1
|
Ecker M, Schregle R, Kapoor-Kaushik N, Rossatti P, Betzler VM, Kempe D, Biro M, Ariotti N, Redpath GMI, Rossy J. SNX9-induced membrane tubulation regulates CD28 cluster stability and signalling. eLife 2022; 11:e67550. [PMID: 35050850 PMCID: PMC8786313 DOI: 10.7554/elife.67550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
T cell activation requires engagement of a cognate antigen by the T cell receptor (TCR) and the co-stimulatory signal of CD28. Both TCR and CD28 aggregate into clusters at the plasma membrane of activated T cells. While the role of TCR clustering in T cell activation has been extensively investigated, little is known about how CD28 clustering contributes to CD28 signalling. Here, we report that upon CD28 triggering, the BAR-domain protein sorting nexin 9 (SNX9) is recruited to CD28 clusters at the immunological synapse. Using three-dimensional correlative light and electron microscopy, we show that SNX9 generates membrane tubulation out of CD28 clusters. Our data further reveal that CD28 clusters are in fact dynamic structures and that SNX9 regulates their stability as well as CD28 phosphorylation and the resulting production of the cytokine IL-2. In summary, our work suggests a model in which SNX9-mediated tubulation generates a membrane environment that promotes CD28 triggering and downstream signalling events.
Collapse
Affiliation(s)
- Manuela Ecker
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Richard Schregle
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
- Department of Biology, University of KonstanzKonstanzGermany
| | - Natasha Kapoor-Kaushik
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, University of New South WalesSydneyAustralia
| | - Pascal Rossatti
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
| | - Verena M Betzler
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
| | - Daryan Kempe
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Maté Biro
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Nicholas Ariotti
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, University of New South WalesSydneyAustralia
- Institute for Molecular Bioscience (IMB), University of QueenslandBrisbaneAustralia
| | - Gregory MI Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Jeremie Rossy
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
- Department of Biology, University of KonstanzKonstanzGermany
| |
Collapse
|
2
|
Wisniewska M, Banach B, Malinowski D, Domanski L, Sroczynski T, Dziedziejko V, Safranow K, Pawlik A. VAV1 Gene Polymorphism is Associated With Kidney Allograft Rejection. Transplant Proc 2021; 53:1528-1531. [PMID: 33994185 DOI: 10.1016/j.transproceed.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/05/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND VAV1 is an intracellular signal transduction protein that plays a significant role in signal transduction in T cells. Several studies suggest that VAV1 signaling plays significant roles in allograft rejection. The aim of this study was to examine the association between VAV1 gene polymorphisms and renal allograft function. METHODS The study included 270 patients after allograft renal transplantation. We examined the associations between VAV1 gene polymorphisms and complications after transplantation, such as delayed graft function, acute rejection, and chronic allograft dysfunction. RESULTS There were no statistically significant associations between VAV1 genotypes and delayed graft function and chronic allograft dysfunction. Among patients with acute allograft rejection, we observed decreased frequencies of VAV1 rs2546133 TT and CT genotypes (P = .03) and T allele (P = .02), as well as VAV1 rs2617822 GG and AG genotypes (P = .05) and G allele (P = 0.04). In the multivariate regression analysis, the higher number of VAV1 rs2546133 T alleles showed a protective effect against the acute rejection in kidney allograft recipients. CONCLUSIONS The results of our study suggest that polymorphisms in the VAV1 gene are associated with kidney allograft rejection.
Collapse
Affiliation(s)
- Magda Wisniewska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Bolesław Banach
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Damian Malinowski
- Department of Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Leszek Domanski
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Sroczynski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
3
|
Utley A, Chavel C, Lightman S, Holling GA, Cooper J, Peng P, Liu W, Barwick BG, Gavile CM, Maguire O, Murray-Dupuis M, Rozanski C, Jordan MS, Kambayashi T, Olejniczak SH, Boise LH, Lee KP. CD28 Regulates Metabolic Fitness for Long-Lived Plasma Cell Survival. Cell Rep 2021; 31:107815. [PMID: 32579940 PMCID: PMC7405645 DOI: 10.1016/j.celrep.2020.107815] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/24/2020] [Accepted: 06/03/2020] [Indexed: 11/27/2022] Open
Abstract
Durable humoral immunity against epidemic infectious disease requires the survival of long-lived plasma cells (LLPCs). LLPC longevity is dependent on metabolic programs distinct from short-lived plasma cells (SLPCs); however, the mechanistic basis for this difference is unclear. We have previously shown that CD28, the prototypic T cell costimulatory receptor, is expressed on both LLPCs and SLPCs but is essential only for LLPC survival. Here we show that CD28 transduces pro-survival signaling specifically in LLPCs through differential SLP76 expression. CD28 signaling in LLPCs increased glucose uptake, mitochondrial mass/respiration, and reactive oxygen species (ROS) production. Unexpectedly, CD28-mediated regulation of mitochondrial respiration, NF-κB activation, and survival was ROS dependent. IRF4, a target of NF-κB, was upregulated by CD28 activation in LLPCs and decreased IRF4 levels correlated with decreased glucose uptake, mitochondrial mass, ROS, and CD28-mediated survival. Altogether, these data demonstrate that CD28 signaling induces a ROS-dependent metabolic program required for LLPC survival.
Collapse
Affiliation(s)
- Adam Utley
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Colin Chavel
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shivana Lightman
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - G Aaron Holling
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - James Cooper
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Peng Peng
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Wensheng Liu
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Benjamin G Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Catherine M Gavile
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Orla Maguire
- Department of Flow Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Megan Murray-Dupuis
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Cheryl Rozanski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Martha S Jordan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott H Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
4
|
Rudd CE. How the Discovery of the CD4/CD8-p56 lck Complexes Changed Immunology and Immunotherapy. Front Cell Dev Biol 2021; 9:626095. [PMID: 33791292 PMCID: PMC8005572 DOI: 10.3389/fcell.2021.626095] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
The past 25 years have seen enormous progress in uncovering the receptors and signaling mechanisms on T-cells that activate their various effecter functions. Until the late 1980s, most studies on T-cells had focused on the influx of calcium and the levels of cAMP/GMP in T-cells. My laboratory then uncovered the interaction of CD4 and CD8 co-receptors with the protein-tyrosine kinase p56lck which are now widely accepted as the initiators of the tyrosine phosphorylation cascade leading to T-cell activation. The finding explained how immune recognition receptors expressed by many immune cells, which lack intrinsic catalytic activity, can transduce activation signals via non-covalent association with non-receptor tyrosine kinases. The discovery also established the concept that a protein tyrosine phosphorylation cascade operated in T-cells. In this vein, we and others then showed that the CD4- and CD8-p56lck complexes phosphorylate the TCR complexes which led to the identification of other protein-tyrosine kinases such as ZAP-70 and an array of substrates that are now central to studies in T-cell immunity. Other receptors such as B-cell receptor, Fc receptors and others were also subsequently found to use src kinases to control cell growth. In T-cells, p56lck driven phosphorylation targets include co-receptors such as CD28 and CTLA-4 and immune cell-specific adaptor proteins such as LAT and SLP-76 which act to integrate signals proximal to surface receptors. CD4/CD8-p56lck regulated events in T-cells include intracellular calcium mobilization, integrin activation and the induction of transcription factors for gene expression. Lastly, the identification of the targets of p56lck in the TCR and CD28 provided the framework for the development of chimeric antigen receptor (CAR) therapy in the treatment of cancer. In this review, I outline a history of the development of events that led to the development of the "TCR signaling paradigm" and its implications to immunology and immunotherapy.
Collapse
Affiliation(s)
- Christopher E. Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Universite de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Pawlik A, Malinowski D, Paradowska-Gorycka A, Safranow K, Dziedziejko V. VAV1 Gene Polymorphisms in Patients with Rheumatoid Arthritis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093214. [PMID: 32380774 PMCID: PMC7246862 DOI: 10.3390/ijerph17093214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an important public health problem because this disease often causes disability. RA is a chronic, destructive autoimmune disease that leads to joint destruction and the development of extraarticular manifestations. VAV1 is an intracellular signal transduction protein that plays a significant role in signal transduction in T cells and affects T cell development, proliferation and activation. The VAV1 gene contains 27 exons and is located on chromosome 19. In this study, we examined the association between VAV1 rs2546133 and rs2617822 polymorphisms and RA. METHODS We examined 422 patients with RA and 338 healthy subjects as the control group. RESULTS Among RA patients, there was a statistically significant increase in the frequency of VAV1 rs2546133 polymorphism in T allele carriers (TT + CT versus CC, odds ratio: 1.69, 95% confidence interval 1.05-2.73, p = 0.035). There was no statistically significant difference in the distribution of the rs2617822 genotypes and alleles between RA patients and the control group. Additionally, patients who carried the VAV1 rs2546133 T and rs2617822 G allele presented an increased frequency of extraarticular manifestations: vasculitis, amyloidosis and Sjogren syndrome. CONCLUSIONS The results suggest an association between VAV1 gene rs2617822 polymorphism and RA.
Collapse
Affiliation(s)
- Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence:
| | - Damian Malinowski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.S.); (V.D.)
