1
|
Rowe T, Fletcher A, Svoboda P, Pohl J, Hatta Y, Jasso G, Wentworth DE, Ross TM. Interferon as an immunoadjuvant to enhance antibodies following influenza B infection and vaccination in ferrets. NPJ Vaccines 2024; 9:199. [PMID: 39448628 PMCID: PMC11502657 DOI: 10.1038/s41541-024-00973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Despite annual vaccination, influenza B viruses (IBV) continue to cause significant morbidity and mortality in humans. We have found that IBV infection resulted in a weaker innate and adaptive immune response than influenza A viruses (IAV) in ferrets. To understand and overcome the weak immune responses to IBV in ferrets, we administered type-I or type-III interferon (IFN) to ferrets following infection or vaccination and evaluated their effects on the immune response. IFN signaling following viral infection plays an important role in the initial innate immune response and affects subsequent adaptive immune responses. In the respiratory tract, IFN lambda (IFNL) has regulatory effects on adaptive immunity indirectly through thymic stromal lymphopoietin (TSLP), which then acts on immune cells to stimulate the adaptive response. Following IBV infection or vaccination, IFN treatment (IFN-Tx) upregulated gene expression of early inflammatory responses in the upper respiratory tract and robust IFN, TSLP, and inflammatory responses in peripheral blood cells. These responses were sustained following challenge or vaccination in IFN-Tx animals. Serum IFNL and TSLP levels were enhanced in IFN-Tx animals following challenge/rechallenge over mock-Tx; however, this difference was not observed following vaccination. Antibody responses in serum of IFN-Tx animals following IBV infection or vaccination increased more quickly and to higher titers and were sustained longer than mock-Tx animals over 3 months. Following rechallenge of infected animals 3 months post treatment, antibody levels remained higher than mock-Tx. However, IFN-Tx did not have an effect on antibody responses following challenge of vaccinated animals. A strong direct correlation was found between TSLP levels and antibody responses following challenge-rechallenge and vaccination-challenge indicating it as a useful tool for predicting adaptive immune responses following IBV infection or vaccination. The effects of IFN on strengthening both innate and adaptive responses to IBV may aid in development of more effective treatments following infection and improved influenza vaccines.
Collapse
Affiliation(s)
- Thomas Rowe
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| | | | - Pavel Svoboda
- Division of Core Laboratory Services and Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jan Pohl
- Division of Core Laboratory Services and Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yasuko Hatta
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gabriela Jasso
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - David E Wentworth
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ted M Ross
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
- Department of Infection Biology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
2
|
Al-Aghbar MA, Espino Guarch M, van Panhuys N. IL-2 amplifies quantitative TCR signalling inputs to drive Th1 and Th2 differentiation. Immunology 2024; 173:196-208. [PMID: 38887097 DOI: 10.1111/imm.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
The activation of CD4+ T-cells in a T cell receptor (TCR)-dependent antigen-specific manner is a central characteristic of the adaptive immune response. In addition to ensuring that CD4+ T-cells recognise their cognate antigen during activation, TCR-mediated signalling can also direct the outcome of differentiation. In both in vivo and in vitro model systems, strong TCR signalling has been demonstrated to drive Th1 differentiation, whereas weak TCR signalling drives Th2 responses. During the process of differentiation, TCR signal strength acts as a quantitative component in combination with the qualitative effects imparted by cytokines to polarise distinct T-helper lineages. Here, we investigated the role of interleukin 2 (IL-2) signalling in determining the outcome of TCR-dependent differentiation. IL-2 production was initiated as an early response to TCR-induced activation and was regulated by the strength of TCR signalling initially received. In the absence of IL-2, TCR dependent differentiation was found to be abolished. However, proliferative responses and early markers of activation were maintained, including the upregulation of GATA3, Tbet and Foxp3 at 24 h post-stimulation. Demonstrating that IL-2 signalling has a key role in stabilising and amplifying lineage-specific transcirption factor expression during differentiation. Further, activation of IL-2-deficient T-cells in the presence of exogenous cytokines was sufficient to restore differentiation whilst maintaining transcriptional signatures imparted during initial TCR signalling. Combined, our data demonstrate that the integration of quantitative TCR-dependent signalling and qualitative IL-2 signalling is essential for determining the fate of CD4+ T-cells during differentiation.
