1
|
Zhou JR, Kinno S, Kaihara K, Sawai M, Ishida T, Takechi S, Fang J, Nohara T, Yokomizo K. Saponin Esculeoside A and Aglycon Esculeogenin A from Ripe Tomatoes Inhibit Dendritic Cell Function by Attenuation of Toll-like Receptor 4 Signaling. Nutrients 2024; 16:1699. [PMID: 38892635 PMCID: PMC11174994 DOI: 10.3390/nu16111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Dendritic cells (DCs) can initiate immune response through the presenting antigens to naïve T lymphocytes. Esculeoside A (EsA), a spirosolane glycoside, is reported as a major component in the ripe fruit of tomato. Little is known about the effect of tomato saponin on mice bone marrow-derived DCs. This study revealed that EsA and its aglycon, esculeogenin A (Esg-A), attenuated the phenotypic and functional maturation of murine DCs stimulated by lipopolysaccharide (LPS). We found that EsA/Esg-A down-regulated the expression of major histocompatibility complex type II molecules and costimulatory molecule CD86 after LPS stimulation. It was also determined that EsA-/Esg-A-treated DCs were poor stimulators of allogeneic T-cell proliferation and exhibited impaired interleukin-12 and TNF-α production. Additionally, EsA/Esg-A was able to inhibit TLR4-related and p-NFκB signaling pathways. This study shows new insights into the immunopharmacology of EsA/Esg-A, and represents a novel approach to controlling DCs for therapeutic application.
Collapse
Affiliation(s)
- Jian-Rong Zhou
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan (S.T.); (J.F.); (T.N.); (K.Y.)
| | - Shigenori Kinno
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan (S.T.); (J.F.); (T.N.); (K.Y.)
| | - Kenta Kaihara
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan (S.T.); (J.F.); (T.N.); (K.Y.)
| | - Madoka Sawai
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka 831-8501, Japan; (M.S.); (T.I.)
| | - Takumi Ishida
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka 831-8501, Japan; (M.S.); (T.I.)
| | - Shinji Takechi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan (S.T.); (J.F.); (T.N.); (K.Y.)
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan (S.T.); (J.F.); (T.N.); (K.Y.)
| | - Toshihiro Nohara
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan (S.T.); (J.F.); (T.N.); (K.Y.)
| | - Kazumi Yokomizo
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan (S.T.); (J.F.); (T.N.); (K.Y.)
| |
Collapse
|
2
|
Xing J, Hu Y, Liu W, Tang X, Sheng X, Chi H, Zhan W. The interaction between the costimulatory molecules CD80/86 and CD28 contributed to CD4 + T lymphocyte activation in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109482. [PMID: 38458503 DOI: 10.1016/j.fsi.2024.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
CD28 and CD80/86 are crucial co-stimulatory molecules for the T cell activation. Previous study illustrated that CD28 and CD80/86 present on T cells and antigen-presenting cells in flounder (Paralichthys olivaceus), respectively. The co-stimulatory molecules were closely associated with cell immunity. In this paper, recombinant protein of flounder CD80/86 (rCD80/86) and phytohemagglutinin (PHA) were added to peripheral blood leukocytes (PBLs) in vitro. Lymphocytes were significantly proliferated with CFSE staining, and the proportion of CD4+ and CD28+ lymphocytes significantly increased. In the meantime, genes related to the CD28-CD80/86 signaling pathway or T cell markers were significantly upregulated (p < 0.05). For further study, the interaction between CD80/86 and CD28 was confirmed. The plasmid of CD28 (pCD28-FLAG and pVN-CD28) or CD80/86 (pVC-CD80/86) was successfully constructed. In addition, pVN-ΔCD28 without the conserved motif "TFPPPF" was constructed. The results showed that bands of pCD28-FLAG bound to rCD80/86 were detected by both anti-FLAG and anti-CD80/86. pVN-CD28 complemented to pVC-CD80/86 showing positive fluorescent signals, and pVN-ΔCD28 failed to combine with pVC-CD80/86. The motif "TFPPPF" in CD28 played a crucial role in this linkage. These results indicate that CD28 and CD80/86 molecules interact with each other, and their binding may modulate T lymphocytes immune response in flounder. This study proved the existence of CD28-CD80/86 signaling pathway in flounder.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yujie Hu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenjing Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
3
|
Jaggi U, Matundan HH, Oh JJ, Ghiasi H. Absence of CD80 reduces HSV-1 replication in the eye and delays reactivation but not latency levels. J Virol 2024; 98:e0201023. [PMID: 38376148 PMCID: PMC10949485 DOI: 10.1128/jvi.02010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Herpes simplex virus-1 (HSV-1) infections are among the most frequent serious viral eye infections in the U.S. and are a major cause of viral-induced blindness. HSV-1 infection is known to induce T cell activation, proliferation, and differentiation that play crucial roles in the development of virus-induced inflammatory lesions, leading to eye disease and causing chronic corneal damage. CD80 is a co-stimulatory molecule and plays a leading role in T cell differentiation. Previous efforts to limit lesion severity by controlling inflammation at the cellular level led us to ask whether mice knocked out for CD80 would show attenuated virus replication following reactivation. By evaluating the effects of CD80 activity on primary and latent infection, we found that in the absence of CD80, virus replication in the eyes and virus reactivation in latent trigeminal ganglia were both significantly reduced. However, latency in latently infected CD80-/- mice did not differ significantly from that in wild-type (WT) control mice. Reduced virus replication in the eyes of CD80-/- mice correlated with significantly expanded CD11c gene expression as compared to WT mice. Taken together, our results indicate that suppression of CD80 could offer significant beneficial therapeutic effects in the treatment of Herpes Stromal Keratitis (HSK).IMPORTANCEOf the many problems associated with recurrent ocular infection, reducing virus reactivation should be a major goal of controlling ocular herpes simplex virus-1 (HSV-1) infection. In this study, we have shown that the absence of CD80 reduces HSV-1 reactivation, which marks the establishment of a previously undescribed mechanism underlying viral immune evasion that could be exploited to better manage HSV infection.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Jay J. Oh
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| |
Collapse
|
4
|
Burke KP, Chaudhri A, Freeman GJ, Sharpe AH. The B7:CD28 family and friends: Unraveling coinhibitory interactions. Immunity 2024; 57:223-244. [PMID: 38354702 PMCID: PMC10889489 DOI: 10.1016/j.immuni.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Ivory K, Angotti R, Messina M, Bonente D, Paternostro F, Gulisano M, Nicoletti C. Alteration of Immunoregulatory Patterns and Survival Advantage of Key Cell Types in Food Allergic Children. Cells 2023; 12:2736. [PMID: 38067164 PMCID: PMC10706629 DOI: 10.3390/cells12232736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
All allergic responses to food indicate the failure of immunological tolerance, but it is unclear why cow's milk and egg (CME) allergies resolve more readily than reactivity to peanuts (PN). We sought to identify differences between PN and CME allergies through constitutive immune status and responses to cognate and non-cognate food antigens. Children with confirmed allergy to CME (n = 6) and PN (n = 18) and non-allergic (NA) (n = 8) controls were studied. Constitutive secretion of cytokines was tested in plasma and unstimulated mononuclear cell (PBMNC) cultures. Blood dendritic cell (DC) subsets were analyzed alongside changes in phenotypes and soluble molecules in allergen-stimulated MNC cultures with or without cytokine neutralization. We observed that in allergic children, constitutively high plasma levels IL-1β, IL-2, IL-4, IL-5 and IL-10 but less IL-12p70 than in non-allergic children was accompanied by the spontaneous secretion of sCD23, IL-1β, IL-2, IL-4, IL-5, IL-10, IL-12p70, IFN-γ and TNF-α in MNC cultures. Furthermore, blood DC subset counts differed in food allergy. Antigen-presenting cell phenotypic abnormalities were accompanied by higher B and T cell percentages with more Bcl-2 within CD69+ subsets. Cells were generally refractory to antigenic stimulation in vitro, but IL-4 neutralization led to CD152 downregulation by CD4+ T cells from PN allergic children responding to PN allergens. Canonical discriminant analyses segregated non-allergic and allergic children by their cytokine secretion patterns, revealing differences and areas of overlap between PN and CME allergies. Despite an absence of recent allergen exposure, indication of in vivo activation, in vitro responses independent of challenging antigen and the presence of unusual costimulatory molecules suggest dysregulated immunity in food allergy. Most importantly, higher Bcl-2 content within key effector cells implies survival advantage with the potential to mount abnormal responses that may give rise to the manifestations of allergy. Here, we put forward the hypothesis that the lack of apoptosis of key immune cell types might be central to the development of food allergic reactions.
Collapse
Affiliation(s)
| | - Rossella Angotti
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (R.A.); (M.M.)
| | - Mario Messina
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (R.A.); (M.M.)
| | - Denise Bonente
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Ferdinando Paternostro
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (F.P.); (M.G.)
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (F.P.); (M.G.)
| | - Claudio Nicoletti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (F.P.); (M.G.)
| |
Collapse
|
6
|
Joachim A, Aussel R, Gélard L, Zhang F, Mori D, Grégoire C, Villazala Merino S, Gaya M, Liang Y, Malissen M, Malissen B. Defective LAT signalosome pathology in mice mimics human IgG4-related disease at single-cell level. J Exp Med 2023; 220:e20231028. [PMID: 37624388 PMCID: PMC10457416 DOI: 10.1084/jem.20231028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Mice with a loss-of-function mutation in the LAT adaptor (LatY136F) develop an autoimmune and type 2 inflammatory disorder called defective LAT signalosome pathology (DLSP). We analyzed via single-cell omics the trajectory leading to LatY136F DLSP and the underlying CD4+ T cell diversification. T follicular helper cells, CD4+ cytotoxic T cells, activated B cells, and plasma cells were found in LatY136F spleen and lung. Such cell constellation entailed all the cell types causative of human IgG4-related disease (IgG4-RD), an autoimmune and inflammatory condition with LatY136F DLSP-like histopathological manifestations. Most previously described T cell-mediated autoimmune manifestations require persistent TCR input. In contrast, following their first engagement by self-antigens, the autoreactive TCR expressed by LatY136F CD4+ T cells hand over their central role in T cell activation to CD28 costimulatory molecules. As a result, all subsequent LatY136F DLSP manifestations, including the production of autoantibodies, solely rely on CD28 engagement. Our findings elucidate the etiology of the LatY136F DLSP and qualify it as a model of IgG4-RD.
Collapse
Affiliation(s)
- Anais Joachim
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Rudy Aussel
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Léna Gélard
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
| | - Fanghui Zhang
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- School of Laboratory Medicine, Henan Key Laboratory for Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Daiki Mori
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
| | - Claude Grégoire
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Sergio Villazala Merino
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Mauro Gaya
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Yinming Liang
- School of Laboratory Medicine, Henan Key Laboratory for Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Marie Malissen
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
- Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Bernard Malissen
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
- Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
7
|
Badr ME, Zhang Z, Tai X, Singer A. CD8 T cell tolerance results from eviction of immature autoreactive cells from the thymus. Science 2023; 382:534-541. [PMID: 37917689 PMCID: PMC11302524 DOI: 10.1126/science.adh4124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
CD8 T cell tolerance is thought to result from clonal deletion of autoreactive thymocytes before they differentiate into mature CD8 T cells in the thymus. However, we report that, in mice, CD8 T cell tolerance instead results from premature thymic eviction of immature autoreactive CD8 thymocytes into the periphery, where they differentiate into self-tolerant mature CD8 T cells. Premature thymic eviction is triggered by T cell receptor (TCR)-driven down-regulation of the transcriptional repressor Gfi1, which induces expression of sphingosine-1-phosphate receptor-1 (S1P1) on negatively selected immature CD8 thymocytes. Thus, premature thymic eviction is the basis for CD8 T cell tolerance and is the mechanism responsible for the appearance in the periphery of mature CD8 T cells bearing autoreactive TCRs that are absent from the thymus.