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.S.); (V.D.)
| |
Collapse
|
6
|
Raab M, Strebhardt K, Rudd CE. Immune adaptor SKAP1 acts a scaffold for Polo-like kinase 1 (PLK1) for the optimal cell cycling of T-cells. Sci Rep 2019; 9:10462. [PMID: 31320682 PMCID: PMC6639320 DOI: 10.1038/s41598-019-45627-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
While the immune cell adaptor protein SKAP1 mediates LFA-1 activation induced by antigen-receptor (TCR/CD3) ligation on T-cells, it is unclear whether the adaptor interacts with other mediators of T-cell function. In this context, the serine/threonine kinase, polo-like kinase (PLK1) regulates multiple steps in the mitotic and cell cycle progression of mammalian cells. Here, we show that SKAP1 is phosphorylated by and binds to PLK1 for the optimal cycling of T-cells. PLK1 binds to the N-terminal residue serine 31 (S31) of SKAP1 and the interaction is needed for optimal PLK1 kinase activity. Further, siRNA knock-down of SKAP1 reduced the rate of T-cell division concurrent with a delay in the expression of PLK1, Cyclin A and pH3. Reconstitution of these KD cells with WT SKAP1, but not the SKAP1 S31 mutant, restored normal cell division. SKAP1-PLK1 binding is dynamically regulated during the cell cycle of T-cells. Our findings identify a novel role for SKAP1 in the regulation of PLK1 and optimal cell cycling needed for T-cell clonal expansion in response to antigenic activation.
Collapse
Affiliation(s)
- Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, CB2 1Q, Cambridge, UK.
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christopher E Rudd
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, CB2 1Q, Cambridge, UK.
- Centre de Recherch-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, Quebec, H1T 2M4, Canada.
- Département de Medicine, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
7
|
Brunner-Weinzierl MC, Rudd CE. CTLA-4 and PD-1 Control of T-Cell Motility and Migration: Implications for Tumor Immunotherapy. Front Immunol 2018; 9:2737. [PMID: 30542345 PMCID: PMC6277866 DOI: 10.3389/fimmu.2018.02737] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
CTLA-4 is a co-receptor on T-cells that controls peripheral tolerance and the development of autoimmunity. Immune check-point blockade (ICB) uses monoclonal antibodies (MAbs) to block the binding of inhibitory receptors (IRs) to their natural ligands. A humanized antibody to CTLA-4 was first approved clinically followed by the use of antibody blockade against PD-1 and its ligand PD-L1. Effective anti-tumor immunity requires the activation of tumor-specific effector T-cells, the blockade of regulatory cells and the migration of T-cells into the tumor. Here, we review data implicating CTLA-4 and PD-1 in the motility of T-cells with a specific reference to the potential exploitation of these pathways for more effective tumor infiltration and eradication.
Collapse
Affiliation(s)
- Monika C Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christopher E Rudd
- Research Center-Maisonneuve-Rosemont Hospital (CRHMR), Montreal, QC, Canada.,Département de Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
8
|
Sundqvist KG. T Cell Co-Stimulation: Inhibition of Immunosuppression? Front Immunol 2018; 9:974. [PMID: 29774033 PMCID: PMC5943593 DOI: 10.3389/fimmu.2018.00974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/19/2018] [Indexed: 11/18/2022] Open
Affiliation(s)
- Karl-Gösta Sundqvist
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, Clinical Immunology and Transfusion Medicine at Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Abstract
CD28 superagonistic antibodies (CD28SAb) can preferentially activate and expand immunosuppressive regulatory T cells (Treg) in mice. However, pre-clinical trials assessing CD28SAbs for the therapy of autoimmune diseases reveal severe systemic inflammatory response syndrome in humans, thereby implying the existence of distinct signalling abilities between human and mouse CD28. Here, we show that a single amino acid variant within the C-terminal proline-rich motif of human and mouse CD28 (P212 in human vs. A210 in mouse) regulates CD28-induced NF-κB activation and pro-inflammatory cytokine gene expression. Moreover, this Y209APP212 sequence in humans is crucial for the association of CD28 with the Nck adaptor protein for actin cytoskeleton reorganisation events necessary for CD28 autonomous signalling. This study thus unveils different outcomes between human and mouse CD28 signalling to underscore the importance of species difference when transferring results from preclinical models to the bedside. CD28 transmits co-stimulatory signals for the activation of both mouse and human T cells, but in vivo hyperactivation of CD28 has opposite effects on system immunity. Here, the authors show that a single amino acid difference between mouse and human CD28 dictates this function distinction via differential recruitment of Nck.
Collapse
|
10
|
Taylor A, Rudd CE. Glycogen Synthase Kinase 3 Inactivation Compensates for the Lack of CD28 in the Priming of CD8 + Cytotoxic T-Cells: Implications for anti-PD-1 Immunotherapy. Front Immunol 2017; 8:1653. [PMID: 29312284 PMCID: PMC5732207 DOI: 10.3389/fimmu.2017.01653] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/13/2017] [Indexed: 01/23/2023] Open
Abstract
The rescue of exhausted CD8+ cytolytic T-cells (CTLs) by anti-Programmed Cell Death-1 (anti-PD-1) blockade has been found to require CD28 expression. At the same time, we have shown that the inactivation of the serine/threonine kinase glycogen synthase kinase (GSK)-3α/β with small-interfering RNAs (siRNAs) and small molecule inhibitors (SMIs) specifically down-regulates PD-1 expression for enhanced CD8+ CTL function and clearance of tumors and viral infections. Despite this, it has been unclear whether the GSK-3α/β pathway accounts for CD28 costimulation of CD8+ CTL function. In this article, we show that inactivation of GSK-3α/β through siRNA or by SMIs during priming can substitute CD28 co-stimulation in the potentiation of cytotoxic CD8+ CTL function against the EL-4 lymphoma cells expressing OVA peptide. The effect was seen using several structurally distinct GSK-3 SMIs and was accompanied by an increase in Lamp-1 and GZMB expression. Conversely, CD28 crosslinking obviated the need for GSK-3α/β inhibition in its enhancement of CTL function. Our findings support a model where GSK-3 is the central cosignal for CD28 priming of CD8+ CTLs in anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Alison Taylor
- Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, St James's University Hospital, Leeds, United Kingdom
| | - Christopher E Rudd
- Division of Immunology-Oncology Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,Département de Médecine, Université de Montréal, Montreal, QC, Canada.,Department of Pathology, Cell Signalling Section, Cambridge University, Cambridge, United Kingdom.,Immune Venture Ltd., London, United Kingdom
| |
Collapse
|
11
|
Zumerle S, Molon B, Viola A. Membrane Rafts in T Cell Activation: A Spotlight on CD28 Costimulation. Front Immunol 2017; 8:1467. [PMID: 29163534 PMCID: PMC5675840 DOI: 10.3389/fimmu.2017.01467] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022] Open
Abstract
Spatiotemporal compartmentalization of signaling pathways and second messengers is pivotal for cell biology and membrane rafts are, therefore, required for several lymphocyte functions. On the other hand, T cells have the specific necessity of tuning signaling amplification depending on the context in which the antigen is presented. In this review, we discuss of membrane rafts in the context of T cell signaling, focusing on CD28-mediated costimulation.
Collapse
Affiliation(s)
- Sara Zumerle
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Pediatric Research Institute "Citta della Speranza", Padova, Italy
| |
Collapse
|
12
|
Alharshawi K, Marinelarena A, Kumar P, El-Sayed O, Bhattacharya P, Sun Z, Epstein AL, Maker AV, Prabhakar BS. PKC-ѳ is dispensable for OX40L-induced TCR-independent Treg proliferation but contributes by enabling IL-2 production from effector T-cells. Sci Rep 2017; 7:6594. [PMID: 28747670 PMCID: PMC5529425 DOI: 10.1038/s41598-017-05254-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/25/2017] [Indexed: 01/07/2023] Open
Abstract
We have previously shown that OX40L/OX40 interaction is critical for TCR-independent selective proliferation of Foxp3+ Tregs, but not Foxp3- effector T-cells (Teff), when CD4+ T-cells are co-cultured with GM-CSF derived bone marrow dendritic cells (G-BMDCs). Events downstream of OX40L/OX40 interaction in Tregs responsible for this novel mechanism are not understood. Earlier, OX40L/OX40 interaction has been shown to stimulate CD4+ T-cells through the formation of a signalosome involving TRAF2/PKC-Ѳ leading to NF-kB activation. In this study, using CD4+ T-cells from WT and OX40-/- mice we first established that OX40 mediated activation of NF-kB was critical for this Treg proliferation. Although CD4+ T-cells from PKC-Ѳ-/- mice were also defective in G-BMDC induced Treg proliferation ex vivo, this defect could be readily corrected by adding exogenous IL-2 to the co-cultures. Furthermore, by treating WT, OX40-/-, and PKC-Ѳ-/- mice with soluble OX40L we established that OX40L/OX40 interaction was required and sufficient to induce Treg proliferation in vivo independent of PKC-Ѳ status. Although PKC-Ѳ is dispensable for TCR-independent Treg proliferation per se, it is essential for optimum IL-2 production by Teff cells. Finally, our findings suggest that OX40L binding to OX40 likely results in recruitment of TRAF1 for downstream signalling.