Collapse
Affiliation(s)
- Mohammad Ameen Al-Aghbar
- Laboratory of Immunoregulation, Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Meritxell Espino Guarch
- Laboratory of Immunoregulation, Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Nicholas van Panhuys
- Laboratory of Immunoregulation, Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
- Lymphocyte Biology Section, Laboratory of Systems Biology, NIAID, NIH, Bethesda, Maryland, USA
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
3
|
Sangani KA, Parker ME, Anderson HD, Chen L, Pandey SP, Pierre JF, Meisel M, Riesenfeld SJ, Hinterleitner R, Jabri B. Epigenetic control of commensal induced Th2 Responses and Intestinal immunopathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610485. [PMID: 39257820 PMCID: PMC11383986 DOI: 10.1101/2024.08.30.610485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Understanding the initiation of T-helper (Th)-2 immunity is crucial for addressing allergic diseases that have been linked to the commensal microbiota. However, Th2 responses are notably absent from known host-microbiota intestinal immune circuits. Notably, the commensal protist Tritrichomonas induces a transient innate ILC2 circuit rather than a chronic Th2 circuit. Canonical Th2 responses rely on the induction of IL-4 production by innate cells. This study shows that the absence of Tet2 , a DNA demethylase, reprograms naïve T cells to autonomously produce IL-4 upon T cell receptor stimulation, bypassing the need for IL-4 from innate cells for Th2 differentiation. Loss of this checkpoint induces chronic Th2 responses to Tritrichomonas , associated with IL-25-dependent barrier dysfunction and increased susceptibility to allergic pathology in response to dietary antigens. Sentence Summary Regulation of cell autonomous IL-4 in T cells is critical to prevent dysregulated Th2 immunity to commensals and predisposition to allergy.
Collapse
|
4
|
Kögl T, Chang HF, Staniek J, Chiang SC, Thoulass G, Lao J, Weißert K, Dettmer-Monaco V, Geiger K, Manna PT, Beziat V, Momenilandi M, Tu SM, Keppler SJ, Pattu V, Wolf P, Kupferschmid L, Tholen S, Covill LE, Ebert K, Straub T, Groß M, Gather R, Engel H, Salzer U, Schell C, Maier S, Lehmberg K, Cornu TI, Pircher H, Shahrooei M, Parvaneh N, Elling R, Rizzi M, Bryceson YT, Ehl S, Aichele P, Ammann S. Patients and mice with deficiency in the SNARE protein SYNTAXIN-11 have a secondary B cell defect. J Exp Med 2024; 221:e20221122. [PMID: 38722309 PMCID: PMC11082451 DOI: 10.1084/jem.20221122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
SYNTAXIN-11 (STX11) is a SNARE protein that mediates the fusion of cytotoxic granules with the plasma membrane at the immunological synapses of CD8 T or NK cells. Autosomal recessive inheritance of deleterious STX11 variants impairs cytotoxic granule exocytosis, causing familial hemophagocytic lymphohistiocytosis type 4 (FHL-4). In several FHL-4 patients, we also observed hypogammaglobulinemia, elevated frequencies of naive B cells, and increased double-negative DN2:DN1 B cell ratios, indicating a hitherto unrecognized role of STX11 in humoral immunity. Detailed analysis of Stx11-deficient mice revealed impaired CD4 T cell help for B cells, associated with disrupted germinal center formation, reduced isotype class switching, and low antibody avidity. Mechanistically, Stx11-/- CD4 T cells exhibit impaired membrane fusion leading to reduced CD107a and CD40L surface mobilization and diminished IL-2 and IL-10 secretion. Our findings highlight a critical role of STX11 in SNARE-mediated membrane trafficking and vesicle exocytosis in CD4 T cells, important for successful CD4 T cell-B cell interactions. Deficiency in STX11 impairs CD4 T cell-dependent B cell differentiation and humoral responses.
Collapse
Affiliation(s)
- Tamara Kögl
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Hsin-Fang Chang
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Julian Staniek
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center— University of Freiburg, Freiburg, Germany
| | - Samuel C.C. Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, and Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
- Department of Medicine, Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gudrun Thoulass
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Jessica Lao
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Kristoffer Weißert
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Viviane Dettmer-Monaco
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Transfusion Medicine and Gene Therapy—University of Freiburg, Freiburg, Germany
| | - Kerstin Geiger
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Transfusion Medicine and Gene Therapy—University of Freiburg, Freiburg, Germany
| | - Paul T. Manna
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Vivien Beziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Szu-Min Tu
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Selina J. Keppler
- Division of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Varsha Pattu
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Philipp Wolf
- Department of Urology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Laurence Kupferschmid
- Institute of Medical Microbiology and Hygiene, University Medical Center, Freiburg, Germany
| | - Stefan Tholen
- Department of Pathology, Institute of Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Laura E. Covill
- Department of Medicine, Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Karolina Ebert
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Tobias Straub
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Miriam Groß
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Ruth Gather
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Helena Engel
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Ulrich Salzer
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center— University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Department of Pathology, Institute of Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Sarah Maier
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana I. Cornu
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Transfusion Medicine and Gene Therapy—University of Freiburg, Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Mohammad Shahrooei
- Department of Microbiology, Immunology, and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
- Dr. Shahrooei Laboratory, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Roland Elling
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty for Medicine, Center for Pediatrics and Adolescent Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center— University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Clinical Immunology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Yenan T. Bryceson
- Department of Medicine, Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Stephan Ehl
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Peter Aichele
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Sandra Ammann