Collapse
Affiliation(s)
- Mohamed Elsherif Badr
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhongmei Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuguang Tai
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Ann S, Ibo J, Megha M, Reu Hans D, Bruggen Laura V, Julien L, An B, Nathalie C. Treatment of in vitro generated Langerhans cells with JAK-STAT inhibitor reduces their inflammatory potential. Clin Exp Med 2023; 23:2571-2582. [PMID: 36282458 DOI: 10.1007/s10238-022-00899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Alopecia areata (AA) is a condition in which hair is lost in small regions or over the entire body. It has a prevalence of 1 in 1000 and has a great impact on psychological wellbeing. AA is generally considered an autoimmune disease in which a collapse of the immune privilege system of the hair follicle has shown to play an important role, potentially driven by interferon gamma (IFN-γ). The most prominent cells located in or around the hair follicle in AA are Langerhans cells, CD4+ or CD8+ T cells, macrophages and mast cells. Langerhans cells, specialized dendritic cells, are resident in the epidermis and are known to associate with hair follicles. Therefore, we aimed to develop in vitro generated Langerhans cells contributing as an in vitro model of disease. In vitro models provide insight into the behaviour of cells and are a valuable tool before being in need of an animal model or patient samples. For this, Langerhans-like cells were generated from CD14+ monocytes in the presence of GM-CSF and TGF-β. After 10 days of cell culture, Langerhans-like cells express CD207 and CD1a but lack CD209 expression as well as Birbeck granules. Next, Langerhans-like cells were exposed to inflammatory conditions and the effect of different AA treatments was investigated. All treatments-diphencyprone contact immunotherapy, UV-B light therapy and JAK-STAT inhibition-affect the expression of costimulatory and skin-homing markers on Langerhans-like cells. Importantly, also the T cell stimulatory capacity of Langerhans-like cells was significantly reduced following treatment under inflammatory conditions. Noteworthy, JAK-STAT inhibition outperformed conventional AA treatments. In conclusion, our findings demonstrate that in vitro generated Langerhans-like cells can be used as a model of disease. Moreover, JAK-STAT inhibition may become a valuable new approach for the treatment of AA.
Collapse
Affiliation(s)
- Sterkens Ann
- Department of Dermatology, University Hospital of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium.
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Janssens Ibo
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Meena Megha
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - De Reu Hans
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Van Bruggen Laura
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Lambert Julien
- Department of Dermatology, University Hospital of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Bervoets An
- Department of Dermatology, University Hospital of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Cools Nathalie
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine (CCRG), University Hospital of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium
| |
Collapse
|
9
|
Micoli F, Stefanetti G, MacLennan CA. Exploring the variables influencing the immune response of traditional and innovative glycoconjugate vaccines. Front Mol Biosci 2023; 10:1201693. [PMID: 37261327 PMCID: PMC10227950 DOI: 10.3389/fmolb.2023.1201693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
Vaccines are cost-effective tools for reducing morbidity and mortality caused by infectious diseases. The rapid evolution of pneumococcal conjugate vaccines, the introduction of tetravalent meningococcal conjugate vaccines, mass vaccination campaigns in Africa with a meningococcal A conjugate vaccine, and the recent licensure and introduction of glycoconjugates against S. Typhi underlie the continued importance of research on glycoconjugate vaccines. More innovative ways to produce carbohydrate-based vaccines have been developed over the years, including bioconjugation, Outer Membrane Vesicles (OMV) and the Multiple antigen-presenting system (MAPS). Several variables in the design of these vaccines can affect the induced immune responses. We review immunogenicity studies comparing conjugate vaccines that differ in design variables, such as saccharide chain length and conjugation chemistry, as well as carrier protein and saccharide to protein ratio. We evaluate how a better understanding of the effects of these different parameters is key to designing improved glycoconjugate vaccines.
Collapse
Affiliation(s)
| | - Giuseppe Stefanetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Calman A. MacLennan
- Enteric and Diarrheal Diseases, Global Health, Bill and Melinda Gates Foundation, Seattle, WA, United States
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Liu M, Wang X, Du X, Wu W, Zhang Y, Zhang P, Ai C, Devenport M, Su J, Muthana MM, Su L, Liu Y, Zheng P. Soluble CTLA-4 mutants ameliorate immune-related adverse events but preserve efficacy of CTLA-4- and PD-1-targeted immunotherapy. Sci Transl Med 2023; 15:eabm5663. [PMID: 36857433 PMCID: PMC10501849 DOI: 10.1126/scitranslmed.abm5663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/31/2023] [Indexed: 03/03/2023]
Abstract
Immune checkpoint inhibitors (ICIs), such as nivolumab and ipilimumab, not only elicit antitumor responses in a wide range of human cancers but also cause severe immune-related adverse events (irAEs), including death. A largely unmet medical need is to treat irAEs without abrogating the immunotherapeutic effect of ICIs. Although abatacept has been used to treat irAEs, it risks neutralizing the anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) monoclonal antibodies administered for cancer therapy, thereby reducing the efficacy of anti-CTLA-4 immunotherapy. To avoid this caveat, we compared wild-type abatacept and mutants of CTLA-4-Ig for their binding to clinically approved anti-CTLA-4 antibodies and for their effect on both irAEs and immunotherapy conferred by anti-CTLA-4 and anti-PD-1 antibodies. Here, we report that whereas abatacept neutralized the therapeutic effect of anti-CTLA-4 antibodies, the mutants that bound to B7-1 and B7-2, but not to clinical anti-CTLA-4 antibodies, including clinically used belatacept, abrogated irAEs without affecting cancer immunotherapy. Our data demonstrate that anti-CTLA-4-induced irAEs can be corrected by provision of soluble CTLA-4 variants and that the clinically available belatacept may emerge as a broadly applicable drug to abrogate irAEs while preserving the therapeutic efficacy of CTLA-4-targeting ICIs.
Collapse
Affiliation(s)
- Mingyue Liu
- Division of Immunotherapy, Institute of Human Virology and Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xu Wang
- Division of Immunotherapy, Institute of Human Virology and Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xuexiang Du
- Division of Immunotherapy, Institute of Human Virology and Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Wei Wu
- Division of Immunotherapy, Institute of Human Virology and Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- OncoC4 Inc., Rockville, MD 20805, USA
| | - Yan Zhang
- Division of Immunotherapy, Institute of Human Virology and Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Peng Zhang
- Division of Immunotherapy, Institute of Human Virology and Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Chunxia Ai
- Division of Immunotherapy, Institute of Human Virology and Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | | | - Juanjuan Su
- Division of Immunotherapy, Institute of Human Virology and Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- OncoC4 Inc., Rockville, MD 20805, USA
| | - Musleh M. Muthana
- Division of Immunotherapy, Institute of Human Virology and Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lishan Su
- Division of Immunotherapy, Institute of Human Virology and Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Laboratory of Viral Pathogenesis and Immunotherapy, Divisions of Virology, Pathogenesis and Cancer and Immunotherapy, Institute of Human Virology and Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yang Liu
- Division of Immunotherapy, Institute of Human Virology and Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- OncoC4 Inc., Rockville, MD 20805, USA
| | - Pan Zheng
- Division of Immunotherapy, Institute of Human Virology and Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- OncoC4 Inc., Rockville, MD 20805, USA
| |
Collapse
|
11
|
Langshaw EL, Reynolds S, Ozberk V, Dooley J, Calcutt A, Zaman M, Walker MJ, Batzloff MR, Davies MR, Good MF, Pandey M. Streptolysin O Deficiency in Streptococcus pyogenes M1T1 covR/S Mutant Strain Attenuates Virulence in In Vitro and In Vivo Infection Models. mBio 2023; 14:e0348822. [PMID: 36744883 PMCID: PMC9972915 DOI: 10.1128/mbio.03488-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
Mutation within the Streptococcus pyogenes (Streptococcus group A; Strep A) covR/S regulatory system has been associated with a hypervirulent phenotype resulting from the upregulation of several virulence factors, including the pore-forming toxin, streptolysin O (SLO). In this study, we utilized a range of covR/S mutants, including M1T1 clonal strains (5448 and a covS mutant generated through mouse passage designated 5448AP), to investigate the contribution of SLO to the pathogenesis of covR/S mutant Strep A disease. Up-regulation of slo in 5448AP resulted in increased SLO-mediated hemolysis, decreased dendritic cell (DC) viability post coculture with Strep A, and increased production of tumor necrosis factor (TNF) and monocyte chemoattractant protein 1 (MCP-1) by DCs. Mouse passage of an isogenic 5448 slo-deletion mutant resulted in recovery of several covR/S mutants within the 5448Δslo background. Passage also introduced mutations in non-covR/S genes, but these were considered to have no impact on virulence. Although slo-deficient mutants exhibited the characteristic covR/S-controlled virulence factor upregulation, these mutants caused increased DC viability with reduced inflammatory cytokine production by infected DCs. In vivo, slo expression correlated with decreased DC numbers in infected murine skin and significant bacteremia by 3 days postinfection, with severe pathology at the infection site. Conversely, the absence of slo in the infecting strain (covR/S mutant or wild-type) resulted in detection of DCs in the skin and attenuated virulence in a murine model of pyoderma. slo-sufficient and -deficient covR/S mutants were susceptible to immune clearance mediated by a combination vaccine consisting of a conserved M protein peptide and a peptide from the CXC chemokine protease SpyCEP. IMPORTANCE Streptococcus pyogenes is responsible for significant numbers of invasive and noninvasive infections which cause significant morbidity and mortality globally. Strep A isolates with mutations in the covR/S system display greater propensity to cause severe invasive diseases, which are responsible for more than 163,000 deaths each year. This is due to the upregulation of virulence factors, including the pore-forming toxin streptolysin O. Utilizing covR/S and slo-knockout mutants, we investigated the role of SLO in virulence. We found that SLO alters interactions with host cell populations and increases Strep A viability at sterile sites of the host, such as the blood, and that its absence results in significantly less virulence. This work underscores the importance of SLO in Strep A virulence while highlighting the complex nature of Strep A pathogenesis. This improved insight into host-pathogen interactions will enable a better understanding of host immune evasion mechanisms and inform streptococcal vaccine development programs.
Collapse
Affiliation(s)
- Emma L. Langshaw
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Simone Reynolds
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Victoria Ozberk
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Jessica Dooley
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Ainslie Calcutt
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Mehfuz Zaman
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Mark J. Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Mark R. Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael F. Good
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Manisha Pandey
- Institute for Glycomics, Griffith University, Queensland, Australia
| |
Collapse
|
12
|
Pan M, Zhao H, Jin R, Leung PSC, Shuai Z. Targeting immune checkpoints in anti-neutrophil cytoplasmic antibodies associated vasculitis: the potential therapeutic targets in the future. Front Immunol 2023; 14:1156212. [PMID: 37090741 PMCID: PMC10115969 DOI: 10.3389/fimmu.2023.1156212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Anti-neutrophil cytoplasmic autoantibodies (ANCA) associated vasculitis (AAV) is a necrotizing vasculitis mainly involving small blood vessels. It is demonstrated that T cells are important in the pathogenesis of AAV, including regulatory T cells (Treg) and helper T cells (Th), especially Th2, Th17, and follicular Th cells (Tfh). In addition, the exhaustion of T cells predicted the favorable prognosis of AAV. The immune checkpoints (ICs) consist of a group of co-stimulatory and co-inhibitory molecules expressed on the surface of T cells, which maintains a balance between the activation and exhaustion of T cells. CD28, inducible T-cell co-stimulator (ICOS), OX40, CD40L, glucocorticoid induced tumor necrosis factor receptor (GITR), and CD137 are the common co-stimulatory molecules, while the programmed cell death 1 (PD-1), cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), T cell immunoglobulin (Ig) and mucin domain-containing protein 3 (TIM-3), B and T lymphocyte attenuator (BTLA), V-domain Ig suppressor of T cell activation (VISTA), T-cell Ig and ITIM domain (TIGIT), CD200, and lymphocyte activation gene 3 (LAG-3) belong to co-inhibitory molecules. If this balance was disrupted and the activation of T cells was increased, autoimmune diseases (AIDs) might be induced. Even in the treatment of malignant tumors, activation of T cells by immune checkpoint inhibitors (ICIs) may result in AIDs known as rheumatic immune-related adverse events (Rh-irAEs), suggesting the importance of ICs in AIDs. In this review, we summarized the features of AAV induced by immunotherapy using ICIs in patients with malignant tumors, and then reviewed the biological characteristics of different ICs. Our aim was to explore potential targets in ICs for future treatment of AAV.
