1
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Li Y, Qin S, Dong L, Xiao Y, Zhang Y, Hou Y, Qiao S, Zhang R, Li Y, Bao Y, Zhao X, Ma Y, Gao GF. Multi-omic characteristics of longitudinal immune profiling after breakthrough infections caused by Omicron BA.5 sublineages. EBioMedicine 2024; 110:105428. [PMID: 39536392 PMCID: PMC11605469 DOI: 10.1016/j.ebiom.2024.105428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Omicron sub-variants breakthrough infections (BTIs) have led to millions of coronavirus disease 2019 (COVID-19) cases worldwide. The acute-phase immune status is critical for prognosis, however, the dynamic immune profiling of COVID-19 during the first month after BTIs remains unclear. METHODS In this study, we monitored the immune dynamics at various timepoints in a longitudinal cohort during the first month post-BTIs through clinical evaluation, single-cell RNA sequencing (scRNA-seq), T cell receptor (TCR)/B cell receptor (BCR) sequencing, and antibody mass spectrometry. FINDINGS Serological analysis revealed limited impairment to functions of major organs, active cellular and humoral immunity at 2 weeks post-BTI, with significant increases in cytokines (CKs) and neutralizing antibody levels. However, 1 month post-BTI, organ function parameters and CK levels reverted to pre-infection levels, whereas neutralizing antibody levels remained high. Notably, scRNA-seq showed that lymphocytes maintained strong antiviral activity and cell depletion at 2 weeks and 1 month post-BTI, with genes CD81, ABHD17A, CXCR4, DUSP1, etc. upregulated, and genes PFDN5, DYNLRB1, CD52, etc. downregulated, indicating that lymphocytes status take longer to recover to normal levels than that routine blood tests revealed. Additionally, T cell-exhaustion associated genes, including LAG3, TIGIT, PDCD1, CTLA4, HAVCR2, and TOX, were upregulated after BTI. TCRs and BCRs exhibited higher clonotypes, mainly in CD8Tem or plasmablast cells, at 2 weeks post-BTI comparing 1 month. More IgG and IgA-type BCRs were found in the groups of 1 month post-BTI, with higher somatic hypermutation, indicating greater maturity. Verification of monoclonal antibodies corresponding to amplified BCRs highlighted the antigen-specific and broad-spectrum characteristics. INTERPRETATION Our study elucidated the dynamic immune profiling of individuals after Omicron BA.5 sublineages BTI. Strong immune activation, antiviral response, antibody maturation and class transition at 2 weeks and 1 month after BTI may provide essential insights into pathogenicity, sequential immune status, recovery mechanisms of Omicron sublineage BTI. FUNDING This study was supported by the National Key R&D Program of China, the China Postdoctoral Science Foundation, Guangdong Basic and Applied Basic Research Foundation, the National Natural Science Foundation of China, CAS Project for Young Scientists in Basic Research, and the Air Force Special Medical Center Science and Technology Booster Program.
Collapse
MESH Headings
- Humans
- COVID-19/immunology
- COVID-19/virology
- SARS-CoV-2/immunology
- Male
- Female
- Middle Aged
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Longitudinal Studies
- Adult
- Cytokines/metabolism
- Aged
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Single-Cell Analysis
- Breakthrough Infections
- Multiomics
Collapse
Affiliation(s)
- Yanhua Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shijie Qin
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Shenzhen Children's Hospital, Shenzhen, 518026, China; The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lei Dong
- Department of Clinical Laboratory, Air Force Medical Center, Beijing, 100142, China
| | - Yunfeng Xiao
- Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yanan Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Shenzhen Children's Hospital, Shenzhen, 518026, China
| | - Yali Hou
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shitong Qiao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rong Zhang
- Guangxi University State Key Laboratory for Conservation and Utilization of Subtropical Agro BioResources, Nanning, 53000, China
| | - Ying Li
- Department of Clinical Laboratory, Air Force Medical Center, Beijing, 100142, China
| | - Yanmin Bao
- Shenzhen Children's Hospital, Shenzhen, 518026, China.
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Life Science Academy, Beijing, 102209, China.
| | - Yueyun Ma
- Department of Clinical Laboratory, Air Force Medical Center, Beijing, 100142, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Schemelev AN, Davydenko VS, Ostankova YV, Reingardt DE, Serikova EN, Zueva EB, Totolian AA. Involvement of Human Cellular Proteins and Structures in Realization of the HIV Life Cycle: A Comprehensive Review, 2024. Viruses 2024; 16:1682. [PMID: 39599797 PMCID: PMC11599013 DOI: 10.3390/v16111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Human immunodeficiency virus (HIV) continues to be a global health challenge, with over 38 million people infected by the end of 2022. HIV-1, the predominant strain, primarily targets and depletes CD4+ T cells, leading to immunodeficiency and subsequent vulnerability to opportunistic infections. Despite the progress made in antiretroviral therapy (ART), drug resistance and treatment-related toxicity necessitate novel therapeutic strategies. This review delves into the intricate interplay between HIV-1 and host cellular proteins throughout the viral life cycle, highlighting key host factors that facilitate viral entry, replication, integration, and immune evasion. A focus is placed on actual findings regarding the preintegration complex, nuclear import, and the role of cellular cofactors such as FEZ1, BICD2, and NPC components in viral transport and genome integration. Additionally, the mechanisms of immune evasion via HIV-1 proteins Nef and Vpu, and their interaction with host MHC molecules and interferon signaling pathways, are explored. By examining these host-virus interactions, this review underscores the importance of host-targeted therapies in complementing ART, with a particular emphasis on the potential of genetic research and host protein stability in developing innovative treatments for HIV/AIDS.
Collapse
Affiliation(s)
- Alexandr N. Schemelev
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; (V.S.D.); (Y.V.O.); (D.E.R.); (E.N.S.); (E.B.Z.); (A.A.T.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
5
|
Yang W, Wang H, Li Z, Zhang L, Liu J, Kirchhoff F, Huan C, Zhang W. RPLP1 restricts HIV-1 transcription by disrupting C/EBPβ binding to the LTR. Nat Commun 2024; 15:5290. [PMID: 38906865 PMCID: PMC11192919 DOI: 10.1038/s41467-024-49622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Long-term non-progressors (LTNPs) of HIV-1 infection may provide important insights into mechanisms involved in viral control and pathogenesis. Here, our results suggest that the ribosomal protein lateral stalk subunit P1 (RPLP1) is expressed at higher levels in LTNPs compared to regular progressors (RPs). Functionally, RPLP1 inhibits transcription of clade B HIV-1 strains by occupying the C/EBPβ binding sites in the viral long terminal repeat (LTR). This interaction requires the α-helixes 2 and 4 domains of RPLP1 and is evaded by HIV-1 group M subtype C and group N, O and P strains that do not require C/EBPβ for transcription. We further demonstrate that HIV-1-induced translocation of RPLP1 from the cytoplasm to the nucleus is essential for antiviral activity. Finally, knock-down of RPLP1 promotes reactivation of latent HIV-1 proviruses. Thus, RPLP1 may play a role in the maintenance of HIV-1 latency and resistance to RPLP1 restriction may contribute to the effective spread of clade C HIV-1 strains.
Collapse
Affiliation(s)
- Weijing Yang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhaolong Li
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Jianhui Liu
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Chen Huan
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China.
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China.
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China.
| | - Wenyan Zhang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China.
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China.
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Rausch JW, Parvez S, Pathak S, Capoferri AA, Kearney MF. HIV Expression in Infected T Cell Clones. Viruses 2024; 16:108. [PMID: 38257808 PMCID: PMC10820123 DOI: 10.3390/v16010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The principal barrier to an HIV-1 cure is the persistence of infected cells harboring replication-competent proviruses despite antiretroviral therapy (ART). HIV-1 transcriptional suppression, referred to as viral latency, is foremost among persistence determinants, as it allows infected cells to evade the cytopathic effects of virion production and killing by cytotoxic T lymphocytes (CTL) and other immune factors. HIV-1 persistence is also governed by cellular proliferation, an innate and essential capacity of CD4+ T cells that both sustains cell populations over time and enables a robust directed response to immunological threats. However, when HIV-1 infects CD4+ T cells, this capacity for proliferation can enable surreptitious HIV-1 propagation without the deleterious effects of viral gene expression in latently infected cells. Over time on ART, the HIV-1 reservoir is shaped by both persistence determinants, with selective forces most often favoring clonally expanded infected cell populations harboring transcriptionally quiescent proviruses. Moreover, if HIV latency is incomplete or sporadically reversed in clonal infected cell populations that are replenished faster than they are depleted, such populations could both persist indefinitely and contribute to low-level persistent viremia during ART and viremic rebound if treatment is withdrawn. In this review, select genetic, epigenetic, cellular, and immunological determinants of viral transcriptional suppression and clonal expansion of HIV-1 reservoir T cells, interdependencies among these determinants, and implications for HIV-1 persistence will be presented and discussed.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.P.); (S.P.); (A.A.C.); (M.F.K.)
| | | | | | | | | |
Collapse
|
7
|
HIV UTR, LTR, and Epigenetic Immunity. Viruses 2022; 14:v14051084. [PMID: 35632825 PMCID: PMC9146425 DOI: 10.3390/v14051084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
The duel between humans and viruses is unending. In this review, we examine the HIV RNA in the form of un-translated terminal region (UTR), the viral DNA in the form of long terminal repeat (LTR), and the immunity of human DNA in a format of epigenetic regulation. We explore the ways in which the human immune responses to invading pathogenic viral nucleic acids can inhibit HIV infection, exemplified by a chromatin vaccine (cVaccine) to elicit the immunity of our genome—epigenetic immunity towards a cure.
Collapse
|
8
|
Balance between Retroviral Latency and Transcription: Based on HIV Model. Pathogens 2020; 10:pathogens10010016. [PMID: 33383617 PMCID: PMC7824405 DOI: 10.3390/pathogens10010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
The representative of the Lentivirus genus is the human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome (AIDS). To date, there is no cure for AIDS because of the existence of the HIV-1 reservoir. HIV-1 infection can persist for decades despite effective antiretroviral therapy (ART), due to the persistence of infectious latent viruses in long-lived resting memory CD4+ T cells, macrophages, monocytes, microglial cells, and other cell types. However, the biology of HIV-1 latency remains incompletely understood. Retroviral long terminal repeat region (LTR) plays an indispensable role in controlling viral gene expression. Regulation of the transcription initiation plays a crucial role in establishing and maintaining a retrovirus latency. Whether and how retroviruses establish latency and reactivate remains unclear. In this article, we describe what is known about the regulation of LTR-driven transcription in HIV-1, that is, the cis-elements present in the LTR, the role of LTR transcription factor binding sites in LTR-driven transcription, the role of HIV-1-encoded transactivator protein, hormonal effects on virus transcription, impact of LTR variability on transcription, and epigenetic control of retrovirus LTR. Finally, we focus on a novel clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/dCas9)-based strategy for HIV-1 reservoir purging.
