses laser ablation of a matrix/analyte mixture at atmospheric pressure (AP) to obtain multiply charged ions from nonvolatile as well as high-mass compounds is now implemented using a simple probe device. The probe used in the LSI approach was originally designed for sample introduction into an AP ionization source using the atmospheric solids analysis probe (ASAP) method. Multiply charged mass spectra of peptides and proteins in 2,5-dihydroxybenzoic acid matrix were readily obtained on two mass spectrometers from different manufacturers with sample introduction using melting point tubes. Here we demonstrate rapid analysis by placing four peptide and protein samples on a single melting point tube. Mass spectra were obtained at high-resolution and using ion mobility spectrometry/MS.
Collapse
Affiliation(s)
- Frank Zydel
- University of the Sciences in Philadelphia, Philadelphia, Pennsylvania 19194, USA
| | | | | |
Collapse
|
6
|
Peš O, Preisler J. Off-line coupling of microcolumn separations to desorption mass spectrometry. J Chromatogr A 2010; 1217:3966-77. [DOI: 10.1016/j.chroma.2010.02.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 01/13/2023]
|
7
|
Habicht SC, Amundson LM, Duan P, Vinueza NR, Kenttämaa HI. Laser-induced acoustic desorption coupled with a linear quadrupole ion trap mass spectrometer. Anal Chem 2010; 82:608-14. [PMID: 20000769 DOI: 10.1021/ac901943k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, laser-induced acoustic desorption (LIAD) coupled with a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer has been demonstrated to provide a valuable technique for the analysis of a wide variety of nonvolatile, thermally labile compounds, including analytes that could not previously be analyzed by mass spectrometry. Although FT-ICR instruments are very powerful, they are also large and expensive and, hence, mainly used as research instruments. In contrast, linear quadrupole ion trap (LQIT) mass spectrometers are common due to several qualities that make these instruments attractive for both academic and industrial settings, such as high sensitivity, large dynamic range, and experimental versatility. Further, the relatively small size of the instruments, comparatively low cost, and the lack of a magnetic field provide some distinct advantages over FT-ICR instruments. Hence, we have coupled the LIAD technique with a commercial LQIT, the Thermo Fischer Scientific LTQ mass spectrometer. The LQIT was modified for a LIAD probe by outfitting the removable back plate of the instrument with a 6 in. ConFlat flange (CFF) port, gate valve, and sample lock. Reagent ions were created using the LQIT's atmospheric pressure ionization source and trapped in the mass analyzer for up to 10 s to allow chemical ionization reactions with the neutral molecules desorbed via LIAD. These initial experiments focused on demonstrating the feasibility of performing LIAD in the LQIT. Hence, the results are compared to those obtained using an FT-ICR mass spectrometer. Despite the lower efficiency in the transfer of desorbed neutral molecules into the ion trap, and the smaller maximum number of available laser pulses, the intrinsically higher sensitivity of the LQIT resulted in a higher sensitivity relative to the FT-ICR.
Collapse
Affiliation(s)
- Steven C Habicht
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
8
|
Chen Y, Liu Y, Allegood J, Wang E, Cachón-González B, Cox TM, Merrill AH, Sullards MC. Imaging MALDI mass spectrometry of sphingolipids using an oscillating capillary nebulizer matrix application system. Methods Mol Biol 2010; 656:131-46. [PMID: 20680588 PMCID: PMC3501677 DOI: 10.1007/978-1-60761-746-4_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Matrix deposition is a critical step in tissue imaging by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). It greatly affects the quality of MALDI imaging, especially for the analytes (such as lipids) that may easily dissolve in the solvent used for the matrix application. This chapter describes the use of an oscillating capillary nebulizer (OCN) to spray small droplets of matrix aerosol onto the sample surface for improved matrix homogeneity, reduced crystal size, and controlled solvent effects. This protocol allows visualization of many different lipid species and, of particular interest, sphingolipids in tissue slices of Tay-Sachs/Sandhoff disease by imaging MALDI-MS. The structures of these lipids were identified by analysis of tissue extracts using electrospray ionization in conjunction with tandem mass spectrometry (MS/MS and MS(3)). These results illustrate the usefulness of tissue imaging MALDI-MS with matrix deposition by OCN for the molecular analysis in normal physiology and pathology. In addition, the observation of numerous lipid subclasses with distinct localizations in the brain slices demonstrates that imaging MALDI-MS could be effectively used for "lipidomic" studies.