Collapse
Affiliation(s)
- Menglu Pan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huanhuan Zhao
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruimin Jin
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Patrick S. C. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: Zongwen Shuai, ; Patrick S. C. Leung,
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- *Correspondence: Zongwen Shuai, ; Patrick S. C. Leung,
| |
Collapse
|
13
|
rs2013278 in the multiple immunological-trait susceptibility locus CD28 regulates the production of non-functional splicing isoforms. Hum Genomics 2022; 16:46. [PMID: 36271469 PMCID: PMC9585755 DOI: 10.1186/s40246-022-00419-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background Ligation of CD28 with ligands such as CD80 or CD86 provides a critical second signal alongside antigen presentation by class II major histocompatibility complex expressed on antigen-presenting cells through the T cell antigen receptor for naïve T cell activation. A number of studies suggested that CD28 plays an important role in the pathogenesis of various human diseases. Recent genome-wide association studies (GWASs) identified CD28 as a susceptibility locus for lymphocyte and eosinophil counts, multiple sclerosis, ulcerative colitis, celiac disease, rheumatoid arthritis, asthma, and primary biliary cholangitis. However, the primary functional variant and molecular mechanisms of disease susceptibility in this locus remain to be elucidated. This study aimed to identify the primary functional variant from thousands of genetic variants in the CD28 locus and elucidate its functional effect on the CD28 molecule. Results Among the genetic variants exhibiting stronger linkage disequilibrium (LD) with all GWAS-lead variants in the CD28 locus, rs2013278, located in the Rbfox binding motif related to splicing regulation, was identified as a primary functional variant related to multiple immunological traits. Relative endogenous expression levels of CD28 splicing isoforms (CD28i and CD28Δex2) compared with full-length CD28 in allele knock-in cell lines generated using CRISPR/Cas9 were directly regulated by rs2013278 (P < 0.05). Although full-length CD28 protein expressed on Jurkat T cells showed higher binding affinity for CD80/CD86, both CD28i and CD28Δex2 encoded loss-of-function isoforms. Conclusion The present study demonstrated for the first time that CD28 has a shared disease-related primary functional variant (i.e., rs2013278) that regulates the CD28 alternative splicing that generates loss-of-function isoforms. They reduce disease risk by inducing anergy of effector T cells that over-react to autoantigens and allergens. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00419-7.
Collapse
|
14
|
Miura Y, Isogai S, Maeda S, Kanazawa S. CTLA-4-Ig internalizes CD80 in fibroblast-like synoviocytes from chronic inflammatory arthritis mouse model. Sci Rep 2022; 12:16363. [PMID: 36180526 PMCID: PMC9525600 DOI: 10.1038/s41598-022-20694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
CD80 interact with CD28 and CTLA-4 on antigen-presenting cells, and function in the co-stimulatory signaling that regulates T cell activity. CTLA-4-Ig is used to treat RA by blocking co-stimulatory signaling. Chronic inflammatory arthritis was induced in D1BC mice using low-dose arthritogenic antigens and treated with CTLA-4-Ig. We performed histopathology of the joints and lymph nodes, serological examination for rheumatoid factors, and flow cytometric analysis of isolated synovial cells, including CD45- FLSs and CD45+ synovial macrophages. CTLA-4-Ig treatment ameliorated the chronic inflammatory polyarthritis. There was a decrease in the number of infiltrating lymphoid cells in the joints as well as in the levels of RF-IgG associated with a decrease in the number of B cells in the lymph nodes; more than 15% of CD45- FLSs expressed CD80, and a small number of them expressed PD-L1, indicating the presence of PD-L1/CD80 cis-heterodimers in these cells. CTLA-4-Ig internalized CD80, but not PD-L1, in isolated synovial cells. Gene ontology analysis revealed that CTLA-4-Ig internalization did not significantly alter the expression of inflammation-related genes. The therapeutic effect of CTLA-4-Ig appears to extend beyond the lymph nodes into the inflamed synovial compartment through the synergistic inactivation of T cells by the CD80 and PD-L1 axes.
Collapse
Affiliation(s)
- Yoko Miura
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shyuntaro Isogai
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Kanazawa
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
15
|
Kennedy A, Waters E, Rowshanravan B, Hinze C, Williams C, Janman D, Fox TA, Booth C, Pesenacker AM, Halliday N, Soskic B, Kaur S, Qureshi OS, Morris EC, Ikemizu S, Paluch C, Huo J, Davis SJ, Boucrot E, Walker LSK, Sansom DM. Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat Immunol 2022; 23:1365-1378. [PMID: 35999394 PMCID: PMC9477731 DOI: 10.1038/s41590-022-01289-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/15/2022] [Indexed: 01/07/2023]
Abstract
CD28 and CTLA-4 (CD152) play essential roles in regulating T cell immunity, balancing the activation and inhibition of T cell responses, respectively. Although both receptors share the same ligands, CD80 and CD86, the specific requirement for two distinct ligands remains obscure. In the present study, we demonstrate that, although CTLA-4 targets both CD80 and CD86 for destruction via transendocytosis, this process results in separate fates for CTLA-4 itself. In the presence of CD80, CTLA-4 remained ligand bound, and was ubiquitylated and trafficked via late endosomes and lysosomes. In contrast, in the presence of CD86, CTLA-4 detached in a pH-dependent manner and recycled back to the cell surface to permit further transendocytosis. Furthermore, we identified clinically relevant mutations that cause autoimmune disease, which selectively disrupted CD86 transendocytosis, by affecting either CTLA-4 recycling or CD86 binding. These observations provide a rationale for two distinct ligands and show that defects in CTLA-4-mediated transendocytosis of CD86 are associated with autoimmunity.
Collapse
Affiliation(s)
- Alan Kennedy
- UCL Institute of Immunity and Transplantation, London, UK
| | - Erin Waters
- UCL Institute of Immunity and Transplantation, London, UK
| | | | - Claudia Hinze
- UCL Institute of Immunity and Transplantation, London, UK
| | | | - Daniel Janman
- UCL Institute of Immunity and Transplantation, London, UK
| | - Thomas A Fox
- UCL Institute of Immunity and Transplantation, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Neil Halliday
- UCL Institute of Immunity and Transplantation, London, UK
| | - Blagoje Soskic
- UCL Institute of Immunity and Transplantation, London, UK
| | - Satdip Kaur
- School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham, UK
| | | | - Emma C Morris
- UCL Institute of Immunity and Transplantation, London, UK
| | - Shinji Ikemizu
- Division of Structural Biology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Christopher Paluch
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jiandong Huo
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
- Division of Structural Biology, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- Protein Production UK, The Rosalind Franklin Institute-Diamond Light Source, The Research Complex at Harwell, Didcot, UK
| | - Simon J Davis
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, London, UK
| | | | - David M Sansom
- UCL Institute of Immunity and Transplantation, London, UK.
| |
Collapse
|
16
|
Park S, An J, Ha SY, Nam S, Kim JH. Immune signature as a potential marker for predicting response to immunotherapy in obesity-associated colorectal cancer. J Gastroenterol Hepatol 2022; 37:1579-1587. [PMID: 35680621 DOI: 10.1111/jgh.15909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM It remains unclear whether immunotherapy, which is not generally considered for microsatellite stable (MSS) colorectal cancer (CRC), can be used to effectively treat select CRC patients. We investigated the feasibility of obesity-associated MSS CRC patients for immunotherapy based on genomic alterations. METHODS We evaluated differences in genomic alteration types and immune signatures between obese and non-obese patients with MSS CRC. We performed genomic analyses using 434 CRC patients from The Cancer Genome Atlas (TCGA). Patients with MSS CRC were stratified into subgroups based on their BMI and numbers of nonsynonymous single nucleotide variants (nsSNVs) and frameshift insertions and deletions (fs INDELs) using machine learning. RESULTS The obese subgroup showed higher incidences of single nucleotide variants (SNV) and insertions and deletions (INDELs) in comparison with healthy weight patients with MSS CRC. The subgroup, who had higher numbers of nsSNVs and fs INDLEs, exhibited increased immune signatures, increased number of SNV-derived neoantigens, and had up-regulated two immune checkpoint genes in comparison with healthy weight patients with MSS CRC, reflecting interactions between the cancer genome and immune system. CONCLUSIONS This study suggests that immunotherapy may be suitable for some obesity-associated CRC patients.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Genome Medicine and Science, AI Convergence Center for Genome Medicine, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jungsuk An
- Department of Pathology, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Seung Yeon Ha
- Department of Pathology, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Seungyoon Nam
- Department of Genome Medicine and Science, AI Convergence Center for Genome Medicine, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea.,Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea
| | - Jung Ho Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea.,Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
17
|
Wang R, Chen J, Wang W, Zhao Z, Wang H, Liu S, Li F, Wan Y, Yin J, Wang R, Li Y, Zhang C, Zhang H, Cao Y. CD40L-armed oncolytic herpes simplex virus suppresses pancreatic ductal adenocarcinoma by facilitating the tumor microenvironment favorable to cytotoxic T cell response in the syngeneic mouse model. J Immunother Cancer 2022; 10:jitc-2021-003809. [PMID: 35086948 PMCID: PMC8796271 DOI: 10.1136/jitc-2021-003809] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers worldwide. Despite the promising outcome of immune checkpoint inhibitors and agonist antibody therapies in different malignancies, PDAC exhibits high resistance due to its immunosuppressive tumor microenvironment (TME). Ameliorating the TME is thus a rational strategy for PDAC therapy. The intratumoral application of oncolytic herpes simplex virus-1 (oHSV) upregulates pro-inflammatory macrophages and lymphocytes in TME, and enhances the responsiveness of PDAC to immunotherapy. However, the antitumor activity of oHSV remains to be maximized. The aim of this study is to investigate the effect of the CD40L armed oHSV on the tumor immune microenvironment, and ultimately prolong the survival of the PDAC mouse model. Methods The membrane-bound form of murine CD40L was engineered into oHSV by CRISPR/Cas9-based gene editing. oHSV-CD40L induced cytopathic effect and immunogenic cell death were determined by microscopy and flow cytometry. The expression and function of oHSV-CD40L was assessed by reporter cell assay. The oHSV-CD40L was administrated intratumorally to the immune competent syngeneic PDAC mouse model, and the leukocytes in TME and tumor-draining lymph node were analyzed by multicolor flow cytometry. Intratumoral cytokines were determined by ELISA. Results Intratumoral application of oHSV-CD40L efficiently restrained the tumor growth and prolonged the survival of the PDAC mouse model. In TME, oHSV-CD40L-treated tumor accommodated more maturated dendritic cells (DCs), which in turn activated T helper 1 and cytotoxic CD8+ T cells in an interferon-γ-dependent and interleukin-12-dependent manner. In contrast, the regulatory T cells were significantly reduced in TME by oHSV-CD40L treatment. Repeated dosing and combinational therapy extended the lifespan of PDAC mice. Conclusion CD40L-armed oncolytic therapy endues TME with increased DCs maturation and DC-dependent activation of cytotoxic T cells, and significantly prolongs the survival of the model mice. This study may lead to the understanding and development of oHSV-CD40L as a therapy for PDAC in synergy with immune checkpoint blockade.