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Tian N, Cheng H, Du Y, Wang X, Lei Y, Liu X, Chen M, Xu Z, Wang L, Yin H, Fu R, Li D, Zhou P, Lu L, Yin Z, Dai SM, Li B. Cannabinoid receptor 2 selective agonist alleviates systemic sclerosis by inhibiting Th2 differentiation through JAK/SOCS3 signaling. J Autoimmun 2024; 147:103233. [PMID: 38797049 DOI: 10.1016/j.jaut.2024.103233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/09/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Systemic sclerosis (SSc) poses a significant challenge in autoimmunology, characterized by the development of debilitating fibrosis of skin and internal organs. The pivotal role of dysregulated T cells, notably the skewed polarization toward Th2 cells, has been implicated in the vascular damage and progressive fibrosis observed in SSc. In this study, we explored the underlying mechanisms by which cannabinoid receptor 2 (CB2) highly selective agonist HU-308 restores the imbalance of T cells to alleviate SSc. Using a bleomycin-induced SSc (BLM-SSc) mouse model, we demonstrated that HU-308 effectively attenuates skin and lung fibrosis by specifically activating CB2 on CD4+ T cells to inhibit the polarization of Th2 cells in BLM-SSc mice, which was validated by Cnr2-specific-deficient mice. Different from classical signaling downstream of G protein-coupled receptors (GPCRs), HU-308 facilitates the expression of SOCS3 protein and subsequently impedes the IL2/STAT5 signaling pathway during Th2 differentiation. The deficiency of SOCS3 partially mitigated the impact of HU-308. Analysis of a cohort comprising 80 SSc patients and 82 healthy controls revealed an abnormal elevation in the Th2/Th1 ratio in SSc patients. The proportion of Th2 cells showed a significant positive correlation with mRSS score and positivity of anti-Scl-70. Administration of HU-308 to PBMCs and peripheral CD4+ T cells from SSc patients led to the upregulation of SOCS3, which effectively suppressed the aberrantly activated STAT5 signaling pathway and the proportion of CD4+IL4+ T cells. In conclusion, our findings unveil a novel mechanism by which the CB2 agonist HU-308 ameliorates fibrosis in SSc by targeting and reducing Th2 responses. These insights provide a foundation for future therapeutic approaches in SSc by modulating Th2 responses.
Collapse
Affiliation(s)
- Na Tian
- Department of Rheumatology and Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hao Cheng
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Guangdong, China; Center for Cancer Immunology Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Yu Du
- Department of Rheumatology and Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoxia Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Songjiang Research Institute, Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yi Lei
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xinnan Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Miao Chen
- Department of Rheumatology and Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhan Xu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lingbiao Wang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Hanlin Yin
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rong Fu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Penghui Zhou
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China.
| | - Sheng-Ming Dai
- Department of Rheumatology and Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Integrated TCM & Western Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China; Department of Oncology, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
David E, Hawkins K, Shokrian N, Del Duca E, Guttman-Yassky E. Monoclonal antibodies for moderate-to-severe atopic dermatitis: a look at phase III and beyond. Expert Opin Biol Ther 2024; 24:471-489. [PMID: 38888099 DOI: 10.1080/14712598.2024.2368192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION The understanding of atopic dermatitis (AD) pathogenesis has rapidly expanded in recent years, catalyzing the development of new targeted monoclonal antibody treatments for AD. AREAS COVERED This review aims to summarize the latest clinical and molecular data about monoclonal antibodies that are in later stages of development for AD, either in Phase 3 trials or in the pharmacopoeia for up to 5 years, highlighting the biologic underpinning of each drug's mechanism of action and the potential modulation of the AD immune profile. EXPERT OPINION The therapeutic pipeline of AD treatments is speedily progressing, introducing the potential for a personalized medical approach in the near future. Understanding how targeting pathogenic players in AD modifies disease progression and symptomatology is key in improving therapeutic choices for patients and identifying ideal patient candidates.
Collapse
Affiliation(s)
- Eden David
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly Hawkins
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Albert Einstein College of Medicine, New York, NY, USA
| | - Neda Shokrian
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Albert Einstein College of Medicine, New York, NY, USA
| | - Ester Del Duca
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Kandel A, Li L, Wang Y, Tuo W, Xiao Z. Differentiation and Regulation of Bovine Th2 Cells In Vitro. Cells 2024; 13:738. [PMID: 38727273 PMCID: PMC11083891 DOI: 10.3390/cells13090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Bovine Th2 cells have usually been characterized by IL4 mRNA expression, but it is unclear whether their IL4 protein expression corresponds to transcription. We found that grass-fed healthy beef cattle, which had been regularly exposed to parasites on the grass, had a low frequency of IL4+ Th2 cells during flow cytometry, similar to animals grown in feedlots. To assess the distribution of IL4+ CD4+ T cells across tissues, samples from the blood, spleen, abomasal (draining), and inguinal lymph nodes were examined, which revealed limited IL4 protein detection in the CD4+ T cells across the examined tissues. To determine if bovine CD4+ T cells may develop into Th2 cells, naïve cells were stimulated with anti-bovine CD3 under a Th2 differentiation kit in vitro. The cells produced primarily IFNγ proteins, with only a small fraction (<10%) co-expressing IL4 proteins. Quantitative PCR confirmed elevated IFNγ transcription but no significant change in IL4 transcription. Surprisingly, GATA3, the master regulator of IL4, was highest in naïve CD4+ T cells but was considerably reduced following differentiation. To determine if the differentiated cells were true Th2 cells, an unbiased proteomic assay was carried out. The assay identified 4212 proteins, 422 of which were differently expressed compared to those in naïve cells. Based on these differential proteins, Th2-related upstream components were predicted, including CD3, CD28, IL4, and IL33, demonstrating typical Th2 differentiation. To boost IL4 expression, T cell receptor (TCR) stimulation strength was reduced by lowering anti-CD3 concentrations. Consequently, weak TCR stimulation essentially abolished Th2 expansion and survival. In addition, extra recombinant bovine IL4 (rbIL4) was added during Th2 differentiation, but, despite enhanced expansion, the IL4 level remained unaltered. These findings suggest that, while bovine CD4+ T cells can respond to Th2 differentiation stimuli, the bovine IL4 pathway is not regulated in the same way as in mice and humans. Furthermore, Ostertagia ostertagi (OO) extract, a gastrointestinal nematode in cattle, inhibited signaling via CD3, CD28, IL4, and TLRs/MYD88, indicating that external pathogens can influence bovine Th2 differentiation. In conclusion, though bovine CD4+ T cells can respond to IL4-driven differentiation, IL4 expression is not a defining feature of differentiated bovine Th2 cells.
