1
|
Martín-Otal C, Sánchez-Moreno I, Gómez-Morón A, Castro C, Casares N, Navarro F, Gorraiz M, Justicia-Lirio P, Pareja F, Collantes M, Peñuelas I, Iñarrairaegui M, Sangro B, Vivas I, Larrayoz M, Rodriguez JR, Prosper F, Hervas-Stubbs S, Martin-Cofreces N, Lasarte JJ, Lozano T. Phosphatidylserine as a tumor target for CAR-T cell therapy. J Immunother Cancer 2025; 13:e009468. [PMID: 39988346 PMCID: PMC11848672 DOI: 10.1136/jitc-2024-009468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 02/03/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Phosphatidylserine (PS) exposed on apoptotic cells promotes immune clearance of dead cells without inducing inflammation. Conversely, PS exposure on live tumor cells promotes an immunosuppressive tumor microenvironment that hinders antitumor immune responses. After confirming elevated PS levels in various tumor cell lines and cancer tissues, we aimed to investigate its potential as a target antigen for chimeric antigen receptor T cell (CAR-T) therapy. METHODS We used two different approaches to target PS. First, we employed the adaptor proteins, EDAnnexin or BCMAnnexin comprising annexin V and EDA (extra domain A of fibronectin) or B-cell maturation antigen (BCMA) antigens, to redirect the lytic activity of EDA CAR-T or BCMA CAR-T cells toward PS-expressing tumor cells. In a second approach, we developed an annexin V-based CAR (Anxa CAR-T) to directly recognize PS-positive tumor cells. RESULTS The adaptors proteins EDAnnexin and BCMAnnexin successfully redirected EDA CAR-T or BCMA CAR-T cell activity, leading to an efficient recognition of PS+ tumor cells in vitro. However, the established immunological synapse differs significantly from that observed when CAR-T cells recognize the tumor cells directly. In vivo administration of the adaptor proteins, combined with the corresponding CAR-T cells, displayed antitumor activity in mice bearing PS+ tumors. Regarding the second approach, Anxa CAR-T cells effectively recognized and killed PS+ tumor cells in vitro. Nonetheless, PS exposure on T-cell membranes during T-cell activation impeded efficient Anxa CAR-T cell manufacturing due to fratricide. By optimizing retroviral dose to reduce Anxa CAR expression on the cell membrane, or by using the multikinase inhibitor dasatinib, the fratricide effect was mitigated, enabling successful Anxa CARLow-T cell production. Remarkably, Anxa CARLow-T cells demonstrated antitumor activity in in vivo murine models of PS+ hepatocarcinoma and teratocarcinoma. No signs of toxicity were observed after Anxa CAR-T cell administration. CONCLUSIONS PS holds promise as a target antigen for CAR-T cell therapy, underscoring the need to address fratricide as a key challenge in the development of PS-targeting CAR-T cells.
Collapse
Affiliation(s)
- Celia Martín-Otal
- Program of Immunology and Inmunoterapy, CIMA Universidad de Navarra, Pamplona, Spain
| | - Inés Sánchez-Moreno
- Program of Immunology and Inmunoterapy, CIMA Universidad de Navarra, Pamplona, Spain
| | - Alvaro Gómez-Morón
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid, Madrid, Spain
| | - Carla Castro
- Program of Immunology and Inmunoterapy, CIMA Universidad de Navarra, Pamplona, Spain
| | - Noelia Casares
- Program of Immunology and Inmunoterapy, CIMA Universidad de Navarra, Pamplona, Spain
| | - Flor Navarro
- Program of Immunology and Inmunoterapy, CIMA Universidad de Navarra, Pamplona, Spain
| | - Marta Gorraiz
- Program of Immunology and Inmunoterapy, CIMA Universidad de Navarra, Pamplona, Spain
| | - Pedro Justicia-Lirio
- Program of Immunology and Inmunoterapy, CIMA Universidad de Navarra, Pamplona, Spain
| | - Felix Pareja
- Department of Nuclear Medicine, CIMA Universidad de Navarra, Pamplona, Spain
| | - María Collantes
- Department of Nuclear Medicine, CIMA Universidad de Navarra, Pamplona, Spain
| | - Iván Peñuelas
- Department of Nuclear Medicine, CIMA Universidad de Navarra, Pamplona, Spain
| | | | - Bruno Sangro
- IdiSNA, Pamplona, Spain
- Liver Unit, University Clinic of Navarra, Pamplona, Spain
| | - Isabel Vivas
- IdiSNA, Pamplona, Spain
- Radiology, University Clinic of Navarra, Pamplona, Spain
| | - Marta Larrayoz
- IdiSNA, Pamplona, Spain
- Hemato-Oncology Program, CIMA Universidad de Navarra, Pamplona, Spain
| | - Juan Roberto Rodriguez
- IdiSNA, Pamplona, Spain
- Hemato-Oncology Program, CIMA Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- IdiSNA, Pamplona, Spain
- Hematology and Cell Therapy Department, University Clinic of Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Inmunoterapy, CIMA Universidad de Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
| | | | - Juan Jose Lasarte
- Program of Immunology and Inmunoterapy, CIMA Universidad de Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
| | - Teresa Lozano
- Program of Immunology and Inmunoterapy, CIMA Universidad de Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
| |
Collapse
|
2
|
Kenney RT, Cini JK, Dexter S, DaFonseca M, Bingham J, Kuan I, Chawla SP, Polasek TM, Lickliter J, Ryan PJ. A phase I trial of SON-1010, a tumor-targeted, interleukin-12-linked, albumin-binding cytokine, shows favorable pharmacokinetics, pharmacodynamics, and safety in healthy volunteers. Front Immunol 2024; 15:1362775. [PMID: 38487528 PMCID: PMC10937388 DOI: 10.3389/fimmu.2024.1362775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Background The benefits of recombinant interleukin-12 (rIL-12) as a multifunctional cytokine and potential immunotherapy for cancer have been sought for decades based on its efficacy in multiple mouse models. Unexpected toxicity in the first phase 2 study required careful attention to revised dosing strategies. Despite some signs of efficacy since then, most rIL-12 clinical trials have encountered hurdles such as short terminal elimination half-life (T½), limited tumor microenvironment targeting, and substantial systemic toxicity. We developed a strategy to extend the rIL-12 T½ that depends on binding albumin in vivo to target tumor tissue, using single-chain rIL-12 linked to a fully human albumin binding (FHAB) domain (SON-1010). After initiating a dose-escalation trial in patients with cancer (SB101), a randomized, double-blind, placebo-controlled, single-ascending dose (SAD) phase 1 trial in healthy volunteers (SB102) was conducted. Methods SB102 (NCT05408572) focused on safety, tolerability, pharmacokinetic (PK), and pharmacodynamic (PD) endpoints. SON-1010 at 50-300 ng/kg or placebo administered subcutaneously on day 1 was studied at a ratio of 6:2, starting with two sentinels; participants were followed through day 29. Safety was reviewed after day 22, before enrolling the next cohort. A non-compartmental analysis of PK was performed and correlations with the PD results were explored, along with a comparison of the SON-1010 PK profile in SB101. Results Participants receiving SON-1010 at 100 ng/kg or higher tolerated the injection but generally experienced more treatment-emergent adverse effects (TEAEs) than those receiving the lowest dose. All TEAEs were transient and no other dose relationship was noted. As expected with rIL-12, initial decreases in neutrophils and lymphocytes returned to baseline by days 9-11. PK analysis showed two-compartment elimination in SB102 with mean T½ of 104 h, compared with one-compartment elimination in SB101, which correlated with prolonged but controlled and dose-related increases in interferon-gamma (IFNγ). There was no evidence of cytokine release syndrome based on minimal participant symptoms and responses observed with other cytokines. Conclusion SON-1010, a novel presentation for rIL-12, was safe and well-tolerated in healthy volunteers up to 300 ng/kg. Its extended half-life leads to a prolonged but controlled IFNγ response, which may be important for tumor control in patients. Clinical trial registration https://clinicaltrials.gov/study/NCT05408572, identifier NCT05408572.
Collapse
Affiliation(s)
| | - John K. Cini
- Sonnet BioTherapeutics, Inc, Princeton, NJ, United States
| | - Susan Dexter
- Sonnet BioTherapeutics, Inc, Princeton, NJ, United States
| | | | | | | | - Sant P. Chawla
- Sarcoma Oncology Center, Santa Monica, CA, United States
| | - Thomas M. Polasek
- Centre for Medicine Use and Safety, Monash University, Melbourne, VIC, Australia
- InClin, Inc, San Mateo, CA, United States
| | | | | |
Collapse
|
3
|
Bartneck J, Hartmann AK, Stein L, Arnold-Schild D, Klein M, Stassen M, Marini F, Pielenhofer J, Meiser SL, Langguth P, Mack M, Muth S, Probst HC, Schild H, Radsak MP. Tumor-infiltrating CCR2 + inflammatory monocytes counteract specific immunotherapy. Front Immunol 2023; 14:1267866. [PMID: 37849753 PMCID: PMC10577317 DOI: 10.3389/fimmu.2023.1267866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Tumor development and progression is shaped by the tumor microenvironment (TME), a heterogeneous assembly of infiltrating and resident host cells, their secreted mediators and intercellular matrix. In this context, tumors are infiltrated by various immune cells with either pro-tumoral or anti-tumoral functions. Recently, we published our non-invasive immunization platform DIVA suitable as a therapeutic vaccination method, further optimized by repeated application (DIVA2). In our present work, we revealed the therapeutic effect of DIVA2 in an MC38 tumor model and specifically focused on the mechanisms induced in the TME after immunization. DIVA2 resulted in transient tumor control followed by an immune evasion phase within three weeks after the initial tumor inoculation. High-dimensional flow cytometry analysis and single-cell mRNA-sequencing of tumor-infiltrating leukocytes revealed cytotoxic CD8+ T cells as key players in the immune control phase. In the immune evasion phase, inflammatory CCR2+ PDL-1+ monocytes with immunosuppressive properties were recruited into the tumor leading to suppression of DIVA2-induced tumor-reactive T cells. Depletion of CCR2+ cells with specific antibodies resulted in prolonged survival revealing CCR2+ monocytes as important for tumor immune escape in the TME. In summary, the present work provides a platform for generating a strong antigen-specific primary and memory T cell immune response using the optimized transcutaneous immunization method DIVA2. This enables protection against tumors by therapeutic immune control of solid tumors and highlights the immunosuppressive influence of tumor infiltrating CCR2+ monocytes that need to be inactivated in addition for successful cancer immunotherapy.
Collapse
Affiliation(s)
- Joschka Bartneck
- III Department of Medicine - Hematology, Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Ann-Kathrin Hartmann
- III Department of Medicine - Hematology, Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Lara Stein
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Danielle Arnold-Schild
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias Klein
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael Stassen
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jonas Pielenhofer
- Institute of Pharmaceutical and Biomedical Sciences of the Johannes Gutenberg-University, Biopharmaceutics and Pharmaceutical Technology, Mainz, Germany
| | - Sophie Luise Meiser
- Institute of Pharmaceutical and Biomedical Sciences of the Johannes Gutenberg-University, Biopharmaceutics and Pharmaceutical Technology, Mainz, Germany
| | - Peter Langguth
- Institute of Pharmaceutical and Biomedical Sciences of the Johannes Gutenberg-University, Biopharmaceutics and Pharmaceutical Technology, Mainz, Germany
| | - Matthias Mack
- University Hospital Regensburg, Department Nephrology, Regensburg, Germany
| | - Sabine Muth
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Hans-Christian Probst
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Markus Philipp Radsak
- III Department of Medicine - Hematology, Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
4
|
Trujillo-Cirilo L, Weiss-Steider B, Vargas-Angeles CA, Corona-Ortega MT, Rangel-Corona R. Immune microenvironment of cervical cancer and the role of IL-2 in tumor promotion. Cytokine 2023; 170:156334. [PMID: 37598478 DOI: 10.1016/j.cyto.2023.156334] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
The tumor microenvironment (TME) is a heterogeneous mixture of resident and tumor cells that maintain close communication through their secretion products. The composition of the TME is dynamic and complex among the different types of cancer, where the immune cells play a relevant role in the elimination of tumor cells, however, under certain circumstances they contribute to tumor development. In cervical cancer (CC) the human papilloma virus (HPV) shapes the microenvironment in order to mediate persistent infections that favors transformation and tumor development. Interleukin-2 (IL-2) is an important TME cytokine that induces CD8+ effector T cells and NKs to eliminate tumor cells, however, IL-2 can also suppress the immune response through Treg cells. Recent studies have shown that CC cells express the IL-2 receptor (IL-2R), that are induced to proliferate at low concentrations of exogenous IL-2 through alterations in the JAK/STAT pathway. This review provides an overview of the main immune cells that make up the TME in CC, as well as the participation of IL-2 in the tumor promotion. Finally, it is proposed that the low density of IL-2 produced by immunocompetent cells is used by tumor cells through its IL-2R as a mechanism to proliferate simultaneously depleting this molecule in order to evade immune response.