Collapse
|
9
|
Abreu C, Shirk EN, Queen SE, Mankowski JL, Gama L, Clements JE. A Quantitative Approach to SIV Functional Latency in Brain Macrophages. J Neuroimmune Pharmacol 2019; 14:23-32. [PMID: 30167896 PMCID: PMC9070040 DOI: 10.1007/s11481-018-9803-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/15/2018] [Indexed: 12/23/2022]
Abstract
Lentiviruses are retroviruses that primarily infect myeloid cells, leading to acute inflammatory infections in many tissues particularly, lung, joints and the central nervous system (CNS). Acute infection by lentiviruses is followed by persistent/latent infections that are not cleared by the host immune system. HIV and SIV are lentiviruses that also infect CD4+ lymphocytes as well as myeloid cells in blood and multiple tissues. HIV infection of myeloid cells in brain, lung and heart cause tissue specific diseases as well as infect cells in gut, lymph nodes and spleen. AIDS dementia and other tissue specific disease are observed when infected individuals are immunosuppressed and the number of circulating CD4+ T cells declines to low levels. Antiretroviral therapy (ART) controls viral spread and dramatically changes the course of immunodeficiency and AIDS dementia. However, ART does not eliminate virus-infected cells. Brain macrophages contain HIV DNA and may represent a latent reservoir that persists. HIV latency in CD4+ lymphocytes is the main focus of current research and concern in efforts to eradicate HIV. However, a number of studies have demonstrated that myeloid cells in blood and tissues of ART suppressed individuals harbor HIV DNA. The resident macrophages in tissues such as brain (microglia), spleen (red pulp macrophages) and alveolar macrophages in lung are derived from the yolk sac and can self renew. The question of the latent myeloid reservoir in HIV has not been rigorously examined and its potential as a barrier to eradication been considered. Using a well characterized SIV ART suppressed, non-human primate (NHP) model, our laboratory developed the first quantitative viral outgrowth assay (QVOA) designed to evaluate latently infected CD4+ lymphocytes and more recently developed a similar protocol for the assessment of latently infected myeloid cells in blood and brain. Using an SIV ART model, it was demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and produce infectious virus in vitro. These studies demonstrate for the first time that myeloid cells have the potential to be a latent reservoir of HIV that produces infectious virus that can be reactivated in the absence of ART and during HIV eradication strategies. Graphical Abstract.
Collapse
Affiliation(s)
- Celina Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Semen Exosomes Promote Transcriptional Silencing of HIV-1 by Disrupting NF-κB/Sp1/Tat Circuitry. J Virol 2018; 92:JVI.00731-18. [PMID: 30111566 DOI: 10.1128/jvi.00731-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Exosomes play various roles in host responses to cancer and infective agents, and semen exosomes (SE) inhibit HIV-1 infection and transmission, although the mechanism(s) by which this occurs is unclear. Here, we show that SE block HIV-1 proviral transcription at multiple transcriptional checkpoints, including transcription factor recruitment to the long terminal repeat (LTR), transcription initiation, and elongation. Biochemical and functional studies show that SE inhibit HIV-1 LTR-driven viral gene expression and virus replication. Through partitioning of the HIV-1 RNA, we found that SE reduced the optimal expression of various viral RNA species. Chromatin immunoprecipitation-real-time quantitative PCR (ChIP-RT-qPCR) and electrophoretic mobility shift assay (EMSA) analysis of infected cells identified the human transcription factors NF-κB and Sp1, as well as RNA polymerase (Pol) II and the viral protein transcriptional activator (Tat), as targets of SE. Of interest, SE inhibited HIV-1 LTR activation mediated by HIV-1 or Tat, but not by the mitogen phorbol myristate acetate (PMA) or tumor necrosis factor alpha (TNF-α). SE inhibited the DNA binding activities of NF-κB and Sp1 and blocked the recruitment of these transcription factors and Pol II to the HIV-1 LTR promoter. Importantly, SE directly blocked NF-κB, Sp1, and Pol II binding to the LTR and inhibited the interactions of Tat/NF-κB and Tat/Sp1, suggesting that SE-mediated inhibition of the functional quadripartite complex NF-κB-Sp1-Pol II-Tat may be a novel mechanism of proviral transcription repression. These data provide a novel molecular basis for SE-mediated inhibition of HIV-1 and identify Tat as a potential target of SE.IMPORTANCE HIV is most commonly transmitted sexually, and semen is the primary vector. Despite progress in studies of HIV pathogenesis and the success of combination antiretroviral therapy in controlling viral replication, current therapy cannot completely control sexual transmission. Thus, there is a need to identify effective methods of controlling HIV replication and transmission. Recently, it was shown that human semen contains exosomes that protect against HIV infection in vitro In this study, we identified a mechanism by which semen exosomes inhibited HIV-1 RNA expression. We found that semen exosomes inhibit recruitment of transcription factors NF-κB and Sp1, as well as RNA Pol II, to the promoter region in the 5' long terminal repeat (LTR) of HIV-1. The HIV-1 early protein transcriptional activator (Tat) was a target of semen exosomes, and semen exosomes inhibited the binding and recruitment of Tat to the HIV-1 LTR.
Collapse
|
11
|
Gama L, Abreu C, Shirk EN, Queen SE, Beck SE, Metcalf Pate KA, Bullock BT, Zink MC, Mankowski JL, Clements JE. SIV Latency in Macrophages in the CNS. Curr Top Microbiol Immunol 2018; 417:111-130. [PMID: 29770863 DOI: 10.1007/82_2018_89] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lentiviruses infect myeloid cells, leading to acute infection followed by persistent/latent infections not cleared by the host immune system. HIV and SIV are lentiviruses that infect CD4+ lymphocytes in addition to myeloid cells in blood and tissues. HIV infection of myeloid cells in brain, lung, and heart causes tissue-specific diseases that are mostly observed during severe immunosuppression, when the number of circulating CD4+ T cells declines to exceeding low levels. Antiretroviral therapy (ART) controls viral replication but does not successfully eliminate latent virus, which leads to viral rebound once ART is interrupted. HIV latency in CD4+ lymphocytes is the main focus of research and concern when HIV eradication efforts are considered. However, myeloid cells in tissues are long-lived and have not been routinely examined as a potential reservoir. Based on a quantitative viral outgrowth assay (QVOA) designed to evaluate latently infected CD4+ lymphocytes, a similar protocol was developed for the assessment of latently infected myeloid cells in blood and tissues. Using an SIV ART model, it was demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and produce infectious virus in vitro, demonstrating that myeloid cells have the potential to be an additional latent reservoir of HIV that should be considered during HIV eradication strategies.
Collapse
Affiliation(s)
- Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Celina Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sarah E Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Brandon T Bullock
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - M Christine Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Liu Y, Nonnemacher MR, Alexaki A, Pirrone V, Banerjee A, Li L, Kilareski E, Wigdahl B. Functional Studies of CCAAT/Enhancer Binding Protein Site Located Downstream of the Transcriptional Start Site. Clin Med Insights Pathol 2017; 10:1179555717694556. [PMID: 29162980 PMCID: PMC5692137 DOI: 10.1177/1179555717694556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Previous studies have identified a CCAAT/enhancer binding protein (C/EBP) site located downstream of the transcriptional start site (DS3). The role of the DS3 element with respect to HIV-1 transactivation by Tat and viral replication has not been characterized. We have demonstrated that DS3 was a functional C/EBPβ binding site and mutation of this site to the C/EBP knockout DS3-9C variant showed lower HIV-1 long terminal repeat (LTR) transactivation by C/EBPβ. However, it was able to exhibit similar or even higher transcription levels by Tat compared to the parental LTR. C/EBPβ and Tat together further enhanced the transcription level of the parental LAI-LTR and DS3-9C LTR, with higher levels in the DS3-9C LTR. HIV molecular clone viruses carrying the DS3-9C variant LTR demonstrated a decreased replication capacity and delayed rate of replication. These results suggest that DS3 plays a role in virus transcriptional initiation and provides new insight into C/EBP regulation of HIV-1.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Aikaterini Alexaki
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anupam Banerjee
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Luna Li
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Evelyn Kilareski
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Kim KC, Lee S, Son J, Shin Y, Yoon CH, Kang C, Choi BS. Identification of novel genes associated with HIV-1 latency by analysis of histone modifications. Hum Genomics 2017; 11:9. [PMID: 28499422 PMCID: PMC5429561 DOI: 10.1186/s40246-017-0105-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022] Open
Abstract
Background A reservoir of HIV-1 is a major obstacle in eliminating HIV-1 in patients because it can reactivate in stopping antiretroviral therapy (ART). Histone modifications, such as acetylation and methylation, play a critical role in the organization of chromatin domains and the up- or downregulation of gene expression. Although many studies have reported that an epigenetic mechanism is strongly involved in the maintenance of HIV-1 transcriptional latency, neither the epigenetic control of viral replication nor how HIV-1 latency is maintained is not fully understood. Results We re-analyzed a high throughput parallel DNA sequencing (ChIP-seq) data from previous work to investigate the effect of histone modifications, H3K4me3 and H3K9ac, on HIV-1 latency in terms of chromosome distribution. The outputs of ChIP-seq from uninfected CD4+ T cell lines and HIV-1 latently infected cells were aligned to hg18 using bowtie and then analyzed using various software packages. Certain chromosomes (16, 17, 19, and 22) were significantly enriched for histone modifications in both decreased and increased islands. In the same chromosomes in HIV-1 latently infected cells, 38 decreased and 41 increased islands from common islands of H3K4me3 and H3K9ac were selected for functional annotation. In Gene Ontology analysis, the 38 genes associated with decreased islands were involved in the regulation of biological process, regulation of cellular process, biological regulation, and purinergic receptor signaling pathway, while the 41 genes associated with increased islands were involved in nucleic acid binding, calcium-activated cation channel activity, DNA binding, and zinc ion binding. In Pathway Commons analysis, the 38 genes were strongly involved in the p63 transcription factor network, while the 41 genes were involved in the RNA polymerase III transcription termination pathway. Several genes such as Nuclear factor I X (NFIX) and TNF receptor association factor 4 (TRAF4) were selected as candidate genes for HIV latency. Especially, NFIX was highly expressed in HIV-1 latently infected cell lines and showed a dramatic reduction in expression after phorbol-13-myristate-12-acetate (PMA) treatment. Conclusions These results show that the unique enrichment of histone modifications and its linked genes in specific chromosomes might play a critical role in the establishment and maintenance of HIV-1 latency. Electronic supplementary material The online version of this article (doi:10.1186/s40246-017-0105-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyung-Chang Kim
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, 28160, Republic of Korea.