Collapse
Affiliation(s)
- Khaled Alharshawi
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Alejandra Marinelarena
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Osama El-Sayed
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Palash Bhattacharya
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Zuoming Sun
- Department of Immunology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alan L Epstein
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Ajay V Maker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA.,Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
13
|
Chichelnitskiy E, Himmelseher B, Bachmann M, Pfeilschifter J, Mühl H. Hypothermia Promotes Interleukin-22 Expression and Fine-Tunes Its Biological Activity. Front Immunol 2017; 8:742. [PMID: 28706520 PMCID: PMC5489602 DOI: 10.3389/fimmu.2017.00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 01/15/2023] Open
Abstract
Disturbed homeostasis as a result of tissue stress can provoke leukocyte responses enabling recovery. Since mild hypothermia displays specific clinically relevant tissue-protective properties and interleukin (IL)-22 promotes healing at host/environment interfaces, effects of lowered ambient temperature on IL-22 were studied. We demonstrate that a 5-h exposure of endotoxemic mice to 4°C reduces body temperature by 5.0° and enhances splenic and colonic il22 gene expression. In contrast, tumor necrosis factor-α and IL-17A were not increased. In vivo data on IL-22 were corroborated using murine splenocytes and human peripheral blood mononuclear cells (PBMC) cultured upon 33°C and polyclonal T cell activation. Upregulation by mild hypothermia of largely T-cell-derived IL-22 in PBMC required monocytes and associated with enhanced nuclear T-cell nuclear factor of activated T cells (NFAT)-c2. Notably, NFAT antagonism by cyclosporin A or FK506 impaired IL-22 upregulation at normothermia and entirely prevented its enhanced expression upon hypothermic culture conditions. Data suggest that intact NFAT signaling is required for efficient IL-22 induction upon normothermic and hypothermic conditions. Hypothermia furthermore boosted early signal transducer and activator of transcription 3 activation by IL-22 and shaped downstream gene expression in epithelial-like cells. Altogether, data indicate that hypothermia supports and fine-tunes IL-22 production/action, which may contribute to regulatory properties of low ambient temperature.
Collapse
Affiliation(s)
- Evgeny Chichelnitskiy
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Britta Himmelseher
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
14
|
Roncagalli R, Cucchetti M, Jarmuzynski N, Grégoire C, Bergot E, Audebert S, Baudelet E, Menoita MG, Joachim A, Durand S, Suchanek M, Fiore F, Zhang L, Liang Y, Camoin L, Malissen M, Malissen B. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med 2016; 213:2437-2457. [PMID: 27647348 PMCID: PMC5068240 DOI: 10.1084/jem.20160579] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/17/2016] [Indexed: 12/26/2022] Open
Abstract
In two complementary papers, Casanova, Malissen, and collaborators report the discovery of human RLTPR deficiency, the first primary immunodeficiency of the human CD28 pathway in T cells. Together, the two studies elucidate the largely (but not completely) overlapping roles of RLTPR in CD28 signaling in T and B cells of humans and mice. The RLTPR cytosolic protein, also known as CARMIL2, is essential for CD28 co-stimulation in mice, but its importance in human T cells and mode of action remain elusive. Here, using affinity purification followed by mass spectrometry analysis, we showed that RLTPR acts as a scaffold, bridging CD28 to the CARD11/CARMA1 cytosolic adaptor and to the NF-κB signaling pathway, and identified proteins not found before within the CD28 signaling pathway. We further demonstrated that RLTPR is essential for CD28 co-stimulation in human T cells and that its noncanonical pleckstrin-homology domain, leucine-rich repeat domain, and proline-rich region were mandatory for that task. Although RLTPR is thought to function as an actin-uncapping protein, this property was dispensable for CD28 co-stimulation in both mouse and human. Our findings suggest that the scaffolding role of RLTPR predominates during CD28 co-stimulation and underpins the similar function of RLTPR in human and mouse T cells. Along that line, the lack of functional RLTPR molecules impeded the differentiation toward Th1 and Th17 fates of both human and mouse CD4+ T cells. RLTPR was also expressed in both human and mouse B cells. In the mouse, RLTPR did not play, however, any detectable role in BCR-mediated signaling and T cell-independent B cell responses.
Collapse
Affiliation(s)
- Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Margot Cucchetti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Nicolas Jarmuzynski
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Claude Grégoire
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Elise Bergot
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Stéphane Audebert
- CRCM, Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille Université, INSERM, CNRS, 13009 Marseille, France
| | - Emilie Baudelet
- CRCM, Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille Université, INSERM, CNRS, 13009 Marseille, France
| | - Marisa Goncalves Menoita
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Anais Joachim
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Stéphane Durand
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | | | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Lichen Zhang
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.,School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Yinming Liang
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.,School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Luc Camoin
- CRCM, Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille Université, INSERM, CNRS, 13009 Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France .,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France .,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| |
Collapse
|
15
|
Comrie WA, Burkhardt JK. Action and Traction: Cytoskeletal Control of Receptor Triggering at the Immunological Synapse. Front Immunol 2016; 7:68. [PMID: 27014258 PMCID: PMC4779853 DOI: 10.3389/fimmu.2016.00068] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/12/2016] [Indexed: 01/03/2023] Open
Abstract
It is well known that F-actin dynamics drive the micron-scale cell shape changes required for migration and immunological synapse (IS) formation. In addition, recent evidence points to a more intimate role for the actin cytoskeleton in promoting T cell activation. Mechanotransduction, the conversion of mechanical input into intracellular biochemical changes, is thought to play a critical role in several aspects of immunoreceptor triggering and downstream signal transduction. Multiple molecules associated with signaling events at the IS have been shown to respond to physical force, including the TCR, costimulatory molecules, adhesion molecules, and several downstream adapters. In at least some cases, it is clear that the relevant forces are exerted by dynamics of the T cell actomyosin cytoskeleton. Interestingly, there is evidence that the cytoskeleton of the antigen-presenting cell also plays an active role in T cell activation, by countering the molecular forces exerted by the T cell at the IS. Since actin polymerization is itself driven by TCR and costimulatory signaling pathways, a complex relationship exists between actin dynamics and receptor activation. This review will focus on recent advances in our understanding of the mechanosensitive aspects of T cell activation, paying specific attention to how F-actin-directed forces applied from both sides of the IS fit into current models of receptor triggering and activation.
Collapse
Affiliation(s)
- William A Comrie
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
16
|
Porciello N, Tuosto L. CD28 costimulatory signals in T lymphocyte activation: Emerging functions beyond a qualitative and quantitative support to TCR signalling. Cytokine Growth Factor Rev 2016; 28:11-9. [PMID: 26970725 DOI: 10.1016/j.cytogfr.2016.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/22/2016] [Indexed: 01/22/2023]
Abstract
CD28 is one of the most important co-stimulatory receptors necessary for full T lymphocyte activation. By binding its cognate ligands, B7.1/CD80 or B7.2/CD86, expressed on the surface of professional antigen presenting cells (APC), CD28 initiates several signalling cascades, which qualitatively and quantitatively support T cell receptor (TCR) signalling. More recent data evidenced that human CD28 can also act as a TCR-independent signalling unit, by delivering specific signals, which regulate the expression of pro-inflammatory cytokine/chemokines. Despite the enormous progresses made in identifying the mechanisms and molecules involved in CD28 signalling properties, much remains to be elucidated, especially in the light of the functional differences observed between human and mouse CD28. In this review we provide an overview of the current mechanisms and molecules through which CD28 support TCR signalling and highlight recent findings on the specific signalling motifs that regulate the unique pro-inflammatory activity of human CD28.
Collapse
Affiliation(s)
- Nicla Porciello
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Loretta Tuosto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
17
|
Brzostek J, Gascoigne NRJ, Rybakin V. Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition. Front Immunol 2016; 7:24. [PMID: 26870040 PMCID: PMC4740375 DOI: 10.3389/fimmu.2016.00024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 01/07/2023] Open
Abstract
B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs.
Collapse
Affiliation(s)
- Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Vasily Rybakin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, Singapore, Singapore; Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Rozanski CH, Utley A, Carlson LM, Farren MR, Murray M, Russell LM, Nair JR, Yang Z, Brady W, Garrett-Sinha LA, Schoenberger SP, Green JM, Boise LH, Lee KP. CD28 Promotes Plasma Cell Survival, Sustained Antibody Responses, and BLIMP-1 Upregulation through Its Distal PYAP Proline Motif. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:4717-28. [PMID: 25833397 PMCID: PMC4416738 DOI: 10.4049/jimmunol.1402260] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/06/2015] [Indexed: 11/19/2022]
Abstract
In health, long-lived plasma cells (LLPC) are essential for durable protective humoral immunity, and, conversely, in disease are a major source of pathogenic Abs in autoimmunity, graft rejection, and allergy. However, the molecular basis for their longevity is largely unknown. We have recently found that CD28 signaling in plasma cells (PC) is essential for sustaining Ab titers, by supporting the survival of LLPC, but not short-lived PC (SLPC). We now find that, unlike SLPC, CD28 activation in LLPC induces prosurvival downstream Vav signaling. Knockin mice with CD28 cytoplasmic tail mutations that abrogate Vav signaling (CD28-AYAA) had significantly fewer LLPC but unaffected SLPC numbers, whereas mice with mutations that abrogate PI3K signaling (CD28-Y170F) were indistinguishable from wild-type controls. This was consistent with the loss of CD28's prosurvival effect in LLPC from CD28-AYAA, but not CD28-Y170F, mice. Furthermore, the CD28 Vav motif in the B lineage was essential for the long-term maintenance of Ag-specific LLPC populations and Ab titers in vivo. Signaling downstream of the CD28 Vav motif induced previously undescribed transcriptional regulation of B lymphocyte-induced maturation protein-1, a key mediator of PC differentiation and maintenance. These findings suggest CD28 signaling in LLPC modulates the central B lymphocyte-induced maturation protein-1 transcriptional nexus involved in long-term survival and function.