Collapse
Affiliation(s)
- Leonardo Trujillo-Cirilo
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico.
| | - Benny Weiss-Steider
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Carlos Adrian Vargas-Angeles
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Maria Teresa Corona-Ortega
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Rosalva Rangel-Corona
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| |
Collapse
|
5
|
Rahman T, Das A, Abir MH, Nafiz IH, Mahmud AR, Sarker MR, Emran TB, Hassan MM. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts. Cytokine 2023; 169:156268. [PMID: 37320965 DOI: 10.1016/j.cyto.2023.156268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cytokines are a protein family comprising interleukins, lymphokines, chemokines, monokines and interferons. They are significant constituents of the immune system, and they act in accordance with specific cytokine inhibiting compounds and receptors for the regulation of immune responses. Cytokine studies have resulted in the establishment of newer therapies which are being utilized for the treatment of several malignant diseases. The advancement of these therapies has occurred from two distinct strategies. The first strategy involves administrating the recombinant and purified cytokines, and the second strategy involves administrating the therapeutics which inhibits harmful effects of endogenous and overexpressed cytokines. Colony stimulating factors and interferons are two exemplary therapeutics of cytokines. An important effect of cytokine receptor antagonist is that they can serve as anti-inflammatory agents by altering the treatments of inflammation disorder, therefore inhibiting the effects of tumour necrosis factor. In this article, we have highlighted the research behind the establishment of cytokines as therapeutics and vaccine adjuvants, their role of immunotolerance, and their limitations.
Collapse
Affiliation(s)
- Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Rifat Sarker
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Queensland 4343, Australia.
| |
Collapse
|
6
|
Aljabban J, Syed S, Syed S, Rohr M, Mukhtar M, Aljabban H, Cottini F, Mohammed M, Hughes T, Gonzalez T, Panahiazr M, Hadley D, Benson D. Characterization of monoclonal gammopathy of undetermined significance progression to multiple myeloma through meta-analysis of GEO data. Heliyon 2023; 9:e17298. [PMID: 37539132 PMCID: PMC10394915 DOI: 10.1016/j.heliyon.2023.e17298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023] Open
Abstract
The etiology of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) is still obscure as are the processes that enable the progression of MGUS to MM. Understanding the unique vs. shared transcriptomes can potentially elucidate why individuals develop one or the other. Furthermore, highlighting key pathways and genes involved in the pathogenesis of MM or the development of MGUS to MM may allow the discovery of novel drug targets and therapies. We employed STARGEO platform to perform three separate meta-analysis to compare MGUS and MM transcriptomes. For these analyses we tagged (1) 101 MGUS patient plasma cells from bone marrow samples and 64 plasma cells from healthy controls (2) 383 MM patient CD138+ cells from bone marrow and the 101 MGUS samples in the first analysis as controls (3) 517 MM patient peripheral blood samples and 97 peripheral blood samples from healthy controls. We then utilized Ingenuity Pathway Analysis (IPA) to analyze the unique genomic signatures within and across these samples. Our study identified genes that may have unique roles in MGUS (GADD45RA and COMMD3), but also newly identified signaling pathways (EIF2, JAK/STAT, and MYC) and gene activity (NRG3, RBFOX2, and PARP15) in MGUS that have previously been shown to be involved in MM suggesting a spectrum of molecular overlap. On the other hand, genes such as DUSP4, RN14, LAMP5, differentially upregulated in MM, may be seen as tipping the scales from benignity to malignancy and could serve as drug targets or novel biomarkers for risk of progression. Furthermore, our analysis of MM identified newly associated gene/pathway activity such as inhibition of Wnt-signaling and defective B cell development. Finally, IPA analysis, suggests the multifactorial, oncogenic qualities of IFNγ signaling in MM may be a unifying pathway for these diverse mechanisms and prompts the need for further studies.
Collapse
Affiliation(s)
- Jihad Aljabban
- University of Wisconsin Hospital and Clinics, Department of Medicine, United States
| | - Sharjeel Syed
- University of Chicago Medical Center, Department of Medicine, United States
| | - Saad Syed
- Northwestern Memorial Hospital, Department of Medicine, United States
| | - Michael Rohr
- University of Central Florida College of Medicine, United States
| | - Mohamed Mukhtar
- Michigan State University College of Human Medicine, United States
| | | | - Francesca Cottini
- Ohio State University Wexner Medical Center, United States
- James Cancer Hospital Solove Research Institute, United States
| | | | - Tiffany Hughes
- Ohio State University Wexner Medical Center, United States
| | | | - Maryam Panahiazr
- University of California San Francisco, Department of Surgery, United States
| | - Dexter Hadley
- University of Central Florida College of Medicine, United States
- University of Central Florida, Chief of the Department of Artificial Intelligence, United States
| | - Don Benson
- Ohio State University Wexner Medical Center, United States
- James Cancer Hospital Solove Research Institute, United States
| |
Collapse
|
7
|
Choi M, Shin J, Lee CE, Chung JY, Kim M, Yan X, Yang WH, Cha JH. Immunogenic cell death in cancer immunotherapy. BMB Rep 2023; 56:275-286. [PMID: 37081756 PMCID: PMC10230015 DOI: 10.5483/bmbrep.2023-0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer immunotherapy has been acknowledged as a new paradigm for cancer treatment, with notable therapeutic effects on certain cancer types. Despite their significant potential, clinical studies over the past decade have revealed that cancer immunotherapy has low response rates in the majority of solid tumors. One of the key causes for poor responses is known to be the relatively low immunogenicity of solid tumors. Because most solid tumors are immune desert 'cold tumors' with antitumor immunity blocked from the onset of innate immunity, combination therapies that combine validated T-based therapies with approaches that can increase tumor-immunogenicity are being considered as relevant therapeutic options. This review paper focuses on immunogenic cell death (ICD) as a way of enhancing immunogenicity in tumor tissues. We will thoroughly review how ICDs such as necroptosis, pyroptosis, and ferroptosis can improve anti-tumor immunity and outline clinical trials targeting ICD. Finally, we will discuss the potential of ICD inducers. as an adjuvant for cancer immunotherapy.[BMB Reports 2023; 56(5): 275-286].
Collapse
Affiliation(s)
- Minji Choi
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Jisoo Shin
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Chae-Eun Lee
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Joo-Yoon Chung
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Minji Kim
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Xiuwen Yan
- Affiliated Cancer Institute & Hospital and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 910095, China, Taichung 40402, Taiwan
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea, Taichung 40402, Taiwan
| |
Collapse
|
8
|
Choi M, Shin J, Lee CE, Chung JY, Kim M, Yan X, Yang WH, Cha JH. Immunogenic cell death in cancer immunotherapy. BMB Rep 2023; 56:275-286. [PMID: 37081756 PMCID: PMC10230015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 04/22/2023] Open
Abstract
Cancer immunotherapy has been acknowledged as a new paradigm for cancer treatment, with notable therapeutic effects on certain cancer types. Despite their significant potential, clinical studies over the past decade have revealed that cancer immunotherapy has low response rates in the majority of solid tumors. One of the key causes for poor responses is known to be the relatively low immunogenicity of solid tumors. Because most solid tumors are immune desert 'cold tumors' with antitumor immunity blocked from the onset of innate immunity, combination therapies that combine validated T-based therapies with approaches that can increase tumor-immunogenicity are being considered as relevant therapeutic options. This review paper focuses on immunogenic cell death (ICD) as a way of enhancing immunogenicity in tumor tissues. We will thoroughly review how ICDs such as necroptosis, pyroptosis, and ferroptosis can improve anti-tumor immunity and outline clinical trials targeting ICD. Finally, we will discuss the potential of ICD inducers. as an adjuvant for cancer immunotherapy.[BMB Reports 2023; 56(5): 275-286].
Collapse
Affiliation(s)
- Minji Choi
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Jisoo Shin
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Chae-Eun Lee
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Joo-Yoon Chung
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Minji Kim
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Xiuwen Yan
- Affiliated Cancer Institute & Hospital and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 910095, China, Taichung 40402, Taiwan
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea, Taichung 40402, Taiwan
| |
Collapse
|
9
|
Habanjar O, Bingula R, Decombat C, Diab-Assaf M, Caldefie-Chezet F, Delort L. Crosstalk of Inflammatory Cytokines within the Breast Tumor Microenvironment. Int J Mol Sci 2023; 24:4002. [PMID: 36835413 PMCID: PMC9964711 DOI: 10.3390/ijms24044002] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Several immune and immunocompetent cells, including dendritic cells, macrophages, adipocytes, natural killer cells, T cells, and B cells, are significantly correlated with the complex discipline of oncology. Cytotoxic innate and adaptive immune cells can block tumor proliferation, and others can prevent the immune system from rejecting malignant cells and provide a favorable environment for tumor progression. These cells communicate with the microenvironment through cytokines, a chemical messenger, in an endocrine, paracrine, or autocrine manner. These cytokines play an important role in health and disease, particularly in host immune responses to infection and inflammation. They include chemokines, interleukins (ILs), adipokines, interferons, colony-stimulating factors (CSFs), and tumor necrosis factor (TNF), which are produced by a wide range of cells, including immune cells, such as macrophages, B-cells, T-cells, and mast cells, as well as endothelial cells, fibroblasts, a variety of stromal cells, and some cancer cells. Cytokines play a crucial role in cancer and cancer-related inflammation, with direct and indirect effects on tumor antagonistic or tumor promoting functions. They have been extensively researched as immunostimulatory mediators to promote the generation, migration and recruitment of immune cells that contribute to an effective antitumor immune response or pro-tumor microenvironment. Thus, in many cancers such as breast cancer, cytokines including leptin, IL-1B, IL-6, IL-8, IL-23, IL-17, and IL-10 stimulate while others including IL-2, IL-12, and IFN-γ, inhibit cancer proliferation and/or invasion and enhance the body's anti-tumor defense. Indeed, the multifactorial functions of cytokines in tumorigenesis will advance our understanding of cytokine crosstalk pathways in the tumor microenvironment, such as JAK/STAT, PI3K, AKT, Rac, MAPK, NF-κB, JunB, cFos, and mTOR, which are involved in angiogenesis, cancer proliferation and metastasis. Accordingly, targeting and blocking tumor-promoting cytokines or activating and amplifying tumor-inhibiting cytokines are considered cancer-directed therapies. Here, we focus on the role of the inflammatory cytokine system in pro- and anti-tumor immune responses, discuss cytokine pathways involved in immune responses to cancer and some anti-cancer therapeutic applications.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Rea Bingula
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie Moléculaire et Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
10
|
Sperring CP, Argenziano MG, Savage WM, Teasley DE, Upadhyayula PS, Winans NJ, Canoll P, Bruce JN. Convection-enhanced delivery of immunomodulatory therapy for high-grade glioma. Neurooncol Adv 2023; 5:vdad044. [PMID: 37215957 PMCID: PMC10195574 DOI: 10.1093/noajnl/vdad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The prognosis for glioblastoma has remained poor despite multimodal standard of care treatment, including temozolomide, radiation, and surgical resection. Further, the addition of immunotherapies, while promising in a number of other solid tumors, has overwhelmingly failed in the treatment of gliomas, in part due to the immunosuppressive microenvironment and poor drug penetrance to the brain. Local delivery of immunomodulatory therapies circumvents some of these challenges and has led to long-term remission in select patients. Many of these approaches utilize convection-enhanced delivery (CED) for immunological drug delivery, allowing high doses to be delivered directly to the brain parenchyma, avoiding systemic toxicity. Here, we review the literature encompassing immunotherapies delivered via CED-from preclinical model systems to clinical trials-and explore how their unique combination elicits an antitumor response by the immune system, decreases toxicity, and improves survival among select high-grade glioma patients.