| | - Sunyoung Lee
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, 28160, Republic of Korea
| | - Junseock Son
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, 28160, Republic of Korea
| | - Younghyun Shin
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, 28160, Republic of Korea
| | - Cheol-Hee Yoon
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, 28160, Republic of Korea
| | - Chun Kang
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, 28160, Republic of Korea
| | - Byeong-Sun Choi
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, 28160, Republic of Korea.
| |
Collapse
|
14
|
Feng T, Gan J, Qin A, Huang X, Wu N, Hu H, Yao H. HIV‑1 downregulates the expression and phosphorylation of receptor tyrosine kinase by targeting the NF‑κB pathway. Mol Med Rep 2016; 14:1947-52. [PMID: 27432185 PMCID: PMC4991670 DOI: 10.3892/mmr.2016.5487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 06/24/2016] [Indexed: 11/12/2022] Open
Abstract
Macrophages are major targets of human immunodeficiency virus (HIV) and can act as long-term reservoirs of the virus. Chronic HIV-1 infection is associated with dysregulated inflammation. Recepteur d'origine nantais (RON) is expressed in tissue resident macrophages and functions to maintain inflammatory homeostasis. The present study aimed to compare the expression of RON on HIV-positive and -negative participants, and to investigate the mechanism by which HIV-1 influences the expression and function of RON in the JLTRG T cell line. The levels of RON and the RON ligand, macrophage-stimulating protein (MSP), in the peripheral blood of HIV-1-positive patients that were receiving (n=22) or not receiving highly active anti-retroviral therapy (HAART) (n=82) and 37 healthy control participants were determined by enzyme-linked immunosorbent assay. Expression of RON and MSP in the JLTRG T cell line was assessed by western blotting and the subcellular location was analyzed by fluorescence microscopy. JLTRG cells were co-cultured with a cell line that stably expresses HIV, H9/HTLV-IIIB, and alterations in the levels of RON and nuclear factor-κB (NF-κB) in JLTRG cells were assessed by western blotting. The expression of RON and MSP were significantly different in the serum of HIV-1- positive patients that were receiving HAART compared with those not receiving HAART (P<0.05) and healthy control patients (P<0.01). RON was detected in JLTRG cells, and was shown to be downregulated by HIV-1 infection. HIV-1 infection of JLTRG cells also reduced NF-κB phosphorylation. Thus, HIV-1 was shown to downregulate the expression and phosphorylation of RON by targeting the NF-κB pathway.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Infectious Disease, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jianhe Gan
- Department of Infectious Disease, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ailan Qin
- Department of Infectious Disease, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiaoping Huang
- Department of Infectious Disease, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Hua Hu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
15
|
Gao Y, Guan X, Liu Y, Li X, Yun B, Qi X, Wang Y, Gao H, Cui H, Liu C, Zhang Y, Wang X, Gao Y. An avian leukosis virus subgroup J isolate with a Rous sarcoma virus-like 5'-LTR shows enhanced replication capability. J Gen Virol 2014; 96:150-158. [PMID: 25274857 DOI: 10.1099/vir.0.071290-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) was first isolated from meat-producing chickens that had developed myeloid leukosis. However, ALV-J infections associated with hemangiomas have occurred in egg-producing (layer) flocks in China. In this study, we identified an ALV-J layer isolate (HLJ13SH01) as a recombinant of ALV-J and a Rous sarcoma virus Schmidt-Ruppin B strain (RSV-SRB), which contained the RSV-SRB 5'-LTR and the other genes of ALV-J. Replication kinetic testing indicated that the HLJ13SH01 strain replicated faster than other ALV-J layer isolates in vitro. Sequence analysis indicated that the main difference between the two isolates was the 5'-LTR sequences, particularly the U3 sequences. A 19 nt insertion was uniquely found in the U3 region of the HLJ13SH01 strain. The results of a Dual-Glo luciferase assay revealed that the 19 nt insertion in the HLJ13SH01 strain increased the enhancer activity of the U3 region. Moreover, an additional CCAAT/enhancer element was found in the 19 nt insertion and the luciferase assay indicated that this element played a key role in increasing the enhancer activity of the 5'-U3 region. To confirm the potentiation effect of the 19 nt insertion and the CCAAT/enhancer element on virus replication, three infectious clones with 5'-U3 region variations were constructed and rescued. Replication kinetic testing of the rescued viruses demonstrated that the CCAAT/enhancer element in the 19 nt insertion enhanced the replication capacity of the ALV-J recombinant in vitro.
Collapse
Affiliation(s)
- Yanni Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaolu Guan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaofei Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Bingling Yun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaomei Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, PR China
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| |
Collapse
|
16
|
Defining differential genetic signatures in CXCR4- and the CCR5-utilizing HIV-1 co-linear sequences. PLoS One 2014; 9:e107389. [PMID: 25265194 PMCID: PMC4180074 DOI: 10.1371/journal.pone.0107389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/07/2014] [Indexed: 11/29/2022] Open
Abstract
The adaptation of human immunodeficiency virus type-1 (HIV-1) to an array of physiologic niches is advantaged by the plasticity of the viral genome, encoded proteins, and promoter. CXCR4-utilizing (X4) viruses preferentially, but not universally, infect CD4+ T cells, generating high levels of virus within activated HIV-1-infected T cells that can be detected in regional lymph nodes and peripheral blood. By comparison, the CCR5-utilizing (R5) viruses have a greater preference for cells of the monocyte-macrophage lineage; however, while R5 viruses also display a propensity to enter and replicate in T cells, they infect a smaller percentage of CD4+ T cells in comparison to X4 viruses. Additionally, R5 viruses have been associated with viral transmission and CNS disease and are also more prevalent during HIV-1 disease. Specific adaptive changes associated with X4 and R5 viruses were identified in co-linear viral sequences beyond the Env-V3. The in silico position-specific scoring matrix (PSSM) algorithm was used to define distinct groups of X4 and R5 sequences based solely on sequences in Env-V3. Bioinformatic tools were used to identify genetic signatures involving specific protein domains or long terminal repeat (LTR) transcription factor sites within co-linear viral protein R (Vpr), trans-activator of transcription (Tat), or LTR sequences that were preferentially associated with X4 or R5 Env-V3 sequences. A number of differential amino acid and nucleotide changes were identified across the co-linear Vpr, Tat, and LTR sequences, suggesting the presence of specific genetic signatures that preferentially associate with X4 or R5 viruses. Investigation of the genetic relatedness between X4 and R5 viruses utilizing phylogenetic analyses of complete sequences could not be used to definitively and uniquely identify groups of R5 or X4 sequences; in contrast, differences in the genetic diversities between X4 and R5 were readily identified within these co-linear sequences in HIV-1-infected patients.
Collapse
|
17
|
Garamszegi S, Yen JY, Honko AN, Geisbert JB, Rubins KH, Geisbert TW, Xia Y, Hensley LE, Connor JH. Transcriptional correlates of disease outcome in anticoagulant-treated non-human primates infected with ebolavirus. PLoS Negl Trop Dis 2014; 8:e3061. [PMID: 25079789 PMCID: PMC4117489 DOI: 10.1371/journal.pntd.0003061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/18/2014] [Indexed: 01/26/2023] Open
Abstract
Ebola virus (EBOV) infection in humans and non-human primates (NHPs) is highly lethal, and there is limited understanding of the mechanisms associated with pathogenesis and survival. Here, we describe a transcriptomic analysis of NHPs that survived lethal EBOV infection, compared to NHPs that did not survive. It has been previously demonstrated that anticoagulant therapeutics increase the survival rate in EBOV-infected NHPs, and that the characteristic transcriptional profile of immune response changes in anticoagulant-treated NHPs. In order to identify transcriptional signatures that correlate with survival following EBOV infection, we compared the mRNA expression profile in peripheral blood mononuclear cells from EBOV-infected NHPs that received anticoagulant treatment, to those that did not receive treatment. We identified a small set of 20 genes that are highly confident predictors and can accurately distinguish between surviving and non-surviving animals. In addition, we identified a larger predictive signature of 238 genes that correlated with disease outcome and treatment; this latter signature was associated with a variety of host responses, such as the inflammatory response, T cell death, and inhibition of viral replication. Notably, among survival-associated genes were subsets of genes that are transcriptionally regulated by (1) CCAAT/enhancer-binding protein alpha, (2) tumor protein 53, and (3) megakaryoblastic leukemia 1 and myocardin-like protein 2. These pathways merit further investigation as potential transcriptional signatures of host immune response to EBOV infection.