Collapse
Affiliation(s)
- Anmol Kandel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| |
Collapse
|
8
|
Cheng C, Liang S, Yue K, Wu N, Li Z, Dong T, Dong X, Ling M, Jiang Q, Liu J, Huang XJ. STAT5 is essential for inducing the suppressive subset and attenuate cytotoxicity of Vδ2 + T cells in acute myeloid leukemia. Cancer Lett 2024; 587:216730. [PMID: 38360140 DOI: 10.1016/j.canlet.2024.216730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Under the sustained exposure to tumor microenvironment, effector lymphocytes may transform into the suppressive populations. γδ T cells are recognized as a crucial mediator and effector of immune surveillance and thereby a promising candidate for anti-tumor immunotherapy. Emerging clinical studies implicate that some γδ T subsets play an important role in promoting tumor progression. Our previous study identified an abnormal Vδ2+ T cells subset with regulatory features (Reg-Vδ2) in the patients with newly diagnosed acute myeloid leukemia (AML), and demonstrated that Reg-Vδ2 cells significantly suppressed the anti-AML effects of effector Vδ2 cells (Eff-Vδ2). The molecular mechanism underlying the subset transformation of Vδ2 cells remains unclear. Here, we found that the expression and activity of STAT5 were significantly induced in Reg-Vδ2 cells compared with Eff-Vδ2 cells, which was consistent with the differences found in primary Vδ2 cells between AML patients and healthy donors. In-vitro experiments further indicated that STAT5 was required for the induction of Reg-Vδ2 cells. The combined immunophenotypical and functional assays showed that blockage of STAT5 alleviated the immunosuppressive effect of Reg-Vδ2 cells on Eff-Vδ2 cells and enhanced the anti-AML capacity of Vδ2 cells from health donors and AML patients. Collectively, these results suggest that STAT5 acts as a critical regulator in the transformation of effector Vδ2 cells into a subset with immunosuppressive characteristics, providing a potential target for the improvement the efficacy of γδ T cells-based immunotherapy to treat AML and other hematologic malignancies.
Collapse
Affiliation(s)
- Cong Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (2019RU029), Beijing, China
| | - Shuang Liang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Department of Clinical Laboratory, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Keli Yue
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ning Wu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zongru Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Tianhui Dong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xinyu Dong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Min Ling
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jiangying Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (2019RU029), Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
9
|
Kilic A, Halu A, De Marzio M, Maiorino E, Duvall MG, Bruggemann TR, Rojas Quintero JJ, Chase R, Mirzakhani H, Sungur AÖ, Koepke J, Nakano T, Peh HY, Krishnamoorthy N, Abdulnour RE, Georgopoulos K, Litonjua AA, Demay M, Renz H, Levy BD, Weiss ST. Vitamin D constrains inflammation by modulating the expression of key genes on Chr17q12-21.1. eLife 2024; 12:RP89270. [PMID: 38567749 PMCID: PMC10990493 DOI: 10.7554/elife.89270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Vitamin D possesses immunomodulatory functions and vitamin D deficiency has been associated with the rise in chronic inflammatory diseases, including asthma (Litonjua and Weiss, 2007). Vitamin D supplementation studies do not provide insight into the molecular genetic mechanisms of vitamin D-mediated immunoregulation. Here, we provide evidence for vitamin D regulation of two human chromosomal loci, Chr17q12-21.1 and Chr17q21.2, reliably associated with autoimmune and chronic inflammatory diseases. We demonstrate increased vitamin D receptor (Vdr) expression in mouse lung CD4+ Th2 cells, differential expression of Chr17q12-21.1 and Chr17q21.2 genes in Th2 cells based on vitamin D status and identify the IL-2/Stat5 pathway as a target of vitamin D signaling. Vitamin D deficiency caused severe lung inflammation after allergen challenge in mice that was prevented by long-term prenatal vitamin D supplementation. Mechanistically, vitamin D induced the expression of the Ikzf3-encoded protein Aiolos to suppress IL-2 signaling and ameliorate cytokine production in Th2 cells. These translational findings demonstrate mechanisms for the immune protective effect of vitamin D in allergic lung inflammation with a strong molecular genetic link to the regulation of both Chr17q12-21.1 and Chr17q21.2 genes and suggest further functional studies and interventional strategies for long-term prevention of asthma and other autoimmune disorders.