Collapse
Affiliation(s)
- Yanfeng Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Holcomb A, Owens KG. Optimization of a modified aerospray deposition device for the preparation of samples for quantitative analysis by MALDI-TOFMS. Anal Chim Acta 2009; 658:49-55. [PMID: 20082773 DOI: 10.1016/j.aca.2009.10.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 10/20/2022]
Abstract
A modified aerospray apparatus was used to prepare a thin layer sample of matrix and analyte for quantitative analysis by MALDI-TOFMS. The apparatus consists of a set of coaxial tubing; the liquid sample is forced by a syringe pump through the inner capillary and it is nebulized by a flow of gas through the outer capillary. The small droplets of sample exiting the device are deposited onto a rotating plate, which serves as the sample surface for a time-of-flight mass spectrometer. An optimization was carried out after initial experiments with the device resulted in poorer than expected reproducibility of analyte signal. A two-level plus center point factorial experiment was performed investigating several factors, including the inner capillary internal diameter, gas pressure, liquid flow, spray distance, and time. After optimization the within-sample reproducibility of the analyte signal improved 3-fold, while the sample-to-sample reproducibility improved 4.5-fold.
Collapse
Affiliation(s)
- April Holcomb
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
10
|
Chen Y, Allegood J, Liu Y, Wang E, Cachón-Gonzalez B, Cox TM, Merrill AH, Sullards MC. Imaging MALDI mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-Sachs/Sandhoff disease. Anal Chem 2008; 80:2780-8. [PMID: 18314967 DOI: 10.1021/ac702350g] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The quality of tissue imaging by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) depends on the effectiveness of the matrix deposition, especially for lipids that may dissolve in the solvent used for the matrix application. This article describes the use of an oscillating capillary nebulizer (OCN) to spray small droplets of matrix aerosol onto the sample surface for improved matrix homogeneity, reduced crystal size, and controlled solvent effects. This system was then applied to the analysis of histological slices of brains from mice with homozygous disruption of the hexb gene (hexb-/-), a model of Tay-Sachs and Sandhoff disease, versus the functionally normal heterozygote (hexb+/-) by imaging MALDI-MS. This allowed profiling and localization of many different lipid species, and of particular interest, ganglioside GM2, asialo-GM2 (GA2), and sulfatides (ST). The presence of these compounds was confirmed by analysis of brain extracts using electrospray ionization in conjunction with tandem mass spectrometry (MS/MS). The major fatty acid of the ceramide backbone of both GM2 and GA2 was identified as stearic acid (18:0) versus nervonic acid (24:1) for ST by both tissue-imaging MS and ESI-MS/MS. GM2 and GA2 were highly elevated in hexb-/- and were both localized in the granular cell region of the cerebellum. ST, however, was localized mainly in myelinated fiber (white matter) region of the cerebellum as well as in the brain stem with a relatively uniform distribution and had similar relative signal intensity for both hexb+/- and hexb-/- brain. It was also observed that there were distinct localizations for numerous other lipid subclasses; hence, imaging MALDI-MS could be used for "lipidomic" studies. These results illustrate the usefulness of tissue-imaging MALDI-MS with matrix deposition by OCN for histologic comparison of lipids in tissues such as brains from this mouse model of Tay-Sachs and Sandhoff disease.