Collapse
Affiliation(s)
- Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - William M Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Damian E Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Nathan J Winans
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
11
|
Li HX, Wang SQ, Lian ZX, Deng SL, Yu K. Relationship between Tumor Infiltrating Immune Cells and Tumor Metastasis and Its Prognostic Value in Cancer. Cells 2022; 12:cells12010064. [PMID: 36611857 PMCID: PMC9818185 DOI: 10.3390/cells12010064] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Tumor metastasis is an important reason for the difficulty of tumor treatment. Besides the tumor cells themselves, the tumor microenvironment plays an important role in the process of tumor metastasis. Tumor infiltrating immune cells (TIICs) are one of the main components of TME and plays an important role in every link of tumor metastasis. This article mainly reviews the role of tumor-infiltrating immune cells in epithelial mesenchymal transformation, extracellular matrix remodeling, tumor angiogenesis and formation of pre-metastatic niche. The value of TIICs in the prognosis of cervical cancer, lung cancer and breast cancer was also discussed. We believe that accurate prognosis of cancer treatment outcomes is conducive to further improving treatment regimens, determining personalized treatment strategies, and ultimately achieving successful cancer treatment. This paper elucidates the relationship between tumor and TIICs in order to explore the function of immune cells in different diseases and provide new ideas for the treatment of cancer.
Collapse
Affiliation(s)
- Huan-Xiang Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shu-Qi Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shou-Long Deng
- National Health Commission (NHC) of China Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.-L.D.); (K.Y.)
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (S.-L.D.); (K.Y.)
| |
Collapse
|
12
|
Rahmani S, Yazdanpanah N, Rezaei N. Natural killer cells and acute myeloid leukemia: promises and challenges. Cancer Immunol Immunother 2022; 71:2849-2867. [PMID: 35639116 PMCID: PMC10991240 DOI: 10.1007/s00262-022-03217-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Acute myeloid leukemia (AML) is considered as one of the most malignant conditions of the bone marrow. Over the past few decades, despite substantial progresses in the management of AML, relapse remission remains a major problem. Natural killer cells (NK cells) are known as a unique component of the innate immune system. Due to swift tumor detection, distinct cytotoxic action, and extensive immune interaction, NK cells have been used in various cancer settings for decades. It has been a growing knowledge of therapeutic magnitudes ranging from adoptive NK cell transfer to chimeric antigen receptor NK cells, aiming to achieve better therapeutic responses in patients with AML. In this article, the potentials of NK cells for treatment of AML are highlighted, and challenges for such therapeutic methods are discussed. In addition, the clinical application of NK cells, mainly in patients with AML, is pictured according to the existing evidence.
Collapse
Affiliation(s)
- Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Martín-Otal C, Lasarte-Cia A, Serrano D, Casares N, Conde E, Navarro F, Sánchez-Moreno I, Gorraiz M, Sarrión P, Calvo A, De Andrea CE, Echeveste J, Vilas A, Rodriguez-Madoz JR, San Miguel J, Prosper F, Hervas-Stubbs S, Lasarte JJ, Lozano T. Targeting the extra domain A of fibronectin for cancer therapy with CAR-T cells. J Immunother Cancer 2022; 10:jitc-2021-004479. [PMID: 35918123 PMCID: PMC9351345 DOI: 10.1136/jitc-2021-004479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND One of the main difficulties of adoptive cell therapies with chimeric antigen receptor (CAR)-T cells in solid tumors is the identification of specific target antigens. The tumor microenvironment can present suitable antigens for CAR design, even though they are not expressed by the tumor cells. We have generated a CAR specific for the splice variant extra domain A (EDA) of fibronectin, which is highly expressed in the tumor stroma of many types of tumors but not in healthy tissues. METHODS EDA expression was explored in RNA-seq data from different human tumor types and by immunohistochemistry in paraffin-embedded tumor biopsies. Murine and human anti-EDA CAR-T cells were prepared using recombinant retro/lentiviruses, respectively. The functionality of EDA CAR-T cells was measured in vitro in response to antigen stimulation. The antitumor activity of EDA CAR-T cells was measured in vivo in C57BL/6 mice challenged with PM299L-EDA hepatocarcinoma cell line, in 129Sv mice-bearing F9 teratocarcinoma and in NSG mice injected with the human hepatocarcinoma cell line PLC. RESULTS EDA CAR-T cells recognized and killed EDA-expressing tumor cell lines in vitro and rejected EDA-expressing tumors in immunocompetent mice. Notably, EDA CAR-T cells showed an antitumor effect in mice injected with EDA-negative tumor cells lines when the tumor stroma or the basement membrane of tumor endothelial cells express EDA. Thus, EDA CAR-T administration delayed tumor growth in immunocompetent 129Sv mice challenged with teratocarcinoma cell line F9. EDA CAR-T treatment exerted an antiangiogenic effect and significantly reduced gene signatures associated with epithelial-mesenchymal transition, collagen synthesis, extracellular matrix organization as well as IL-6-STAT5 and KRAS pathways. Importantly, the human version of EDA CAR, that includes the human 41BB and CD3ζ endodomains, exerted strong antitumor activity in NSG mice challenged with the human hepatocarcinoma cell line PLC, which expresses EDA in the tumor stroma and the endothelial vasculature. EDA CAR-T cells exhibited a tropism for EDA-expressing tumor tissue and no toxicity was observed in tumor bearing or in healthy mice. CONCLUSIONS These results suggest that targeting the tumor-specific fibronectin splice variant EDA with CAR-T cells is feasible and offers a therapeutic option that is applicable to different types of cancer.
Collapse
Affiliation(s)
- Celia Martín-Otal
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Aritz Lasarte-Cia
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Diego Serrano
- Programa de Tumores sólidos, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Noelia Casares
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Enrique Conde
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Flor Navarro
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Inés Sánchez-Moreno
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Marta Gorraiz
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Patricia Sarrión
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Alfonso Calvo
- Programa de Tumores sólidos, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Carlos E De Andrea
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Departamento de Patología, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - José Echeveste
- Departamento de Patología, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Amaia Vilas
- Programa de Hemato-Oncología, Centro de Investigación Médica Aplicada, CIMA, Pamplona, Spain
| | - Juan Roberto Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain,Cancer Center Universidad de Navarra (CCUN), Universidad de Navarra, Pamplona, Spain
| | - Jesús San Miguel
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain,Cancer Center Universidad de Navarra (CCUN), Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Programa de Hemato-Oncología, Centro de Investigación Médica Aplicada, CIMA, Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain,Cancer Center Universidad de Navarra (CCUN), Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Juan Jose Lasarte
- Departamento de Hematología, Clínica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Teresa Lozano
- Departamento de Hematología, Clínica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
14
|
Abdelbaky SB, Ibrahim MT, Samy H, Mohamed M, Mohamed H, Mustafa M, Abdelaziz MM, Forrest ML, Khalil IA. Cancer immunotherapy from biology to nanomedicine. J Control Release 2021; 336:410-432. [PMID: 34171445 DOI: 10.1016/j.jconrel.2021.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
With the significant drawbacks of conventional cancer chemotherapeutics, cancer immunotherapy has demonstrated the ability to eradicate cancer cells and circumvent multidrug resistance (MDR) with fewer side effects than traditional cytotoxic therapies. Various immunotherapeutic agents have been investigated for that purpose including checkpoint inhibitors, cytokines, monoclonal antibodies and cancer vaccines. All these agents aid immune cells to recognize and engage tumor cells by acting on tumor-specific pathways, antigens or cellular targets. However, immunotherapeutics are still associated with some concerns such as off-target side effects and poor pharmacokinetics. Nanomedicine may resolve some limitations of current immunotherapeutics such as localizing delivery, controlling release and enhancing the pharmacokinetic profile. Herein, we discuss recent advances of immunotherapeutic agents with respect to their development and biological mechanisms of action, along with the advantages that nanomedicine strategies lend to immunotherapeutics by possibly improving therapeutic outcomes and minimizing side effects.
Collapse
Affiliation(s)
- Salma B Abdelbaky
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Molecular, Cellular, and Developmental Biology, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, United States of America
| | - Mayar Tarek Ibrahim
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Hebatallah Samy
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Menatalla Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Hebatallah Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Mahmoud Mustafa
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt
| | - Moustafa M Abdelaziz
- Department of Bioengineering, School of Engineering, The University of Kansas, Lawrence, KS 66045, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA.
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt.
| |
Collapse
|
15
|
Ahmed J, Chard LS, Yuan M, Wang J, Howells A, Li Y, Li H, Zhang Z, Lu S, Gao D, Wang P, Chu Y, Al Yaghchi C, Schwartz J, Alusi G, Lemoine N, Wang Y. A new oncolytic V accinia virus augments antitumor immune responses to prevent tumor recurrence and metastasis after surgery. J Immunother Cancer 2021; 8:jitc-2019-000415. [PMID: 32217766 PMCID: PMC7206973 DOI: 10.1136/jitc-2019-000415] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 01/02/2023] Open
Abstract
Background Local recurrence and remote metastasis are major challenges to overcome in order to improve the survival of patients with cancer after surgery. Oncolytic viruses are a particularly attractive option for prevention of postsurgical disease as they offer a non-toxic treatment option that can directly target residual tumor deposits and beneficially modulate the systemic immune environment that is suppressed post surgery and allows residual disease escape from control. Here, we report that a novel Vaccinia virus (VV), VVΔTKΔN1L (with deletion of both thymidine kinase (TK) and N1L genes) armed with interleukin 12 (IL-12), can prolong postoperative survival when used as a neoadjuvant treatment in different murine and hamster surgical models of cancer. Methods A tumor-targeted replicating VV with deletion of TK gene and N1L gene (VVΔTKΔN1L) was created. This virus was armed rationally with IL-12. The effect of VVΔTKΔN1L and VVΔTKΔN1L-IL12 on modulation of the tumor microenvironment and induction of tumor-specific immunity as well the feasibility and safety as a neoadjuvant agent for preventing recurrence and metastasis after surgery were assessed in several clinically relevant models. Results VVΔTKΔN1L can significantly prolong postoperative survival when used as a neoadjuvant treatment in three different surgery-induced metastatic models of cancer. Efficacy was critically dependent on elevation of circulating natural killer cells that was achieved by virus-induced cytokine production from cells infected with N1L-deleted, but not N1L-intact VV. This effect was further enhanced by arming VVΔTKΔN1L with IL-12, a potent antitumor cytokine. Five daily treatments with VVΔTKΔN1L-IL12 before surgery dramatically improved postsurgical survival. VVΔTKΔN1L armed with human IL-12 completely prevented tumor recurrence in surgical models of head and neck cancer in Syrian hamsters. Conclusions These data provide a proof of concept for translation of the regime into clinical trials. VVΔTKΔN1L-IL12 is a promising agent for use as an adjuvant to surgical treatment of solid tumors.
Collapse
Affiliation(s)
- Jahangir Ahmed
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Louisa S Chard
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ming Yuan
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jiwei Wang
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Anwen Howells
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Yuenan Li
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Haoze Li
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongxian Zhang
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuangshuang Lu
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Dongling Gao
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengju Wang
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongchao Chu
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Chadwan Al Yaghchi
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Joel Schwartz
- University of Illinois at Chicago, Chicago, Illinois, USA.,University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ghassan Alusi
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicholas Lemoine
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Yaohe Wang
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
16
|
Desai R, Coxon AT, Dunn GP. Therapeutic applications of the cancer immunoediting hypothesis. Semin Cancer Biol 2021; 78:63-77. [PMID: 33711414 DOI: 10.1016/j.semcancer.2021.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Since the late 19th century, the immune system has increasingly garnered interest as a novel avenue for cancer therapy, particularly given scientific breakthroughs in recent decades delineating the fundamental role of the immune system in tumorigenesis. The immunoediting hypothesis has articulated this role, describing three phases of the tumor-immune system interaction: Elimination, Equilibrium, and Escape wherein tumors progress from active immunologic surveillance and destruction through dynamic immunologic stasis to unfettered growth. The primary goals of immunotherapy are to restrict and revert progression through these phases, thereby improving the immune system's ability to control tumor growth. In this review, we detail the development and foundation of the cancer immunoediting hypothesis and apply this hypothesis to the dynamic immunotherapy field that includes checkpoint blockade, vaccine therapy, and adoptive cell transfer.