Collapse
Affiliation(s)
- Ayse Kilic
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Arda Halu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Margherita De Marzio
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of Environmental Health, Harvard TH Chan School of Public HealthBostonUnited States
| | - Enrico Maiorino
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Melody G Duvall
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Thayse Regina Bruggemann
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Joselyn J Rojas Quintero
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Robert Chase
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Hooman Mirzakhani
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Ayse Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-UniversityMarburgGermany
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus Liebig University GiessenGiessenGermany
| | - Janine Koepke
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus Liebig University GiessenGiessenGermany
| | - Taiji Nakano
- Department of Pediatrics, Graduate School of Medicine, Chiba UniversityChibaJapan
| | - Hong Yong Peh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Nandini Krishnamoorthy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Raja-Elie Abdulnour
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital at Strong, University of Rochester Medical CenterRochesterUnited States
| | - Marie Demay
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg and German Center for Lung Research (DZL)MarburgGermany
- Department of Clinical Immunology and Allergology, Laboratory of Immunopathology Sechenov UniversityMoscowRussian Federation
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| |
Collapse
|
10
|
Alvarez F, Liu Z, Bay A, Piccirillo CA. Deciphering the developmental trajectory of tissue-resident Foxp3 + regulatory T cells. Front Immunol 2024; 15:1331846. [PMID: 38605970 PMCID: PMC11007185 DOI: 10.3389/fimmu.2024.1331846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/13/2024] Open
Abstract
Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Zhiyang Liu
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Alexandre Bay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| |
Collapse
|
11
|
Shouse AN, LaPorte KM, Malek TR. Interleukin-2 signaling in the regulation of T cell biology in autoimmunity and cancer. Immunity 2024; 57:414-428. [PMID: 38479359 PMCID: PMC11126276 DOI: 10.1016/j.immuni.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 05/26/2024]
Abstract
Interleukin-2 (IL-2) is a critical cytokine for T cell peripheral tolerance and immunity. Here, we review how IL-2 interaction with the high-affinity IL-2 receptor (IL-2R) supports the development and homeostasis of regulatory T cells and contributes to the differentiation of helper, cytotoxic, and memory T cells. A critical element for each T cell population is the expression of CD25 (Il2rα), which heightens the receptor affinity for IL-2. Signaling through the high-affinity IL-2R also reinvigorates CD8+ exhausted T (Tex) cells in response to checkpoint blockade. We consider the molecular underpinnings reflecting how IL-2R signaling impacts these various T cell subsets and the implications for enhancing IL-2-dependent immunotherapy of autoimmunity, other inflammatory disorders, and cancer.
Collapse
Affiliation(s)
- Acacia N Shouse
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kathryn M LaPorte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
12
|
Sharma M, Suratannon N, Leung D, Baris S, Takeuchi I, Samra S, Yanagi K, Rosa Duque JS, Benamar M, Del Bel KL, Momenilandi M, Béziat V, Casanova JL, van Hagen PM, Arai K, Nomura I, Kaname T, Chatchatee P, Morita H, Chatila TA, Lau YL, Turvey SE. Human germline gain-of-function in STAT6: from severe allergic disease to lymphoma and beyond. Trends Immunol 2024; 45:138-153. [PMID: 38238227 DOI: 10.1016/j.it.2023.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 02/12/2024]
Abstract
Signal transducer and activator of transcription (STAT)-6 is a transcription factor central to pro-allergic immune responses, although the function of human STAT6 at the whole-organism level has long remained unknown. Germline heterozygous gain-of-function (GOF) rare variants in STAT6 have been recently recognized to cause a broad and severe clinical phenotype of early-onset, multi-system allergic disease. Here, we provide an overview of the clinical presentation of STAT6-GOF disease, discussing how dysregulation of the STAT6 pathway causes severe allergic disease, and identifying possible targeted treatment approaches. Finally, we explore the mechanistic overlap between STAT6-GOF disease and other monogenic atopic disorders, and how this group of inborn errors of immunity (IEIs) powerfully inform our fundamental understanding of common human allergic disease.