Collapse
Affiliation(s)
- Sara Garamszegi
- Bioinformatics Program, Boston University, Boston, Massachusetts, University of America
| | - Judy Y. Yen
- Department of Microbiology, School of Medicine, Boston University, Boston, Massachusetts, University of America
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, University of America
| | - Anna N. Honko
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Joan B. Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kathleen H. Rubins
- National Aeronautics and Space Administration, Houston, Texas, United States of America
| | - Thomas W. Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yu Xia
- Bioinformatics Program, Boston University, Boston, Massachusetts, University of America
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Lisa E. Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, United States of America
| | - John H. Connor
- Bioinformatics Program, Boston University, Boston, Massachusetts, University of America
- Department of Microbiology, School of Medicine, Boston University, Boston, Massachusetts, University of America
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, University of America
- * E-mail:
| |
Collapse
|
18
|
Zhang Y, Fan M, Geng G, Liu B, Huang Z, Luo H, Zhou J, Guo X, Cai W, Zhang H. A novel HIV-1-encoded microRNA enhances its viral replication by targeting the TATA box region. Retrovirology 2014; 11:23. [PMID: 24620741 PMCID: PMC4007588 DOI: 10.1186/1742-4690-11-23] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/18/2014] [Indexed: 01/12/2023] Open
Abstract
Background A lot of microRNAs (miRNAs) derived from viral genomes have been identified. Many of them play various important roles in virus replication and virus-host interaction. Cellular miRNAs have been shown to participate in the regulation of HIV-1 viral replication, while the role of viral-encoded miRNAs in this process is largely unknown. Results In this report, through a strategy combining computational prediction and deep sequencing, we identified a novel HIV-1-encoded miRNA, miR-H3. MiR-H3 locates in the mRNA region encoding the active center of reverse transcriptase (RT) and exhibits high sequence conservation among different subtypes of HIV-1 viruses. Overexpression of miR-H3 increases viral production and the mutations in miR-H3 sequence significantly impair the viral replication of wildtype HIV-1 viruses, suggesting that it is a replication-enhancing miRNA. MiR-H3 upregulates HIV-1 RNA transcription and protein expression. A serial deletion assay suggests that miR-H3 targets HIV-1 5′ LTR and upregulates the promoter activity. It interacts with the TATA box in HIV-1 5′ LTR and sequence-specifically activates the viral transcription. In addition, chemically-synthesized small RNAs targeting HIV-1 TATA box activate HIV-1 production from resting CD4+ T cells isolated from HIV-1-infected patients on suppressive highly active antiretroviral therapy (HAART). Conclusions We have identified a novel HIV-1-encoded miRNA which specifically enhances viral production and provide a specific method to activate HIV-1 latency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
19
|
Dahiya S, Irish BP, Nonnemacher MR, Wigdahl B. Genetic variation and HIV-associated neurologic disease. Adv Virus Res 2013; 87:183-240. [PMID: 23809924 DOI: 10.1016/b978-0-12-407698-3.00006-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-associated neurologic disease continues to be a significant complication in the era of highly active antiretroviral therapy. A substantial subset of the HIV-infected population shows impaired neuropsychological performance as a result of HIV-mediated neuroinflammation and eventual central nervous system (CNS) injury. CNS compartmentalization of HIV, coupled with the evolution of genetically isolated populations in the CNS, is responsible for poor prognosis in patients with AIDS, warranting further investigation and possible additions to the current therapeutic strategy. This chapter reviews key advances in the field of neuropathogenesis and studies that have highlighted how molecular diversity within the HIV genome may impact HIV-associated neurologic disease. We also discuss the possible functional implications of genetic variation within the viral promoter and possibly other regions of the viral genome, especially in the cells of monocyte-macrophage lineage, which are arguably key cellular players in HIV-associated CNS disease.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Bryan P Irish
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Gray LR, Cowley D, Crespan E, Welsh C, Mackenzie C, Wesselingh SL, Gorry PR, Churchill MJ. Reduced basal transcriptional activity of central nervous system-derived HIV type 1 long terminal repeats. AIDS Res Hum Retroviruses 2013; 29:365-70. [PMID: 22924643 DOI: 10.1089/aid.2012.0138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
New evidence indicates that astrocytes of the central nervous system (CNS) are extensively infected with human immunodeficiency virus type 1 (HIV-1) in vivo. Although no new virus is produced, this nonproductive or restricted infection contributes to the pathogenesis of HIV-associated dementia (HAD) and compromises virus eradication strategies. The HIV-1 long terminal repeat (LTR) plays a critical role in regulating virus production from infected cells. Here, we determined whether LTRs derived from CNS and non-CNS compartments are genetically and functionally distinct and contribute to the restricted nature of astrocyte infection. CNS- and/or non-CNS-derived LTRs (n=82) were cloned from primary HIV-1 viruses isolated from autopsy tissues of seven patients who died with HAD. Phylogenetic analysis showed interpatient and intrapatient clustering of LTR nucleotide sequences. Functional analysis showed reduced basal transcriptional activity of CNS-derived LTRs in both astrocytes and T cells compared to that of non-CNS-derived LTRs. However, LTRs were heterogeneous in their responsiveness to activation by Tat. Therefore, using a relatively large, independent panel of primary HIV-1 LTRs derived from clinically well-characterized subjects, we show that LTRs segregate CNS- from non-CNS-derived tissues both genetically and functionally. The reduced basal transcriptional activity of LTRs derived from the CNS may contribute to the restricted HIV-1 infection of astrocytes and latent infection within the CNS. These findings have significance for understanding the molecular basis of HIV-1 persistence within cellular reservoirs of the CNS that need to be considered for strategies aimed at eradicating HIV-1.
Collapse
Affiliation(s)
- Lachlan R. Gray
- Center for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Daniel Cowley
- Center for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Emma Crespan
- Center for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | - Casey Welsh
- Center for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Charlene Mackenzie
- Center for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - Steve L. Wesselingh
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Paul R. Gorry
- Center for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa J. Churchill
- Center for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Ravimohan S, Gama L, Engle EL, Zink MC, Clements JE. Early emergence and selection of a SIV-LTR C/EBP site variant in SIV-infected macaques that increases virus infectivity. PLoS One 2012; 7:e42801. [PMID: 22952612 PMCID: PMC3428313 DOI: 10.1371/journal.pone.0042801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/11/2012] [Indexed: 11/19/2022] Open
Abstract
CCAAT/enhancer binding protein (C/EBP)β, and C/EBP binding sites in the HIV/SIV-long terminal repeat (LTR) are crucial for regulating transcription and for IFNβ-mediated suppression of virus replication in macrophages, the predominant source of productive virus replication in the brain. We investigated sequence variation within the SIV-LTR C/EBP sites that may be under selective pressure in vivo and therefore associated with disease progression. Using the SIV-macaque model, we examined viral LTR sequences derived from the spleen, a site of macrophage and lymphocyte infection, and the brain from macaques euthanized at 10, 21, 42, 48 and 84 days postinoculation (p.i.). A dominant variant, DS1C/A, containing an adenine-to-guanine substitution and a linked cytosine-to-adenine substitution in the downstream (DS1) C/EBP site, was detected in the spleen at 10 days p.i. The DS1C/A genotype was not detected in the brain until 42 days p.i., after which it was the predominant replicating genotype in both brain and spleen. Functional characterization of the DS1C/A containing SIV showed increased infectivity with or without IFNβ treatment over the wild-type virus, SIV/17E-Fr. The DS1C/A C/EBP site had higher affinity for both protein isoforms of C/EBPβ compared to the wild-type DS1 C/EBP site. Cytokine expression in spleen compared to brain implicated IFNβ and IL-6 responses as part of the selective pressures contributing to emergence of the DS1C/A genotype in vivo. These studies demonstrate selective replication of virus containing the DS1C/A genotype that either emerges very early in spleen and spreads to the brain, or evolves independently in the brain when IFNβ and IL-6 levels are similar to that found in spleen earlier in infection.
Collapse
Affiliation(s)
- Shruthi Ravimohan
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | |
Collapse
|
22
|
Mir KD, Mavigner M, Silvestri G. The myeloid cytokine network in AIDS pathogenesis. Cytokine Growth Factor Rev 2012; 23:223-31. [DOI: 10.1016/j.cytogfr.2012.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Mechanisms of HIV Transcriptional Regulation and Their Contribution to Latency. Mol Biol Int 2012; 2012:614120. [PMID: 22701796 PMCID: PMC3371693 DOI: 10.1155/2012/614120] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/09/2012] [Indexed: 12/26/2022] Open
Abstract
Long-lived latent HIV-infected cells lead to the rebound of virus replication following antiretroviral treatment interruption and present a major barrier to eliminating HIV infection. These latent reservoirs, which include quiescent memory T cells and tissue-resident macrophages, represent a subset of cells with decreased or inactive proviral transcription. HIV proviral transcription is regulated at multiple levels including transcription initiation, polymerase recruitment, transcription elongation, and chromatin organization. How these biochemical processes are coordinated and their potential role in repressing HIV transcription along with establishing and maintaining latency are reviewed.
Collapse
|
24
|
Abstract
Macrophages and CD4+ T cells are natural target cells for HIV-1, and both cell types contribute to the establishment of the viral reservoir that is responsible for continuous residual virus replication during antiretroviral therapy and viral load rebound upon treatment interruption. Scientific findings that support a critical role for the infected monocyte/macrophage in HIV-1-associated diseases, such as neurological disorders and cardiovascular disease, are accumulating. To prevent or treat these HIV-1-related diseases, we need to halt HIV-1 replication in the macrophage reservoir. This article describes our current knowledge of how monocytes and certain macrophage subsets are able to restrict HIV-1 infection, in addition to what makes macrophages respond less well to current antiretroviral drugs as compared with CD4+ T cells. These insights will help to find novel approaches that can be used to meet this challenge.
Collapse
Affiliation(s)
- Sebastiaan M Bol
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Viviana Cobos-Jiménez
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
25
|
Li L, Aiamkitsumrit B, Pirrone V, Nonnemacher MR, Wojno A, Passic S, Flaig K, Kilareski E, Blakey B, Ku J, Parikh N, Shah R, Martin-Garcia J, Moldover B, Servance L, Downie D, Lewis S, Jacobson JM, Kolson D, Wigdahl B. Development of co-selected single nucleotide polymorphisms in the viral promoter precedes the onset of human immunodeficiency virus type 1-associated neurocognitive impairment. J Neurovirol 2011; 17:92-109. [PMID: 21225391 PMCID: PMC3057211 DOI: 10.1007/s13365-010-0014-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 11/15/2010] [Accepted: 11/24/2010] [Indexed: 01/03/2023]
Abstract
The long terminal repeat (LTR) regulates gene expression of HIV-1 by interacting with multiple host and viral factors. Cross-sectional studies in the pre-HAART era demonstrated that single nucleotide polymorphisms (SNPs) in peripheral blood-derived LTRs (a C-to-T change at position 3 of C/EBP site I (3T) and at position 5 of Sp site III (5T)) increased in frequency as disease severity increased. Additionally, the 3T variant correlated with HIV-1-associated dementia. LTR sequences derived by longitudinal sampling of peripheral blood from a single patient in the DrexelMed HIV/AIDS Genetic Analysis Cohort resulted in the detection of the 3T and 5T co-selected SNPs before the onset of neurologic impairment, demonstrating that these SNPs may be useful in predicting HIV-associated neurological complications. The relative fitness of the LTRs containing the 3T and/or 5T co-selected SNPs as they evolve in their native patient-derived LTR backbone structure demonstrated a spectrum of basal and Tat-mediated transcriptional activities using the IIIB-derived Tat and colinear Tat derived from the same molecular clone containing the 3T/5T LTR SNP. In silico predictions utilizing colinear envelope sequence suggested that the patient's virus evolved from an X4 to an R5 swarm prior to the development of neurological complications and more advanced HIV disease. These results suggest that the HIV-1 genomic swarm may evolve during the course of disease in response to selective pressures that lead to changes in prevalence of specific polymorphisms in the LTR, env, and/or tat that could predict the onset of neurological disease and result in alterations in viral function.