Collapse
Affiliation(s)
- Cheryl H Rozanski
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Adam Utley
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Louise M Carlson
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Matthew R Farren
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Megan Murray
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Lisa M Russell
- Department of Biochemistry, University at Buffalo, Buffalo, NY 14260
| | - Jayakumar R Nair
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - ZhengYu Yang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - William Brady
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Stephen P Schoenberger
- Laboratory of Cellular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Jonathan M Green
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63130
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322; Department of Cell Biology, Emory University, Atlanta, GA 30322; and
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
19
|
Muscolini M, Camperio C, Porciello N, Caristi S, Capuano C, Viola A, Galandrini R, Tuosto L. Phosphatidylinositol 4–Phosphate 5–Kinase α and Vav1 Mutual Cooperation in CD28-Mediated Actin Remodeling and Signaling Functions. THE JOURNAL OF IMMUNOLOGY 2015; 194:1323-1333. [DOI: 10.4049/jimmunol.1401643] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Phosphatidylinositol 4,5–biphosphate (PIP2) is a cell membrane phosphoinositide crucial for cell signaling and activation. Indeed, PIP2 is a pivotal source for second messenger generation and controlling the activity of several proteins regulating cytoskeleton reorganization. Despite its critical role in T cell activation, the molecular mechanisms regulating PIP2 turnover remain largely unknown. In human primary CD4+ T lymphocytes, we have recently demonstrated that CD28 costimulatory receptor is crucial for regulating PIP2 turnover by allowing the recruitment and activation of the lipid kinase phosphatidylinositol 4–phosphate 5–kinase (PIP5Kα). We also identified PIP5Kα as a key modulator of CD28 costimulatory signals leading to the efficient T cell activation. In this study, we extend these data by demonstrating that PIP5Kα recruitment and activation is essential for CD28-mediated cytoskeleton rearrangement necessary for organizing a complete signaling compartment leading to downstream signaling functions. We also identified Vav1 as the linker molecule that couples the C-terminal proline-rich motif of CD28 to the recruitment and activation of PIP5Kα, which in turn cooperates with Vav1 in regulating actin polymerization and CD28 signaling functions.
Collapse
Affiliation(s)
- Michela Muscolini
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Cristina Camperio
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Nicla Porciello
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Silvana Caristi
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Cristina Capuano
- †Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| | - Antonella Viola
- ‡The Venetian Institute of Molecular Medicine, Padova 35129, Italy; and
- §Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | | | - Loretta Tuosto
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
20
|
Thaker YR, Schneider H, Rudd CE. TCR and CD28 activate the transcription factor NF-κB in T-cells via distinct adaptor signaling complexes. Immunol Lett 2014; 163:113-9. [PMID: 25455592 PMCID: PMC4286576 DOI: 10.1016/j.imlet.2014.10.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/28/2014] [Accepted: 10/15/2014] [Indexed: 01/07/2023]
Abstract
CD28 and TCR receptors use independent pathways to regulate NF-κB activation in T-cells. CD28 mediated NF-κB activation is dependent on the YMN-FM site for GRB-2 adaptor binding. The adaptors ADAP and SKAP1 are dispensable for direct CD28 activation of NF-κB. TCR driven NF-κB activation requires adaptor ADAP expression.
The transcription factor NF-κB is needed for the induction of inflammatory responses in T-cells. Whether its activation by the antigen-receptor and CD28 is mediated by the same or different intracellular signaling pathways has been unclear. Here, using T-cells from various knock-out (Cd28−/−, adap−/−) and knock-in (i.e. Cd28 Y-170F) mice in conjunction with transfected Jurkat T-cells, we show that the TCR and CD28 use distinct pathways to activate NF-κB in T-cells. Anti-CD28 ligation alone activated NF-κB in primary and Jurkat T-cells as measured by NF-κB reporter and EMSA assays. Anti-CD28 also activated NF-κB normally in primary T-cells from adap−/− mice, while anti-CD3 stimulation required the adaptor ADAP. Over-expression of ADAP or its binding partner SKAP1 failed to enhance anti-CD28 activation of NF-κB, while ADAP greatly increased anti-CD3 induced NF-κB activity. By contrast, CD28 activation of NF-κB depended on GRB-2 binding to CD28 as seen in CD28 deficient Jurkat T-cells reconstituted with the CD28 YMN-FM mutant, and in primary T-cells from CD28 Y170F mutant knock-in mice. CD28 associated with GRB-2, and GRB-2 siRNA impaired CD28 NF-κB activation. GRB-2 binding partner and guanine nucleotide exchange factor, VAV1, greatly enhanced anti-CD28 driven activation of NF-κB. Further, unlike in the case of anti-CD28, NF-κB activation by anti-CD3 and its cooperation with ADAP was strictly dependent on LAT expression. Overall, we provide evidence that CD28 and the TCR complex regulate NF-κB via different signaling modules of GRB-2/VAV1 and LAT/ADAP pathways respectively.
Collapse
Affiliation(s)
- Youg Raj Thaker
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| | - Helga Schneider
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Christopher E Rudd
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
21
|
Liang Y, Cucchetti M, Roncagalli R, Yokosuka T, Malzac A, Bertosio E, Imbert J, Nijman IJ, Suchanek M, Saito T, Wülfing C, Malissen B, Malissen M. The lymphoid lineage-specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nat Immunol 2013; 14:858-66. [PMID: 23793062 DOI: 10.1038/ni.2634] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/01/2013] [Indexed: 02/07/2023]
Abstract
Although T cell activation can result from signaling via T cell antigen receptor (TCR) alone, physiological T cell responses require costimulation via the coreceptor CD28. Through the use of an N-ethyl-N-nitrosourea-mutagenesis screen, we identified a mutation in Rltpr. We found that Rltpr was a lymphoid cell-specific, actin-uncapping protein essential for costimulation via CD28 and the development of regulatory T cells. Engagement of TCR-CD28 at the immunological synapse resulted in the colocalization of CD28 with both wild-type and mutant Rltpr proteins. However, the connection between CD28 and protein kinase C-θ and Carma1, two key effectors of CD28 costimulation, was abrogated in T cells expressing mutant Rltpr, and CD28 costimulation did not occur in those cells. Our findings provide a more complete model of CD28 costimulation in which Rltpr has a key role.
Collapse
Affiliation(s)
- Yinming Liang
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ksionda O, Saveliev A, Köchl R, Rapley J, Faroudi M, Smith-Garvin JE, Wülfing C, Rittinger K, Carter T, Tybulewicz VLJ. Mechanism and function of Vav1 localisation in TCR signalling. J Cell Sci 2012; 125:5302-14. [PMID: 22956543 PMCID: PMC3561853 DOI: 10.1242/jcs.105148] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The antigen-specific binding of T cells to antigen presenting cells results in recruitment of signalling proteins to microclusters at the cell-cell interface known as the immunological synapse (IS). The Vav1 guanine nucleotide exchange factor plays a critical role in T cell antigen receptor (TCR) signalling, leading to the activation of multiple pathways. We now show that it is recruited to microclusters and to the IS in primary CD4+ and CD8+ T cells. Furthermore, we show that this recruitment depends on the SH2 and C-terminal SH3 (SH3B) domains of Vav1, and on phosphotyrosines 112 and 128 of the SLP76 adaptor protein. Biophysical measurements show that Vav1 binds directly to these residues on SLP76 and that efficient binding depends on the SH2 and SH3B domains of Vav1. Finally, we show that the same two domains are critical for the phosphorylation of Vav1 and its signalling function in TCR-induced calcium flux. We propose that Vav1 is recruited to the IS by binding to SLP76 and that this interaction is critical for the transduction of signals leading to calcium flux.