Collapse
Affiliation(s)
- Yanfeng Chen
- School of Chemistry and Biochemistry, The Parker H. Petit Institute for Bioengineering and Bioscience, 315 Ferst Drive, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zinovev AV, Veryovkin IV, Moore JF, Pellin MJ. Laser-driven acoustic desorption of organic molecules from back-irradiated solid foils. Anal Chem 2007; 79:8232-41. [PMID: 17914890 DOI: 10.1021/ac070584o] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Laser-induced acoustic desorption (LIAD) from thin metal foils is a promising technique for gentle and efficient volatilization of intact organic molecules from surfaces of solid substrates. Using the single-photon ionization method combined with time-of-flight mass spectrometry, we have examined the neutral component of the desorbed flux in LIAD and compared it to that from direct laser desorption. These basic studies of LIAD, conducted for molecules of various organic dyes (rhodamine B, fluorescein, anthracene, coumarin, BBQ), have demonstrated detection of intact parent molecules of the analyte even at its surface concentrations corresponding to a submonolayer coating. In some cases (rhodamine B, fluorescein, BBQ), the parent molecular ion peak was accompanied by a few fragmentation peaks of comparable intensity, whereas for others, only peaks corresponding to intact parent molecules were detected. At all measured desorbing laser intensities (from 100 to 500 MW/cm2), the total amount of desorbed parent molecules depended exponentially on the laser intensity. Translational velocities of the desorbed intact molecules, determined for the first time in this work, were of the order of hundreds of meters per second, less than what has been observed in our experiments for direct laser desorption, but substantially greater than the possible perpendicular velocity of the substrate foil surface due to laser-generated acoustic waves. Moreover, these velocities did not depend on the desorbing laser intensity, which implies the presence of a more sophisticated mechanism of energy transfer than direct mechanical or thermal coupling between the laser pulse and the adsorbed molecules. Also, the total flux of desorbed intact molecules as a function of the total number of desorbing laser pulses, striking the same point on the target, decayed following a power law rather than an exponential function, as would have been predicted by the shake-off model. To summarize, the results of our experiments indicate that the LIAD phenomenon cannot be described in terms of simple mechanical shake-off or direct laser desorption. Rather, they suggest that multistep energy-transfer processes are involved. Two possible (and not mutually exclusive) qualitative mechanisms of LIAD that are based on formation of nonequilibrium energy states in the adsorbate-substrate system are proposed and discussed.
Collapse
Affiliation(s)
- Alexander V Zinovev
- Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA.
| | | | | | | |
Collapse
|
12
|
Shea RC, Petzold CJ, Campbell JL, Li S, Aaserud DJ, Kenttämaa HI. Characterization of laser-induced acoustic desorption coupled with a Fourier transform ion cyclotron resonance mass spectrometer. Anal Chem 2007; 78:6133-9. [PMID: 16944895 DOI: 10.1021/ac0602827] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several experimental factors have been investigated that influence the efficiency of desorption and subsequent chemical ionization of nonvolatile, thermally labile molecules during laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry (LIAD/FT-ICR) experiments. The experiments were performed by using two specially designed LIAD probes of different outer diameters (1/2 and 7/8 in.) and designs. Several improvements to the design of the "first generation" (1/2 in.) LIAD probe are presented. The larger diameter (7/8 in.) probe provides a larger surface area for desorption than the smaller diameter probe. Further, it was designed to desorb molecules on-axis with the magnetic field of the instrument. This is in contrast to the smaller probe for which desorption occurs 1.3 mm off-axis. This improved alignment, which provides better overlap between the desorbed molecules and trapped reagent ions, results in a substantial increase in the sensitivity of LIAD analyses. The thickness of the sample layer deposited on the irradiated metal foil and the number of laser shots fired on the backside of the foil were found to have a significant effect on the overall signal and the relative abundances of the ions formed in the experiment. Evaporation of a tetrapeptide, Val-Ala-Ala-Phe (VAAF), from Ag, Al, Au, Cu, Fe, and Ti foils, followed by protonation by protonated pyridine, revealed that the titanium foil provides the greatest signal. The importance of the laser power density was examined by desorbing a low MW polymer, polyisobutenyl succinic anhydride, at power densities ranging from 5.40 x 10(8) to 9.00 x 10(8) W/cm(2) at the backside of the foil. Higher laser power densities resulted in greater signals and an improved distribution for the higher molecular weight oligomers.