Collapse
Affiliation(s)
- Luna Li
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Benjamas Aiamkitsumrit
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Adam Wojno
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shendra Passic
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Katherine Flaig
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Evelyn Kilareski
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brandon Blakey
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jade Ku
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Nirzari Parikh
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Rushabh Shah
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Julio Martin-Garcia
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Laila Servance
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - David Downie
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sharon Lewis
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jeffrey M. Jacobson
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA. Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA. Division of Infectious Disease and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Dennis Kolson
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA. Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
26
|
Graham DR, Gama L, Queen SE, Li M, Brice AK, Kelly KM, Mankowski JL, Clements JE, Zink MC. Initiation of HAART during acute simian immunodeficiency virus infection rapidly controls virus replication in the CNS by enhancing immune activity and preserving protective immune responses. J Neurovirol 2010; 17:120-30. [PMID: 21165785 DOI: 10.1007/s13365-010-0005-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/07/2010] [Accepted: 11/08/2010] [Indexed: 11/28/2022]
Abstract
The CNS remains vulnerable to HIV-induced damage despite highly active antiretroviral therapy (HAART). Using a rigorous simian immunodeficiency virus (SIV) macaque model of HAART that combines three classes of antiretroviral drugs (a protease inhibitor, a reverse transcriptase inhibitor, and an integrase inhibitor), we examined immune responses and virus replication in the plasma and cerebrospinal fluid (CSF) following HAART initiation during acute infection (4 days postinoculation (p.i.)). HAART-treated macaques did not experience the level of acute CD4+ and CD8+ T cell and NK cell count suppression in the peripheral blood normally observed during acute infection. Initiation of HAART produced a rapid four-log decline in viral load in plasma and a slower two-log decline of viral RNA in the CSF over the subsequent 17 days of infection. Despite a dramatic reduction of viral RNA levels in the brain at 21 days p.i., viral DNA levels were not different between the two groups. Expression of most cytokine mRNA in brain of HAART-treated macaques did not significantly differ from untreated controls. Expression of the IFN responsive gene MxA was significantly reduced in the brain of HAART-treated macaques, suggesting control of hyperactive immune responses. Control of virus replication likely was enhanced by significant increases in CD4+ and CD8+ T cell trafficking in the brain of infected animals on HAART therapy and the concomitant increase in levels of IFNγ. Collectively, these data indicate preserved innate and adaptive immune activity in the brain following HAART initiation during acute SIV infection in this macaque model, suggesting profound benefits following acute treatment of SIV.
Collapse
Affiliation(s)
- David R Graham
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 N. Broadway, BRB 831, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu Y, Nonnemacher MR, Stauff DL, Li L, Banerjee A, Irish B, Kilareski E, Rajagopalan N, Suchitra JB, Khan ZK, Ranga U, Wigdahl B. Structural and functional studies of CCAAT/enhancer binding sites within the human immunodeficiency virus type 1 subtype C LTR. Biomed Pharmacother 2010; 64:672-80. [PMID: 20970301 DOI: 10.1016/j.biopha.2010.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 09/05/2010] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C, which is most predominant in sub-Saharan Africa as well as in Asia and India, is the most prevalent subtype worldwide. A large number of transcription factor families have been shown to be involved in regulating HIV-1 gene expression in T lymphocytes and cells of the monocyte-macrophage lineage. Among these, proteins of the CCAAT/enhancer binding protein (C/EBP) family are of particular importance in regulating HIV-1 gene expression within cells of the monocytic lineage during the course of hematologic development and cellular activation. Few studies have examined the role of C/EBPs in long terminal repeat (LTR)-directed viral gene expression of HIV-1 subtypes other than subtype B. Within subtype B viruses, two functional C/EBP sites located upstream of the TATA box are required for efficient viral replication in cells of the monocyte-macrophage lineage. We report the identification of three putative subtype C C/EBP sites, upstream site 1 and 2 (C-US1 and C-US2) and downstream site 1 (C-DS1). C-US1 and C-DS1 were shown to form specific DNA-protein complexes with members of the C/EBP family (C/EBPα, β, and δ). Functionally, within the U-937 monocytic cell line, subtype B and C LTRs were shown to be equally responsive to C/EBPβ-2, although the basal activity of subtype C LTRs appeared to be higher. Furthermore, the synergistic interaction between C/EBPβ-2 and Tat with the subtype C LTR was also observed in U-937 cells as previously demonstrated with the subtype B LTR.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shah S, Nonnemacher MR, Pirrone V, Wigdahl B. Innate and adaptive factors regulating human immunodeficiency virus type 1 genomic activation. J Neuroimmune Pharmacol 2010; 5:278-93. [PMID: 20387125 PMCID: PMC3057210 DOI: 10.1007/s11481-010-9207-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 03/08/2010] [Indexed: 01/13/2023]
Abstract
Over the past decade, antiretroviral therapy targeting the viral entry process, reverse transcriptase, integrase, and protease, has prolonged the lives of people infected with human immunodeficiency virus type 1 (HIV-1). However, despite the development of more effective therapeutic strategies, reservoirs of viral infection remain. This review discusses molecular mechanisms surrounding the development of latency from the site of integration to pre- and post-integration maintenance of latency, including epigenetic factors. In addition, an overview of innate and adaptive cells important to HIV-1 infection are examined from the viewpoint of cytokines released and cytokines that act on these cells to explore an overall understanding of HIV-1 proviral genome activation. Finally, this review is discussed from the viewpoint of how an understanding of the interplay of all of these factors will help guide the next generation of therapies.
Collapse
Affiliation(s)
- Sonia Shah
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|
29
|
Reeve AB, Pearce NC, Patel K, Augustus KV, Novembre FJ. Neuropathogenic SIVsmmFGb genetic diversity and selection-induced tissue-specific compartmentalization during chronic infection and temporal evolution of viral genes in lymphoid tissues and regions of the central nervous system. AIDS Res Hum Retroviruses 2010; 26:663-79. [PMID: 20518690 DOI: 10.1089/aid.2009.0168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
SIVsmmFGb is a lentivirus swarm that induces neuropathology in over 90% of infected pigtailed macaques and reliably models central nervous system HIV infection in people. We have previously studied SIVsmmFGb genetic diversity and compartmentalization during acute infection, but little is understood about diversity and intertissue compartmentalization during chronic infection. Tissue-specific pressure appeared to affect the diversity of Nef sequences between tissues, but changes to the Env V1 region and Int diversity were similar across all tissues. At 2 months postinfection, compartmentalization of the SIVsmmFGb env V1 region, nef, and int was noted between different brain regions and between brain regions and lymph nodes. Convergent evolution of the nef and env V1 region, and divergent evolution of int, was noted between compartments and all genes demonstrated intratissue temporal segregation. For the env V1 region and nef, temporal segregation was stronger in the brain regions than the periphery, but little difference between tissues was noted for int. Positive selection of the env V1 region appeared in most tissues at 2 months postinfection, whereas nef and int faced negative selection in all tissues. Positive selection of the env V1 region sequences increased in some brain regions over time. SIVsmmFGb nef and int sequences each saw increased negative selection in brain regions, and one lymph node, over the course of infection. Functional differences between tissue compartments decreased over time for int and env V1 region sequences, but increased for nef sequences.
Collapse
Affiliation(s)
- Aaron B. Reeve
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Nicholas C. Pearce
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kalpana Patel
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Katherine V. Augustus
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Francis J. Novembre
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia
| |
Collapse
|
30
|
Le Douce V, Herbein G, Rohr O, Schwartz C. Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology 2010; 7:32. [PMID: 20380694 PMCID: PMC2873506 DOI: 10.1186/1742-4690-7-32] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 04/09/2010] [Indexed: 01/09/2023] Open
Abstract
The introduction of the highly active antiretroviral therapy (HAART) has greatly improved survival. However, these treatments fail to definitively cure the patients and unveil the presence of quiescent HIV-1 reservoirs like cells from monocyte-macrophage lineage. A purge, or at least a significant reduction of these long lived HIV-1 reservoirs will be needed to raise the hope of the viral eradication. This review focuses on the molecular mechanisms responsible for viral persistence in cells of the monocyte-macrophage lineage. Controversy on latency and/or cryptic chronic replication will be specifically evoked. In addition, since HIV-1 infected monocyte-macrophage cells appear to be more resistant to apoptosis, this obstacle to the viral eradication will be discussed. Understanding the intimate mechanisms of HIV-1 persistence is a prerequisite to devise new and original therapies aiming to achieve viral eradication.
Collapse
Affiliation(s)
- Valentin Le Douce
- INSERM unit 575, Pathophysiology of Central Nervous System, Institute of Virology, rue Koeberlé, Strasbourg, France
| | | | | | | |
Collapse
|
31
|
Kilareski EM, Shah S, Nonnemacher MR, Wigdahl B. Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage. Retrovirology 2009; 6:118. [PMID: 20030845 PMCID: PMC2805609 DOI: 10.1186/1742-4690-6-118] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 12/23/2009] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) has been shown to replicate productively in cells of the monocyte-macrophage lineage, although replication occurs to a lesser extent than in infected T cells. As cells of the monocyte-macrophage lineage become differentiated and activated and subsequently travel to a variety of end organs, they become a source of infectious virus and secreted viral proteins and cellular products that likely initiate pathological consequences in a number of organ systems. During this process, alterations in a number of signaling pathways, including the level and functional properties of many cellular transcription factors, alter the course of HIV-1 long terminal repeat (LTR)-directed gene expression. This process ultimately results in events that contribute to the pathogenesis of HIV-1 infection. First, increased transcription leads to the upregulation of infectious virus production, and the increased production of viral proteins (gp120, Tat, Nef, and Vpr), which have additional activities as extracellular proteins. Increased viral production and the presence of toxic proteins lead to enhanced deregulation of cellular functions increasing the production of toxic cellular proteins and metabolites and the resulting organ-specific pathologic consequences such as neuroAIDS. This article reviews the structural and functional features of the cis-acting elements upstream and downstream of the transcriptional start site in the retroviral LTR. It also includes a discussion of the regulation of the retroviral LTR in the monocyte-macrophage lineage during virus infection of the bone marrow, the peripheral blood, the lymphoid tissues, and end organs such as the brain. The impact of genetic variation on LTR-directed transcription during the course of retrovirus disease is also reviewed.