Collapse
Affiliation(s)
- Rupen Desai
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew T Coxon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Gavin P Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
17
|
Poniewierska-Baran A, Tokarz-Deptuła B, Deptuła W. The role of innate lymphoid cells in selected disease states - cancer formation, metabolic disorder and inflammation. Arch Med Sci 2021; 17:196-206. [PMID: 33488872 PMCID: PMC7811321 DOI: 10.5114/aoms.2019.89835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a recently described group of immune cells that can regulate homeostasis and protect mammalian organisms, including humans, from infections and diseases. Considering this, ILC research is still ongoing to better understand the biology of these cells and their roles in the human body. ILCs are a multifunctional group of immune cells, making it important for the medical community to be familiar with the latest research about the ILC families and their functions in selected disease states, such as cancer formation, metabolic disorders and inflammation. By discovering the roles of ILC populations and their participation in many disorders, we can improve disease diagnostics and patient healthcare.
Collapse
Affiliation(s)
| | - Beata Tokarz-Deptuła
- Department of Immunology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Wiesław Deptuła
- Veterinary Center of the Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
18
|
Biological Selenium Nano-particles Modify Immune Responses of Macrophages Exposed to Bladder Tumor Antigens. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01920-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Davoodvandi A, Darvish M, Borran S, Nejati M, Mazaheri S, Reza Tamtaji O, Hamblin MR, Masoudian N, Mirzaei H. The therapeutic potential of resveratrol in a mouse model of melanoma lung metastasis. Int Immunopharmacol 2020; 88:106905. [PMID: 32905970 DOI: 10.1016/j.intimp.2020.106905] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 01/17/2023]
Abstract
Resveratrol is an anticancer phytochemical polyphenol isolated from a natural origin, without any significant side effects. Resveratrol was investigated in immunocompetent mice with regards to its possible effect on lung cancer metastasis. Cytotoxicity was assessed in three melanoma cell lines (B16F10, B6, and A375) by administration of 20 and 40 μM resveratrol. B16F10 cells were transfected with pT-tdTomato vector to express red fluorescent protein (RFP). RFP-B16F10 cells were injected IV into 3 groups of 20 C57BL/6 mice (ten for tests and others for survival). The three groups include PBS, no treatment, and resveratrol 40 mg/kg IP (4X/week for 3 weeks). Lung tissues were analyzed by TUNEL assay, Western blot, and immunohistochemistry. The in vitro growth of all melanoma cell lines was significantly suppressed by 40 μM resveratrol for 3 days. The mean survival rate of mice was enhanced and the lung tumor growth was inhibited by in vivo IP injection of 40 mg/kg resveratrol. Increased CXCL10 and IFN-γ levels and decreased angiogenesis and less tumor infiltration by Tregs were found in the lung tumors. In conclusion, lung metastasis of melanoma was effectively inhibited by resveratrol treatment.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arāk, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Micheal R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA
| | - Nahid Masoudian
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
20
|
Dosset M, Castro A, Carter H, Zanetti M. Telomerase and CD4 T Cell Immunity in Cancer. Cancers (Basel) 2020; 12:cancers12061687. [PMID: 32630460 PMCID: PMC7352225 DOI: 10.3390/cancers12061687] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) is a conserved self-tumor antigen which is overexpressed in most tumors and plays a critical role in tumor formation and progression. As such, TERT is an antigen of great relevance to develop widely applicable immunotherapies. CD4 T cells play a major role in the anti-cancer response alone or with other effector cells such as CD8 T cells and NK cells. To date, efforts have been made to identify TERT peptides capable of stimulating CD4 T cells that are also able to bind diverse MHC-II alleles to ease immune status monitoring and immunotherapies. Here, we review the current status of TERT biology, TERT/MHC-II immunobiology, and past and current vaccine clinical trials. We propose that monitoring CD4 T cell immunity against TERT is a simple and direct way to assess immune surveillance in cancer patients and a new way to predict the response to immune checkpoint inhibitors (ICPi). Finally, we present the initial results of a systematic discovery of TERT peptides able to bind the most common HLA Class II alleles worldwide and show that the repertoire of MHC-II TERT peptides is wider than currently appreciated.
Collapse
Affiliation(s)
- Magalie Dosset
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-081, USA;
| | - Andrea Castro
- Division of Medical Genetics, Department of Medicine and Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; (A.C.); (H.C.)
- Health Science, Department of Biomedical Informatics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine and Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; (A.C.); (H.C.)
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-081, USA;
- Correspondence:
| |
Collapse
|
21
|
Mardani R, Hamblin MR, Taghizadeh M, Banafshe HR, Nejati M, Mokhtari M, Borran S, Davoodvandi A, Khan H, Jaafari MR, Mirzaei H. Nanomicellar-curcumin exerts its therapeutic effects via affecting angiogenesis, apoptosis, and T cells in a mouse model of melanoma lung metastasis. Pathol Res Pract 2020; 216:153082. [PMID: 32825950 DOI: 10.1016/j.prp.2020.153082] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Curcumin is a natural phytochemical polyphenol with significant anti-cancer effects and negligible side effects. In this study, the therapeutic capacity of nanomicellar-curcumin for treating lung metastasis was evaluated in an immunocompetent mouse model of metastatic melanoma. MARTIALS AND METHODS Two doses of nanomicellar-curcumin (i.e. 10 and 20 μM) were used to induce cytotoxicity in 3 melanoma cell lines. A total of 60 mice were allocated to 20 mice in each of three groups (10 for survival and 10 for assays). Groups were no treatment control, PBS control, nanomicellar-curcumin 20 mg/kg IP 4 times a week, for three weeks). Immunohistochemistry, TUNEL assay, and Western blots were used on lung samples. RESULTS Nanomicellar-curcumin inhibited the in vitro growth of B16 F10 melanoma cells at 20 μM over 72 h. In vivo, 20 mg/kg nanomicellar-curcumin injected IP, delayed tumor cell growth and significantly extended mouse survival rate. Tumor infiltration of regulatory T cells and angiogenesis were reduced, while IFN-γ and CXCL10 were increased. CONCLUSION Nanomicellar-curcumin can inhibit lung metastasis and growing melanoma via activation of apoptosis, activated T cells and inhibition of angiogenesis, tumor growth and regulatory T cells.
Collapse
Affiliation(s)
- Rajab Mardani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, United States
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mojgan Mokhtari
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Paul G. Allen Center for Computer Science &Engineering, University of Washington, United States
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Davoodvandi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R., Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
22
|
Mansurov A, Ishihara J, Hosseinchi P, Potin L, Marchell TM, Ishihara A, Williford JM, Alpar AT, Raczy MM, Gray LT, Swartz MA, Hubbell JA. Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours. Nat Biomed Eng 2020; 4:531-543. [PMID: 32284554 PMCID: PMC11095084 DOI: 10.1038/s41551-020-0549-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/12/2020] [Indexed: 12/23/2022]
Abstract
Checkpoint-inhibitor (CPI) immunotherapy has achieved remarkable clinical success, yet its efficacy in 'immunologically cold' tumours has been modest. Interleukin-12 (IL-12) is a powerful cytokine that activates the innate and adaptive arms of the immune system; however, the administration of IL-12 has been associated with immune-related adverse events. Here we show that, after intravenous administration of a collagen-binding domain fused to IL-12 (CBD-IL-12) in mice bearing aggressive mouse tumours, CBD-IL-12 accumulates in the tumour stroma due to exposed collagen in the disordered tumour vasculature. In comparison with the administration of unmodified IL-12, CBD-IL-12 induced sustained intratumoural levels of interferon-γ, substantially reduced its systemic levels as well as organ damage and provided superior anticancer efficacy, eliciting complete regression of CPI-unresponsive breast tumours. Furthermore, CBD-IL-12 potently synergized with CPI to eradicate large established melanomas, induced antigen-specific immunological memory and controlled tumour growth in a genetically engineered mouse model of melanoma. CBD-IL-12 may potentiate CPI immunotherapy for immunologically cold tumours.
Collapse
Affiliation(s)
- Aslan Mansurov
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jun Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
| | - Peyman Hosseinchi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Lambert Potin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Tiffany M Marchell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Ako Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - Aaron T Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Michal M Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Laura T Gray
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Melody A Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
23
|
Teranishi S, Kobayashi N, Katakura S, Kamimaki C, Kubo S, Shibata Y, Yamamoto M, Kudo M, Piao H, Kaneko T. Class A CpG oligodeoxynucleotide inhibits IFN-γ-induced signaling and apoptosis in lung cancer. Thorac Cancer 2020; 11:983-992. [PMID: 32067413 PMCID: PMC7113052 DOI: 10.1111/1759-7714.13351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Background Currently, anticancer immunotherapy based on PD‐1/PD‐L1 blockade with immune checkpoint inhibitors (ICIs) is being used as a standard therapy for non‐small cell lung cancer (NSCLC). However, more effective treatments are required as these tumors are often resistant and refractory. Here, we aimed to determine the effects of immunomodulatory oligodeoxynucleotides (ODNs) in terms of the presence or absence of CpG motifs and the number of consecutive guanosines. Methods Western blots were used to measure the molecules which regulate the expression of PD‐L1 in human lung cancer cell lines after incubation with several cytokines and ODNs. The expression of PD‐L1 and β2‐microglobulin (β2‐MG) on A549 cells, and IFN‐γ‐induced apoptosis with ODNs were examined by flow cytometry. The relationship between IFN‐γ receptor and ODN was analyzed by ELISA and immunofluorescence chemistry. Results Our results verified that A‐CpG ODNs suppress the upregulation of IFN‐γ‐induced PD‐L1 and β2‐MG expression. In addition, we found that ODNs with six or more consecutive guanosines (ODNs with poly‐G sequences) may competitively inhibit the IFN‐γ receptor and abolish the effect of IFN‐γ, thereby suppressing apoptosis and indoleamine 2,3‐dioxygenase 1 expression in human lung cancer cells. The tumor microenvironment regulates whether this action will promote or suppress tumor immunity. Thus, in immunotherapy with CpG ODNs, it is essential to consider the effect of ODNs with poly‐G sequences. Conclusions This study suggests that ODNs containing six or more consecutive guanosines may inhibit the binding of IFN‐γ to IFN‐γ receptor. However, it does not directly show that ODNs containing six or more consecutive guanosines competitively inhibit the IFN‐γ receptor, and further studies are warranted to confirm this finding. Key points Significant findings of the study: Oligodeoxynucleotides with a contiguous sequence of six or more guanosines may competitively inhibit the IFN‐γ receptor and abolish the action of IFN‐γ. This may suppress IFN‐γ‐induced apoptosis and indoleamine‐2,3‐dioxygenase‐1 expression in human lung cancer cells. What this study adds: A‐CpG and poly‐G ODN may overcome tolerance if the cause of ICI tolerance is high IDO expression. However, IFN‐γ also has the effect of suppressing apoptosis of cancer cells, and it is necessary to identify the cause of resistance.
Collapse
Affiliation(s)
- Shuhei Teranishi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Seigo Katakura
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chisato Kamimaki
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Sousuke Kubo
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yuji Shibata
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masaki Yamamoto
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Makoto Kudo
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Hongmei Piao
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
24
|
Rahimi Kalateh Shah Mohammad G, Ghahremanloo A, Soltani A, Fathi E, Hashemy SI. Cytokines as potential combination agents with PD-1/PD-L1 blockade for cancer treatment. J Cell Physiol 2020; 235:5449-5460. [PMID: 31970790 DOI: 10.1002/jcp.29491] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
Immunotherapy has caused a paradigm shift in the treatment of several malignancies, particularly the blockade of programmed death-1 (PD-1) and its specific receptor/ligand PD-L1 that have revolutionized the treatment of a variety of malignancies, but significant durable responses only occur in a small percentage of patients, and other patients failed to respond to the treatment. Even those who initially respond can ultimately relapse despite maintenance treatment, there is considerable potential for synergistic combinations of immunotherapy and chemotherapy agents with immune checkpoint inhibitors into conventional cancer treatments. The clinical experience in the use of cytokines in the clinical setting indicated the efficiency of cytokine therapy in cancer immunotherapy. Combinational approaches to enhancing PD-L1/PD-1 pathways blockade efficacy with several cytokines such as interleukin (IL)-2, IL-15, IL-21, IL-12, IL-10, and interferon-α (IFN-α) may result in additional benefits. In this review, the current state of knowledge about PD-1/PD-L1 inhibitors, the date in the literature to ascertain the combination of anti-PD-1/PD-L1 antibodies with cytokines is discussed. Finally, it is noteworthy that novel therapeutic approaches based on the efficient combination of recombinant cytokines with the PD-L1/PD-1 blockade therapy can enhance antitumor immune responses against various malignancies.