Collapse
Affiliation(s)
- Olga Ksionda
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Acosta YY, Ojeda G, Zafra MP, Bernardone IS, Sánchez A, Dianzani U, Portolés P, Rojo JM. Dissociation of actin polymerization and lipid raft accumulation by ligation of the Inducible Costimulator (ICOS, CD278). ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.inmuno.2011.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Tuosto L. NF-κB family of transcription factors: Biochemical players of CD28 co-stimulation. Immunol Lett 2011; 135:1-9. [DOI: 10.1016/j.imlet.2010.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/09/2010] [Accepted: 09/14/2010] [Indexed: 12/31/2022]
|
25
|
Soligo M, Camperio C, Caristi S, Scottà C, Del Porto P, Costanzo A, Mantel PY, Schmidt-Weber CB, Piccolella E. CD28 costimulation regulates FOXP3 in a RelA/NF-κB-dependent mechanism. Eur J Immunol 2011; 41:503-13. [PMID: 21268019 DOI: 10.1002/eji.201040712] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/18/2010] [Accepted: 11/25/2010] [Indexed: 02/04/2023]
Abstract
The molecular mechanisms whereby CD28 alone or associated with TCR can regulate FOXP3 expression are not understood, although the importance of CD28 as a pivotal regulator of CD4(+) CD25(+) FOXP3(+) T cells is well recognized. We previously demonstrated that unique CD28-induced, NF-κB-dependent signals were sufficient to activate FOXP3 transcription in human CD4(+) CD25(-) T cells; however, the exact mechanisms are currently unknown. In this study, we have identified novel κB-binding sites on FOXP3 gene and demonstrated that CD28 signals mediated FOXP3 trans activation by nuclear translocation of RelA/NF-κB and not of c-Rel. The occupancy of FOXP3 κB-binding sites by RelA dimers that correlated with histone acetylation and recruitment of Pol II were required both to initiate FOXP3 transcription and to control the promoter occupancy by NFAT. Interestingly, knockdown of RelA in CD4(+) CD25(-) T cells stimulated through TCR and CD28 significantly affected FOXP3 expression, confirming that also the transcriptional activation of FOXP3 gene by TCR in the presence of CD28-costimulatory signals is RelA-dependent. In conclusion, these data suggest a new mechanism by which FOXP3 is activated and supports the critical role of CD28 in the regulation of peripheral tolerance.
Collapse
Affiliation(s)
- Marzia Soligo
- Department of Biology and Biotechnology C. Darwin, University Sapienza of Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cdk1/cyclin B1 controls Fas-mediated apoptosis by regulating caspase-8 activity. Mol Cell Biol 2010; 30:5726-40. [PMID: 20937773 DOI: 10.1128/mcb.00731-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Caspase activation is a hallmark of apoptosis. However, the molecular mechanisms underlying the regulation of caspase-8 activation within the extrinsic death pathway are not well understood. In this study, we demonstrate that procaspase-8 is phosphorylated in mitotic cells by Cdk1/cyclin B1 on Ser-387, which is located at the N terminus of the catalytic subunit p10. This phosphorylation of procaspase-8 on Ser-387 occurs in cancer cell lines, as well as in primary breast tissues and lymphocytes. Furthermore, RNA interference-mediated silencing of cyclin B1 or treatment with the Cdk1 inhibitor RO-3306 enhances the Fas-mediated activation and processing of procaspase-8 in mitotic cells. A nonphosphorylatable procaspase-8 (S387A) facilitates Fas-induced apoptosis during mitosis. Our findings suggest that Cdk1/cyclin B1 activity shields human cells against extrinsic death stimuli and unravel the molecular details of the cross talk between cell cycle and extrinsic apoptotic pathways. Finally, this new mechanism may also contribute to tumorigenesis.
Collapse
|
27
|
Riha P, Rudd CE. CD28 co-signaling in the adaptive immune response. SELF NONSELF 2010; 1:231-240. [PMID: 21487479 DOI: 10.4161/self.1.3.12968] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/12/2010] [Indexed: 12/20/2022]
Abstract
T-cell proliferation and function depends on signals from the antigen-receptor complex (TCR/CD3) and by various co-receptors such as CD28 and CTLA-4. The balance of positive and negative signals determines the outcome of the T-cell response to foreign and self-antigen. CD28 is a prominent co-receptor in naïve and memory T-cell responses. Its blockade has been exploited clinically to dampen T-cell responses to self-antigen. Current evidence shows that CD28 both potentiates TCR signaling and engages a unique array of mediators (PI3K, Grb2, FLNa) in the regulation of aspects of T-cell signaling including the transcription factor NFkB. In this mini-review, we provide an up-to-date overview of our understanding of the signaling mechanisms that underlie CD28 function and its potential application to the modulation of reactivity to autoimmunity.
Collapse
Affiliation(s)
- Pavel Riha
- Cell Signaling Section; Department of Pathology; University of Cambridge; Cambridge, UK
| | | |
Collapse
|
28
|
Abstract
CD28 costimulation regulates a wide range of cellular processes, from proliferation and survival to promoting the differentiation of specialized T-cell subsets. Since first being identified over 20 years ago, CD28 has remained a subject of intense study because of its profound consequences on T cell function and its potential for therapeutic manipulation. In this review we highlight the signaling cascades initiated by the major signaling motifs in CD28, focusing on PI-3 kinase-dependent and -independent pathways and how these are linked to specific cellular outcomes. Recent studies using gene targeted knockin mice have clarified the relative importance of these motifs on in vivo immune responses; however, much remains to be elucidated. Understanding the mechanism behind costimulation holds great potential for development of new clinically relevant reagents, a fact beginning to be realized with the advent of drugs that prevent CD28 ligation and signaling.
Collapse
Affiliation(s)
- Jonathan S Boomer
- Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
29
|
Raab M, Wang H, Lu Y, Smith X, Wu Z, Strebhardt K, Ladbury JE, Rudd CE. T cell receptor "inside-out" pathway via signaling module SKAP1-RapL regulates T cell motility and interactions in lymph nodes. Immunity 2010; 32:541-56. [PMID: 20346707 DOI: 10.1016/j.immuni.2010.03.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 11/05/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
Although essential for T cell function, the identity of the T cell receptor "inside-out" pathway for lymphocyte function-associated antigen 1 (LFA-1) adhesion has proved elusive. Here, we define the "inside-out" pathway mediated by N-terminal SKAP1 (SKAP-55) domain binding to the C-terminal SARAH domain of RapL. TcR induced Rap1-RapL complex formation and LFA-1 binding failed to occur in Skap1(-/-) primary T cells. SKAP1 generated a SKAP1-RapL-Rap1 complex that bound to LFA-1, whereas a RapL mutation (L224A) that abrogated SKAP1 binding without affecting MST1 disrupted component colocalization in vesicles as well as T cell-dendritic cell (DC) conjugation. RapL expression also "slowed" T cell motility in D011.10 transgenic T cells in lymph nodes (LNs), an effect reversed by the L224A mutation with reduced dwell times between T cells and DCs. Overall, our findings define a TCR "inside-out" pathway via N-SKAP1-C-RapL that regulates T cell adhesion, motility, and arrest times with DCs in LNs.
Collapse
Affiliation(s)
- Monika Raab
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge UK, CB2 1Q
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The series of events leading to T-cell activation following antigen recognition has been extensively investigated. Although the exact mechanisms of ligand binding and transmission of this extracellular interaction into a productive intracellular signaling sequence remains incomplete, it has been known for many years that the immunoreceptor tyrosine activation motifs (ITAMs) of the T-cell receptor (TCR):CD3 complex are required for initiation of this signaling cascade because of the recruitment and activation of multiple protein tyrosine kinases, signaling intermediates, and adapter molecules. It however remains unclear why the TCR:CD3 complex requires 10 ITAMs, while many other ITAM-containing immune receptors, such as Fc receptors (FcRs) and the B cell receptor (BCR), contain far fewer ITAMs. We have recently demonstrated that various parameters of T cell development and activation are influenced by the number, as well as location and type, of ITAMs within the TCR:CD3 complex and hence propose that the TCR is capable of 'scalable signaling' that facilitates the initiation and orchestration of diverse T-cell functions. While many of the underlying mechanisms remain hypothetical, this review intends to amalgamate what we have learned from conventional biochemical analyses regarding initiation and diversification of T-cell signaling, with more recent evidence from molecular and fluorescent microscopic analyses, to propose a broader purpose for the TCR:CD3 ITAMs. Rather than simply signal initiation, individual ITAMs may also be responsible for the differential recruitment of signaling and regulatory molecules which ultimately affects T-cell development, activation and differentiation.
Collapse
Affiliation(s)
- Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
31
|
Yokosuka T, Saito T. Dynamic regulation of T-cell costimulation through TCR-CD28 microclusters. Immunol Rev 2009; 229:27-40. [PMID: 19426213 DOI: 10.1111/j.1600-065x.2009.00779.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SUMMARY T-cell activation requires contact between T cells and antigen-presenting cells (APCs) to bring T-cell receptors (TCRs) and major histocompatibility complex peptide (MHCp) together to the same complex. These complexes rearrange to form a concentric circular structure, the immunological synapse (IS). After the discovery of the IS, dynamic imaging technologies have revealed the details of the IS and provided important insights for T-cell activation. We have redefined a minimal unit of T-cell activation, the 'TCR microcluster', which recognizes MHCp, triggers an assembly of assorted molecules downstream of the TCR, and induces effective signaling from TCRs. The relationship between TCR signaling and costimulatory signaling was analyzed in terms of the TCR microcluster. CD28, the most valuable costimulatory receptor, forms TCR-CD28 microclusters in cooperation with TCRs, associates with protein kinase C theta, and effectively induces initial T-cell activation. After mature IS formation, CD28 microclusters accumulate at a particular subregion of the IS, where they continuously assemble with the kinases and not TCRs, and generate sustained T-cell signaling. We propose here a 'TCR-CD28 microcluster' model in which TCR and costimulatory microclusters are spatiotemporally formed at the IS and exhibit fine-tuning of T-cell responses by assembling with specific players downstream of the TCR and CD28.