Collapse
Affiliation(s)
- Ruikun Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,Frontier Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingru Chen
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhuoqian Zhao
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Haoran Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Shiyu Liu
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Fan Li
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Yajuan Wan
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Yin
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Rui Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Cuizhu Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China .,Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| | - Hongkai Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China .,Frontier Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China.,CNBG-NKU Joint R&D Center, Beijing Institute of Biological Products Co., Ltd., China National Biotec Group, Beijing, China
| | - Youjia Cao
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China .,Frontier Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.,Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| |
Collapse
|
18
|
Chiang K, Largent AD, Arkatkar T, Thouvenel CD, Du SW, Shumlak N, Woods J, Li QZ, Liu Y, Hou B, Rawlings DJ, Jackson SW. Cutting Edge: A Threshold of B Cell Costimulatory Signals Is Required for Spontaneous Germinal Center Formation in Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2021; 207:2217-2222. [PMID: 34588220 DOI: 10.4049/jimmunol.2100548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022]
Abstract
Cognate interactions between autoreactive B and T cells promote systemic lupus erythematosus pathogenesis by inter alia facilitating spontaneous germinal center (GC) formation. Whereas both myeloid and B cell APCs express B7 ligands (CD80 and CD86), the prevailing model holds that dendritic cell costimulation is sufficient for CD28-dependent T cell activation. In this study, we report that B cell-intrinsic CD80/CD86 deletion unexpectedly abrogates GCs in murine lupus. Interestingly, absent GCs differentially impacted serum autoantibodies. In keeping with distinct extrafollicular and GC activation pathways driving lupus autoantibodies, lack of GCs correlated with loss of RNA-associated autoantibodies but preserved anti-dsDNA and connective tissue autoantibody titers. Strikingly, even heterozygous B cell CD80/CD86 deletion was sufficient to prevent autoimmune GCs and RNA-associated autoantibodies. Together, these findings identify a key mechanism whereby B cells promote lupus pathogenesis by providing a threshold of costimulatory signals required for autoreactive T cell activation.
Collapse
Affiliation(s)
- Kristy Chiang
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Andrea D Largent
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Tanvi Arkatkar
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | | | - Samuel W Du
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Natali Shumlak
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Jonathan Woods
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yifan Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Baidong Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA; and.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Shaun W Jackson
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA; .,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
19
|
Wang L, Wang X, Yang F, Liu Y, Meng L, Pang Y, Zhang M, Chen F, Pan C, Lin S, Zhu X, Leong KW, Liu J. Systemic antiviral immunization by virus-mimicking nanoparticles-decorated erythrocytes. NANO TODAY 2021; 40:101280. [PMID: 34512795 PMCID: PMC8418322 DOI: 10.1016/j.nantod.2021.101280] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 05/08/2023]
Abstract
New vaccine technologies are urgently needed to produce safe and effective vaccines in a more timely manner to prevent future infectious disease pandemics. Here, we describe erythrocyte-mediated systemic antiviral immunization, a versatile vaccination strategy that boosts antiviral immune responses by using erythrocytes decorated with virus-mimetic nanoparticles carrying a viral antigen and a Toll-like receptor (TLR) agonist. As a proof of concept, polydopamine nanoparticles were synthesized via a simple in situ polymerization in which the nanoparticles were conjugated with the SARS-CoV-2 spike protein S1 subunit and the TLR7/8 agonist R848. The resulting SARS-CoV-2 virus-mimetic nanoparticles were attached to erythrocytes via catechol groups on the nanoparticle. Erythrocytes naturally home to the spleen and interact with the immune system. Injection of the nanoparticle-decorated erythrocytes into mice resulted in greater maturation and activation of antigen-presenting cells, humoral and cellular immune responses in the spleen, production of S1-specific immunoglobulin G (IgG) antibodies, and systemic antiviral T cell responses than a control group treated with the nanoparticles alone, with no significant negative side effects. These results show that erythrocyte-mediated systemic antiviral immunization using viral antigen- and TLR agonist-presenting polydopamine nanoparticles-a generalizable method applicable to many viral infections-is effective new approach to developing vaccines against severe infectious diseases.
Collapse
Affiliation(s)
- Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyue Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fengmin Yang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Pang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangjie Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chao Pan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
20
|
Lankipalli S, H S MS, Selvam D, Samanta D, Nair D, Ramagopal UA. Cryptic association of B7-2 molecules and its implication for clustering. Protein Sci 2021; 30:1958-1973. [PMID: 34191384 PMCID: PMC8376414 DOI: 10.1002/pro.4151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
T-cell co-stimulation through CD28/CTLA4:B7-1/B7-2 axis is one of the extensively studied pathways that resulted in the discovery of several FDA-approved drugs for autoimmunity and cancer. However, many aspects of the signaling mechanism remain elusive, including oligomeric association and clustering of B7-2 on the cell surface. Here, we describe the structure of the IgV domain of B7-2 and its cryptic association into 1D arrays that appear to represent the pre-signaling state of B7-2 on the cell membrane. Super-resolution microscopy experiments on heterologous cells expressing B7-2 and B7-1 suggest, B7-2 form relatively elongated and larger clusters compared to B7-1. The sequence and structural comparison of other B7 family members, B7-1:CTLA4 and B7-2:CTLA-4 complex structures, support our view that the observed B7-2 1D zipper array is physiologically important. This observed 1D zipper-like array also provides an explanation for its clustering, and upright orientation on the cell surface, and avoidance of spurious signaling.
Collapse
Affiliation(s)
- Swetha Lankipalli
- Biological Sciences DivisionPoornaprajna Institute of Scientific Research (PPISR)BengaluruIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| | | | - Deepak Selvam
- Jawaharlal Nehru Center for Advance Scientific ResearchBengaluruKarnatakaIndia
- National Institute for Research in TuberculosisChennaiIndia
| | - Dibyendu Samanta
- School of Bioscience, Sir J. C. Bose Laboratory ComplexIndian Institute of Technology KharagpurKharagpurIndia
| | - Deepak Nair
- Centre for NeuroscienceIndian Institute of ScienceBangaloreIndia
| | - Udupi A. Ramagopal
- Biological Sciences DivisionPoornaprajna Institute of Scientific Research (PPISR)BengaluruIndia
| |
Collapse
|
21
|
Abstract
We previously reported that herpes simplex virus 1 (HSV-1) ICP22 binds to CD80 and suppresses CD80 expression in vitro and in vivo. Similar to ICP22, the cellular costimulatory molecules CD28, CTLA4, and PD-L1 also bind to CD80. In this study, we asked whether, similar to ICP22-null virus, the absence of these costimulatory molecules will reduce HSV-1 infectivity. To test our hypothesis, CD28−/−, CD28−/− CTLA4−/−, PD-L1−/−, and wild-type control BALB/c mice were ocularly infected with HSV-1 strain KOS. Levels of virus replication in the eye, corneal scarring (CS), latency, and reactivation in infected mice were determined. Expression of different genes in the trigeminal ganglia (TG) of latently infected mice was also determined by NanoString and quantitative reverse transcription-PCR (qRT-PCR). In the absence of costimulatory molecules, latency levels were higher than those in wild-type control mice, but despite higher latency, a significant number of TG from infected knockout mice did not reactivate. Reduced reactivation correlated with downregulation of 26 similar cellular genes that are associated with inflammatory signaling and innate immune responses. These results suggest that lower reactivation directly correlates with lower expression of interferon signaling. Thus, despite having different modes of actions, we identified a similar function for CD28, CTLA4, and PD-L1 in HSV-1 reactivation that is dependent on their interactions with CD80. Therefore, blocking these interactions could be a therapeutic target for HSV-1-induced reactivation.
Collapse
|
22
|
Mincham KT, Young JD, Strickland DH. OMIP 076: High-dimensional immunophenotyping of murine T-cell, B-cell, and antibody secreting cell subsets. Cytometry A 2021; 99:888-892. [PMID: 34159723 PMCID: PMC9546025 DOI: 10.1002/cyto.a.24474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/14/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022]
Affiliation(s)
- Kyle T Mincham
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Jacob D Young
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Deborah H Strickland
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
23
|
Kang JH, Lee HJ, Kim OH, Yun YJ, Seo YJ, Lee HJ. Biomechanical forces enhance directed migration and activation of bone marrow-derived dendritic cells. Sci Rep 2021; 11:12106. [PMID: 34103554 PMCID: PMC8187447 DOI: 10.1038/s41598-021-91117-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/21/2021] [Indexed: 11/30/2022] Open
Abstract
Mechanical forces are pervasive in the inflammatory site where dendritic cells (DCs) are activated to migrate into draining lymph nodes. For example, fluid shear stress modulates the movement patterns of DCs, including directness and forward migration indices (FMIs), without chemokine effects. However, little is known about the effects of biomechanical forces on the activation of DCs. Accordingly, here we fabricated a microfluidics system to assess how biomechanical forces affect the migration and activity of DCs during inflammation. Based on the structure of edema, we proposed and experimentally analyzed a novel concept for a microchip model that mimicked such vascular architecture. The intensity of shear stress generated in our engineered chip was found as 0.2–0.6 dyne/cm2 by computational simulation; this value corresponded to inflammation in tissues. In this platform, the directness and FMIs of DCs were significantly increased, whereas the migration velocity of DCs was not altered by shear stress, indicating that mechanical stimuli influenced DC migration. Moreover, DCs with shear stress showed increased expression of the DC activation markers MHC class I and CD86 compared with DCs under static conditions. Taken together, these data suggest that the biomechanical forces are important to regulate the migration and activity of DCs.
Collapse
Affiliation(s)
- Ji-Hun Kang
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyun Joo Lee
- Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yong Ju Yun
- Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea.
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea. .,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
24
|
Mousavi MJ, Shayesteh MRH, Jamalzehi S, Alimohammadi R, Rahimi A, Aslani S, Rezaei N. Association of the genetic polymorphisms in inhibiting and activating molecules of immune system with rheumatoid arthritis: A systematic review and meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2021; 26:22. [PMID: 34221051 PMCID: PMC8240549 DOI: 10.4103/jrms.jrms_567_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/02/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022]
Abstract
Several studies have demonstrated that the genetic polymorphisms in the genes encoding immune regulatory molecules, namely cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and CD28, play a fundamental role in susceptibility to rheumatoid arthritis (RA). Several disperse population studies have resulted in conflicting outcomes regarding the genetic polymorphisms in these genes and RA risk. This systematic review and meta-analysis study was performed to reach a conclusive understanding of the role of single-nucleotide polymorphisms (SNPs) of CTLA4-rs231775, CTLA4-rs5742909, and CD28-rs1980422 in susceptibility to RA. Databases (ISI Web of Science, MEDLINE/PubMed, and Scopus) were searched to find the case–control studies surveying the association of CTLA4 gene rs231775, CTLA4 gene rs5742909, and CD28 gene rs1980422 polymorphisms and RA susceptibility in different population until August 2020. Association comparison between the polymorphisms and RA proneness was assessed using pooled odds ratio (OR) and their corresponding 95% confidence interval. This study was conducted on 16 population studies, comprising 1078 RA patients and 1118 healthy controls for CTLA4-rs231775, 2193 RA patients and 2580 healthy controls for CTLA4-rs5742909, and 807 RA patients and 732 healthy controls for CD28-rs1980422. Analysis indicated that G-allele, GG and GA genotypes, and dominant model for rs231775, recessive model for rs5742909, and C-allele, CC and CT genotypes, and recessive model for rs1980422 were significantly associated with increased RA risk. This meta-analysis showed that genetic polymorphisms of both immune inhibitory and activating genes, including CTLA4-rs231775, CTLA4-rs5742909, and CD28-rs1980422 polymorphisms, may increase susceptibility to RA.
Collapse
Affiliation(s)
- Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sirous Jamalzehi
- Department of Medical Laboratory Sciences, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Reza Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
25
|
Goenka R, Xu Z, Samayoa J, Banach D, Beam C, Bose S, Dooner G, Forsyth CM, Lu X, Medina L, Sadhukhan R, Sielaff B, Sousa S, Tao Q, Touw D, Wu F, Kingsbury GA, Akamatsu Y. CTLA4-Ig-Based Bifunctional Costimulation Inhibitor Blocks CD28 and ICOS Signaling to Prevent T Cell Priming and Effector Function. THE JOURNAL OF IMMUNOLOGY 2021; 206:1102-1113. [PMID: 33495237 DOI: 10.4049/jimmunol.2001100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022]
Abstract
CTLA4-Ig/abatacept dampens activation of naive T cells by blocking costimulation via CD28. It is an approved drug for rheumatoid arthritis but failed to deliver efficacy in a number of other autoimmune diseases. One explanation is that activated T cells rely less on CD28 signaling and use alternate coreceptors for effector function. ICOS is critical for activation of T-dependent humoral immune responses, which drives pathophysiology of IgG-mediated autoimmune diseases. In this study, we asked whether CD28 and ICOS play nonredundant roles for maintenance of T-dependent responses in mouse models. Using a hapten-protein immunization model, we show that during an ongoing germinal center response, combination treatment with CTLA4-Ig and ICOS ligand (ICOSL) blocking Ab completely dissolves ongoing germinal center responses, whereas single agents show only partial activity. Next, we took two approaches to engineer a therapeutic molecule that blocks both pathways. First, we engineered CTLA4-Ig to enhance binding to ICOSL while retaining affinity to CD80/CD86. Using a library approach, binding affinity of CTLA4-Ig to human ICOSL was increased significantly from undetectable to 15-42 nM; however, the affinity was still insufficient to completely block binding of ICOSL to ICOS. Second, we designed a bispecific costimulation inhibitor with high-affinity CTLA4 extracellular domains fused to anti-ICOSL Ab termed bifunctional costimulation inhibitor. With this bispecific approach, we achieved complete inhibition of CD80 and CD86 binding to CD28 as well as ICOS binding to ICOSL. Such bispecific molecules may provide greater therapeutic benefit in IgG-mediated inflammatory diseases compared with CTLA4-Ig alone.