Collapse
Affiliation(s)
- Ryan C Shea
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA
| | | | | | | | | | | |
Collapse
|
13
|
Somuramasami J, Kenttämaa HI. Evaluation of a novel approach for peptide sequencing: laser-induced acoustic desorption combined with P(OCH(3))(2)(+) chemical ionization and collision-activated dissociation in a Fourier transform ion cyclotron resonance mass spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:525-40. [PMID: 17157527 PMCID: PMC1945181 DOI: 10.1016/j.jasms.2006.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/11/2006] [Accepted: 10/11/2006] [Indexed: 05/12/2023]
Abstract
A novel mass spectrometric method has been developed for obtaining sequence information on small peptides. The peptides are desorbed as intact neutral molecules into a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR) by means of laser-induced acoustic desorption (LIAD). Reactions of the neutral peptides with the dimethoxyphosphenium ion, P(OCH(3))(2)(+), occur predominantly by addition of the peptide to P(OCH(3))(2)(+) followed by the loss of two methanol molecules, thus yielding product ions with the composition (peptide + P - 2H)(+). Upon sustained off-resonance irradiation for collision-activated dissociation (SORI-CAD), the (peptide + P - 2H)(+) ions undergo successive losses of CO and NHCHR or H(2)O, CO, and NHCHR to yield sequence-related fragment ions in addition to the regular a(n)- and b(n)-type ions. Under the same conditions, SORI-CAD of the analogous protonated peptides predominantly yields the regular a(n)- and b(n)-type ions. The mechanisms of the reactions of peptides with P(OCH(3))(2)(+) and the dissociation of the (peptide + P - 2H)(+) ions were examined by using model peptides and molecular orbital calculations.
Collapse
|
14
|
Shea RC, Habicht SC, Vaughn WE, Kenttämaa HI. Design and characterization of a high-power laser-induced acoustic desorption probe coupled with a fourier transform ion cyclotron resonance mass spectrometer. Anal Chem 2007; 79:2688-94. [PMID: 17319645 PMCID: PMC2547414 DOI: 10.1021/ac061597p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here the construction and characterization of a high-power laser-induced acoustic desorption (LIAD) probe designed for Fourier transform ion cyclotron resonance mass spectrometers to facilitate analysis of nonvolatile, thermally labile compounds. This "next generation" LIAD probe offers significant improvements in sensitivity and desorption efficiency for analytes with larger molecular weights via the use of higher laser irradiances. Unlike the previous probes which utilized a power-limiting optical fiber to transmit the laser pulses through the probe, this probe employs a set of mirrors and a focusing lens. At the end of the probe, the energy from the laser pulses propagates through a thin metal foil as an acoustic wave, resulting in desorption of neutral molecules from the opposite side of the foil. Following desorption, the molecules can be ionized by electron impact or chemical ionization. Almost an order of magnitude greater power density (up to 5.0x10(9) W/cm2) is achievable on the backside of the foil with the high-power LIAD probe compared to the earlier LIAD probes (maximum power density approximately 9.0x10(8) W/cm2). The use of higher laser irradiances is demonstrated not to cause fragmentation of the analyte. The use of higher laser irradiances increases sensitivity since it results in the evaporation of a greater number of molecules per laser pulse. Measurement of the average velocities of LIAD-evaporated molecules demonstrates that higher laser irradiances do not correlate with higher velocities of the gaseous analyte molecules.
Collapse
|
15
|
Shea RC, Petzold CJ, Liu JA, Kenttämaa HI. Experimental investigations of the internal energy of molecules evaporated via laser-induced acoustic desorption into a Fourier transform ion cyclotron resonance mass spectrometer. Anal Chem 2007; 79:1825-32. [PMID: 17263513 PMCID: PMC2547139 DOI: 10.1021/ac061596x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The internal energy of neutral gas-phase organic and biomolecules, evaporated by means of laser-induced acoustic desorption (LIAD) into a Fourier transform ion cyclotron resonance mass spectrometer, was investigated through several experimental approaches. The desorbed molecules were demonstrated not to undergo degradation during the desorption process by collecting LIAD-evaporated molecules and subjecting them to analysis by electrospray ionization/quadrupole ion trap mass spectrometry. Previously established gas-phase basicity values were remeasured for LIAD-evaporated organic molecules and biomolecules with the use of the bracketing method. No endothermic reactions were observed. The remeasured basicity values are in close agreement with the values reported in the literature. The amount of internal energy deposited during LIAD is concluded to be less than a few kilocalories per mole. Chemical ionization with a series of proton-transfer reagents was employed to obtain a breakdown curve for a protonated dipeptide, Val-Pro, evaporated by LIAD. Comparison of this breakdown curve with a previously published analogous curve obtained by using substrate-assisted laser desorption (SALD) to evaporate the peptide suggests that the molecules evaporated via LIAD have a similar internal energy as those evaporated via SALD.