Collapse
Affiliation(s)
- Tadashi Yokosuka
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy, Immunology, Yokohama, Japan
| | | |
Collapse
|
32
|
Abstract
SUMMARY T-cell activation is mediated by antigen-specific signals from the TCRzeta/CD3 and CD4-CD8-p56lck complexes in combination with additional co-signals provided by coreceptors such as CD28, inducible costimulator (ICOS), cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death (PD-1), and others. CD28 and ICOS provide positive signals that promote and sustain T-cell responses, while CTLA-4 and PD-1 limit responses. The balance between stimulatory and inhibitory co-signals determines the ultimate nature of T-cell responses where response to foreign pathogen is achieved without excess inflammation and autoimmunity. In this review, we outline the current knowledge of the CD28 and CTLA-4 signaling mechanisms [involving phosphatidylinositol 3 kinase (PI3K), growth factor receptor-bound protein 2 (Grb2), Filamin A, protein kinase C theta (PKCtheta), and phosphatases] that control T-cell immunity. We also present recent findings on T-cell receptor-interacting molecule (TRIM) regulation of CTLA-4 surface expression, and a signaling pathway involving CTLA-4 activation of PI3K and protein kinase B (PKB)/AKT by which cell survival is ensured under conditions of anergy induction.
Collapse
Affiliation(s)
- Christopher E Rudd
- Department of Pathology, Cell Signalling Section, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
33
|
Varela-Rohena A, Carpenito C, Perez EE, Richardson M, Parry RV, Milone M, Scholler J, Hao X, Mexas A, Carroll RG, June CH, Riley JL. Genetic engineering of T cells for adoptive immunotherapy. Immunol Res 2009; 42:166-81. [PMID: 18841331 DOI: 10.1007/s12026-008-8057-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To be effective for the treatment of cancer and infectious diseases, T cell adoptive immunotherapy requires large numbers of cells with abundant proliferative reserves and intact effector functions. We are achieving these goals using a gene therapy strategy wherein the desired characteristics are introduced into a starting cell population, primarily by high efficiency lentiviral vector-mediated transduction. Modified cells are then expanded using ex vivo expansion protocols designed to minimally alter the desired cellular phenotype. In this article, we focus on strategies to (1) dissect the signals controlling T cell proliferation; (2) render CD4 T cells resistant to HIV-1 infection; and (3) redirect CD8 T cell antigen specificity.
Collapse
Affiliation(s)
- Angel Varela-Rohena
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, 421 Curie Blvd-556 BRB II/III, Philadelphia, PA, 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Singh M, Basu S, Camell C, Couturier J, Nudelman RJ, Medina MA, Rodgers JR, Lewis DE. Selective expansion of memory CD4(+) T cells by mitogenic human CD28 generates inflammatory cytokines and regulatory T cells. Eur J Immunol 2008; 38:1522-32. [PMID: 18446791 DOI: 10.1002/eji.200737929] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Costimulatory signals are important for development of effector and regulatory T cells. In this case, CD28 signaling is usually considered inert in the absence of signaling through the TCR. By contrast, mitogenic rat CD28 mAb reportedly expand regulatory T cells without TCR stimulation. We found that a commercially available human CD28 mAb (ANC28) stimulated PBMC without TCR co-ligation or cross-linking; ANC28 selectively expanded CD4(+)CD25(+)FOXP3(-) (Teff) and CD4(+)CD25(+)FOXP3(+) (Treg) cells. ANC28 stimulated the CD45RO(+) CD4(+) (memory) population, whereas CD45RA(+)CD4(+) (naive) cells did not respond. ANC28 also induced inflammatory cytokines. Treg induced by ANC28 retain the Treg phenotype longer than costimulated Treg. Treg induced by ANC28 suppressed CD25(-) T cells through a contact-dependent mechanism. Purity influenced the response of CD4(+)CD25(+ )cells because bead-purified CD4(+)CD25(+ )cells (85-90% pure) responded strongly to ANC28, whereas 98% pure FACS-sorted CD4(+)CD25(bright) (Treg) did not respond. Purified CD4(+)CD25(int) cells responded similarly to the bead-purified CD4(+)CD25(+) cells. Thus, pre-activated CD4(+) T cells (CD25(int)) respond to ANC28 rather than Treg (CD25(bright)). The ability of ANC28 to expand both effectors producing inflammatory cytokines as well as suppressive regulatory T cells might be useful for ex vivo expansion of therapeutic T cells.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Scottà C, Soligo M, Camperio C, Piccolella E. FOXP3 induced by CD28/B7 interaction regulates CD25 and anergic phenotype in human CD4+CD25- T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2008; 181:1025-33. [PMID: 18606654 DOI: 10.4049/jimmunol.181.2.1025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Among the signals necessary to generate CD4(+)CD25(+)FOXP3(+) T cells from CD4(+)CD25(-)FOXP3(-) T cells, a pivotal role is played by CD28. However, in humans, it is not known whether CD28 signaling independently of TCR promotes forkhead box protein 3 (FOXP3) expression and regulates CD4(+)CD25(+)FOXP3(+) T cell functions. To address this issue, starting from our previous experience, we analyzed the unique signals delivered by CD28 following stimulation by its natural ligand B7. Our results show that, in primary CD4(+)CD25(-) T cells, CD28 signals independent of TCR-mediated stimulatory pathways are sufficient to induce the transcription of FOXP3 in a small number of CD4(+)CD25(-) T cells committed to express FOXP3. These signals are dependent on CD28-derived PI3K/Akt pathways and resistant to cyclosporin A. In addition, we demonstrated that translated FOXP3 was recruited to CD25, Il-2, and Ctla4 target promoters. CD28-mediated FOXP3 expression was transient and correlated with CD25 expression. The presence of FOXP3 in CD28-activated CD4(+)CD25(-) T cells correlated with a transient unresponsiveness to antigenic stimuli. The addition of exogenous IL-2 did not influence either FOXP3 or CD25 expression but rescued CD28-activated T cells from apoptosis. Our results, demonstrating that FOXP3 expression driven solely by the CD28/B7 interaction inhibited T cell activation, support the role of CD28 in the regulation of peripheral tolerance and suggest a new mechanism through which it could occur.
Collapse
Affiliation(s)
- Cristiano Scottà
- Department of Cellular and Developmental Biology, University Sapienza of Rome, Rome, Italy
| | | | | | | |
Collapse
|
37
|
Schneider H, Rudd CE. CD28 and Grb-2, relative to Gads or Grap, preferentially co-operate with Vav1 in the activation of NFAT/AP-1 transcription. Biochem Biophys Res Commun 2008; 369:616-21. [PMID: 18295596 PMCID: PMC4186964 DOI: 10.1016/j.bbrc.2008.02.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 12/11/2022]
Abstract
The co-receptor CD28 binds to several intracellular proteins including PI3 kinase, Grb-2, Gads and ITK. Grb-2 and PI3 kinase binding has been mapped to the pYMNM motif within the cytoplasmic tail of CD28 and has been shown to play a role in co-stimulation. In this study, we demonstrate that amongst the Grb-2 family adapter proteins, CD28 precipitated Grb-2 and specifically co-operated in the up-regulation of NFAT/AP-1 transcription. By contrast, Gads and Grap either failed or only weakly collaborated with CD28 ligation. Further, the loss of Grb-2 binding interferes with the ability of Vav1 to co-operate with CD28. Anti-CD28 ligation alone was capable for co-operating with Grb-2 or Grb-2-Vav1. Our findings define a pathway involving CD28 binding to Grb-2 and its co-operativity with Vav1 in the regulation of T-cell co-stimulation.
Collapse
Affiliation(s)
- Helga Schneider
- Cell Signalling Section, Division of Immunology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Christopher E. Rudd
- Cell Signalling Section, Division of Immunology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
38
|
Zha Y, Gajewski TF. An adenoviral vector encoding dominant negative Cbl lowers the threshold for T cell activation in post-thymic T cells. Cell Immunol 2007; 247:95-102. [PMID: 17897636 PMCID: PMC3286639 DOI: 10.1016/j.cellimm.2007.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/03/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
Cbl family ubiquitin ligases act as key negative regulators of TCR signaling. Knockout mice lacking Cbl-b and c-Cbl show augmented T cell activation and CD28-independent IL-2 production. In order to study Cbl function directly in post-thymic T cells, a DN Cbl adenovirus was generated for transduction of T cells from Coxsackie/adenovirus receptor (CAR) transgenic (Tg) mice. We show that dominant negative (DN) Cbl-transduced CD4+ T cells exhibited enhanced IL-2 production upon TCR/CD28 engagement compared with empty adenoviral vector-transduced cells. This augmentation was reflected at both IL-2 mRNA and protein level, and correlated with increased protein phosphorylation of Vav, Akt, ERK, and p38MAPK. Our results indicate that introduction of dominant negative Cbl can potentiate activation of post-thymic CD4+ T cells, which argues for development of strategies to interfere with Cbl function as a method of immunopotentiation.