Collapse
|
13
|
Nakano K, Whitehead GS, Lyons-Cohen MR, Grimm SA, Wilkinson CL, Izumi G, Livraghi-Butrico A, Cook DN, Nakano H. Chemokine CCL19 promotes type 2 T-cell differentiation and allergic airway inflammation. J Allergy Clin Immunol 2024; 153:487-502.e9. [PMID: 37956733 PMCID: PMC10922373 DOI: 10.1016/j.jaci.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Allergic asthma is driven largely by allergen-specific TH2 cells, which develop in regional lymph nodes on the interaction of naive CD4+ T cells with allergen-bearing dendritic cells that migrate from the lung. This migration event is dependent on CCR7 and its chemokine ligand, CCL21. However, is has been unclear whether the other CCR7 ligand, CCL19, has a role in allergic airway disease. OBJECTIVE This study sought to define the role of CCL19 in TH2 differentiation and allergic airway disease. METHODS Ccl19-deficient mice were studied in an animal model of allergic asthma. Dendritic cells or fibroblastic reticular cells from wild-type and Ccl19-deficient mice were cultured with naive CD4+ T cells, and cytokine production was measured by ELISA. Recombinant CCL19 was added to CD4+ T-cell cultures, and gene expression was assessed by RNA-sequencing and quantitative PCR. Transcription factor activation was assessed by flow cytometry. RESULTS Lungs of Ccl19-deficient mice had less allergic airway inflammation, reduced airway hyperresponsiveness, and less IL-4 and IL-13 production compared with lungs of Ccl19-sufficient animals. Naive CD4+ T cells cocultured with Ccl19-deficient dendritic cells or fibroblastic reticular cells produced lower amounts of type 2 cytokines than did T cells cocultured with their wild-type counterparts. Recombinant CCL19 increased phosphorylation of STAT5 and induced expression of genes associated with TH2 cell and IL-2 signaling pathways. CONCLUSIONS These results reveal a novel, TH2 cell-inducing function of CCL19 in allergic airway disease and suggest that strategies to block this pathway might help to reduce the incidence or severity of allergic asthma.
Collapse
Affiliation(s)
- Keiko Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Gregory S Whitehead
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Miranda R Lyons-Cohen
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Christina L Wilkinson
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Gentaro Izumi
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | | | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC.
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC.
| |
Collapse
|
14
|
Lekki-Jóźwiak J, Bąska P. The Roles of Various Immune Cell Populations in Immune Response against Helminths. Int J Mol Sci 2023; 25:420. [PMID: 38203591 PMCID: PMC10778651 DOI: 10.3390/ijms25010420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Helminths are multicellular parasites that are a substantial problem for both human and veterinary medicine. According to estimates, 1.5 billion people suffer from their infection, resulting in decreased life quality and burdens for healthcare systems. On the other hand, these infections may alleviate autoimmune diseases and allergy symptoms. The immune system is programmed to combat infections; nevertheless, its effector mechanisms may result in immunopathologies and exacerbate clinical symptoms. This review summarizes the role of the immune response against worms, with an emphasis on the Th2 response, which is a hallmark of helminth infections. We characterize non-immune cells (enteric tuft cells-ETCs) responsible for detecting parasites, as well as the role of hematopoietic-derived cells (macrophages, basophils, eosinophils, neutrophils, innate lymphoid cells group 2-ILC2s, mast cells, T cells, and B cells) in initiating and sustaining the immune response, as well as the functions they play in granulomas. The aim of this paper is to review the existing knowledge regarding the immune response against helminths, to attempt to decipher the interactions between cells engaged in the response, and to indicate the gaps in the current knowledge.
Collapse
Affiliation(s)
- Janina Lekki-Jóźwiak
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
15
|
Narsale A, Almanza F, Tran T, Lam B, Seo D, Vu A, Long SA, Cooney L, Serti E, Davies JD. Th2 cell clonal expansion at diagnosis in human type 1 diabetes. Clin Immunol 2023; 257:109829. [PMID: 37907122 DOI: 10.1016/j.clim.2023.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Soon after diagnosis with type 1 diabetes (T1D), many patients experience a period of partial remission. A longer partial remission is associated with a better response to treatment, but the mechanism is not known. The frequency of CD4+CD25+CD127hi (127-hi) cells, a cell subset with an anti-inflammatory Th2 bias, correlates positively with length of partial remission. The purpose of this study was to further characterize the nature of the Th2 bias in 127-hi cells. Single cell RNA sequencing paired with TCR sequencing of sorted 127-hi memory cells identifies clonally expanded Th2 clusters in 127-hi cells from T1D, but not from healthy donors. The Th2 clusters express GATA3, GATA3-AS1, PTGDR2, IL17RB, IL4R and IL9R. The existence of 127-hi Th2 cell clonal expansion in T1D suggests that disease factors may induce clonal expansion of 127-hi Th2 cells that prolong partial remission and delay disease progression.