Collapse
Affiliation(s)
| | | | | | - Hilkka I. Kenttämaa
- Address reprint requests to Hilkka I. Kenttämaa, Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907-1393
| |
Collapse
|
16
|
Crawford KE, Campbell JL, Fiddler MN, Duan P, Qian K, Gorbaty ML, Kenttämaa HI. Laser-Induced Acoustic Desorption/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Petroleum Distillate Analysis. Anal Chem 2005; 77:7916-23. [PMID: 16351138 DOI: 10.1021/ac0511501] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Laser-induced acoustic desorption (LIAD) coupled with a 3-T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR) allows the simultaneous analysis of both the nonpolar and polar components in petroleum distillates. The LIAD/FT-ICR method was validated by examining model compounds representative of the various classes of polar and nonpolar hydrocarbons commonly found in petroleum. LIAD successfully desorbs all the compounds as intact neutral molecules into the FT-ICR. Electron ionization (EI) at low energies (10 eV) and chemical ionization using cyclopentadienyl cobalt radical cation (CpCo*+) were employed to ionize the desorbed molecules. The EI experiments lead to extensive fragmentation of many of the hydrocarbon compounds studied. However, the CpCo*+ ion ionizes all the hydrocarbon compounds by producing only pseudomolecular ions without other fragmentation, with the exception of one compound (*CH3 loss occurs). Examination of two different petroleum distillate samples revealed hundreds of compounds. The most abundant components have an even molecular weight; i.e., they are likely to contain no (or possibly an even number of) nitrogen atoms.
Collapse
Affiliation(s)
- Kenroy E Crawford
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47909, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Campbell JL, Fiddler MN, Crawford KE, Gqamana PP, Kenttämaa HI. Analysis of Polyethylene by Using Cyclopentadienyl Cobalt Chemical Ionization Combined with Laser-Induced Acoustic Desorption/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 2005; 77:4020-6. [PMID: 15987106 DOI: 10.1021/ac048409k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new mass spectrometric method has been developed for the analysis of low molecular weight polyethylene (PE). Laser-induced acoustic desorption (LIAD), combined with chemical ionization by the cyclopentadienyl cobalt radical cation (CpCo.+) in a Fourier transform ion cyclotron resonance mass spectrometer, produces predominantly a quasimolecular ion, (R + CpCo - 2H2).+, for each PE oligomer (R). An examination of artificial alkane mixtures revealed no mass bias for alkanes of differing molecular weights. However, the success of the LIAD/CpCo.+ CI technique depends greatly upon the LIAD sample preparation method used. Several sample preparation methods were evaluated, and pneumatically assisted spin coating was concluded to provide the best mass spectra as a result of its ability to provide uniform PE coverage on the LIAD foils. The molecular weight distributions measured for several low molecular weight PE samples (200-655) were found to be in good agreement with manufacturers' values as determined by gel permeation chromatography.
Collapse
Affiliation(s)
- J Larry Campbell
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | | | | | | | | |
Collapse
|
18
|
Basile F, Kassalainen GE, Ratanathanawongs Williams SK. Interface for Direct and Continuous Sample−Matrix Deposition onto a MALDI Probe for Polymer Analysis by Thermal Field Flow Fractionation and Off-Line MALDI-MS. Anal Chem 2005; 77:3008-12. [PMID: 15859624 DOI: 10.1021/ac048391d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A simple interface based on an oscillating capillary nebulizer (OCN) is described for direct deposition of eluate from a thermal field-flow fractionation (ThFFF) system onto a matrix-assisted laser desorption/ionization (MALDI) probe. In this study, the polymer-containing eluent from the ThFFF system was mixed on-line with MALDI matrix solution and deposited directly onto a moving MALDI probe. The result was a continuous sample track representative of the fractionation process. Subsequent off-line MALDI-mass spectrometry analysis was performed in automated and manual modes. Polystyrene samples of broad polydispersity were used to characterize the overall system performance. The OCN interface is easy to build and operate without the use of heaters or high voltages and is compatible with any MALDI probe format.