Collapse
Affiliation(s)
| | - Zhenghai Xu
- AbbVie Redwood City, Redwood City, CA 94306; and
| | | | | | | | - Sahana Bose
- AbbVie Bioresearch Center, Worcester, MA 01605
| | | | | | - Xiaoqing Lu
- AbbVie Cambridge Research Center, Cambridge, MA 02139
| | | | | | | | | | - Qingfeng Tao
- AbbVie Cambridge Research Center, Cambridge, MA 02139
| | - Debra Touw
- AbbVie Bioresearch Center, Worcester, MA 01605
| | - Fei Wu
- AbbVie Bioresearch Center, Worcester, MA 01605
| | | | | |
Collapse
|
26
|
Nandi D, Pathak S, Verma T, Singh M, Chattopadhyay A, Thakur S, Raghavan A, Gokhroo A, Vijayamahantesh. T cell costimulation, checkpoint inhibitors and anti-tumor therapy. J Biosci 2021. [PMID: 32345776 DOI: 10.1007/s12038-020-0020-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hallmarks of the adaptive immune response are specificity and memory. The cellular response is mediated by T cells which express cell surface T cell receptors (TCRs) that recognize peptide antigens in complex with major histocompatibility complex (MHC) molecules on antigen presenting cells (APCs). However, binding of cognate TCRs with MHC-peptide complexes alone (signal 1) does not trigger optimal T cell activation. In addition to signal 1, the binding of positive and negative costimulatory receptors to their ligands modulates T cell activation. This complex signaling network prevents aberrant activation of T cells. CD28 is the main positive costimulatory receptor on naı¨ve T cells; upon activation, CTLA4 is induced but reduces T cell activation. Further studies led to the identification of additional negative costimulatory receptors known as checkpoints, e.g. PD1. This review chronicles the basic studies in T cell costimulation that led to the discovery of checkpoint inhibitors, i.e. antibodies to negative costimulatory receptors (e.g. CTLA4 and PD1) which reduce tumor growth. This discovery has been recognized with the award of the 2018 Nobel prize in Physiology/Medicine. This review highlights the structural and functional roles of costimulatory receptors, the mechanisms by which checkpoint inhibitors work, the challenges encountered and future prospects.
Collapse
Affiliation(s)
- Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560 012, India
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Soskic B, Jeffery LE, Kennedy A, Gardner DH, Hou TZ, Halliday N, Williams C, Janman D, Rowshanravan B, Hirschfield GM, Sansom DM. CD80 on Human T Cells Is Associated With FoxP3 Expression and Supports Treg Homeostasis. Front Immunol 2021; 11:577655. [PMID: 33488578 PMCID: PMC7820758 DOI: 10.3389/fimmu.2020.577655] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
Abstract
CD80 and CD86 are expressed on antigen presenting cells (APCs) and their role in providing costimulation to T cells is well established. However, it has been shown that these molecules can also be expressed by T cells, but the significance of this observation remains unknown. We have investigated stimuli that control CD80 and CD86 expression on T cells and show that in APC-free conditions around 40% of activated, proliferating CD4+ T cells express either CD80, CD86 or both. Expression of CD80 and CD86 was strongly dependent upon provision of CD28 costimulation as ligands were not expressed following TCR stimulation alone. Furthermore, we observed that CD80+ T cells possessed the hallmarks of induced regulatory T cells (iTreg), expressing Foxp3 and high levels of CTLA-4 whilst proliferating less extensively. In contrast, CD86 was preferentially expressed on INF-γ producing cells, which proliferated more extensively and had characteristics of effector T cells. Finally, we demonstrated that CD80 expressed on T cells inhibits CTLA-4 function and facilitates the growth of iTreg. Together these data establish endogenous expression of CD80 and CD86 by activated T cells is not due to ligand capture by transendocytosis and highlight clear differences in their expression patterns and associated functions.
Collapse
Affiliation(s)
- Blagoje Soskic
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Louisa E Jeffery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Alan Kennedy
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - David H Gardner
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Tie Zheng Hou
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Neil Halliday
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Cayman Williams
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Daniel Janman
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Behzad Rowshanravan
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | | | - David M Sansom
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
28
|
Lindzen M, Ghosh S, Noronha A, Drago D, Nataraj NB, Leitner O, Carvalho S, Zmora E, Sapoznik S, Shany KB, Levanon K, Aderka D, Ramírez BS, Dahlhoff M, McNeish I, Yarden Y. Targeting autocrine amphiregulin robustly and reproducibly inhibits ovarian cancer in a syngeneic model: roles for wildtype p53. Oncogene 2021; 40:3665-3679. [PMID: 33941851 PMCID: PMC8154589 DOI: 10.1038/s41388-021-01784-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 02/03/2023]
Abstract
Ovarian cancer (OvCA) remains one of the most devastating malignancies, but treatment options are still limited. We report that amphiregulin (AREG) can serve as an effective and safe pharmacological target in a syngeneic murine model. AREG is highly abundant in abdominal fluids of patients with advanced OvCa. In immunocompetent animals, depletion or overexpression of AREG respectively prolonged or shortened animal survival. A new antibody we generated in AREG-knockout mice recognized murine AREG and reproducibly prolonged animal survival in the syngeneic model. The underlying mechanism likely involves binding of wildtype p53 to AREG's promoter and autocrine activation of the epidermal growth factor receptor (EGFR), a step blocked by the antibody. Accordingly, depletion of p53 downregulated AREG secretion and conferred tolerance, whereas blocking an adaptive process involving CXCL1, which transactivates EGFR, might increase therapeutic efficacy. Consistent with these observations, analysis of OvCa patients revealed that high AREG correlates with poor prognosis of patients expressing wildtype TP53. In conclusion, clinical tests of the novel antibody are warranted; high AREG, normal TP53, and reduced CXCL1 activity might identify patients with OvCa who may derive therapeutic benefit.
Collapse
Affiliation(s)
- Moshit Lindzen
- grid.13992.300000 0004 0604 7563Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Soma Ghosh
- grid.13992.300000 0004 0604 7563Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ashish Noronha
- grid.13992.300000 0004 0604 7563Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Diana Drago
- grid.13992.300000 0004 0604 7563Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Nishanth Belugali Nataraj
- grid.13992.300000 0004 0604 7563Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Orith Leitner
- grid.13992.300000 0004 0604 7563Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Silvia Carvalho
- grid.13992.300000 0004 0604 7563Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Einav Zmora
- grid.13992.300000 0004 0604 7563Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Stav Sapoznik
- grid.12136.370000 0004 1937 0546Sheba Cancer Research Centre, Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Keren Bahar Shany
- grid.12136.370000 0004 1937 0546Sheba Cancer Research Centre, Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Keren Levanon
- grid.12136.370000 0004 1937 0546Sheba Cancer Research Centre, Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Dan Aderka
- grid.12136.370000 0004 1937 0546Sheba Cancer Research Centre, Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Belinda Sánchez Ramírez
- grid.417645.50000 0004 0444 3191Direction of Immunology and Immunotherapy, Center for Molecular Immunology, Havana, Cuba
| | - Maik Dahlhoff
- grid.6583.80000 0000 9686 6466Institute of In Vivo and In Vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Iain McNeish
- grid.7445.20000 0001 2113 8111Imperial College and Hammersmith Hospital, London, UK
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
29
|
Watanabe M, Lu Y, Breen M, Hodes RJ. B7-CD28 co-stimulation modulates central tolerance via thymic clonal deletion and Treg generation through distinct mechanisms. Nat Commun 2020; 11:6264. [PMID: 33293517 PMCID: PMC7722925 DOI: 10.1038/s41467-020-20070-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
The molecular and cellular mechanisms mediating thymic central tolerance and prevention of autoimmunity are not fully understood. Here we show that B7-CD28 co-stimulation and B7 expression by specific antigen-presenting cell (APC) types are required for clonal deletion and for regulatory T (Treg) cell generation from endogenous tissue-restricted antigen (TRA)-specific thymocytes. While B7-CD28 interaction is required for both clonal deletion and Treg induction, these two processes differ in their CD28 signaling requirements and in their dependence on B7-expressing dendritic cells, B cells, and thymic epithelial cells. Meanwhile, defective thymic clonal deletion due to altered B7-CD28 signaling results in the accumulation of mature, peripheral TRA-specific T cells capable of mediating destructive autoimmunity. Our findings thus reveal a function of B7-CD28 co-stimulation in shaping the T cell repertoire and limiting autoimmunity through both thymic clonal deletion and Treg cell generation.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/metabolism
- Autoimmunity/physiology
- B7-1 Antigen/metabolism
- CD28 Antigens/genetics
- CD28 Antigens/metabolism
- Cell Differentiation/immunology
- Central Tolerance
- Clonal Deletion
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Flow Cytometry
- Gene Knock-In Techniques
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymocytes/physiology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Masashi Watanabe
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ying Lu
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michael Breen
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Richard J Hodes
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Halliday N, Williams C, Kennedy A, Waters E, Pesenacker AM, Soskic B, Hinze C, Hou TZ, Rowshanravan B, Janman D, Walker LSK, Sansom DM. CD86 Is a Selective CD28 Ligand Supporting FoxP3+ Regulatory T Cell Homeostasis in the Presence of High Levels of CTLA-4. Front Immunol 2020; 11:600000. [PMID: 33363541 PMCID: PMC7753196 DOI: 10.3389/fimmu.2020.600000] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022] Open
Abstract
CD80 and CD86 are expressed on antigen presenting cells and are required to engage their shared receptor, CD28, for the costimulation of CD4 T cells. It is unclear why two stimulatory ligands with overlapping roles have evolved. CD80 and CD86 also bind the regulatory molecule CTLA-4. We explored the role of CD80 and CD86 in the homeostasis and proliferation of CD4+FoxP3+ regulatory T cells (Treg), which constitutively express high levels of CTLA-4 yet are critically dependent upon CD28 signals. We observed that CD86 was the dominant ligand for Treg proliferation, survival, and maintenance of a regulatory phenotype, with higher expression of CTLA-4, ICOS, and OX40. We also explored whether CD80-CD28 interactions were specifically compromised by CTLA-4 and found that antibody blockade, clinical deficiency of CTLA-4 and CRISPR-Cas9 deletion of CTLA-4 all improved Treg survival following CD80 stimulation. Taken together, our data suggest that CD86 is the dominant costimulatory ligand for Treg homeostasis, despite its lower affinity for CD28, because CD80-CD28 interactions are selectively impaired by the high levels of CTLA-4. These data suggest a cell intrinsic role for CTLA-4 in regulating CD28 costimulation by direct competition for CD80, and indicate that that CD80 and CD86 have discrete roles in CD28 costimulation of CD4 T cells in the presence of high levels of CTLA-4.