Collapse
Affiliation(s)
- Aditi Narsale
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - Francisco Almanza
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - Theo Tran
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA
| | - Breanna Lam
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - David Seo
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA
| | - Alisa Vu
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - S Alice Long
- Benaroya Research Institute, 1201 9(th) Ave, Seattle, WA 98101, USA.
| | | | | | - Joanna D Davies
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| |
Collapse
|
16
|
Huang J, Xiang R, Tan L, Deng Y, Tao Z, Zhang W, Xu Y. Dust mite component Analysis: Identifying key allergens components for effective immunotherapy in allergic rhinitis. Int Immunopharmacol 2023; 125:111111. [PMID: 37925948 DOI: 10.1016/j.intimp.2023.111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The aim of this study was to examine the frequency of sensitization to house dust mite (HDM) components among allergic rhinitis patients receiving subcutaneous immunotherapy (SCIT), and to assess the correlation between SCIT efficacy and specific IgE (sIgE) levels for allergenic HDM components. METHODS Serum samples and clinical data were collected from 38 allergic rhinitis patients receiving HDM-SCIT at baseline and after 1 year of treatment. Effective treatment was defined as a therapeutic index (TI) of at least 50% after 1 year. Cytokine levels were analyzed using commercial ELISA kits, while serum total and specific IgE levels were determined by the fluoroenzymeimmunoassay technique. The ALLEOS 2000 magnetic particle chemiluminescence system was used to measure sIgE levels for Der f, Der p 1, Der p 2, Der p 10, and Der p 23. RESULTS Allergic rhinitis patients undergoing HDM-SCIT had a high rate of allergic sensitization to the HDM major allergens Der p (100%), Der f (100%), Der p 1 (94.74%), Der p 2 (94.74%), and Der p 23 (36.84%). Patients who responded to SCIT had higher levels of IgE for HDM components at baseline, while those with ineffective treatment showed an opposite performance, particularly for Der p 1 (P<0.05). After 1 year of treatment, effective and ineffective patients showed opposite trends in sIgE for dust mite components (decreased in effective patients, increased in ineffective patients). HDM-SCIT led to a significant reduction in IL-2, IL-4, IL-6, and EOS% (P<0.05). IgE for Der p, Der f, Der p 1, Der p 2, and HDM sIgE were significantly positively correlated (P < 0.001). The correlation heatmap analysis based on changes in values reveals a negative correlation between CSMS score changes and sIgE for Der f and Der p 1, and a positive correlation with IL-2, IL-10, and TNF (P < 0.05). CONCLUSIONS The molecular sensitization profiles during HDM-SCIT are variable and relate to treatment efficacy. Molecular diagnosis can assist allergists in identifying patients eligible for HDM-SCIT, thereby enhancing the treatment's clinical efficacy. Serum cytokine levels of IL-2, IL-4, IL-6,and EOS% may serve as useful biomarkers for monitoring HDM-SCIT efficacy.
Collapse
Affiliation(s)
- Jingyu Huang
- Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Rong Xiang
- Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lu Tan
- Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yuqin Deng
- Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zezhang Tao
- Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Wei Zhang
- Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yu Xu
- Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Tatsumi N, El-Fenej J, Davila-Pagan A, Kumamoto Y. Rapid activation of IL-2 receptor signaling by CD301b + DC-derived IL-2 dictates the outcome of helper T cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564276. [PMID: 37961107 PMCID: PMC10634899 DOI: 10.1101/2023.10.26.564276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Effector T helper (Th) cell differentiation is fundamental to functional adaptive immunity. Different subsets of dendritic cells (DCs) preferentially induce different types of Th cells, but the fate instruction mechanism for Th type 2 (Th2) differentiation remains enigmatic, as the critical DC-derived cue has not been clearly identified. Here, we show that CD301b+ DCs, a major Th2-inducing DC subset, drive Th2 differentiation through cognate interaction by 'kick-starting' IL-2 receptor signaling in CD4T cells. Mechanistically, CD40 engagement induces IL-2 production selectively from CD301b+ DCs to maximize CD25 expression in CD4 T cells, which is required specifically for the Th2 fate decision. On the other hand, CD25 in CD301b+ DCs facilitates directed action of IL-2 toward cognate CD4T cells. Furthermore, CD301b+ DC-derived IL-2 skews CD4T cells away from the T follicular helper fate. These results highlight the critical role of DC-intrinsic CD40-IL-2 axis in bifurcation of Th cell fate.
Collapse
Affiliation(s)
- Naoya Tatsumi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Jihad El-Fenej
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alejandro Davila-Pagan
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
18
|
Chen H, Han Z, Fan Y, Chen L, Peng F, Cheng X, Wang Y, Su J, Li D. CD4+ T-cell subsets in autoimmune hepatitis: A review. Hepatol Commun 2023; 7:e0269. [PMID: 37695088 PMCID: PMC10497257 DOI: 10.1097/hc9.0000000000000269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic autoimmune liver disease that can lead to hepatocyte destruction, inflammation, liver fibrosis, cirrhosis, and liver failure. The diagnosis of AIH requires the identification of lymphoblast cell interface hepatitis and serum biochemical abnormalities, as well as the exclusion of related diseases. According to different specific autoantibodies, AIH can be divided into AIH-1 and AIH-2. The first-line treatment for AIH is a corticosteroid and azathioprine regimen, and patients with liver failure require liver transplantation. However, the long-term use of corticosteroids has obvious side effects, and patients are prone to relapse after drug withdrawal. Autoimmune diseases are characterized by an imbalance in immune tolerance of self-antigens, activation of autoreactive T cells, overactivity of B cells, and increased production of autoantibodies. CD4+ T cells are key players in adaptive immunity and can secrete cytokines, activate B cells to produce antibodies, and influence the cytotoxicity of CD8+ T cells. According to their characteristics, CD4+ T cells can be divided into different subsets. In this review, we discuss the changes in T helper (Th)1, Th2, Th17, Th9, Th22, regulatory T cell, T follicular helper, and T peripheral helper cells and their related factors in AIH and discuss the therapeutic potential of targeting CD4+ T-cell subsets in AIH.