Collapse
Affiliation(s)
- Franco Basile
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA.
| | | | | |
Collapse
|
19
|
Chaurand P, Schwartz SA, Billheimer D, Xu BJ, Crecelius A, Caprioli RM. Integrating histology and imaging mass spectrometry. Anal Chem 2004; 76:1145-55. [PMID: 14961749 DOI: 10.1021/ac0351264] [Citation(s) in RCA: 262] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MALDI (matrix-assisted laser desorption/ionization) imaging mass spectrometry (IMS) is a new technology that generates molecular profiles and two-dimensional ion density maps of peptide and protein signals directly from the surface of thin tissue sections. This allows specific information to be obtained on the relative abundance and spatial distribution of proteins. One important aspect of this is the opportunity to correlate these specific ion images with histological features observed by optical microscopy. To facilitate this, we have developed protocols that allow MALDI mass spectrometry imaging and optical microscopy to be performed on the same section. Key components of these protocols involve the use of conductive glass slides as sample support for the tissue sections and MS-friendly tissue staining protocols. We show the effectiveness of these with protein standards and with several types of tissue sections. Although stain-specific intensity variations occur, the overall protein pattern and spectrum quality remain consistent between stained and control tissue samples. Furthermore, imaging mass spectrometry experiments performed on stained sections showed good image quality with minimal delocalization of proteins resulting from the staining protocols.
Collapse
Affiliation(s)
- Pierre Chaurand
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232-6400, USA
| | | | | | | | | | | |
Collapse
|
20
|
Campbell JL, Crawford KE, Kenttämaa HI. Analysis of saturated hydrocarbons by using chemical ionization combined with laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 2004; 76:959-63. [PMID: 14961726 DOI: 10.1021/ac0350716] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Laser-induced acoustic desorption (LIAD), combined with chemical ionization by the cyclopentadienyl cobalt radical cation (CpCo.+), is demonstrated to facilitate the analysis of saturated hydrocarbons by Fourier transform ion cyclotron resonance mass spectrometry. The LIAD/CpCo.+ method produces unique pseudomolecular ions for alkanes from C(24)H(50) to C(50)H(102). These alkanes were tested individually and in artificial mixtures of up to seven components. Only one product ion, [R + CpCo - 2H(2)].+, was detected for each alkane (R). The product ions' relative abundances correspond to the relative molar concentration of each alkane in mixtures. These findings provide a solid groundwork for the future application of this method for hydrocarbon polymer analyses.
Collapse
Affiliation(s)
- J Larry Campbell
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, USA
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Klaus Dreisewerd
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Strasse 31, Münster D-48149, Germany.
| |
Collapse
|
22
|
Guler LP, Yu YQ, Kenttämaa HI. An Experimental and Computational Study of the Gas-Phase Structures of Five-Carbon Monosaccharides. J Phys Chem A 2002. [DOI: 10.1021/jp025577c] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leonard P. Guler
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393
| | - Ying-Qing Yu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393
| | - Hilkka I. Kenttämaa
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393
| |
Collapse
|
23
|
Galicia MC, Vertes A, Callahan JH. Atmospheric pressure matrix-assisted laser desorption/ionization in transmission geometry. Anal Chem 2002; 74:1891-5. [PMID: 11985323 DOI: 10.1021/ac011098i] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In both atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI) and vacuum MALDI, the laser typically illuminates the analyte on the front side of an opaque surface (reflection geometry). Another configuration consisting of laser illumination through the sample backside (transmission geometry) has been used in conventional MALDI; however, its use and the number of reports in the literature are limited. The viability of transmission geometry with AP MALDI is demonstrated here. Such a geometry is simple to implement, eliminates the restriction for a metallic sample holder, and allows for the potential analysis of samples on their native transparent surfaces, e.g., cells or tissue sections on slides.