Collapse
Affiliation(s)
- Neil Halliday
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Institute of Liver and Digestive Health, University College London, London, United Kingdom
| | - Cayman Williams
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Alan Kennedy
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Erin Waters
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Anne M Pesenacker
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Blagoje Soskic
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Claudia Hinze
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Tie Zheng Hou
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Behzad Rowshanravan
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Daniel Janman
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Lucy S K Walker
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - David M Sansom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
31
|
Glinos DA, Soskic B, Williams C, Kennedy A, Jostins L, Sansom DM, Trynka G. Genomic profiling of T-cell activation suggests increased sensitivity of memory T cells to CD28 costimulation. Genes Immun 2020; 21:390-408. [PMID: 33223527 PMCID: PMC7785515 DOI: 10.1038/s41435-020-00118-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 02/03/2023]
Abstract
T-cell activation is a critical driver of immune responses. The CD28 costimulation is an essential regulator of CD4 T-cell responses, however, its relative importance in naive and memory T cells is not fully understood. Using different model systems, we observe that human memory T cells are more sensitive to CD28 costimulation than naive T cells. To deconvolute how the T-cell receptor (TCR) and CD28 orchestrate activation of human T cells, we stimulate cells using varying intensities of TCR and CD28 and profiled gene expression. We show that genes involved in cell cycle progression and division are CD28-driven in memory cells, but under TCR control in naive cells. We further demonstrate that T-helper differentiation and cytokine expression are controlled by CD28. Using chromatin accessibility profiling, we observe that AP1 transcriptional regulation is enriched when both TCR and CD28 are engaged, whereas open chromatin near CD28-sensitive genes is enriched for NF-kB motifs. Lastly, we show that CD28-sensitive genes are enriched in GWAS regions associated with immune diseases, implicating a role for CD28 in disease development. Our study provides important insights into the differential role of costimulation in naive and memory T-cell responses and disease susceptibility.
Collapse
Affiliation(s)
- Dafni A Glinos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- New York Genome Center, New York, NY, 10013, USA
| | - Blagoje Soskic
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Cayman Williams
- UCL Institute of Immunity and Transplantation, Royal Free Hospital, London, NW3 2PF, UK
| | - Alan Kennedy
- UCL Institute of Immunity and Transplantation, Royal Free Hospital, London, NW3 2PF, UK
| | - Luke Jostins
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
- Big Data Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Christ Church, St. Aldates, Oxford, OX1 1DP, UK
| | - David M Sansom
- UCL Institute of Immunity and Transplantation, Royal Free Hospital, London, NW3 2PF, UK.
| | - Gosia Trynka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
| |
Collapse
|
32
|
van der Gracht ET, Schoonderwoerd MJ, van Duikeren S, Yilmaz AN, Behr FM, Colston JM, Lee LN, Yagita H, van Gisbergen KP, Hawinkels LJ, Koning F, Klenerman P, Arens R. Adenoviral vaccines promote protective tissue-resident memory T cell populations against cancer. J Immunother Cancer 2020; 8:e001133. [PMID: 33293355 PMCID: PMC7725098 DOI: 10.1136/jitc-2020-001133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Adenoviral vectors emerged as important platforms for cancer immunotherapy. Vaccination with adenoviral vectors is promising in this respect, however, their specific mechanisms of action are not fully understood. Here, we assessed the development and maintenance of vaccine-induced tumor-specific CD8+ T cells elicited upon immunization with adenoviral vectors. METHODS Adenoviral vaccine vectors encoding the full-length E7 protein from human papilloma virus (HPV) or the immunodominant epitope from E7 were generated, and mice were immunized intravenously with different quantities (107, 108 or 109 infectious units). The magnitude, kinetics and tumor protection capacity of the induced vaccine-specific T cell responses were evaluated. RESULTS The adenoviral vaccines elicited inflationary E7-specific memory CD8+ T cell responses in a dose-dependent manner. The magnitude of these vaccine-specific CD8+ T cells in the circulation related to the development of E7-specific CD8+ tissue-resident memory T (TRM) cells, which were maintained for months in multiple tissues after vaccination. The vaccine-specific CD8+ T cell responses conferred long-term protection against HPV-induced carcinomas in the skin and liver, and this protection required the induction and accumulation of CD8+ TRM cells. Moreover, the formation of CD8+ TRM cells could be enhanced by temporal targeting CD80/CD86 costimulatory interactions via CTLA-4 blockade early after immunization. CONCLUSIONS Together, these data show that adenoviral vector-induced CD8+ T cell inflation promotes protective TRM cell populations, and this can be enhanced by targeting CTLA-4.
Collapse
Affiliation(s)
| | - Mark Ja Schoonderwoerd
- Department of Gasteroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne van Duikeren
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ayse N Yilmaz
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Julia M Colston
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lian N Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Klaas Pjm van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Lukas Jac Hawinkels
- Department of Gasteroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
33
|
Edner NM, Wang CJ, Petersone L, Walker LSK. Predicting clinical response to costimulation blockade in autoimmunity. IMMUNOTHERAPY ADVANCES 2020; 1:ltaa003. [PMID: 36017489 PMCID: PMC7613378 DOI: 10.1093/immadv/ltaa003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Curbing unwanted T cell responses by costimulation blockade has been a recognised immunosuppressive strategy for the last 15 years. However, our understanding of how best to deploy this intervention is still evolving. A key challenge has been the heterogeneity in the clinical response to costimulation blockade, and an inability to predict which individuals are likely to benefit most. Here, we discuss our recent findings based on the use of costimulation blockade in people with type 1 diabetes (T1D) and place them in the context of the current literature. We discuss how profiling follicular helper T cells (Tfh) in pre-treatment blood samples may have value in predicting which individuals are likely to benefit from costimulation blockade drugs such as abatacept.
Collapse
Affiliation(s)
- Natalie M Edner
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Chun Jing Wang
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Lina Petersone
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Lucy S K Walker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
34
|
Tran KB, Buchanan CM, Shepherd PR. Evolution of Molecular Targets in Melanoma Treatment. Curr Pharm Des 2020; 26:396-414. [PMID: 32000640 DOI: 10.2174/1381612826666200130091318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the deadliest type of skin cancers, accounting for more than 80% of skin cancer mortality. Although melanoma was known very early in the history of medicine, treatment for this disease had remained largely the same until very recently. Previous treatment options, including removal surgery and systemic chemotherapy, offered little benefit in extending the survival of melanoma patients. However, the last decade has seen breakthroughs in melanoma treatment, which all emerged following new insight into the oncogenic signaling of melanoma. This paper reviewed the evolution of drug targets for melanoma treatment based on the emergence of novel findings in the molecular signaling of melanoma. One of the findings that are most influential in melanoma treatment is that more than 50% of melanoma tumors contain BRAF mutations. This is fundamental for the development of BRAF inhibitors, which is the first group of drugs that significantly improves the overall survival of melanoma patients compared to the traditional chemotherapeutic dacarbazine. More recently, findings of the role of immune checkpoint molecules such as CTLA-4 and PD1/PD-L1 in melanoma biology have led to the development of a new therapeutic category: immune checkpoint inhibitors, which, for the first time in the history of cancer treatment, produced a durable response in a subset of melanoma patients. However, as this paper discussed next, there is still an unmet need for melanoma treatment. A significant population of patients did not respond to either BRAF inhibitors or immune checkpoint inhibitors. Of those patients who gained an initial response from those therapies, a remarkable percentage would develop drug resistance even when MEK inhibitors were added to the treatment. Finally, this paper discusses some possible targets for melanoma treatment.
Collapse
Affiliation(s)
- Khanh B Tran
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Christina M Buchanan
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| |
Collapse
|
35
|
Xiao ZX, Hu X, Jarjour W, Zheng SG. The role of B7 family members in the generation of Immunoglobulin. J Leukoc Biol 2020; 109:377-382. [PMID: 33118237 DOI: 10.1002/jlb.1mr0420-003rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 10/23/2022] Open
Abstract
Ig is a Y-shaped protein produced by plasma cells and exerts multiple functions in humoral immunity. There are five groups of Igs including IgA, IgD, IgE, IgG, and IgM, which differ in their heavy chain class. The primary function of Igs includes the neutralization of extrinsic pathogens, agglutination of foreign cells for phagocytosis, precipitation of soluble antigens in serum, and complement fixation. The B cells activated by antigen(s) can differentiate into antibody-producing cells that are called plasma cells and usually matured in the germinal center (GC). Follicular T helper (Tfh) cells crosstalk with antigen-presenting cells and play a crucial role in the development of the GC. Moreover, Tfh cells regulate trafficking through the GC to allow formative interaction with GC B cells that ultimately results in affinity maturation, B-cell memory, and Ig class switching. The B7 family is a series of number of structurally related membrane proteins that bind with a specific receptor to deliver costimulatory or co-inhibitory signals that regulate the activation of T cells in GC. Here, we review and summarize the recent advance of the effects of B7 family members on Ig production and relative diseases.
Collapse
Affiliation(s)
- Ze Xiu Xiao
- Institute of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaojiang Hu
- Institute of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wael Jarjour
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
36
|
Edner NM, Heuts F, Thomas N, Wang CJ, Petersone L, Kenefeck R, Kogimtzis A, Ovcinnikovs V, Ross EM, Ntavli E, Elfaki Y, Eichmann M, Baptista R, Ambery P, Jermutus L, Peakman M, Rosenthal M, Walker LSK. Follicular helper T cell profiles predict response to costimulation blockade in type 1 diabetes. Nat Immunol 2020; 21:1244-1255. [PMID: 32747817 PMCID: PMC7610476 DOI: 10.1038/s41590-020-0744-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Follicular helper T (TFH) cells are implicated in type 1 diabetes (T1D), and their development has been linked to CD28 costimulation. We tested whether TFH cells were decreased by costimulation blockade using the CTLA-4-immunoglobulin (Ig) fusion protein (abatacept) in a mouse model of diabetes and in individuals with new-onset T1D. Unbiased bioinformatics analysis identified that inducible costimulatory molecule (ICOS)+ TFH cells and other ICOS+ populations, including peripheral helper T cells, were highly sensitive to costimulation blockade. We used pretreatment TFH profiles to derive a model that could predict clinical response to abatacept in individuals with T1D. Using two independent approaches, we demonstrated that higher frequencies of ICOS+ TFH cells at baseline were associated with a poor clinical response following abatacept administration. Therefore, TFH analysis may represent a new stratification tool, permitting the identification of individuals most likely to benefit from costimulation blockade.
Collapse
Affiliation(s)
- Natalie M Edner
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Frank Heuts
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Niclas Thomas
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Chun Jing Wang
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Lina Petersone
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Rupert Kenefeck
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Alexandros Kogimtzis
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Vitalijs Ovcinnikovs
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Ellen M Ross
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Elisavet Ntavli
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Yassin Elfaki
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Martin Eichmann
- Department of Immunobiology, King's College London, London, UK
| | - Roman Baptista
- Department of Immunobiology, King's College London, London, UK
| | - Philip Ambery
- Late-stage Development, Cardiovascular, Renal and Metabolism , BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lutz Jermutus
- Research and Early Development, Cardiovascular, Renal and Metabolism , BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mark Peakman
- Department of Immunobiology, King's College London, London, UK
| | - Miranda Rosenthal
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK.
| |
Collapse
|
37
|
Abstract
Therapeutic targeting of immune checkpoints has garnered significant attention in the area of cancer immunotherapy, in which efforts have focused in particular on cytotoxic T lymphocyte antigen 4 (CTLA4) and PD1, both of which are members of the CD28 family. In autoimmunity, these same pathways can be targeted to opposite effect: to curb the over-exuberant immune response. The CTLA4 checkpoint serves as an exemplar, whereby CTLA4 activity is blocked by antibodies in cancer immunotherapy and augmented by the provision of soluble CTLA4 in autoimmunity. Here, we review the targeting of co-stimulatory molecules in autoimmune diseases, focusing in particular on agents directed at members of the CD28 or tumour necrosis factor receptor families. We present the state of the art in co-stimulatory blockade approaches, including rational combinations of immune inhibitory agents, and discuss the future opportunities and challenges in this field.