Collapse
Affiliation(s)
- Yuanyuan Zha
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Thomas F. Gajewski
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Medicine, University of Chicago, Chicago, IL 60637
| |
Collapse
|
39
|
Abstract
Adapters are multidomain molecules that recruit effector proteins during signal transduction by immunoreceptors and integrins. The absence of these scaffolding molecules profoundly affects development and function of various hematopoietic lineages, underscoring their importance as regulators of signaling cascades. An emerging aspect of the mechanism by which engaged immunoreceptors and integrins transmit signals within the cell is by differential usage of various adapters that function to nucleate formation of distinct signaling complexes in a specific location within the cell. In this review, we discuss the mechanisms by which adapter proteins coordinate signal transduction with an emphasis on the role of subcellular compartmentalization in adapter function.
Collapse
Affiliation(s)
- Natalie Bezman
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
40
|
Wei B, da Rocha Dias S, Wang H, Rudd CE. CTL-associated antigen-4 ligation induces rapid T cell polarization that depends on phosphatidylinositol 3-kinase, Vav-1, Cdc42, and myosin light chain kinase. THE JOURNAL OF IMMUNOLOGY 2007; 179:400-8. [PMID: 17579061 DOI: 10.4049/jimmunol.179.1.400] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CTLA-4 can negatively regulate cytokine production and proliferation, increase motility, and override the TCR-induced stop-signal needed for stable T cell-APC conjugation. Despite this, little is known regarding whether CTLA-4 can alter T cell morphology and the nature of the signaling events that could account for this event. In this study, we demonstrate that anti-CTLA-4 and CD3/CTLA-4 induce rapid T cell polarization (i.e., within 15-30 min) with increases in lamellipodia, filopodia, and uropod formation. This was observed with anti-CTLA-4 and CD80-Ig ligation of CTLA-4, but not with anti-CD3 alone, or anti-CD3/CD28 coligation. Polarization required PI3K, the guanine nucleotide exchange factor Vav1, the GTP-binding protein Cdc42, as well as myosin L chain kinase. By contrast, a key downstream target of PI3K, protein kinase B, as well as Rho kinase and RhoA, were not needed. Our results demonstrate that CTLA-4 is a potent activator T cell polarization needed for motility, and this process involves specific set of signaling proteins that might contribute to coreceptor regulation of T cell function.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- Antigens, Differentiation/physiology
- CD3 Complex/immunology
- CTLA-4 Antigen
- Cell Movement/immunology
- Cells, Cultured
- Humans
- Immune Sera/physiology
- Intracellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/physiology
- Mice
- Myosin-Light-Chain Kinase/physiology
- Phosphatidylinositol 3-Kinases/physiology
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-vav/physiology
- Pseudopodia/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Up-Regulation/immunology
- cdc42 GTP-Binding Protein/physiology
- rho-Associated Kinases
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Bin Wei
- Molecular Immunology Section, Department of Immunology, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
41
|
Wang S, Diao H, Guan Q, Jevnikar AM, Du C. Enhanced cardiac allograft survival by Vav1-Rac signaling blockade in a mouse model. Transpl Immunol 2007; 18:53-61. [PMID: 17584603 DOI: 10.1016/j.trim.2007.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 03/12/2007] [Accepted: 03/23/2007] [Indexed: 12/27/2022]
Abstract
BACKGROUND Vav1-Rac signaling plays a pivotal role in TCR/antigen and CD28 signals for T cell activation. However, pharmacological interference of this signaling has not been tested in the prevention of alloimmune-mediated allograft rejection. It has been demonstrated that 6-thio-GTP, a metabolite of azathioprine, specifically inhibits Vav1-Rac activity in T lymphocytes. Here we show the immunosuppressive efficacy of 6-thio-GTP in the prevention of cardiac allograft rejection. METHODS T cell proliferations were measured by (3)H-thymidine uptake. The immunosuppressive activities of 6-thio-GTP were tested in the cardiac allograft model of C57BL/6 (H-2(b)) to Balb/c (H-2(d)) mice. RESULTS 6-Thio-GTP inhibited TCR/alloantigen stimulated T cell proliferation and CD28-dependent T cell survival. Administration of 6-thio-GTP (0.5 mg/kg) prolonged graft survival to 13.8+/-2.39 days compared to 8.3+/-0.48 days in PBS controls (p<0.0001). Combination of 6-thio-GTP (0.5 mg/kg) with CsA (15 mg/kg) enhanced graft survival from 15.0+/-1.61 days in CsA treated recipients to 36.8+/-2.17 days in those received 20 days of combination therapy of CsA and 6-thio-GTP (p<0.0001), or to 42.7+/-16.63 days in the group treated with 20 days of CsA and 60 days of 6-thio-GTP (p<0.0001). Lymphocytes from 6-thio-GTP treated recipients with long-term surviving grafts (>60 days) displayed reduced proliferative response to alloantigen and higher frequencies of regulatory T cells (Treg). CONCLUSION Vav1-Rac inhibitor 6-thio-GTP prolongs allograft survival alone or in combination with CsA by suppression of alloreactive T cell activation. Our findings suggest the therapeutic potential of pharmacological interference of Vav1-Rac signaling for transplantation.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Medicine, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
42
|
Charvet C, Canonigo AJ, Bécart S, Maurer U, Miletic AV, Swat W, Deckert M, Altman A. Vav1 promotes T cell cycle progression by linking TCR/CD28 costimulation to FOXO1 and p27kip1 expression. THE JOURNAL OF IMMUNOLOGY 2007; 177:5024-31. [PMID: 17015685 DOI: 10.4049/jimmunol.177.8.5024] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vav proteins play a critical role in T cell activation and proliferation by promoting cytoskeleton reorganization, transcription factor activation, and cytokine production. In this study, we investigated the role of Vav in T cell cycle progression. TCR/CD28-stimulated Vav1(-/-) T cells displayed a cell cycle block at the G0-G1 stage, which accounted for their defective proliferation. This defect was associated with impaired TCR/CD28-induced phosphorylation of Akt and the Forkhead family transcription factor, FOXO1. The cytoplasmic localization of FOXO1 and its association with 14-3-3tau were also reduced in Vav1(-/-) T cells. Consistent with the important role of FOXO1 in p27 kip1 transcription, stimulated Vav1(-/-) T cells failed to down-regulate the expression of p27 kip1, explaining their G0-G1 arrest. These defects were more pronounced in Vav1/Vav3 double-deficient T cells, suggesting partial redundancy between Vav1 and Vav3. Importantly, IL-2-induced p27 kip1 down-regulation and cyclin D3 up-regulation and FOXO1 phosphorylation were similar in Vav1(-/-) and wild-type T lymphoblasts, indicating that defective FOXO1 phosphorylation and p27 kip1 and cyclin D3 expression do not result from deficient IL-2 signaling in the absence of Vav1. Thus, Vav1 is a critical regulator of a PI3K/Akt/FOXO1 pathway, which controls T cell cycle progression and proliferation.
Collapse
Affiliation(s)
- Céline Charvet
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Farzaneh L, Kasahara N, Farzaneh F. The strange case of TGN1412. Cancer Immunol Immunother 2007; 56:129-34. [PMID: 16783575 PMCID: PMC11030174 DOI: 10.1007/s00262-006-0189-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2006] [Accepted: 05/23/2006] [Indexed: 11/28/2022]
Affiliation(s)
- L. Farzaneh
- King’s College London, Department of Haematological and Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU UK
| | - N. Kasahara
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E. Young Drive South, MRL-1551, Los Angeles, CA 90095 USA
| | - F. Farzaneh
- King’s College London, Department of Haematological and Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU UK
| |
Collapse
|
44
|
Dennehy KM, Elias F, Na SY, Fischer KD, Hünig T, Lühder F. Mitogenic CD28 Signals Require the Exchange Factor Vav1 to Enhance TCR Signaling at the SLP-76-Vav-Itk Signalosome. THE JOURNAL OF IMMUNOLOGY 2007; 178:1363-71. [PMID: 17237383 DOI: 10.4049/jimmunol.178.3.1363] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Almost all physiological T cell responses require costimulation-engagement of the clonotypic TCR with MHC/Ag and CD28 by its ligands CD80/86. Whether CD28 provides signals that are qualitatively unique or quantitatively amplify TCR signaling is poorly understood. In this study, we use superagonistic CD28 Abs, which induce T cell proliferation without TCR coligation, to determine how CD28 contributes to mitogenic responses. We show that mitogenic CD28 signals require but do not activate the proximal TCR components TCRzeta and Zap-70 kinase. In cell lines lacking proximal TCR signaling, an early defect in the CD28 pathway is in phosphorylation of the adaptor molecule SLP-76, which we show is essential for recruitment of the exchange factor Vav leading to Ca(2+) flux and IL-2 production. Point mutations in CD28 that result in diminished Vav phosphorylation also result in defective Ca(2+) flux, IL-2 production, and Tec-kinase phosphorylation. Using Vav1-deficient mice, we further demonstrate the importance of Vav1 for efficient proliferation, IL-2 production, and Ca(2+) flux. Our results indicate that CD28 signals feed into the TCR signaling pathway at the level of the SLP-76 signalosome.