Collapse
Affiliation(s)
- Marsha C Galicia
- Department of Chemistry, The George Washington University, Washington, DC 20052, USA
| | | | | |
Collapse
|
24
|
Petzold CJ, Ramírez-Arizmendi LE, Heidbrink JL, Pérez J, Kenttämaa HI. Gas-phase reactions of charged phenyl radicals with neutral biomolecules evaporated by laser-induced acoustic desorption. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2002; 13:192-194. [PMID: 11838023 DOI: 10.1016/s1044-0305(01)00344-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A generally applicable method for the study of phenyl radicals' reactions with neutral biomolecules in the gas phase is demonstrated. Neutral biomolecules were evaporated into a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR) by means of laser-induced acoustic desorption (LIAD) and subsequently reacted with trapped charged phenyl radicals. The structural integrity of the evaporated alanylalanine molecules was verified by reaction with dichlorophosphenium ions. Examination of the reactions of charged phenyl radicals with alanylalanine and thymidine evaporated via LIAD revealed hydrogen atom abstraction for both alanylalanine and thymidine as well as an addition/elimination product for the reaction with thymidine. These reactions are consistent with the results obtained by others in solution. Further, a previously unstudied reaction of the nucleotide of thymine (T1) with charged phenyl radical was found to yield analogous products as the reaction with thymidine.
Collapse
|
25
|
Reid GE, Tichy SE, Pérez J, O'Hair RA, Simpson RJ, Kenttämaa HI. N-terminal derivatization and fragmentation of neutral peptides via ion--molecule reactions with acylium ions: toward gas-phase Edman degradation? J Am Chem Soc 2001; 123:1184-92. [PMID: 11456672 DOI: 10.1021/ja003070e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gas-phase ion-molecule reactions of neutral alanylglycine have been examined with various mass-selected acylium ions RCO(+) (R= CH(3), CD(3), C(6)H(5), C(6)F(5) and (CH(3))( 2)N), as well as the transacylation reagent O-benzoylbenzophenone in a Fourier transform ion cyclotron resonance mass spectrometer. Reactions of the gaseous dipeptide with acylium ions trapped in the ICR cell result in the formation of energized [M + RCO](+) adduct ions that fragment to yield N-terminal b-type and C-terminal y-type product ions, including a modified b(1) ion which is typically not observed in the fragmentation of protonated peptides. Judicious choice of the acylium ion employed allows some control over the product ion types that are observed (i.e., b versus y ions). The product ion distributions from these ion--molecule reactions are similar to those obtained by collision-activated dissociation in a triple quadrupole mass spectrometer of the authentic N-acylated alanylglycine derivatives. These data indicate that derivatization of the peptide in the gas-phase occurs at the N-terminal amine. Ab initio molecular orbital calculations, performed to estimate the thermochemistry of the steps associated with adduct formation as well as product ion formation, indicate that (i) the initially formed adduct is energized and hence likely to rapidly undergo fragmentation, and (ii) the likelihood for the formation of modified b(1) ions in preference to y(1) ions is dependent on the R substituent of the acylium ion. The reaction of the tetrapeptide valine--alanine--alanine--phenylalanine with the benzoyl cation was also found to yield a number of product ions, including a modified b(1) ion. This result suggests that the new experimental approach described here may provide a tool to address one of the major limitations associated with traditional mass spectrometric peptide sequencing approaches, that is, determination of the identity and order of the two N-terminal amino acids. Analogies are made between the reactions observed here and the derivatization and N-terminal cleavage reactions employed in the condensed-phase Edman degradation method.
Collapse
Affiliation(s)
- G E Reid
- School of Chemistry, University of Melbourne, Parkville, Victoria, Australia, 3010
| | | | | | | | | | | |
Collapse
|
26
|
Lake DA, Johnson MV, McEwen CN, Larsen BS. Sample preparation for high throughput accurate mass analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2000; 14:1008-1013. [PMID: 10844739 DOI: 10.1002/(sici)1097-0231(20000615)14:11<1008::aid-rcm979>3.0.co;2-t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An automated sample preparation for high throughput accurate mass determinations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has been developed. Sample preparation was performed with an automated workstation and automated mass analyses were performed with a commercial MALDI-TOF mass spectrometer. The method was tested with a 41-sample library. MALDI-TOFMS was found to give the needed sensitivity, accurate mass measurement, and soft ionization necessary for structure confirmation, even of mixtures. A mass accuracy of 5 ppm or less was obtained in over 80% of known compound measurements. A mass accuracy better than 10 ppm was obtained for all measurements of known compounds. Analyses of parallel synthesis products resulted in 77% of the measurements with a mass accuracy of 5 ppm or better.
Collapse
Affiliation(s)
- D A Lake
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19711, USA
| | | | | | | |
Collapse
|