Collapse
|
38
|
Targeting Multiple Myeloma through the Biology of Long-Lived Plasma Cells. Cancers (Basel) 2020; 12:cancers12082117. [PMID: 32751699 PMCID: PMC7466116 DOI: 10.3390/cancers12082117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy of terminally differentiated bone marrow (BM) resident B lymphocytes known as plasma cells (PC). PC that reside in the bone marrow include a distinct population of long-lived plasma cells (LLPC) that have the capacity to live for very long periods of time (decades in the human population). LLPC biology is critical for understanding MM disease induction and progression because MM shares many of the same extrinsic and intrinsic survival programs as LLPC. Extrinsic survival signals required for LLPC survival include soluble factors and cellular partners in the bone marrow microenvironment. Intrinsic programs that enhance cellular fidelity are also required for LLPC survival including increased autophagy, metabolic fitness, the unfolded protein response (UPR), and enhanced responsiveness to endoplasmic reticulum (ER) stress. Targeting LLPC cell survival mechanisms have led to standard of care treatments for MM including proteasome inhibition (Bortezomib), steroids (Dexamethasone), and immunomodulatory drugs (Lenalidomide). MM patients that relapse often do so by circumventing LLPC survival pathways targeted by treatment. Understanding the mechanisms by which LLPC are able to survive can allow us insight into the treatment of MM, which allows for the enhancement of therapeutic strategies in MM both at diagnosis and upon patient relapse.
Collapse
|
39
|
Nazimek K, Nowak B, Wąsik M, Ptak W, Bryniarski K. Extracellular vesicles induced by intravenously administered syngeneic red blood cells modulate macrophage phagocytic activity in mouse humoral immunity*. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.5956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aim: Phagocytosing macrophages are involved in the induction of humoral immunity to corpuscular antigens. Recently, we demonstrated that B cell response to haptenated sheep red blood cells (SRBC) could be suppressed by extracellular vesicles (EVs) produced by suppressor T cells activated through intravenous administration of a high dose of syngeneic mouse red blood cells (sMRBC). However, the mechanism underlying the inhibitory effect of sMRBC-induced EVs on macrophages involved in activation of humoral immunity remained unclear. Thus, the current studies aimed at investigating the phagocytic and antigen-presenting activity of macrophages treated with sMRBC-induced EVs. Material/Methods: Mouse thioglycollate-induced peritoneal macrophages were treated with sMRBC-induced EVs and then pulsed with either native or fluorescein isothiocyanate-conjugated SRBC. Afterwards, macrophages were, respectively, administered intraperitoneally into naive recipients or subjected to flow cytometric analysis. The elicited humoral immune response was evaluated in plaque forming and haemagglutination assays. Results: Decreased number of B cells secreting SRBC-specific antibodies was shown in spleens of mouse recipients of SRBC-pulsed macrophages pretreated with sMRBC-induced EVs along with an increased ratio of IgM to IgG serum antibodies. Furthermore, pretreatment of macrophages with sMRBC-induced EVs reduced their phagocytic activity and expression of costimulatory molecules involved in antigen phagocytosis and presentation. Conclusions: Current research findings demonstrated the impaired ability of macrophages to activate B cells due to the action of sMRBC-induced EVs, which may play a role in suppressing self-reactive B cells. Thus, our results seem to have translational potential in development of therapeutic strategies to prevent the macrophage-induced humoral immunity against nonpathogenic antigens.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Bernadeta Nowak
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Wąsik
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Włodzimierz Ptak
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
40
|
Matundan HH, Jaggi U, Wang S, Ghiasi H. Loss of ICP22 in HSV-1 Elicits Immune Infiltration and Maintains Stromal Keratitis Despite Reduced Primary and Latent Virus Infectivity. Invest Ophthalmol Vis Sci 2019; 60:3398-3406. [PMID: 31387116 PMCID: PMC6685448 DOI: 10.1167/iovs.19-27701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose We previously have reported that ICP22, an immediate early gene of herpes simplex virus type 1 (HSV-1), binds to the CD80 promoter to suppress CD80 expression in antigen-presenting cells, leading to reduced T-cell function and protection. In contrast, overexpression of CD80 exacerbates corneal scarring (CS) in ocularly infected mice. In this study we tested the hypothesis that the absence of ICP22 could increase disease severity. Methods To test our hypothesis, BALB/c mice were ocularly infected after corneal scarification with a recombinant HSV-1 lacking the ICP22 gene with its parental wild-type (WT) virus (KOS) as a control. Virus replication in the eye, CS, angiogenesis, latency, and reactivation between ICP22 null virus and WT KOS were determined. In addition, expression of IL-2, IL-4, IFN-γ, IFN-α, granzyme A, granzyme B, and perforin by CD4 and CD8 T cells in corneas of infected mice on days 3, 5, 7, 10, 14, 21, and 28 postinfection were determined by flow cytometry. Results We found similar levels of eye disease and angiogenesis in mice following corneal scarification and ocular infection with the ICP22 null virus or parental WT virus despite reduced virus replication in the eye and reduced latency and reactivation in mice ocularly infected with ICP22 null virus. The similar level of eye disease in ICP22 null virus- and WT virus-infected mice correlated with expression of various proinflammatory cytokines that infiltrated the eye after HSV-1 infection. Conclusions Our study identified a critical role for ICP22 in HSV-1 pathogenicity and suggests that HSV-1-associated CS is more dependent on host immune responses to infection than to virus replication in the eye. Thus, HSV-1 as means of survival uses ICP22 as a mechanism of immune escape that protects the host from increased pathology.
Collapse
Affiliation(s)
- Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States
| | - Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States
| | - Shaohui Wang
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States
| |
Collapse
|
41
|
Curato C, Bernshtein B, Zupancič E, Dufner A, Jaitin D, Giladi A, David E, Chappell-Maor L, Leshkowitz D, Knobeloch KP, Amit I, Florindo HF, Jung S. DC Respond to Cognate T Cell Interaction in the Antigen-Challenged Lymph Node. Front Immunol 2019; 10:863. [PMID: 31073301 PMCID: PMC6496461 DOI: 10.3389/fimmu.2019.00863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/04/2019] [Indexed: 01/11/2023] Open
Abstract
Dendritic cells (DC) are unrivaled in their potential to prime naive T cells by presenting antigen and providing costimulation. DC are furthermore believed to decode antigen context by virtue of pattern recognition receptors and to polarize T cells through cytokine secretion toward distinct effector functions. Diverse polarized T helper (TH) cells have been explored in great detail. In contrast, studies of instructing DC have to date largely been restricted to in vitro settings or adoptively transferred DC. Here we report efforts to unravel the DC response to cognate T cell encounter in antigen-challenged lymph nodes (LN). Mice engrafted with antigen-specific T cells were immunized with nanoparticles (NP) entrapping adjuvants and absorbed with antigen to study the immediate DC response to T cell encounter using bulk and single cell RNA-seq profiling. NP induced robust antigen-specific TH1 cell responses with minimal bystander activation. Fluorescent-labeled NP allowed identification of antigen-carrying DC and focus on transcriptional changes in DC that encounter T cells. Our results support the existence of a bi-directional crosstalk between DC and T cells that promotes TH1 responses, including involvement of the ubiquitin-like molecule Isg15 that merits further study.
Collapse
Affiliation(s)
- Caterina Curato
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Biana Bernshtein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eva Zupancič
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Almut Dufner
- Medical Faculty, Institute for Neuropathology, University Freiburg, Freiburg, Germany
| | - Diego Jaitin
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Dena Leshkowitz
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Klaus-Peter Knobeloch
- Medical Faculty, Institute for Neuropathology, University Freiburg, Freiburg, Germany
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
42
|
Herpes Simplex Virus 1 ICP22 Suppresses CD80 Expression by Murine Dendritic Cells. J Virol 2019; 93:JVI.01803-18. [PMID: 30404803 DOI: 10.1128/jvi.01803-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/31/2018] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) has the ability to delay its clearance from the eye during ocular infection. Here, we show that ocular infection of mice with HSV-1 suppressed expression of the costimulatory molecule CD80 but not CD86 in the cornea. The presence of neutralizing anti-HSV-1 antibodies did not alleviate this suppression. At the cellular level, HSV-1 consistently downregulated the expression of CD80 by dendritic cells (DCs) but not by other antigen-presenting cells. Furthermore, flow cytometric analysis of HSV-1-infected corneal cells during a 7-day period reduced CD80 expression in DCs but not in B cells, macrophages, or monocytes. This suppression was associated with the presence of virus. Similar results were obtained using infected or transfected spleen cells or bone marrow-derived DCs. A combination of roscovitine treatment, transfection with immediate early genes (IE), and infection with a recombinant HSV-1 lacking the ICP22 gene shows the importance of ICP22 in downregulation of the CD80 promoter but not the CD86 promoter in vitro and in vivo At the mechanistic level, we show that the HSV-1 immediate early gene ICP22 binds the CD80 promoter and that this interaction is required for HSV-1-mediated suppression of CD80 expression. Conversely, forced expression of CD80 by ocular infection of mice with a recombinant HSV-1 exacerbated corneal scarring in infected mice. Taken together, these studies identify ICP22-mediated suppression of CD80 expression in dendritic cells as central to delayed clearance of the virus and limitation of the cytopathological response to primary infection in the eye.IMPORTANCE HSV-1-induced eye disease is a major public health problem. Eye disease is associated closely with immune responses to the virus and is exacerbated by delayed clearance of the primary infection. The immune system relies on antigen-presenting cells of the innate immune system to activate the T cell response. We found that HSV-1 utilizes a robust and finely targeted mechanism of local immune evasion. It downregulates the expression of the costimulatory molecule CD80 but not CD86 on resident dendritic cells irrespective of the presence of anti-HSV-1 antibodies. The effect is mediated by direct binding of HSV-1 ICP22, the product of an immediate early gene of HSV-1, to the promoter of CD80. This immune evasion mechanism dampens the host immune response and, thus, reduces eye disease in ocularly infected mice. Therefore, ICP22 may be a novel inhibitor of CD80 that could be used to modulate the immune response.
Collapse
|
43
|
Preconception immunization can modulate intracellular Th2 cytokine profile in offspring: in vivo influence of interleukin 10 and B/T cell collaboration. Cent Eur J Immunol 2018; 43:378-388. [PMID: 30799985 PMCID: PMC6384423 DOI: 10.5114/ceji.2018.81345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/16/2017] [Indexed: 01/15/2023] Open
Abstract
Introduction In the last few years our group has been studying the mechanisms involved in the inhibition of allergy in offspring mediated by preconception maternal immunization, but these mechanisms are not fully understood. Such mechanisms that we have studied aimed at the passive transfer of maternal antibodies and its influence on offspring immune status. Aim of the study To evaluate whether maternal immunization could modulate intracellular Th1/Th2 profiles in offspring. Material and methods C57BL/6 female wild type mice (WT), interleukin (IL)-10-/- or CD28-/- mice were immunized or not with ovalbumin (OVA) and were mated with respective lineage males and offspring were evaluated at 3 days old (d.o.), 20 d.o., or 20 d.o. after neonatal immunization. Results Preconception OVA immunization induced a marked reduction in IL-4 secretion by TCD4+ cells of WT offspring when compared with offspring from non-immunized mothers. The maternal immunization of IL-10-/- mice induced an increase in the TCD4+IL-4+ percentage in offspring and a reduction in TCD4+IFN-γ+ cells. The maternal immunization in CD28-/- mice induced augment IL-4 intensity in 3 and 20 d.o. offspring TCD4+ cells. Conclusions Our results reveal that maternal immunization with OVA can down-regulate the Th2 pattern in offspring and this regulation is dependent on IL-10 and B/T cell collaboration.