Collapse
Affiliation(s)
| | - Atefeh Ghahremanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmat Fathi
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Shomali N, Gharibi T, Vahedi G, Mohammed RN, Mohammadi H, Salimifard S, Marofi F. Mesenchymal stem cells as carrier of the therapeutic agent in the gene therapy of blood disorders. J Cell Physiol 2019; 235:4120-4134. [PMID: 31691976 DOI: 10.1002/jcp.29324] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
Abstract
Nonhematopoietic stem cells as a delivery platform of therapeutic useful genes have attracted widespread attention in recent years, owing to gained a long lifespan, easy separation, high proliferation, and high transfection capacity. Mesenchymal stem/stromal cells (MSCs) are the choice of the cells for gene and cell therapy due to high self-renewal capacity, high migration rate to the site of the tumor, and with immune suppressive and anti-inflammatory properties. Hence, it has a high potential of safety genetic modification of MSCs for antitumor gene expression and has paved the way for the clinical application of these cells to target the therapy of cancers and other diseases. The aim of gene therapy is targeted treatment of cancers and diseases through recovery, change, or enhancement cell performance to the sustained secretion of useful therapeutic proteins and induction expression of the functional gene in intended tissue. Recent developments in the vectors designing leading to the increase and durability of expression and improvement of the safety of the vectors that overcome a lot of problems, such as durability of expression and the host immune response. Nowadays, gene therapy approach is used by MSCs as a delivery vehicle in the preclinical and the clinical trials for the secretion of erythropoietin, recombinant antibodies, coagulation factors, cytokines, as well as angiogenic inhibitors in many blood disorders like anemia, hemophilia, and malignancies. In this study, we critically discuss the status of gene therapy by MSCs as a delivery vehicle for the treatment of blood disorders. Finally, the results of clinical trial studies are assessed, highlighting promising advantages of this emerging technology in the clinical setting.
Collapse
Affiliation(s)
- Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Rebar N Mohammed
- Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq.,Department of Microbiology, College of Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Sevda Salimifard
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Ghaemdoust F, Keshavarz-Fathi M, Rezaei N. Natural killer cells and cancer therapy, what we know and where we are going. Immunotherapy 2019; 11:1231-1251. [DOI: 10.2217/imt-2019-0040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are among the significant components of innate immune system and they have come to the first line of defense against tumor cells developing inside the body. CD56lo/CD16+ NK cells are highly cytotoxic and CD56hi NK cells can produce cytokines and perform a regulatory function. Specific features of NK cells have made them a unique choice for cancer immunotherapy. Simple interventions like cytokine-injection to boost the internal NK cells were the first trials to target these cells. Nowadays, many other types of intervention are under investigation, such as adoptive NK cell immunotherapy. In this paper, we will discuss the biology and function of NK cells in cancer immunosurveillance and therapeutic approaches against cancer via using NK cells.
Collapse
Affiliation(s)
- Faezeh Ghaemdoust
- School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran
| | - Mahsa Keshavarz-Fathi
- School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 1419733151, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 1419733151, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| |
Collapse
|
27
|
Goradel NH, Mohajel N, Malekshahi ZV, Jahangiri S, Najafi M, Farhood B, Mortezaee K, Negahdari B, Arashkia A. Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. J Cell Physiol 2018; 234:8636-8646. [PMID: 30515798 DOI: 10.1002/jcp.27850] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022]
Abstract
Cancer therapy using oncolytic viruses is an emerging area, in which viruses are engineered to selectively propagate in tumor tissues without affecting healthy cells. Because of the advantages that adenoviruses (Ads) have over other viruses, they are more considered. To achieve tumor selectivity, two main modifications on Ads genome have been applied: small deletions and insertion of tissue- or tumor-specific promoters. Despite oncolytic adenoviruses ability in tumor cell lysis and immune responses stimulation, to further increase their antitumor effects, genomic modifications have been carried out including insertion of checkpoint inhibitors and antigenic or immunostimulatory molecules into the adenovirus genome and combination with dendritic cells and chemotherapeutic agents. This study reviews oncolytic adenoviruses structures, their antitumor efficacy in combination with other therapeutic strategies, and finally challenges around this treatment approach.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasir Mohajel
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Jahangiri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
28
|
Haeryfar SMM, Shaler CR, Rudak PT. Mucosa-associated invariant T cells in malignancies: a faithful friend or formidable foe? Cancer Immunol Immunother 2018; 67:1885-1896. [PMID: 29470597 PMCID: PMC11028145 DOI: 10.1007/s00262-018-2132-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
Mucosa-associated invariant T (MAIT) cells are a subset of innate-like T lymphocytes known for their ability to respond to MHC-related protein 1 (MR1)-restricted stimuli and select cytokine signals. They are abundant in humans and especially enriched in mucosal layers, common sites of neoplastic transformation. MAIT cells have been found within primary and metastatic tumors. However, whether they promote malignancy or contribute to anticancer immunity is unclear. On the one hand, MAIT cells produce IL-17A in certain locations and under certain circumstances, which could in turn facilitate neoangiogenesis, intratumoral accumulation of immunosuppressive cell populations, and cancer progression. On the other hand, they can express a potent arsenal of cytotoxic effector molecules, NKG2D and IFN-γ, all of which have established roles in cancer immune surveillance. In this review, we highlight MAIT cells' characteristics as they might pertain to cancer initiation, progression, or control. We discuss recent findings, including our own, that link MAIT cells to cancer, with a focus on colorectal carcinoma, as well as some of the outstanding questions in this active area of research. Finally, we provide a hypothetical picture in which MAIT cells constitute attractive targets in cancer immunotherapy.
Collapse
Affiliation(s)
- S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, 1151 Richmond Street, London, ON, N6A 5C1, Canada.
- Centre for Human Immunology, Western University, London, ON, Canada.
- Lawson Health Research Institute, London, ON, Canada.
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, ON, Canada.
| | - Christopher R Shaler
- Department of Microbiology and Immunology, Western University, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| | - Patrick T Rudak
- Department of Microbiology and Immunology, Western University, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| |
Collapse
|
29
|
Abstract
Interferon-gamma (IFNG) has long been implicated as a central orchestrator of antitumor immune responses in the elimination stage of the immunoediting paradigm. However, mounting evidence suggests that IFNG may also have important and significant protumor roles to play in the equilibrium and escape phases through its regulatory effects on immunoevasive functions that promote tumorigenesis. These seemingly contradictory effects of IFNG undoubtedly play profound roles in not only the activation of inflammatory response to cancer but also in the determination of its outcome. In the face of the recent explosion of anticancer immunotherapeutic strategies in the clinic, it is critical that a complete understanding is achieved of the underpinnings of the mechanisms that determine the two faces of IFNG signaling in cancer. Here, the current state of this dichotomy is reviewed.
Collapse
Affiliation(s)
- M Raza Zaidi
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front Immunol 2018; 9:847. [PMID: 29780381 PMCID: PMC5945880 DOI: 10.3389/fimmu.2018.00847] [Citation(s) in RCA: 829] [Impact Index Per Article: 118.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Interferon-gamma (IFN-γ) is a pleiotropic molecule with associated antiproliferative, pro-apoptotic and antitumor mechanisms. This effector cytokine, often considered as a major effector of immunity, has been used in the treatment of several diseases, despite its adverse effects. Although broad evidence implicating IFN-γ in tumor immune surveillance, IFN-γ-based therapies undergoing clinical trials have been of limited success. In fact, recent reports suggested that it may also play a protumorigenic role, namely, through IFN-γ signaling insensitivity, downregulation of major histocompatibility complexes, and upregulation of indoleamine 2,3-dioxygenase and of checkpoint inhibitors, as programmed cell-death ligand 1. However, the IFN-γ-mediated responses are still positively associated with patient's survival in several cancers. Consequently, major research efforts are required to understand the immune contexture in which IFN-γ induces its intricate and highly regulated effects in the tumor microenvironment. This review discusses the current knowledge on the pro- and antitumorigenic effects of IFN-γ as part of the complex immune response to cancer, highlighting the relevance to identify IFN-γ responsive patients for the improvement of therapies that exploit associated signaling pathways.
Collapse
Affiliation(s)
- Flávia Castro
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Patrícia Cardoso
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Raquel Madeira Gonçalves
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Karine Serre
- IMM – Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Oliveira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Departamento de Patologia e Oncologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
Robertson MJ, Stamatkin CW, Pelloso D, Weisenbach J, Prasad NK, Safa AR. A Dose-escalation Study of Recombinant Human Interleukin-18 in Combination With Ofatumumab After Autologous Peripheral Blood Stem Cell Transplantation for Lymphoma. J Immunother 2018; 41:151-157. [PMID: 29517616 PMCID: PMC5847481 DOI: 10.1097/cji.0000000000000220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interleukin-18 (IL-18) is an immunostimulatory cytokine that augments antibody-dependent cellular cytotoxicity mediated by human natural killer cells against antibody-coated lymphoma cells in vitro and that has antitumor activity in animal models. Ofatumumab is a CD20 monoclonal antibody with activity against human B-cell lymphomas. A phase I study of recombinant human (rh) IL-18 given with ofatumumab was undertaken in patients with CD20 lymphoma who had undergone high-dose chemotherapy and autologous peripheral blood stem cell transplantation. Cohorts of 3 patients were given intravenous infusions of ofatumumab 1000 mg weekly for 4 weeks with escalating doses of rhIL-18 as a intravenous infusion weekly for 8 consecutive weeks. Nine male patients with CD20 lymphomas were given ofatumumab in combination with rhIL-18 at doses of 3, 10, and 30 μg/kg. No unexpected or dose-limiting toxicities were observed. The mean reduction from predose levels in the number of peripheral blood natural killer cells after the first rhIL-18 infusion was 91%, 96%, and 97% for the 3, 10, and 30 μg/kg cohorts, respectively. Serum concentrations of interferon-γ and chemokines transiently increased following IL-18 dosing. rhIL-18 can be given in biologically active doses by weekly infusions in combination with ofatumumab after peripheral blood stem cell transplantation to patients with lymphoma. A maximum tolerated dose of rhIL-18 plus ofatumumab was not determined. Further studies of rhIL-18 and CD20 monoclonal antibodies in B-cell malignancies are warranted.
Collapse
Affiliation(s)
- Michael J. Robertson
- Lymphoma Program and Bone Marrow and Stem Cell Transplantation Program, Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Christopher W. Stamatkin
- Therapeutic Validation Core, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| | - David Pelloso
- Lymphoma Program and Bone Marrow and Stem Cell Transplantation Program, Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jill Weisenbach
- Lymphoma Program and Bone Marrow and Stem Cell Transplantation Program, Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Nagendra K. Prasad
- Therapeutic Validation Core, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| | - Ahmad R. Safa
- Therapeutic Validation Core, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
32
|
Burkart C, Mukhopadhyay A, Shirley SA, Connolly RJ, Wright JH, Bahrami A, Campbell JS, Pierce RH, Canton DA. Improving therapeutic efficacy of IL-12 intratumoral gene electrotransfer through novel plasmid design and modified parameters. Gene Ther 2018. [DOI: 10.1038/s41434-018-0006-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Mojic M, Takeda K, Hayakawa Y. The Dark Side of IFN-γ: Its Role in Promoting Cancer Immunoevasion. Int J Mol Sci 2017; 19:E89. [PMID: 29283429 PMCID: PMC5796039 DOI: 10.3390/ijms19010089] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/26/2017] [Accepted: 12/26/2017] [Indexed: 02/07/2023] Open
Abstract
Interferon-γ (IFN-γ) is a pleiotropic cytokine that has long been praised as an important effector molecule of anti-tumor immunity, capable of suppressing tumor growth through various mechanisms. On the contrary to such a bright side of IFN-γ, it has also been involved in promoting an outgrowth of tumor cells with immunoevasive phenotype suggesting an existence of a dark "tumor-promoting" side effect of IFN-γ. In this review, we will summarize this multi-functional role of IFN-γ in tumor context, how it promotes changes in tumor phenotype towards increased fitness for growth in immunocompetent host. Furthermore, we summarize how IFN-γ is involved in homeostatic or cancer-triggered mechanisms to establish an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Marija Mojic
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan.
| | - Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan.