Collapse
Affiliation(s)
- Evelyn M Kilareski
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Sonia Shah
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Michael R Nonnemacher
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
32
|
Coordinated regulation of SIV replication and immune responses in the CNS. PLoS One 2009; 4:e8129. [PMID: 20019816 PMCID: PMC2790080 DOI: 10.1371/journal.pone.0008129] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/11/2009] [Indexed: 11/19/2022] Open
Abstract
Central nervous system (CNS) invasion during acute-stage HIV-infection has been demonstrated in a small number of individuals, but there is no evidence of neurological impairment at this stage and virus infection in brain appears to be controlled until late-stage disease. Using our reproducible SIV macaque model to examine the earliest stages of infection in the CNS, we identified immune responses that differentially regulate inflammation and virus replication in the brain compared to the peripheral blood and lymphoid tissues. SIV replication in brain macrophages and in brain of SIV-infected macaques was detected at 4 days post-inoculation (p.i.). This was accompanied by upregulation of innate immune responses, including IFNβ, IFNβ-induced gene MxA mRNA, and TNFα. Additionally, IL-10, the chemokine CCL2, and activation markers in macrophages, endothelial cells, and astrocytes were all increased in the brain at four days p.i. We observed synchronous control of virus replication, cytokine mRNA levels and inflammatory markers (MHC Class II, CD68 and GFAP) by 14 days p.i.; however, control failure was followed by development of CNS lesions in the brain. SIV infection was accompanied by induction of the dominant-negative isoform of C/EBPβ, which regulates SIV, CCL2, and IL6 transcription, as well as inflammatory responses in macrophages and astrocytes. This synchronous response in the CNS is in part due to the effect of the C/EBPβ on virus replication and cytokine expression in macrophage-lineage cells in contrast to CD4+ lymphocytes in peripheral blood and lymphoid tissues. Thus, we have identified a crucial period in the brain when virus replication and inflammation are controlled. As in HIV-infected individuals, though, this control is not sustained in the brain. Our results suggest that intervention with antiretroviral drugs or anti-inflammatory therapeutics with CNS penetration would sustain early control. These studies further suggest that interventions should target HIV-infected individuals with increased CCL2 levels or HIV RNA in the CNS.
Collapse
|
33
|
Ravimohan S, Gama L, Barber SA, Clements JE. Regulation of SIV mac 239 basal long terminal repeat activity and viral replication in macrophages: functional roles of two CCAAT/enhancer-binding protein beta sites in activation and interferon beta-mediated suppression. J Biol Chem 2009; 285:2258-73. [PMID: 19933495 DOI: 10.1074/jbc.m109.075929] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CCAAT/enhancer-binding protein (C/EBP) beta and C/EBP sites in the HIV-1 long terminal repeat (LTR) are crucial for HIV-1 replication in monocyte/macrophages and for the ability of interferon beta (IFN beta) to inhibit ongoing active HIV replication in these cells. This IFN beta-mediated down-regulation involves induction of the truncated, dominant-negative isoform of C/EBP beta referred to as liver-enriched transcriptional inhibitory protein (LIP). Although binding of the C/EBP beta isoform to C/EBP sites in the simian immunodeficiency virus (SIV) LTR has previously been examined, the importance of these sites in core promoter-mediated transcription, virus replication, IFN beta-mediated regulation, and the relative binding of the two isoforms (C/EBP beta and LIP) has not been investigated. Here, we specifically examine two C/EBP sites, JC1 (-100 bp) and DS1 (+134 bp), located within the minimal region of the SIV LTR, required for core promoter-mediated transcription and virus replication in macrophages. Our studies revealed that the JC1 but not DS1 C/EBP site is important for basal level transcription, whereas the DS1 C/EBP site is imperative for productive virus replication in primary macrophages. In contrast, either JC1 or DS1 C/EBP site is sufficient to mediate IFN beta-induced down-regulation of SIV LTR activity and virus replication in these cells. We also characterized the differential binding properties of C/EBP beta and LIP to the JC1 and DS1 sites. In conjunction with previous studies from our laboratory, we demonstrate the importance of these sites in virus gene expression, and we propose a model for their role in establishing latency and persistence in macrophages in the brain.
Collapse
Affiliation(s)
- Shruthi Ravimohan
- McKusick-Nathans Institute of Genetic Medicine and Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
34
|
Desport M, Tenaya IM, McLachlan A, McNab TJ, Rachmat J, Hartaningsih N, Wilcox GE. In vivo infection of IgG-containing cells by Jembrana disease virus during acute infection. Virology 2009; 393:221-7. [DOI: 10.1016/j.virol.2009.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/14/2009] [Accepted: 07/23/2009] [Indexed: 10/25/2022]
|
35
|
Liu Y, Nonnemacher MR, Wigdahl B. CCAAT/enhancer-binding proteins and the pathogenesis of retrovirus infection. Future Microbiol 2009; 4:299-321. [PMID: 19327116 DOI: 10.2217/fmb.09.4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies indicate that two upstream CCAAT/enhancer-binding protein (C/EBP) sites and C/EBPbeta are required for subtype B HIV-1 gene expression in cells of the monocyte-macrophage lineage. The mechanisms of C/EBP regulation of HIV-1 transcription and replication remain unclear. This review focuses on studies concerning the role of C/EBP factors in HIV-1, human T-cell leukemia virus type 1, and SIV transcription in various cell types and tissues cultured in vitro, animal models and during human infection. The structure and function of the C/EBPbeta gene and the related protein isoforms are discussed along with the transcription factors, coactivators, viral proteins, cytokines and chemokines that affect C/EBP function.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Microbiology & Immunology, Center for Molecular Virology & Neuroimmunology, Center for Cancer Biology, Philadelphia, PA 19129, USA
| | | | | |
Collapse
|
36
|
Mohan M, Aye PP, Borda JT, Alvarez X, Lackner AA. CCAAT/enhancer binding protein beta is a major mediator of inflammation and viral replication in the gastrointestinal tract of simian immunodeficiency virus-infected rhesus macaques. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:106-18. [PMID: 18535173 DOI: 10.2353/ajpath.2008.080108] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The gastrointestinal tract (GIT) is a major target of infection with human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). Chronic GIT disease and inflammation are common sequelae to HIV/SIV infection. Nonetheless, the molecular mechanisms that cause and maintain GIT dysfunction remain unclear. We investigated the contribution of CCAAT/enhancer-binding protein beta (C/EBPbeta) to GIT disease and viral replication in jejunum and colon collected at necropsy from 12 SIV-infected (group 1), or 10 uninfected macaques with chronic diarrhea (group 2), and 9 uninfected control macaques (group 3). All group 1 and 2 macaques had chronic diarrhea, wasting, and colitis, but group 1 animals had more severe lesions in the jejunum. C/EBPbeta gene expression increased significantly in colon of groups 1 and 2 and in jejunum of only group 1 macaques compared with controls. In group 1 animals, CEBPbeta expression was localized predominantly to macrophages and occasionally lymphocytes. Chromatin immunoprecipitation assays confirmed the binding of C/EBPbeta and p65 to the SIV long terminal repeat region in colonic lamina propria cells, suggesting a mechanistic link between inflammation and activation of viral replication in vivo. This is the first in vivo study describing the transcriptional changes and immunophenotypic localization of C/EBPbeta in the GIT of SIV-infected macaques. More importantly, these data provide a molecular mechanism for persistent inflammation and immune activation leading to increased SIV burden and GIT pathology in SIV-infected macaques and perhaps HIV-infected individuals.
Collapse
Affiliation(s)
- Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana 70433, USA
| | | | | | | | | |
Collapse
|
37
|
Klatt A, Zhang Z, Kalantari P, Hankey PA, Gilmour DS, Henderson AJ. The receptor tyrosine kinase RON represses HIV-1 transcription by targeting RNA polymerase II processivity. THE JOURNAL OF IMMUNOLOGY 2008; 180:1670-7. [PMID: 18209063 DOI: 10.4049/jimmunol.180.3.1670] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Efficient HIV-1 transcription requires the induction of cellular transcription factors, such as NF-kappaB, and the viral factor Tat, which through the recruitment of P-TEFb enhances processive transcription. However, whether cellular signals repress HIV-1 transcription to establish proviral latency has not been well studied. Previously, it has been shown that the receptor tyrosine kinase RON inhibits HIV transcription. To gain insights into the biochemical mechanisms by which RON inhibits transcription we examined the binding of transcription factors to the HIV provirus long terminal repeat using chromatin immunoprecipitation. RON expression decreased basal levels of NF-kappaB and RNA polymerase II (Pol II) binding to the HIV provirus long terminal repeat but did not prevent the induction of these complexes following treatment with cytokines. However, RON did decrease efficient transcription elongation because reduced RNA Pol II was associated with HIV-1 genomic sequences downstream of the transcriptional start site. There was a correlation between RON expression and increased binding of factors that negatively regulate transcription elongation, NELF, Spt5, and Pcf11. Furthermore, the ability of RON to inhibit HIV-1 transcription was sensitive to a histone deacetylase inhibitor and was associated with nucleosome remodeling. These results indicate that RON represses HIV transcription at multiple transcriptional check points including initiation, elongation and chromatin organization and are the first studies to show that cellular signaling pathways target Pol II pausing to repress gene expression.
Collapse
Affiliation(s)
- Alicia Klatt
- Center of Molecular Immunology and Infectious Diseases, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
38
|
Simard S, Maurais E, Gilbert C, Tremblay MJ. LPS reduces HIV-1 replication in primary human macrophages partly through an endogenous production of type I interferons. Clin Immunol 2008; 127:198-205. [PMID: 18295544 DOI: 10.1016/j.clim.2008.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/15/2007] [Accepted: 01/04/2008] [Indexed: 11/18/2022]
Abstract
It has been proposed that the systemic immune activation state seen in HIV-1-infected patients is caused by circulating microbial products such as lipopolysaccharide (LPS). Given that macrophages play a key role in HIV-1 pathogenesis, we investigated the LPS-mediated effect on HIV-1 replication in cells of the myeloid lineage. We demonstrate that LPS promotes virus gene expression in a monocytic cell line while it diminishes virus production in primary human monocyte-derived macrophages (MDM). The incapacity of LPS to drive HIV-1 production in MDM was not due to its inability to activate the ubiquitous transcription factor NF-kappaB even in virus-infected cells. Neutralization of type I interferons (IFN) with B18R, a soluble vaccinia virus-coded type I IFN receptor, significantly but not totally diminished the antiviral activity of LPS. Therefore, inhibition of HIV-1 replication in MDM treated with microbial-derived LPS resulted from the induction of type I interferons and a yet to be defined soluble factor.