Collapse
|
44
|
Tripathi P, Sedimbi SK, Singh AK, Löfbom L, Issazadeh-Navikas S, Weiss S, Förster I, Karlsson MCI, Yrlid U, Kadri N, Cardell SL. Innate and adaptive stimulation of murine diverse NKT cells result in distinct cellular responses. Eur J Immunol 2018; 49:443-453. [PMID: 30427069 PMCID: PMC6587840 DOI: 10.1002/eji.201847647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023]
Abstract
Natural killer T (NKT) cells recognize glycolipids presented on CD1d. They share features of adaptive T lymphocytes and innate NK cells, and mediate immunoregulatory functions via rapid production of cytokines. Invariant (iNKT) and diverse (dNKT) NKT cell subsets are defined by their TCR. The immunological role of dNKT cells, that do not express the invariant TCRα‐chain used by iNKT cells, is less well explored than that of iNKT cells. Here, we investigated signals driving Toll‐like receptor (TLR) ligand activation of TCR‐transgenic murine dNKT cells. IFN‐γ production by dNKT cells required dendritic cells (DC), cell‐to‐cell contact and presence of TLR ligands. TLR‐stimulated DC activated dNKT cells to secrete IFN‐γ in a CD1d‐, CD80/86‐ and type I IFN‐independent manner. In contrast, a requirement for IL‐12p40, and a TLR ligand‐selective dependence on IL‐18 or IL‐15 was observed. TLR ligand/DC stimulation provoked early secretion of pro‐inflammatory cytokines by both CD62L+ and CD62L− dNKT cells. However, proliferation was limited. In contrast, TCR/co‐receptor‐mediated activation resulted in proliferation and delayed production of a broader cytokine spectrum preferentially in CD62L− dNKT cells. Thus, innate (TLR ligand/DC) and adaptive (TCR/co‐receptor) stimulation of dNKT cells resulted in distinct cellular responses that may contribute differently to the formation of immune memory.
Collapse
Affiliation(s)
- Prabhanshu Tripathi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Saikiran K Sedimbi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Avadhesh Kumar Singh
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Linda Löfbom
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, Copenhagen Biocentre, University of Copenhagen, Copenhagen, Denmark
| | - Siegfried Weiss
- Institute of Immunology, Medical School Hannover, Hannover, Germany
| | - Irmgard Förster
- Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nadir Kadri
- Center of Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
45
|
Peng LH, Qin XQ, Tan RR, Liu C, Liu HJ, Qu X. Calcitonin Gene-Related Peptide Regulates the Potential Antigen Uptake Ability of Human Bronchial Epithelial Cells. J Interferon Cytokine Res 2018; 38:463-468. [PMID: 30256701 DOI: 10.1089/jir.2018.0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In this study we tried to explore whether calcitonin gene-related peptide (CGRP) regulates the potential antigen uptaking ability of human bronchial epithelial cells (HBECs) and promoting the differentiation of Th1/Th2. We found that CGRP increased the uptake of fluorescein isothiocyanate labeled ovalbumin (FITC-OVA) by HBECs using fluorescence microscopy and flow cytometry analysis. MTT assay showed that T cells proliferated in a dose-dependent manner in the presence of OVA-pretreated HBECs and CGRP inhibited the proliferation of T cells. CGRP decreased secretion of IFN-γ, while it had no influence on secretion of IL-4 by ELISA. Our data suggest that CGRP enhanced HBECs antigen uptake ability and inhibits HBECs induced T cells proliferation.
Collapse
Affiliation(s)
- Li-Hua Peng
- 1 Department of Physiology, Hunan Yongzhou Vocational Technical College , Yongzhou, China
| | - Xiao-Qun Qin
- 2 Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan, China
| | - Ru-Rong Tan
- 2 Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan, China
| | - Chi Liu
- 2 Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan, China
| | - Hui-Jun Liu
- 2 Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan, China
| | - Xiangping Qu
- 2 Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan, China
| |
Collapse
|
46
|
Petersone L, Edner NM, Ovcinnikovs V, Heuts F, Ross EM, Ntavli E, Wang CJ, Walker LSK. T Cell/B Cell Collaboration and Autoimmunity: An Intimate Relationship. Front Immunol 2018; 9:1941. [PMID: 30210496 PMCID: PMC6119692 DOI: 10.3389/fimmu.2018.01941] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022] Open
Abstract
Co-ordinated interaction between distinct cell types is a hallmark of successful immune function. A striking example of this is the carefully orchestrated cooperation between helper T cells and B cells that occurs during the initiation and fine-tuning of T-cell dependent antibody responses. While these processes have evolved to permit rapid immune defense against infection, it is becoming increasingly clear that such interactions can also underpin the development of autoimmunity. Here we discuss a selection of cellular and molecular pathways that mediate T cell/B cell collaboration and highlight how in vivo models and genome wide association studies link them with autoimmune disease. In particular, we emphasize how CTLA-4-mediated regulation of CD28 signaling controls the engagement of secondary costimulatory pathways such as ICOS and OX40, and profoundly influences the capacity of T cells to provide B cell help. While our molecular understanding of the co-operation between T cells and B cells derives from analysis of secondary lymphoid tissues, emerging evidence suggests that subtly different rules may govern the interaction of T and B cells at ectopic sites during autoimmune inflammation. Accordingly, the phenotype of the T cells providing help at these sites includes notable distinctions, despite sharing core features with T cells imparting help in secondary lymphoid tissues. Finally, we highlight the interdependence of T cell and B cell responses and suggest that a significant beneficial impact of B cell depletion in autoimmune settings may be its detrimental effect on T cells engaged in molecular conversation with B cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lucy S. K. Walker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
47
|
Schwarz C, Mahr B, Muckenhuber M, Wekerle T. Belatacept/CTLA4Ig: an update and critical appraisal of preclinical and clinical results. Expert Rev Clin Immunol 2018; 14:583-592. [PMID: 29874474 DOI: 10.1080/1744666x.2018.1485489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The B7/CD28/CTLA4 signaling cascade is the most thoroughly studied costimulatory pathway and blockade with CTLA4Ig (abatacept) or its derivative belatacept has emerged as a valuable option for pharmacologic immune modulation. Several clinical studies have ultimately led to the approval of belatacept for immunosuppression in kidney transplant recipients. Areas covered: This review will discuss the immunological background of costimulation blockade and recent preclinical data and clinical results of CTLA4Ig/belatacept. Expert commentary: The development of belatacept is a major advance in clinical transplantation. However, in spite of promising results in preclinical and clinical trials, clinical use remains limited at present, in part due to increased rates of acute rejection. Recent efforts showing encouraging progress in refining such protocols might be a step toward harnessing the full potential of costimulation blockade-based immunosuppression.
Collapse
Affiliation(s)
- Christoph Schwarz
- a Division of General Surgery, Department of Surgery , Medical University of Vienna , Vienna , Austria.,b Section of Transplantation Immunology, Department of Surgery , Medical University of Vienna , Vienna , Austria
| | - Benedikt Mahr
- b Section of Transplantation Immunology, Department of Surgery , Medical University of Vienna , Vienna , Austria
| | - Moritz Muckenhuber
- b Section of Transplantation Immunology, Department of Surgery , Medical University of Vienna , Vienna , Austria
| | - Thomas Wekerle
- b Section of Transplantation Immunology, Department of Surgery , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
48
|
Wolf Y, Shemer A, Levy-Efrati L, Gross M, Kim JS, Engel A, David E, Chappell-Maor L, Grozovski J, Rotkopf R, Biton I, Eilam-Altstadter R, Jung S. Microglial MHC class II is dispensable for experimental autoimmune encephalomyelitis and cuprizone-induced demyelination. Eur J Immunol 2018; 48:1308-1318. [PMID: 29697861 DOI: 10.1002/eji.201847540] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/12/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
Abstract
Microglia are resident immune cells in the CNS, strategically positioned to clear dead cells and debris, and orchestrate CNS inflammation and immune defense. In steady state, these macrophages lack MHC class II (MHCII) expression, but microglia activation can be associated with MHCII induction. Whether microglial MHCII serves antigen presentation for critical local T-cell restimulation in CNS auto-immune disorders or modulates microglial signaling output remains under debate. To probe for such scenarios, we generated mice harboring an MHCII deficiency in microglia, but not peripheral myeloid cells. Using the CX3 CR1CreER -based approach we report that microglial antigen presentation is obsolete for the establishment of EAE, with disease onset, progression, and severity unaltered in mutant mice. Antigen presentation-independent roles of microglial MHCII were explored using a demyelination model induced by the copper chelator cuprizone. Absence of microglial I-Ab did not affect the extent of these chemically induced white matter alterations, nor did it affect microglial proliferation or gene expression associated with locally restricted de- and remyelination.
Collapse
Affiliation(s)
- Yochai Wolf
- Departments of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Shemer
- Departments of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Levy-Efrati
- Departments of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Mor Gross
- Departments of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jung-Seok Kim
- Departments of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Adrien Engel
- Departments of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal David
- Departments of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Jonathan Grozovski
- Departments of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Rotkopf
- Departments of Life Science Core facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Inbal Biton
- Departments of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | | | - Steffen Jung
- Departments of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
49
|
Du X, Tang F, Liu M, Su J, Zhang Y, Wu W, Devenport M, Lazarski CA, Zhang P, Wang X, Ye P, Wang C, Hwang E, Zhu T, Xu T, Zheng P, Liu Y. A reappraisal of CTLA-4 checkpoint blockade in cancer immunotherapy. Cell Res 2018; 28:416-432. [PMID: 29472691 PMCID: PMC5939050 DOI: 10.1038/s41422-018-0011-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
It is assumed that anti-CTLA-4 antibodies cause tumor rejection by blocking negative signaling from B7-CTLA-4 interactions. Surprisingly, at concentrations considerably higher than plasma levels achieved by clinically effective dosing, the anti-CTLA-4 antibody Ipilimumab blocks neither B7 trans-endocytosis by CTLA-4 nor CTLA-4 binding to immobilized or cell-associated B7. Consequently, Ipilimumab does not increase B7 on dendritic cells (DCs) from either CTLA4 gene humanized (Ctla4h/h) or human CD34+ stem cell-reconstituted NSG™ mice. In Ctla4h/m mice expressing both human and mouse CTLA4 genes, anti-CTLA-4 antibodies that bind to human but not mouse CTLA-4 efficiently induce Treg depletion and Fc receptor-dependent tumor rejection. The blocking antibody L3D10 is comparable to the non-blocking Ipilimumab in causing tumor rejection. Remarkably, L3D10 progenies that lose blocking activity during humanization remain fully competent in inducing Treg depletion and tumor rejection. Anti-B7 antibodies that effectively block CD4 T cell activation and de novo CD8 T cell priming in lymphoid organs do not negatively affect the immunotherapeutic effect of Ipilimumab. Thus, clinically effective anti-CTLA-4 mAb causes tumor rejection by mechanisms that are independent of checkpoint blockade but dependent on the host Fc receptor. Our data call for a reappraisal of the CTLA-4 checkpoint blockade hypothesis and provide new insights for the next generation of safe and effective anti-CTLA-4 mAbs.
Collapse
Affiliation(s)
- Xuexiang Du
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Fei Tang
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Mingyue Liu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Juanjuan Su
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Yan Zhang
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Wei Wu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | | | - Christopher A Lazarski
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Peng Zhang
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Xu Wang
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Peiying Ye
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | | | - Eugene Hwang
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Tinghui Zhu
- Alphamab, Inc., Suzhou, Jiangsu, 215125, China
| | - Ting Xu
- Alphamab, Inc., Suzhou, Jiangsu, 215125, China
| | - Pan Zheng
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA. .,OncoImmune, Inc., Rockville, MD, 20852, USA.
| | - Yang Liu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,OncoImmune, Inc., Rockville, MD, 20852, USA
| |
Collapse
|
50
|
Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood 2018; 131:58-67. [PMID: 29118008 PMCID: PMC6317697 DOI: 10.1182/blood-2017-06-741033] [Citation(s) in RCA: 739] [Impact Index Per Article: 123.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/31/2017] [Indexed: 02/08/2023] Open
Abstract
CD28 and CTLA-4 are members of a family of immunoglobulin-related receptors that are responsible for various aspects of T-cell immune regulation. The family includes CD28, CTLA-4, and ICOS as well as other proteins, including PD-1, BTLA, and TIGIT. These receptors have both stimulatory (CD28, ICOS) and inhibitory roles (CTLA-4, PD-1, BTLA, and TIGIT) in T-cell function. Increasingly, these pathways are targeted as part of immune modulatory strategies to treat cancers, referred to generically as immune checkpoint blockade, and conversely to treat autoimmunity and CTLA-4 deficiency. Here, we focus on the biology of the CD28/CTLA-4 pathway as a framework for understanding the impacts of therapeutic manipulation of this pathway.
Collapse
Affiliation(s)
- Behzad Rowshanravan
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Neil Halliday
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - David M Sansom
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| |
Collapse
|