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan.
| |
Collapse
|
34
|
Hu Y, Yu T, Liu X, He Y, Deng L, Guo J, Hua Y, Luo T, Gao X. Improved anti-tumor efficacy via combination of oxaliplatin and fibrin glue in colorectal cancer. Oncotarget 2017; 9:2515-2526. [PMID: 29416788 PMCID: PMC5788656 DOI: 10.18632/oncotarget.23507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/05/2017] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer is very common worldwide and advanced colorectal cancer exhibited very poor clinical outcome. Oxaliplatin (OXP) is one of the principal chemotherapeutic agents in colorectal cancer treatment presenting impressive anti-tumor ability, limited by adverse effect in clinical practice. Fibrin glue (FG) is a biocompatible formulation made of fibrinogen and thrombin, extensively used in surgery for hemostasis, tissue adhesion and sealing. In this study, FG was innovatively applied as OXP delivery system and results showed enhanced anti-tumor performance in subcutaneous model and abdominal metastasis model of murine colorectal cancer compared with that of OXP used alone. It is revealed that combination of OXP and FG could increase activated CD8+ T cells, reduce regulatory T (Treg) cells and increase interferon-γ (IFN-γ). Furthermore, results showed promoted tumor apoptosis, decreased proliferation and inhibited tumor angiogenesis by OXP and FG combination. No obvious systemic toxicity was observed in this study. Finally, our findings provided basis for promising application of OXP and FG combination in colorectal cancer treatment.
Collapse
Affiliation(s)
- Yuzhu Hu
- Department of Head & Neck and Mammary Oncology and Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, Laboratory of Molecular Diagnosis of Cancer, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Ting Yu
- Department of Head & Neck and Mammary Oncology and Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, Laboratory of Molecular Diagnosis of Cancer, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Xiaoxiao Liu
- Department of Head & Neck and Mammary Oncology and Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, Laboratory of Molecular Diagnosis of Cancer, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Yihong He
- Department of Head & Neck and Mammary Oncology and Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, Laboratory of Molecular Diagnosis of Cancer, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Lihong Deng
- Department of Head & Neck and Mammary Oncology and Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, Laboratory of Molecular Diagnosis of Cancer, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Jiajuan Guo
- Department of Head & Neck and Mammary Oncology and Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, Laboratory of Molecular Diagnosis of Cancer, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Yuanqi Hua
- Department of Head & Neck and Mammary Oncology and Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, Laboratory of Molecular Diagnosis of Cancer, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Ting Luo
- Department of Head & Neck and Mammary Oncology and Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, Laboratory of Molecular Diagnosis of Cancer, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
35
|
Re-designing Interleukin-12 to enhance its safety and potential as an anti-tumor immunotherapeutic agent. Nat Commun 2017; 8:1395. [PMID: 29123084 PMCID: PMC5680234 DOI: 10.1038/s41467-017-01385-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
Interleukin-12 (IL-12) has emerged as one of the most potent agents for anti-tumor immunotherapy. However, potentially lethal toxicity associated with systemic administration of IL-12 precludes its clinical application. Here we redesign the molecule in such a way that its anti-tumor efficacy is not compromised, but toxic effects are eliminated. Deletion of the N-terminal signal peptide of IL-12 can effect such a change by preventing IL-12 secretion from cells. We use a newly designed tumor-targeted oncolytic adenovirus (Ad-TD) to deliver non-secreting (ns) IL-12 to tumor cells and examine the therapeutic and toxic effects in Syrian hamster models of pancreatic cancer (PaCa). Strikingly, intraperitoneal delivery of Ad-TD-nsIL-12 significantly enhanced survival of animals with orthotopic PaCa and cured peritoneally disseminated PaCa with no toxic side effects, in contrast to the treatment with Ad-TD expressing unmodified IL-12. These findings offer renewed hope for development of IL-12-based treatments for cancer. Interleukin-12 (IL-12) is a potent immunotherapeutic agent.
Collapse
|
36
|
Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, Ivanov A, Szymborska A, Patone G, Kunz S, Sommermeyer D, Engels B, Leisegang M, Textor A, Fehling HJ, Fruttiger M, Lohoff M, Herrmann A, Yu H, Weichselbaum R, Uckert W, Hübner N, Gerhardt H, Beule D, Schreiber H, Blankenstein T. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression. Nature 2017; 545:98-102. [PMID: 28445461 PMCID: PMC5567674 DOI: 10.1038/nature22311] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/30/2017] [Indexed: 12/11/2022]
Abstract
The relative contribution of the effector molecules produced by T cells to tumour rejection is unclear, but interferon-γ (IFNγ) is critical in most of the analysed models. Although IFNγ can impede tumour growth by acting directly on cancer cells, it must also act on the tumour stroma for effective rejection of large, established tumours. However, which stroma cells respond to IFNγ and by which mechanism IFNγ contributes to tumour rejection through stromal targeting have remained unknown. Here we use a model of IFNγ induction and an IFNγ-GFP fusion protein in large, vascularized tumours growing in mice that express the IFNγ receptor exclusively in defined cell types. Responsiveness to IFNγ by myeloid cells and other haematopoietic cells, including T cells or fibroblasts, was not sufficient for IFNγ-induced tumour regression, whereas responsiveness of endothelial cells to IFNγ was necessary and sufficient. Intravital microscopy revealed IFNγ-induced regression of the tumour vasculature, resulting in arrest of blood flow and subsequent collapse of tumours, similar to non-haemorrhagic necrosis in ischaemia and unlike haemorrhagic necrosis induced by tumour necrosis factor. The early events of IFNγ-induced tumour ischaemia resemble non-apoptotic blood vessel regression during development, wound healing or IFNγ-mediated, pregnancy-induced remodelling of uterine arteries. A better mechanistic understanding of how solid tumours are rejected may aid the design of more effective protocols for adoptive T-cell therapy.
Collapse
Affiliation(s)
- Thomas Kammertoens
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Christian Friese
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ainhoa Arina
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, USA
| | - Christian Idel
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Dana Briesemeister
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Michael Rothe
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Andranik Ivanov
- Berlin Institute of Health, 10117 Berlin, Germany
- Charité - Universitätsmedizin, 10117 Berlin, Germany
| | - Anna Szymborska
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Giannino Patone
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Severine Kunz
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Boris Engels
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Matthias Leisegang
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Ana Textor
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Michael Lohoff
- Institute for Medical Microbiology, University of Marburg, 35032 Marburg, Germany
| | - Andreas Herrmann
- Beckman Research Institute at the Comprehensive Cancer Center City of Hope, Los Angeles, California 91010-3000, USA
| | - Hua Yu
- Beckman Research Institute at the Comprehensive Cancer Center City of Hope, Los Angeles, California 91010-3000, USA
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, USA
| | - Wolfgang Uckert
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Charité - Universitätsmedizin, 10117 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, 13347 Berlin, Germany
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, 13347 Berlin, Germany
| | - Dieter Beule
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Hans Schreiber
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Thomas Blankenstein
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
37
|
Takeda K, Nakayama M, Hayakawa Y, Kojima Y, Ikeda H, Imai N, Ogasawara K, Okumura K, Thomas DM, Smyth MJ. IFN-γ is required for cytotoxic T cell-dependent cancer genome immunoediting. Nat Commun 2017; 8:14607. [PMID: 28233863 PMCID: PMC5333095 DOI: 10.1038/ncomms14607] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/16/2017] [Indexed: 12/18/2022] Open
Abstract
Genetic evolution that occurs during cancer progression enables tumour heterogeneity, thereby fostering tumour adaptation, therapeutic resistance and metastatic potential. Immune responses are known to select (immunoedit) tumour cells displaying immunoevasive properties. Here we address the role of IFN-γ in mediating the immunoediting process. We observe that, in several mouse tumour models such as HA-expressing 4T1 mammary carcinoma cells, OVA-expressing EG7 lymphoma cells and CMS5 MCA-induced fibrosarcoma cells naturally expressing mutated extracellular signal-regulated kinase (ERK) antigen, the action of antigen-specific cytotoxic T cell (CTL) in vivo results in the emergence of resistant cancer cell clones only in the presence of IFN-γ within the tumour microenvironment. Moreover, we show that exposure of tumours to IFN-γ-producing antigen-specific CTLs in vivo results in copy-number alterations (CNAs) associated with DNA damage response and modulation of DNA editing/repair gene expression. These results suggest that enhanced genetic instability might be one of the mechanisms by which CTLs and IFN-γ immunoedits tumours, altering their immune resistance as a result of genetic evolution.
Collapse
Affiliation(s)
- Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Biofunctional Micribiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, 3002 Victoria, Australia
| | - Masafumi Nakayama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
- Department of Immunobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Yoshihiro Hayakawa
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, 3002 Victoria, Australia
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Yuko Kojima
- Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hiroaki Ikeda
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
- Department of Oncology, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Naoko Imai
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, New York 10029, USA
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Ko Okumura
- Department of Biofunctional Micribiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Atopy (Allergy) Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - David M. Thomas
- Cancer Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Mark J. Smyth
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, 3002 Victoria, Australia
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006 Queensland, Australia
- School of Medicine, University of Queensland, Herston, 4006 Queensland, Australia
| |
Collapse
|
38
|
Yue T, Zheng X, Dou Y, Zheng X, Sun R, Tian Z, Wei H. Interleukin 12 shows a better curative effect on lung cancer than paclitaxel and cisplatin doublet chemotherapy. BMC Cancer 2016; 16:665. [PMID: 27549240 PMCID: PMC4994391 DOI: 10.1186/s12885-016-2701-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/10/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Interleukin 12 (IL-12) is a cytokine that has been reported to exhibit potent tumoricidal effects in animal tumor models. A combined approach using Paclitaxel and platinum-based doublet chemotherapy is the most commonly used backbone regimen for treating lung cancer. Despite numerous studies regarding the anti-tumor effects of IL-12 and the widespread use of conventional chemotherapy, few direct comparisons of IL-12 and conventional chemotherapy in the treatment of lung cancer have been performed. METHODS We compared IL-12 to paclitaxel and cisplatin doublet chemotherapy in terms of efficacy against lung cancer in mouse models. The antitumor effect was measured by survival assays, histological analyses and imaging analyses. The cytokine levels were assessed using enzyme linked immunosorbent assay (ELISA) and flow cytometry (FACS). The spleen sizes were measured. CD31, CD105 and Vascular endothelial growth factor receptor 3 (VEGFR3) were analyzed using immunofluorescence. Matrix metalloprotein-9 (MMP-9) and cadherin 1 (CDH1) transcript levels were measured by quantitative PCR. Tumor cells apoptosis were examined by Tunel assay. RESULTS The results showed that IL-12 treatment inhibited lung tumor growth, resulting in the long-term survival of lung cancer-bearing mice. Further examination revealed that IL-12 rapidly activated NK cells to secrete IFN-γ, resulting in the inhibition of tumor angiogenesis. In contrast, paclitaxel and cisplatin doublet chemotherapy did not show the expected efficacy in orthotopic lung cancer models; the IFN-γ levels were not increased after this treatment, and the number of peripheral lymphocytes was reduced. CONCLUSION Together, these animal model data indicate that IL-12 shows a better curative effect than PTX + CDDP doublet chemotherapy.
Collapse
Affiliation(s)
- Ting Yue
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaodong Zheng
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Yaling Dou
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaohu Zheng
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Rui Sun
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. .,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| | - Haiming Wei
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. .,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
39
|
Chhokar V, Tucker AL. Angiogenesis: Basic Mechanisms and Clinical Applications. Semin Cardiothorac Vasc Anesth 2016. [DOI: 10.1177/108925320300700304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The development and maintenance of an adequate vascular supply is critical for the viability of normal and neoplastic tissues. Angiogenesis, the development of new blood vessels from preexisting capillary networks, plays an important role in a number of physiologic and pathologic processes, including reproduction, wound repair, inflammatory diseases, and tumor growth. Angiogenesis involves sequential steps that are triggered in response to angiogenic growth factors released by inflammatory, mesenchymal, or tumor cells that act as ligands for endothelial cell receptor tyrosine kinases. Stimulated endothelial cells detach from neighboring cells and migrate, proliferate, and form tubes. The immature tubes are subsequently invested and stabilized by pericytes or smooth muscle cells. Angiogenesis depends upon complex interactions among various classes of molecules, including adhesion molecules, proteases, structural proteins, cell surface receptors, and growth factors. The therapeutic manipulation of angiogenesis targeted against ischemic and neoplastic diseases has been investigated in preclinical animal models and in clinical trials. Proangiogenic trials that have stimulated vessel growth in ischemic coronary or peripheral tissues through expression, delivery, or stimulated release of growth factors have shown efficacy in animal models and mixed results in human clinical trials. Antiangiogenic trials have used strategies to block the function of molecules critical for new vessel growth or maturation in the treatment of a variety of malignancies, mostly with results less encouraging than those seen in preclinical models. Pro-and antiangiogenic clinical trials demonstrate that strategies for optimal drug delivery, dosing schedules, patient selection, and endpoint measurements need further investigation and refinement before the therapeutic manipulation of angiogenesis will realize its full clinical potential.