Collapse
Affiliation(s)
- Sébastien Simard
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, Département de biologie médicale, Faculté de médecine, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
39
|
Dudaronek JM, Barber SA, Clements JE. CUGBP1 is required for IFNbeta-mediated induction of dominant-negative CEBPbeta and suppression of SIV replication in macrophages. THE JOURNAL OF IMMUNOLOGY 2008; 179:7262-9. [PMID: 18025168 DOI: 10.4049/jimmunol.179.11.7262] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Productive HIV replication in the CNS occurs very early after infection, yet HIV-associated cognitive disorders do not typically manifest until the development of AIDS, suggesting that mechanisms exist in the CNS to control HIV replication and associated virus-induced pathological changes during the acute and asymptomatic stages of disease. Using an established SIV/macaque model of HIV dementia, we recently demonstrated that the mechanisms regulating virus replication in the brain at these stages involve the production of IFNbeta, which induces the truncated, dominant-negative isoform of C/EBPbeta, also referred to as LIP (liver-enriched transcriptional inhibitory protein). Alternative translation of C/EBPbeta mRNA and increased production of LIP can be mediated by CUGBP1 (CUG-repeat RNA-binding protein 1). Because IFNbeta induces the inhibitory C/EBPbeta in macrophages, we considered the possibility that IFNbeta signaling regulates the activity of CUGBP1, resulting in increased expression of LIP and suppression of SIV replication. In this study, we report that IFNbeta induces LIP and suppresses active SIV replication in primary macrophages from rhesus macaques. Further, we demonstrate that IFNbeta induces the phosphorylation of CUGBP1 and the formation of CUGBP1-C/EBPbeta mRNA complexes in the human monocytic U937 cell line. Finally, we demonstrate that CUGBP1 is not only required for IFNbeta-mediated induction of LIP but also for IFNbeta-mediated suppression of SIV replication. These results suggest that CUGBP1 is a previously unrecognized downstream effector of IFNbeta signaling in primary macrophages that likely plays a pivotal role in innate immune responses that control acute HIV/SIV replication in the brain.
Collapse
Affiliation(s)
- Justyna M Dudaronek
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
40
|
Haine V, Fischer-Smith T, Rappaport J. Macrophage colony-stimulating factor in the pathogenesis of HIV infection: potential target for therapeutic intervention. J Neuroimmune Pharmacol 2007; 1:32-40. [PMID: 18040789 DOI: 10.1007/s11481-005-9003-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Macrophage colony stimulating factor (M-CSF) appears to play a major role in promoting and maintaining reservoirs of human immunodeficiency virus type 1 (HIV-1) in infected individuals. HIV-1 infection induces production of M-CSF by macrophages, which in turn promotes further infection of macrophages via increases in CD4 and CCR5 receptors, as well as increases in virus gene expression. M-CSF promotes the ontogeny and survival of macrophages, contributing to both the number and longevity of these infected cells. M-CSF dysregulation promotes the differentiation of monocytes toward macrophages and osteoclasts and at the same time may inhibit differentiation toward dendritic cells, resulting in immune impairment. The potential role of M-CSF in HIV-associated end organ diseases including HIV-associated dementia, HIV-associated nephropathy, and osteoporosis is discussed. This review emphasizes the need for developing M-CSF antagonists for treatment of HIV-1-infected patients.
Collapse
Affiliation(s)
- Valerie Haine
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| | | | | |
Collapse
|
41
|
Alexaki A, Quiterio SJ, Liu Y, Irish B, Kilareski E, Nonnemacher MR, Wigdahl B. PMA-induced differentiation of a bone marrow progenitor cell line activates HIV-1 LTR-driven transcription. DNA Cell Biol 2007; 26:387-94. [PMID: 17570762 DOI: 10.1089/dna.2006.0542] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cells of the monocyte-macrophage lineage play an important role in human immunodeficiency virus type 1 (HIV-1)-associated disease. Infected myeloid precursor cells of the bone marrow are thought to be a viral reservoir that may repopulate the peripheral blood, central nervous system (CNS), and other organ systems throughout the course of disease. To model select aspects of HIV-1 infection of the bone marrow compartment in vitro, the erythro-myeloid precursor cell line, TF-1, was used. Phorbol 12-myristate 13-acetate (PMA) was found to induce the TF-1 cell line to differentiate through the myeloid lineage and become activated, as demonstrated by cellular morphologic changes and surface expression of differentiation and activation markers. Herein we demonstrate that HIV-1 long terminal repeats (LTRs) from T-, M-, and dual-tropic molecular clones have similar basal LTR activity in TF-1 cells and that differentiation of these cells by PMA resulted in increased LTR activity. Examination of specific cis-acting elements involved in basal and PMA-induced LTR activity demonstrated that the transcription factor families nuclear factor-kappa B (NF-kappaB) and specificity protein (Sp) contributed to the LTR activity of TF-1 cells, the Sp family being the most critical. These studies elucidate the impact of infected bone marrow monocytic cell differentiation on LTR activity and its potential impact on HIV-1-associated disease.
Collapse
Affiliation(s)
- Aikaterini Alexaki
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Horiba M, Martinez LB, Buescher JL, Sato S, Limoges J, Jiang Y, Jones C, Ikezu T. OTK18, a zinc-finger protein, regulates human immunodeficiency virus type 1 long terminal repeat through two distinct regulatory regions. J Gen Virol 2007; 88:236-241. [PMID: 17170456 PMCID: PMC3229096 DOI: 10.1099/vir.0.82066-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has previously been shown by our laboratory that OTK18, a human immunodeficiency virus (HIV)-inducible zinc-finger protein, reduces progeny-virion production in infected human macrophages. OTK18 antiviral activity is mediated through suppression of Tat-induced HIV-1 long terminal repeat (LTR) promoter activity. Through the use of LTR-scanning mutant vectors, the specific regions responsible for OTK18-mediated LTR suppression have been defined. Two different LTR regions were identified as potential OTK18-binding sites by an enhanced DNA-transcription factor ELISA system; the negative-regulatory element (NRE) at -255/-238 and the Ets-binding site (EBS) at -150/-139 in the LTR. In addition, deletion of the EBS in the LTR blocked OTK18-mediated LTR suppression. These data indicate that OTK18 suppresses LTR activity through two distinct regulatory elements. Spontaneous mutations in these regions might enable HIV-1 to escape from OTK18 antiretroviral activity in human macrophages.
Collapse
Affiliation(s)
- Masahide Horiba
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| | - Lindsey B. Martinez
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| | - James L. Buescher
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| | - Shinji Sato
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| | - Jenae Limoges
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| | - Yunquan Jiang
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln NE 68583-0905
| | - Clinton Jones
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln NE 68583-0905
| | - Tsuneya Ikezu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| |
Collapse
|
43
|
|
44
|
Cassol E, Alfano M, Biswas P, Poli G. Monocyte-derived macrophages and myeloid cell lines as targets of HIV-1 replication and persistence. J Leukoc Biol 2006; 80:1018-30. [PMID: 16946020 DOI: 10.1189/jlb.0306150] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
HIV infection of mononuclear phagocytes (MP), mostly as tissue macrophages, is a dominant feature in the pathogenesis of HIV disease and its progression to AIDS. Although the general mechanism of infection is not dissimilar to that of CD4+ T lymphocytes occurring via interaction of the viral envelope with CD4 and a chemokine receptor (usually CCR5), other features are peculiar to MP infection. Among others, the long-term persistence of productive infection, sustained by the absence of substantial cell death, and the capacity of the virions to bud and accumulate in intracellular multivesicular bodies (MVB), has conferred to MP the role of "Trojan horses" perpetuating the chronic state of infection. Because the investigation of tissue macrophages is often very difficult for both ethical and practical reasons of accessibility, most studies of in vitro infection rely upon monocyte-derived macrophages (MDM), a methodology hampered by inter-patient variability and lack of uniformity of experimental protocols. A number of cell lines, mostly Mono Mac, THP-1, U937, HL-60, and their derivative chronically infected counterparts (such as U1 and OM-10.1 cell lines) have complemented the MDM system of infection providing useful information on the features of HIV replication in MP. This article describes and compares the most salient features of these different cellular models of MP infection by HIV.
Collapse
Affiliation(s)
- Edana Cassol
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Italy
| | | | | | | |
Collapse
|
45
|
Darbinian-Sarkissian N, Darbinyan A, Otte J, Radhakrishnan S, Sawaya BE, Arzumanyan A, Chipitsyna G, Popov Y, Rappaport J, Amini S, Khalili K. p27(SJ), a novel protein in St John's Wort, that suppresses expression of HIV-1 genome. Gene Ther 2006; 13:288-95. [PMID: 16251997 DOI: 10.1038/sj.gt.3302649] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcription of the HIV-1 genome is controlled by the cooperation of viral regulatory proteins and several host factors which bind to specific DNA sequences within the viral promoter spanning the long terminal repeat, (LTR). Here, we describe the identification of a novel protein, p27(SJ), present in a laboratory callus culture of Hypericum perforatum (St John's Wort) that suppresses transcription of the HIV-1 genome in several human cell types including primary culture of microglia and astrocytes. p27(SJ) associates with C/EBPbeta, a transcription factor that regulates expression of the HIV-1 genome in macrophages and monocytic cells, and the viral transactivator, Tat. The association of p27(SJ) with C/EBPbeta and Tat alters their subcellular localization, causing their accumulation in the perinuclear cytoplasmic compartment of the cells. Fusion of a nuclear localization signal to p27(SJ) forces its entry into the nucleus and diminishes the capacity of p27(SJ) to suppress Tat activity, but does not alter its ability to suppress C/EBPbeta activation of the LTR. Results from binding assays showed the inhibitory effect of p27(SJ) on C/EBPbeta interaction with DNA. Finally, our results demonstrate that expression of p27(SJ) decreases the level of viral replication in HIV-1-infected cells. These observations suggest the potential for the development of a therapeutic advance based on p27(SJ) protein to control HIV-1 transcription and replication in cells associated with HIV-1 infection in the brain.
Collapse
Affiliation(s)
- N Darbinian-Sarkissian
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Centlivre M, Sommer P, Michel M, Ho Tsong Fang R, Gofflo S, Valladeau J, Schmitt N, Wain-Hobson S, Sala M. The HIV-1 clade C promoter is particularly well adapted to replication in the gut in primary infection. AIDS 2006; 20:657-66. [PMID: 16514295 DOI: 10.1097/01.aids.0000216365.38572.2f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Coinfection of rhesus macaques with human/simian immunodeficiency virus chimeras harbouring the minimal core-promoter/enhancer elements from HIV-1 clade B, C and E viral prototypes (STR-B, STR-C and STR-E) revealed a remarkable dichotomy in terms of spatio-temporal viral replication. The clade C chimera (STR-C) predominated in primary infection. The present study was aimed at identifying the origin of STR-C plasma viraemia at this infection phase. DESIGN By competing isogenic viruses differing only in their promoters, it was possible to identify subtle phenotypical differences in viral replication kinetics and compartmentalization in vivo. METHODS Two rhesus macaques were coinfected by the three STR chimeras and the relative colonization of different compartments, particularly blood and stool, was determined for each chimera. Moreover, growth competition experiments in thymic histocultures enriched in interleukin (IL)-7 were performed and relative percentages of chimeras were estimated in supernatants and thymocytes lysates at different time points. RESULTS It is demonstrated here that at the peak of primary infection, preferential replication of STR-C was supported by the gut-associated lymphoid tissue (GALT), an IL-7 rich microenvironment. This was shown by the correlation of the RNA viral genotype in blood and stools, compartments directly draining virions from the GALT. Thymic histocultures confirmed that replication of STR-C is particularly susceptible to this cytokine, compared to its STR-B and STR-E counterparts. CONCLUSIONS These data show that the GALT cytokine network may well favour HIV-1 clade C replication during primary infection. This could result in enhanced transmission.