Collapse
Affiliation(s)
- Kevin M Dennehy
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Hünig T. Manipulation of Regulatory T‐Cell Number and Function with CD28‐Specific Monoclonal Antibodies. Adv Immunol 2007; 95:111-48. [PMID: 17869612 DOI: 10.1016/s0065-2776(07)95004-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Suppressor or "regulatory" CD4 T cells play a key role in the control of autoimmunity and overshooting immune responses to foreign antigens, but can also obstruct effective anticancer therapies. The homeostasis and activation of these regulatory T cells (Treg cells) is tightly connected to that of effector CD4 T cells via the costimulatory receptor CD28 and the cytokine IL-2: Both subsets require costimulation to be activated by antigen, and Treg cells additionally depend on IL-2 produced by effector CD4 T cells in a costimulation-dependent fashion. Depending on the therapeutic aim, blockade, or stimulation of CD28 with monoclonal antibodies (mAb) can therefore profoundly affect the size and activity of the Treg compartment. In this chapter, experiments performed in rodents with distinct types of CD28-specific mAb, and the recent failure to translate CD28-driven Treg activation into humans, are discussed.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antigens, CD/immunology
- Antigens, Differentiation/immunology
- Autoimmunity
- CD28 Antigens/immunology
- CTLA-4 Antigen
- Cytokines/immunology
- Cytokines/metabolism
- Humans
- Interleukin-2/immunology
- Lymphocyte Activation
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Thomas Hünig
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
46
|
Watanabe R, Harada Y, Takeda K, Takahashi J, Ohnuki K, Ogawa S, Ohgai D, Kaibara N, Koiwai O, Tanabe K, Toma H, Sugamura K, Abe R. Grb2 and Gads exhibit different interactions with CD28 and play distinct roles in CD28-mediated costimulation. THE JOURNAL OF IMMUNOLOGY 2006; 177:1085-91. [PMID: 16818765 DOI: 10.4049/jimmunol.177.2.1085] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although both CD28 and ICOS bind PI3K and provide stimulatory signal for T cell activation, unlike CD28, ICOS does not costimulate IL-2 secretion. CD28 binds both PI3K and Grb2, whereas ICOS binds only PI3K. We have generated an ICOS mutant, which can bind Grb2 by replacement of its PI3K binding motif YMFM with the CD28 YMNM motif, and shown that it induces significant activation of the IL-2 promoter. However, this mutant ICOS was insufficient to activate the NF-kappaB pathway. In this study, we show that Gads, but not Grb2, is essential for CD28-mediated NF-kappaB activation, and its binding to CD28 requires the whole CD28 cytoplasmic domain in addition to the YMNM motif. Mutagenesis experiments have indicated that mutations in the N-terminal and/or C-terminal PXXP motif(s) of CD28 significantly reduce their association with Gads, whereas their associations with Grb2 are maintained. They induced strong activity of the NFAT/AP-1 reporter comparable with the CD28 wild type, but weak activity of the NF-kappaB reporter. Grb2- and Gads-dominant-negative mutants had a strong effect on NFAT/AP-1 reporter, but only Gads-dominant-negative significantly inhibited NF-kappaB reporter. Our data suggest that, in addition to the PI3K binding motif, the PXXP motif in the CD28 cytoplasmic domain may also define a functional difference between the CD28- and ICOS-mediated costimulatory signals by binding to Gads.
Collapse
Affiliation(s)
- Ryosuke Watanabe
- Research Institute for Biological Sciences, Faculty of Science and Technology, Tokyo University of Science, 1669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wood JE, Schneider H, Rudd CE. TcR and TcR-CD28 engagement of protein kinase B (PKB/AKT) and glycogen synthase kinase-3 (GSK-3) operates independently of guanine nucleotide exchange factor VAV-1. J Biol Chem 2006; 281:32385-94. [PMID: 16905544 DOI: 10.1074/jbc.m604878200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
TcRzeta/CD3 and TcRzeta/CD3-CD28 signaling requires the guanine nucleotide exchange factor (GEF) Vav-1 as well as the activation of phosphatidylinositol 3-kinase, protein kinase B (PKB/AKT), and its inactivation of glycogen synthase kinase-3 (GSK-3). Whether these two pathways are connected or operate independently of each other in T-cells has been unclear. Here, we report that anti-CD3 and anti-CD3/CD28 can induce PKB and GSK-3alpha phosphorylation in the Vav-1(-/-) Jurkat cell line J. Vav.1 and in primary CD4-positive Vav-1(-/-) T-cells. Reduced GSK-3alpha phosphorylation was observed in Vav-1,2,3(-/-) T-cells together with a complete loss of FOXO1 phosphorylation. Furthermore, PKB and GSK-3 phosphorylation was unperturbed in the presence of GEF-inactive Vav-1 that inhibited interleukin-2 gene activation and a form of Src homology 2 domain-containing lymphocytic protein of 76-kDa (SLP-76) that is defective in binding to Vav-1. The pathway also was intact under conditions of c-Jun N-terminal kinase (JNK) inhibition and disruption of the actin cytoskeleton by cytochalasin D. Both events are down-stream targets of Vav-1. Overall, our findings indicate that the TcR and TcR-CD28 driven PKB-GSK-3 pathway can operate independently of Vav-1 in T-cells.
Collapse
Affiliation(s)
- Joanne E Wood
- Molecular Immunology Section, Department of Immunology, Imperial College London, London W12 ONN, United Kingdom
| | | | | |
Collapse
|
48
|
Dodeller F, Skapenko A, Kalden JR, Lipsky PE, Schulze-Koops H. The p38 mitogen-activated protein kinase regulates effector functions of primary human CD4 T cells. Eur J Immunol 2006; 35:3631-42. [PMID: 16259005 DOI: 10.1002/eji.200535029] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The role of p38 mitogen-activated protein kinase in primary human T cells is incompletely understood. We analyzed in detail the role of p38 in the regulation of effector functions and differentiation of human CD4 T cells by using a p38-specific inhibitor and a dominant-negative mutant of p38. p38 was found to mediate expression of IL-10 and the Th2 cytokines IL-4, IL-5, and IL-13 in both, primary naive and memory T cells. In contrast, inhibition of p38 activity did not affect expression of the Th1 cytokines IFN-gamma and TNF induced by TCR-stimulation, but decreased IL-12-mediated IFN-gamma expression. Cytokine expression from established Th2 effector cells was also regulated by p38, however, the role of p38 was less pronounced compared to primary CD4 T cells. p38 MAPK regulated cytokine gene expression at both, the transcriptional level by activating gene transcription and the post-transcriptional level by stabilizing cytokine mRNA. As a result of the effect of p38 on IL-4 expression, p38 activity modulated differentiation of naive precursor T cells by inducing a shift of the Th1/Th2 balance toward the immuno-modulatory Th2 direction. Together, the data suggest that p38 plays a key role in human Th2 cell immune responses.
Collapse
Affiliation(s)
- Francis Dodeller
- Nikolaus Fiebiger Center for Molecular Medicine, Clinical Research Group III, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
49
|
Abstract
Functional polarization of leukocytes is a requisite to accomplish immune function. Immune synapse formation or chemotaxis requires asymmetric redistribution of membrane receptors, signaling molecules and the actin cytoskeleton. There is increasing evidence that compartmentalization of the plasma membrane into distinct lipid microdomains is pivotal in establishing and maintaining leukocyte polarity. Specific rafts assemble into large-scale domains to create plasma membrane asymmetries at specific cell locations, thus coordinating temporally and spatially cell signaling in these processes. In this review we discuss the roles of lipid rafts as organizers of T lymphocyte polarity during cell activation and migration.
Collapse
Affiliation(s)
- Santos Mañes
- Department of Immunology and Oncology, National Center of Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | |
Collapse
|
50
|
Sanchez-Lockhart M, Miller J. Engagement of CD28 outside of the immunological synapse results in up-regulation of IL-2 mRNA stability but not IL-2 transcription. THE JOURNAL OF IMMUNOLOGY 2006; 176:4778-84. [PMID: 16585571 DOI: 10.4049/jimmunol.176.8.4778] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During T cell activation by APC, CD28 is colocalized with TCR in the central supramolecular activation cluster (cSMAC) region of the immunological synapse. CD28 signaling through PI3K results in the recruitment of protein kinase C (PKC)theta to the cSMAC, activation of NF-kappaB, and induction of IL-2 transcription. These results suggest that localized engagement of CD28 within the cSMAC may be required for CD28 activation and/or signal integration with TCR signals. To test this model we have examined the mechanism of CD28-mediated induction of IL-2 secretion when CD28 is engaged outside of the immunological synapse. CD4 T cells were stimulated with Ag presented by B7-negative APC and CD28 costimulation was provided in trans by anti-CD28-coated beads or by class II-negative, B7-positive cells. We show that induction of IL-2 secretion under these conditions did not require expression of PKCtheta and did not induce NF-kappaB activation or IL-2 transcription. In contrast, CD28 costimulation in trans did induce IL-2 mRNA stability, accounting for the up-regulation of IL-2 secretion. These data indicate that the ability of CD28 to up-regulate IL-2 transcription requires colocalization of TCR and CD28 at the plasma membrane, possibly within the cSMAC of the immunological synapse. In contrast, the ability of CD28 to promote IL-2 mRNA stability can be transduced from a distal site from the TCR, suggesting that signal integration occurs downstream from the plasma membrane. These data support the potential role of trans costimulation in tumor and allograft rejection, but limit the potential functional impact that trans costimulation may have on T cell activation.
Collapse
Affiliation(s)
- Mariano Sanchez-Lockhart
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences and the Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|