Collapse
Affiliation(s)
- Vikram Chhokar
- Department of Internal Medicine, Salem VA Health System, Roanoke, Virginia
| | - Amy L. Tucker
- Department of Internal Medicine, Cardiovascular Division; Cardiovascular Research Center; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
40
|
Carrega P, Campana S, Bonaccorsi I, Ferlazzo G. The Yin and Yang of Innate Lymphoid Cells in Cancer. Immunol Lett 2016; 179:29-35. [PMID: 27296768 DOI: 10.1016/j.imlet.2016.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/10/2016] [Indexed: 12/30/2022]
Abstract
The recent appreciation of novel subsets of innate lymphoid cells (ILCs) as important regulators of tissue homeostasis, inflammation and repair, raise questions regarding the presence and role of these cells in cancer tissues. In addition to natural killer and fetal lymphoid tissue inducer (LTi) cells, the ILC family comprises non-cytolytic, cytokine-producing cells that are classified into ILC1, ILC2 and ILC3 based on phenotypic and functional characteristics. Differently from natural killer cells, which are the prototypical members of ILC1 and whose role in tumors is better established, the involvement of other ILC subsets in cancer progression or resistance is still fuzzy and in several instances controversial, since current studies indicate both context-dependent beneficial or pathogenic effects. Here, we review the current knowledge regarding the involvement of these novel ILC subsets in the context of tumor immunology, highlighting how ILC subsets might behave either as friends or foes.
Collapse
Affiliation(s)
- Paolo Carrega
- Istituto G. Gaslini, Genova 16148, Italy; Cell Factory UniMe, University of Messina, 98125, Italy
| | - Stefania Campana
- Laboratory of Immunology and Biotherapy, University of Messina, 98125, Italy
| | - Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, University of Messina, 98125, Italy
| | - Guido Ferlazzo
- Cell Factory UniMe, University of Messina, 98125, Italy; Laboratory of Immunology and Biotherapy, University of Messina, 98125, Italy; Cell Therapy Program, Azienda Ospedaliera Universitaria Policlinico Gaetano Martino, Messina 98125, Italy.
| |
Collapse
|
41
|
Veinotte L, Gebremeskel S, Johnston B. CXCL16-positive dendritic cells enhance invariant natural killer T cell-dependent IFNγ production and tumor control. Oncoimmunology 2016; 5:e1160979. [PMID: 27471636 PMCID: PMC4938370 DOI: 10.1080/2162402x.2016.1160979] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 12/16/2022] Open
Abstract
Crosstalk interactions between dendritic cells (DCs) and invariant natural killer T (iNKT) cells are important in regulating antitumor responses elicited by glycolipid antigens. iNKT cells constitutively express the chemokine receptor CXCR6, while cytokine-activated DCs upregulate the transmembrane chemokine ligand, CXCL16. This study examined the co-stimulatory role of CXCR6/CXCL16 interactions in glycolipid-dependent iNKT cell activation and tumor control. Spleen and liver DCs in wild-type mice, but not iNKT cell deficient (Jα18−/−) mice, transiently upregulated surface CXCL16 following in vivo administration of the glycolipid antigen α-galactosylceramide. Recombinant CXCL16 did not directly induce iNKT cell activation in vitro but enhanced interferon (IFN)-γ production when mouse or human iNKT cells were stimulated with plate-bound anti-CD3. Compared with glycolipid-loaded CXCL16neg DCs, CXCL16hi DCs induced higher levels of IFNγ production in iNKT cell cultures and following adoptive transfer in vivo. The number of IFNγ+ iNKT cells and expansion of T-bet+ iNKT cells were reduced in vivo when CXCL16−/− DCs were used to activate iNKT cells. Enhanced IFNγ production in vivo was not dependent on CXCR6 expression on natural killer (NK) cells. Adoptive transfer of glycolipid-loaded CXCL16hi DCs provided superior protection against tumor metastasis compared to CXCL16neg DC transfers. Similarly, wild-type DCs provided superior protection against metastasis compared with CXCL16−/− DCs. These experiments implicate an important role for CXCR6/CXCL16 interactions in regulating iNKT cell IFNγ production and tumor control. The selective use of CXCL16hi DCs in adoptive transfer immunotherapies may prove useful for enhancing T helper (Th) type 1 responses and clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Linnea Veinotte
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Simon Gebremeskel
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Brent Johnston
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada; Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
42
|
Abstract
Advanced hepatocellular carcinoma (HCC) is a serious therapeutic challenge and targeted therapies only provide a modest benefit in terms of overall survival. Novel approaches are urgently needed for the treatment of this prevalent malignancy. Evidence demonstrating the antigenicity of tumour cells, the discovery that immune checkpoint molecules have an essential role in immune evasion of tumour cells, and the impressive clinical results achieved by blocking these inhibitory receptors, are revolutionizing cancer immunotherapy. Here, we review the data on HCC immunogenicity, the mechanisms for HCC immune subversion and the different immunotherapies that have been tested to treat HCC. Taking into account the multiplicity of hyperadditive immunosuppressive forces acting within the HCC microenvironment, a combinatorial approach is advised. Strategies include combinations of systemic immunomodulation and gene therapy, cell therapy or virotherapy.
Collapse
|
43
|
Nagai Y, Tsuchiya H, Runkle EA, Young PD, Ji MQ, Norton L, Drebin JA, Zhang H, Greene MI. Disabling of the erbB Pathway Followed by IFN-γ Modifies Phenotype and Enhances Genotoxic Eradication of Breast Tumors. Cell Rep 2015; 12:2049-59. [PMID: 26365188 PMCID: PMC4591220 DOI: 10.1016/j.celrep.2015.08.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/30/2015] [Accepted: 08/13/2015] [Indexed: 01/16/2023] Open
Abstract
Reversion of the malignant phenotype of erbB2-transformed cells can be driven by anti-erbB2/neu monoclonal antibodies (mAbs), which disrupt the receptor's kinase activity. We examined the biologic effects of IFN-γ alone or after anti-erbB2/neu mAb treatment of erbB2-positive cells. IFN-γ had no effect on its own. Treatment of the tumors with anti-erbB2/neu mAbs followed by IFN-γ led to dramatic inhibition of tumor growth in vitro and in vivo with minimal mAb dosing. Sequential therapy enhanced the effects of chemotherapy. Moreover, IFN-γ with mAb treatment of mice with IFNγR knockdown tumors did not demonstrate marked synergistic eradication effects, indicating an unexpected role of IFN-γ on the tumor itself. Additionally, mAb and IFN-γ treatment also induced immune host responses that enhanced tumor eradication. Biochemical analyses identified loss of Snail expression in tumor cells, reflecting diminution of tumor-stem-cell-like properties as a consequence of altered activity of GSK3-β and KLF molecules.
Collapse
Affiliation(s)
- Yasuhiro Nagai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104-6082, USA
| | - Hiromichi Tsuchiya
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104-6082, USA
| | - E Aaron Runkle
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104-6082, USA
| | - Peter D Young
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104-6082, USA
| | - Mei Q Ji
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104-6082, USA
| | - Larry Norton
- Department of Medical Oncology, Memorial Sloan Kettering, New York, NY 10065, USA
| | - Jeffrey A Drebin
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104-6082, USA
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104-6082, USA.
| |
Collapse
|
44
|
Kobayashi A, Tanizaki Y, Kimura A, Ishida Y, Nosaka M, Toujima S, Kuninaka Y, Minami S, Ino K, Kondo T. AG490, a Jak2 inhibitor, suppressed the progression of murine ovarian cancer. Eur J Pharmacol 2015; 766:63-75. [PMID: 26410360 DOI: 10.1016/j.ejphar.2015.09.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 01/08/2023]
Abstract
Ovarian cancer is the major cause of cancer death among female genital malignancies, and requires developing novel therapeutic measures. Immune escape and acquisition of tolerance by tumor cells are essential for cancer growth and progression. An immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) overexpression in tumors is essential for host immune tolerance. Janus-activated kinase-signal transducer and activator of transcription (JAK-STAT) pathway is involved in various kinds of tumor biology. Thus, we examined the effects of STAT1 inhibition by AG490 (a JAK2 inhibitor) on ovarian cancer progression in mice. In vitro study, IFN-γ treatment up-regulated Ido mRNA expression with STAT1 activation in OV2944-HM-1 cells, whereas AG490 treatment significantly inhibited this effect with the suppression of STAT1 phosphorylation. In vivo model, OV2944-HM-1 cells were intraperitoneally/subcutaneously transplanted into syngeneic immunocompetent female mice. AG490 treatment significantly suppressed subcutaneous tumor growth, compared with control. Consistently, in mice intraperitoneally inoculated HM-1 cells, the same treatment significantly improved survival rate with the reduced number of intraperitoneal tumors. Actually, intratumoral IDO expression was significantly suppressed with the reduction of STAT1 activation in AG490-treated mice. Moreover, in tumor microenvironment of mice treated with AG490, the accumulation of anti-tumor leukocytes such as CD8(+) T-cells, M1 macrophages, and NK cells was apparently exaggerated with the reciprocal reduction of regulatory T cells. Furthermore, intratumoral expression of anti-tumor cytokines such as IL-1α, IL-1β and IL-12 expression was significantly enhanced in mice treated with AG490. Collectively, JAK/STAT signal pathways may be good molecular target for immunotherapy of ovarian cancer.
Collapse
Affiliation(s)
- Aya Kobayashi
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Japan; Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuko Tanizaki
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Japan; Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Saori Toujima
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Sawako Minami
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Japan
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
45
|
Schnabel CL, Steinig P, Koy M, Schuberth HJ, Juhls C, Oswald D, Wittig B, Willenbrock S, Murua Escobar H, Pfarrer C, Wagner B, Jaehnig P, Moritz A, Feige K, Cavalleri JMV. Immune response of healthy horses to DNA constructs formulated with a cationic lipid transfection reagent. BMC Vet Res 2015; 11:140. [PMID: 26100265 PMCID: PMC4476236 DOI: 10.1186/s12917-015-0452-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/09/2015] [Indexed: 01/08/2023] Open
Abstract
Background Deoxyribonucleic acid (DNA) vaccines are used for experimental immunotherapy of equine melanoma. The injection of complexed linear DNA encoding interleukin (IL)-12/IL-18 induced partial tumour remission in a clinical study including 27 grey horses. To date, the detailed mechanism of the anti-tumour effect of this treatment is unknown. Results In the present study, the clinical and cellular responses of 24 healthy horses were monitored over 72 h after simultaneous intradermal and intramuscular application of equine IL-12/IL-18 DNA (complexed with a transfection reagent) or comparative substances (transfection reagent only, nonsense DNA, nonsense DNA depleted of CG). Although the strongest effect was observed in horses treated with expressing DNA, horses in all groups treated with DNA showed systemic responses. In these horses treated with DNA, rectal temperatures were elevated after treatment and serum amyloid A increased. Total leukocyte and neutrophil counts increased, while lymphocyte numbers decreased. The secretion of tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) from peripheral mononuclear blood cells ex vivo increased after treatments with DNA, while IL-10 secretion decreased. Horses treated with DNA had significantly higher myeloid cell numbers and chemokine (C-X-C motif) ligand (CXCL)-10 expression in skin samples at the intradermal injection sites compared to horses treated with transfection reagent only, suggesting an inflammatory response to DNA treatment. In horses treated with expressing DNA, however, local CXCL-10 expression was highest and immunohistochemistry revealed more intradermal IL-12-positive cells when compared to the other treatment groups. In contrast to non-grey horses, grey horses showed fewer effects of DNA treatments on blood lymphocyte counts, TNFα secretion and myeloid cell infiltration in the dermis. Conclusion Treatment with complexed linear DNA constructs induced an inflammatory response independent of the coding sequence and of CG motif content. Expressing IL-12/IL-18 DNA locally induces expression of the downstream mediator CXCL-10. The grey horses included appeared to display an attenuated immune response to DNA treatment, although grey horses bearing melanoma responded to this treatment with moderate tumour remission in a preceding study. Whether the different immunological reactivity compared to other horses may contributes to the melanoma susceptibility of grey horses remains to be elucidated. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0452-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christiane L Schnabel
- University of Veterinary Medicine Hannover, Clinic for Horses, Buenteweg 9, 30559, Hannover, Germany.