Collapse
|
47
|
Goffin V, Demonté D, Vanhulle C, de Walque S, de Launoit Y, Burny A, Collette Y, Van Lint C. Transcription factor binding sites in the pol gene intragenic regulatory region of HIV-1 are important for virus infectivity. Nucleic Acids Res 2005; 33:4285-310. [PMID: 16061936 PMCID: PMC1182164 DOI: 10.1093/nar/gki720] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 07/04/2005] [Indexed: 11/14/2022] Open
Abstract
We have previously identified in the pol gene of human immunodeficiency virus type 1 (HIV-1) a new positive transcriptional regulatory element (nt 4481-4982) containing recognition sites for nuclear proteins (sites B, C, D and a GC-box) [C. Van Lint, J. Ghysdael, P. Paras, Jr, A. Burny and E. Verdin (1994) J. Virol. 68, 2632-2648]. In this study, we have further physically characterized each binding site and have shown that the transcription factors Oct-1, Oct-2, PU.1, Sp1 and Sp3 interact in vitro with the pol region. Chromatin immunoprecipitation assays using HIV-infected cell lines demonstrated in the context of chromatin that Sp1, Sp3, Oct-1 and PU.1 are recruited to the HS7 region in vivo. For each site, we have identified mutations abolishing factor binding to their cognate DNA sequences without altering the underlying amino acid sequence of the integrase. By transient transfection assays, we have demonstrated the involvement of the pol binding sites in the transcriptional enhancing activity of the intragenic region. Our functional results with multimerized wild-type and mutated pol binding sites separately (i.e. in the absence of the other sites) have demonstrated that the PU.1, Sp1, Sp3 and Oct-1 transcription factors regulate the transcriptional activity of a heterologous promoter through their respective HS7 binding sites. Finally, we have investigated the physiological role of the HS7 binding sites in HIV-1 replication and have shown that these sites are important for viral infectivity.
Collapse
Affiliation(s)
- Véronique Goffin
- Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Service de Chimie Biologique, Université Libre de BruxellesRue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
- Faculté de Médecine, Laboratoire de Virologie Moléculaire, Université Libre de Bruxelles808 Route de Lennik, 1070 Bruxelles, Belgium
- Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille 1, UMR 8117 CNRSBP 447, 1 Rue Calmette, 59021 Lille Cedex, France
- INSERM U11927 Boulevard Lei Roure, 13009 Marseille, France
| | - Dominique Demonté
- Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Service de Chimie Biologique, Université Libre de BruxellesRue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
- Faculté de Médecine, Laboratoire de Virologie Moléculaire, Université Libre de Bruxelles808 Route de Lennik, 1070 Bruxelles, Belgium
- Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille 1, UMR 8117 CNRSBP 447, 1 Rue Calmette, 59021 Lille Cedex, France
- INSERM U11927 Boulevard Lei Roure, 13009 Marseille, France
| | - Caroline Vanhulle
- Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Service de Chimie Biologique, Université Libre de BruxellesRue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
- Faculté de Médecine, Laboratoire de Virologie Moléculaire, Université Libre de Bruxelles808 Route de Lennik, 1070 Bruxelles, Belgium
- Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille 1, UMR 8117 CNRSBP 447, 1 Rue Calmette, 59021 Lille Cedex, France
- INSERM U11927 Boulevard Lei Roure, 13009 Marseille, France
| | - Stéphane de Walque
- Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Service de Chimie Biologique, Université Libre de BruxellesRue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
- Faculté de Médecine, Laboratoire de Virologie Moléculaire, Université Libre de Bruxelles808 Route de Lennik, 1070 Bruxelles, Belgium
- Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille 1, UMR 8117 CNRSBP 447, 1 Rue Calmette, 59021 Lille Cedex, France
- INSERM U11927 Boulevard Lei Roure, 13009 Marseille, France
| | - Yvan de Launoit
- Faculté de Médecine, Laboratoire de Virologie Moléculaire, Université Libre de Bruxelles808 Route de Lennik, 1070 Bruxelles, Belgium
- Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille 1, UMR 8117 CNRSBP 447, 1 Rue Calmette, 59021 Lille Cedex, France
| | - Arsène Burny
- Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Service de Chimie Biologique, Université Libre de BruxellesRue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
- Faculté de Médecine, Laboratoire de Virologie Moléculaire, Université Libre de Bruxelles808 Route de Lennik, 1070 Bruxelles, Belgium
- Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille 1, UMR 8117 CNRSBP 447, 1 Rue Calmette, 59021 Lille Cedex, France
- INSERM U11927 Boulevard Lei Roure, 13009 Marseille, France
| | - Yves Collette
- INSERM U11927 Boulevard Lei Roure, 13009 Marseille, France
| | - Carine Van Lint
- To whom correspondence should be addressed. Tel: +32 2 650 9807; Fax: +32 2 650 9800;
| |
Collapse
|
48
|
Tanaka N, Hoshino Y, Gold J, Hoshino S, Martiniuk F, Kurata T, Pine R, Levy D, Rom WN, Weiden M. Interleukin-10 induces inhibitory C/EBPbeta through STAT-3 and represses HIV-1 transcription in macrophages. Am J Respir Cell Mol Biol 2005; 33:406-11. [PMID: 16014896 PMCID: PMC2715348 DOI: 10.1165/rcmb.2005-0140oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary tuberculosis (TB) has been characterized by inflammation with increased pro- or anti-inflammatory cytokines produced by macrophages. We have reported that IFN produces inhibitory C/EBPbeta and represses transcription of the HIV-1 LTR in macrophages. STAT-1 and type I IFN receptor knockout mice have macrophages that are defective in IFN signaling, yet LPS stimulation induces inhibitory C/EBPbeta, demonstrating that other cytokines can induce this repressor. LPS or Mycobacterium tuberculosis-derived lipoarabinomannan induce the anti-inflammatory cytokine interleukin (IL)-10, which represses the HIV-1 LTR in differentiated THP-1 macrophages by inducing inhibitory C/EBPbeta. In contrast, in undifferentiated THP-1 monocytes, IL-10 did not inhibit HIV-1 replication or induce C/EBPbeta. IL-10 signal transduction uses STAT-3, and macrophages from STAT-3-/- mice fail to produce inhibitory C/EBPbeta after LPS or IL-10 stimulation. Transfection of STAT-3 into THP-1 cells enhances C/EBPbeta promoter activity. THP-1 differentiation also increases STAT-3 protein, but not STAT-3 gene transcription, and induces a translational regulator, CUG-binding protein, that was essential for production of C/EBPbeta. Differentiation induced post-transcriptional regulation is required to produce inhibitory C/EBPbeta in response to IL-10. Only macrophages are able to repress HIV-1 LTR promoter activity and inhibit viral replication in response to IL-10 or type I IFN.
Collapse
Affiliation(s)
- Naohiko Tanaka
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, N.Y.U. School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nonnemacher MR, Irish BP, Liu Y, Mauger D, Wigdahl B. Specific sequence configurations of HIV-1 LTR G/C box array result in altered recruitment of Sp isoforms and correlate with disease progression. J Neuroimmunol 2005; 157:39-47. [PMID: 15579278 DOI: 10.1016/j.jneuroim.2004.08.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
Basal and activated human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) activity, and in return, viral replication is partly dependent on interactions of the G/C box array with the Sp family of transcription factors. Analysis of LTR Sp binding site sequence variants revealed a C-to-T change at position 5 within Sp site III that increased in frequency and a 5T mutation within Sp site II, which decreased in frequency during the course of HIV disease. These results suggest LTR Sp binding site sequence variants may prove useful as viral molecular markers indicative of progressive HIV-1-induced disease.
Collapse
Affiliation(s)
- Michael R Nonnemacher
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
50
|
Osiecki K, Xie L, Zheng JH, Squires R, Pettoello-Mantovani M, Goldstein H. Identification of granulocyte-macrophage colony-stimulating factor and lipopolysaccharide-induced signal transduction pathways that synergize to stimulate HIV type 1 production by monocytes from HIV type 1 transgenic mice. AIDS Res Hum Retroviruses 2005; 21:125-39. [PMID: 15725751 DOI: 10.1089/aid.2005.21.125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
HIV-1-infected monocyte/macrophages located in lymph nodes and tissues are highly productive sources of HIV-1 and may function as a persistent reservoir contributing to the rebound viremia observed after highly active antiretroviral therapy is stopped. Mechanisms activating latently infected, primary monocyte/macrophages to produce HIV-1 were investigated using monocytes isolated from a transgenic mouse line carrying a full-length proviral clone of a monocyte-tropic HIV-1 isolate, HIV-1(JR-CSF), regulated by the endogenous long terminal repeat (LTR) (JR-CSF mice). Granulocyte-macrophage colony-stimulating factor (GM-CSF) combined with lipopolysaccharide (LPS) induced infectious HIV-1 production by JR-CSF mouse monocytes over 10-fold and 100-fold higher than that stimulated by GM-CSF or LPS alone, respectively. We examined mechanisms of GM-CSF synergy with LPS and demonstrated that GM-CSF up-regulated the LPS receptor, TLR-4, and also synergized with LPS to activate mitogen-activated protein (MAP) kinase/ERK kinase and the Sp1 transcription factor. Inhibitors of either MAP kinase/ERK kinase or p38 kinase but not PI 3-kinase potently suppressed GM-CSF and LPS-induced HIV-1 production by JR-CSF mouse monocytes. Because Sp1 is activated by both the MAP kinase/ERK kinase and p38 kinase pathways, we postulate that synergistic activation of these pathways by GM-CSF and LPS induced sufficient levels of Sp1 to activate the HIV-1 LTR in a Tat-independent manner and induced HIV-1 production by JR-CSF mouse monocytes. Thus, our study delineated the pathway of HIV-1 LTR activation by GM-CSF and LPS and indicated that JR-CSF transgenic mice may provide a new in vitro and in vivo system for investigating the mechanism by which inflammatory and infectious stimuli activate HIV-1 production from latently infected monocytes.
Collapse
Affiliation(s)
- Kristin Osiecki
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|