| | - P Steinig
- University of Veterinary Medicine Hannover, Clinic for Horses, Buenteweg 9, 30559, Hannover, Germany.
| | - M Koy
- University of Veterinary Medicine Hannover, Immunology Unit, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - H-J Schuberth
- University of Veterinary Medicine Hannover, Immunology Unit, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - C Juhls
- Mologen AG, Fabeckstrasse 30, 14195, Berlin, Germany. .,Foundation Institute Molecular Biology and Bioinformatics, Freie Universitaet Berlin, Berlin, Germany.
| | - D Oswald
- Mologen AG, Fabeckstrasse 30, 14195, Berlin, Germany. .,Foundation Institute Molecular Biology and Bioinformatics, Freie Universitaet Berlin, Berlin, Germany.
| | - B Wittig
- Foundation Institute Molecular Biology and Bioinformatics, Freie Universitaet Berlin, Berlin, Germany.
| | - S Willenbrock
- University of Veterinary Medicine Hannover, Small Animal Clinic, Buenteweg 9, 30559, Hannover, Germany.
| | - H Murua Escobar
- University of Veterinary Medicine Hannover, Small Animal Clinic, Buenteweg 9, 30559, Hannover, Germany. .,Division of Medicine, Clinic III, Haematology, Oncology and Palliative Medicine, University of Rostock, 18057, Rostock, Germany.
| | - C Pfarrer
- University of Veterinary Medicine Hannover, Institute of Anatomy, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - B Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell Universit, 240 Farrier Rd, Ithaca, NY, 14853, USA.
| | - P Jaehnig
- pj statistics, Niedstrasse 16, 12159, Berlin, Germany.
| | - A Moritz
- Department of Veterinary Medicine, Clinical Sciences, Clinical Pathology and Clinical Pathophysiology, Justus-Liebig-Universitaet, Frankfurter Strasse 126, 35392, Giessen, Germany.
| | - K Feige
- University of Veterinary Medicine Hannover, Clinic for Horses, Buenteweg 9, 30559, Hannover, Germany.
| | - J-M V Cavalleri
- University of Veterinary Medicine Hannover, Clinic for Horses, Buenteweg 9, 30559, Hannover, Germany.
| |
Collapse
|
46
|
Gabunia K, Autieri MV. Interleukin-19 can enhance angiogenesis by Macrophage Polarization. ACTA ACUST UNITED AC 2015; 2:e562. [PMID: 26029742 DOI: 10.14800/macrophage.562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoxia in ischemic limbs typically initiates angiogenic and inflammatory factors to promote angiogenesis in attempt to restore perfusion, and revascularization involves multiple cell types and systems. Macrophage display phenotype plasticity, and can polarize in response to local and systemic cytokine stimuli. M2 macrophage are known to play an important role in angiogenesis and wound healing. While accepted that many pro-inflammatory cytokines induce angiogenesis, the effects of anti-inflammatory interleukins on initiation of angiogenesis are less clear. Interleukin-19 [IL-19] is a presumed anti-inflammatory cytokine, with unknown effects on macrophage polarization. In our recent study, we used several experimental approaches and determined that IL-19 regulated neovascularization in the murine hind-limb ischemia model. In addition to endothelial cells, we found that IL-19 could target and polarize macrophage to the M2 phenotype. IL-19 could induce expression of angiogenic, and reduce expression of anti-angiogenic cytokines in these cells. This is the first study to demonstrate that IL-19 could polarize macrophage, and potentially identifies IL-19 as a therapy to induce angiogenesis in ischemic tissue.
Collapse
Affiliation(s)
- Khatuna Gabunia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140
| |
Collapse
|
47
|
Bellucci R, Martin A, Bommarito D, Wang K, Hansen SH, Freeman GJ, Ritz J. Interferon-γ-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression. Oncoimmunology 2015; 4:e1008824. [PMID: 26155422 PMCID: PMC4485824 DOI: 10.1080/2162402x.2015.1008824] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 01/07/2023] Open
Abstract
Inhibition of JAK1 or JAK2 in human tumor cells was previously shown to increase susceptibility of these cells to NK cell lysis. In the present study, we examined the cellular mechanisms that mediate this effect in hematopoietic tumor cell lines and primary tumor cells. Incubation of tumor cells with supernatant from activated NK cells or interferon-gamma (IFNγ)-induced activation of pSTAT1 and increased expression of PD-L1 without altering expression of other activating or inhibitory NK cell ligands. These functional effects were blocked by chemical JAK inhibition or shRNAs targeting JAK1, JAK2 or STAT1. Inhibition of IFNγ signaling also prevented the upregulation of PD-L1 and blocking PD-L1 resulted in increased tumor lysis by NK cells. These results show that NK cell activation and secretion of IFNγ results in activation of JAK1, JAK2 and STAT1 in tumor cells, resulting in rapid up-regulation of PD-L1 expression. Increased expression of PD-L1 results in increased resistance to NK cell lysis. Blockade of JAK pathway activation prevents increased PD-L1 expression resulting in increased susceptibility of tumor cells to NK cell activity. These observations suggest that JAK pathway inhibitors as well as PD-1 and PD-L1 antibodies may work synergistically with other immune therapies by preventing IFN-induced inhibition of NK cell-mediated tumor cell lysis.
Collapse
Key Words
- ADCC, Antibody dependent cellular cytotoxicity
- AKT, Ak strain transforming
- APC, Allophycocyanin
- CTRL, Control
- DMSO, Dimethyl sulfoxide
- ERK, extracellular-signal-regulated kinases
- IFNγ
- JAK1/JAK2
- MACS, Magnetic cell separation
- MAPK, Mitogen-activated protein kinases
- NK cells
- PD-1/PD-L1
- RAS, Rat sarcoma
- STAT, signal transducer and activator of transcription
Collapse
Affiliation(s)
- Roberto Bellucci
- Department of Medical Oncology; Dana-Farber Cancer Institute ; Boston, MA, USA ; Department of Medicine; Brigham and Woman's Hospital ; Boston, MA, USA ; Harvard Medical School; Harvard University ; Boston, MA, USA
| | - Allison Martin
- Department of Medical Oncology; Dana-Farber Cancer Institute ; Boston, MA, USA
| | - Davide Bommarito
- Department of Medical Oncology; Dana-Farber Cancer Institute ; Boston, MA, USA
| | - Kathy Wang
- Department of Medical Oncology; Dana-Farber Cancer Institute ; Boston, MA, USA
| | - Steen H Hansen
- Department of Medicine; Brigham and Woman's Hospital ; Boston, MA, USA ; Harvard Medical School; Harvard University ; Boston, MA, USA ; GI Cell Biology Research Laboratory; Children's Hospital Boston ; Boston, MA, USA
| | - Gordon J Freeman
- Department of Medical Oncology; Dana-Farber Cancer Institute ; Boston, MA, USA ; Department of Medicine; Brigham and Woman's Hospital ; Boston, MA, USA ; Harvard Medical School; Harvard University ; Boston, MA, USA ; Cancer Vaccine Center; Dana-Farber Cancer Institute ; Boston, MA, USA
| | - Jerome Ritz
- Department of Medical Oncology; Dana-Farber Cancer Institute ; Boston, MA, USA ; Department of Medicine; Brigham and Woman's Hospital ; Boston, MA, USA ; Harvard Medical School; Harvard University ; Boston, MA, USA ; Cancer Vaccine Center; Dana-Farber Cancer Institute ; Boston, MA, USA
| |
Collapse
|
48
|
Zanetti M. Tapping CD4 T Cells for Cancer Immunotherapy: The Choice of Personalized Genomics. THE JOURNAL OF IMMUNOLOGY 2015; 194:2049-56. [DOI: 10.4049/jimmunol.1402669] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Richards J, Gabunia K, Kelemen SE, Kako F, Choi ET, Autieri MV. Interleukin-19 increases angiogenesis in ischemic hind limbs by direct effects on both endothelial cells and macrophage polarization. J Mol Cell Cardiol 2014; 79:21-31. [PMID: 25450612 DOI: 10.1016/j.yjmcc.2014.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 12/21/2022]
Abstract
Hypoxia in ischemic limbs typically initiates angiogenic and inflammatory factors to promote angiogenesis in attempt to restore perfusion. There is a gap in our knowledge concerning the role of anti-inflammatory interleukins in angiogenesis, macrophage polarization, and endothelial cell activation. Interleukin-19 is a unique anti-inflammatory Th2 cytokine that promotes angiogenic effects in cultured endothelial cells (EC); the purpose of this study was to characterize a role for IL-19 in restoration of blood flow in hind-limb ischemia, and define potential mechanisms. Hind limb ischemia was induced by femoral artery ligation, and perfusion quantitated using Laser Doppler Perfusion Imaging (LDPI). Wild type mice which received i.p. injections of rIL-19 (10ng/g/day) showed significantly increased levels of perfusion compared to PBS controls. LDPI values were significantly decreased in IL-19(-/-) mice when compared to wild type mice. IL-19(-/-) mice injected with rIL-19 had significantly increased LDPI compared with PBS control mice. Significantly increased capillary density was quantitated in rIL-19 treated mice, and significantly less capillary density in IL-19(-/-) mice. Multiple cell types participate in IL-19 induced angiogenesis. IL-19 treatment of human microvascular EC induced expression of angiogenic cytokines. M2 macrophage marker and VEGF-A expression were significantly increased in macrophage and the spleen from rIL-19 injected mice, and M1 marker expression was significantly increased in the spleen from IL-19(-/-) compared with controls. Plasma VEGF-A levels are higher in rIL-19 injected mice. IL-19 decreased the expression of anti-angiogenic IL-12 in the spleen and macrophage. This study is the first to implicate IL-19 as a novel pro-angiogenic interleukin and suggests therapeutic potential for this cytokine.
Collapse
Affiliation(s)
- James Richards
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Khatuna Gabunia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Sheri E Kelemen
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Farah Kako
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Eric T Choi
- Department of Surgery, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
50
|
Nur H, Rao L, Frassanito MA, De Raeve H, Ribatti D, Mfopou JK, Van Valckenborgh E, De Bruyne E, Vacca A, Vanderkerken K, Menu E. Stimulation of invariant natural killer T cells by α-Galactosylceramide activates the JAK-STAT pathway in endothelial cells and reduces angiogenesis in the 5T33 multiple myeloma model. Br J Haematol 2014; 167:651-63. [PMID: 25142285 DOI: 10.1111/bjh.13092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/09/2014] [Indexed: 12/16/2022]
Abstract
Tumour pathogenesis in multiple myeloma (MM) correlates with a high vascular index. Therefore, targeting angiogenesis is an important therapeutic tool to reduce MM progression. This study aimed to investigate the role of invariant natural killer T (iNKT) cells in angiogenesis and the mechanisms behind the stimulation by α-Galactosylceramide (α-GalCer). We have previously found that α-GalCer could increase the survival of 5T33MM mice and here we demonstrate that α-GalCer reduces the microvessel density. We performed both in vivo and in vitro angiogenic assays to confirm this observation. We found that conditioned medium of α-GalCer stimulated iNKT cells reduced neovascularization in the chick chorioallantoic membrane and in matrigel plug assays. Moreover, we observed a reduction in proliferation, migration and network formation and an induction of apoptosis upon exposure of murine endothelial cell lines to this conditioned medium. We furthermore observed that the JAK-STAT signaling pathway was highly activated in endothelial cells in response to stimulated iNKT cells, indicating the possible role of IFN-γ in the anti-angiogenic process. In conclusion, these results highlight the possibility of recruiting iNKT cells to target MM and angiogenesis. This gives a rationale for combining immunotherapy with conventional anti-tumour treatments in view of increasing their therapeutic potential.
Collapse
Affiliation(s)
- Haneen Nur
- Department of Haematology and Immunology, Myeloma Centre Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Biology, Faculty of Science and Technology, Hebron University, Hebron, Palestine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|