Collapse
Affiliation(s)
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- Chengdu Xinhua Hospital, Chengdu, China
| | | | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | | |
Collapse
|
19
|
Zhong H, Li J, Cheng JH. Targeting different signaling pathways for food allergy regulation and potential therapy: a review. Crit Rev Food Sci Nutr 2023; 64:12860-12877. [PMID: 37707435 DOI: 10.1080/10408398.2023.2257798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The rising incidence rate of food allergy is attracting more intention. The pathogenesis of food allergy is complex and its definite regulatory mechanism is not utterly understood. Exploring the molecular mechanism of food allergy to help find effective methods that can prevent or treat food allergy is widely necessary. Recently, targeting cellular signaling pathways have been employed as novel approaches to discover food allergy therapy. Supplementing probiotics and bioactive compounds with anti-allergic property are believed feasible approaches for food allergy therapy. These probiotics or bioactive compounds affect food allergy by regulating cellular signaling pathways, and ultimately alleviate food allergy. This review aims to report systematic information about the knowledge of signaling pathways participated in food allergy, the alterations of these signaling pathways during food allergy that treated with probiotics and bioactive compounds are discussed as well. Further studies on the mechanism of signaling pathway network regulating food allergy and the precise action mechanism of probiotics and bioactive compounds are in the urgent need to help develop efficient treatment or complete prevention. We hope to help scientists understand food allergy systematically.
Collapse
Affiliation(s)
- Hangyu Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
20
|
Rochman Y, Kotliar M, Ben-Baruch Morgenstern N, Barski A, Wen T, Rothenberg ME. TSLP shapes the pathogenic responses of memory CD4 + T cells in eosinophilic esophagitis. Sci Signal 2023; 16:eadg6360. [PMID: 37699081 PMCID: PMC10602003 DOI: 10.1126/scisignal.adg6360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
The cytokine thymic stromal lymphopoietin (TSLP) mediates type 2 immune responses, and treatments that interfere with TSLP activity are in clinical use for asthma. Here, we investigated whether TSLP contributes to allergic inflammation by directly stimulating human CD4+ T cells and whether this process is operational in eosinophilic esophagitis (EoE), a disease linked to variants in TSLP. We showed that about 10% of esophageal-derived memory CD4+ T cells from individuals with EoE and less than 3% of cells from control individuals expressed the receptor for TSLP and directly responded to TSLP, as determined by measuring the phosphorylation of STAT5, a transcription factor activated downstream of TSLP stimulation. Accordingly, increased numbers of TSLP-responsive memory CD4+ T cells were present in the circulation of individuals with EoE. TSLP increased the proliferation of CD4+ T cells, enhanced type 2 cytokine production, induced the increased abundance of its own receptor, and modified the expression of 212 genes. The epigenetic response to TSLP was associated with an enrichment in BATF and IRF4 chromatin-binding sites, and these transcription factors were induced by TSLP, providing a feed-forward loop. The numbers of circulating and esophageal CD4+ T cells responsive to TSLP correlated with the numbers of esophageal eosinophils, supporting a potential functional role for TSLP in driving the pathogenesis of EoE and providing the basis for a blood-based diagnostic test based on the extent of TSLP-induced STAT5 phosphorylation in circulating CD4+ T cells. These findings highlight the potential therapeutic value of TSLP inhibitors for the treatment of EoE.
Collapse
Affiliation(s)
- Yrina Rochman
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Michael Kotliar
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Netali Ben-Baruch Morgenstern
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
- Division of Human Genetics, Department of Pediatrics Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
21
|
Dai Q, Zhang G, Wang Y, Ye L, Shi R, Peng L, Guo S, He J, Yang H, Zhang Y, Jiang Y. Cytokine network imbalance in children with B-cell acute lymphoblastic leukemia at diagnosis. Cytokine 2023; 169:156267. [PMID: 37320964 DOI: 10.1016/j.cyto.2023.156267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/01/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Immune imbalance has been proved to be involved in the pathogenesis of hematologic neoplasm. However, little research has been reported altered cytokine network in childhood B-cell acute lymphoblastic leukemia (B-ALL) at diagnosis. Our study aimed to evaluate the cytokine network in peripheral blood of newly diagnosed pediatric patients with B-ALL. Serum levels of interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF), interferon (IFN)-γ, and IL-17A in 45 children with B-ALL and 37 healthy control children were measured by cytometric bead array, while the level of transforming growth factor-β1 (TGF-β1) in the serum was measured by enzyme-linked immunosorbent assay. Patients showed a significant increase in IL-6 (p < 0.001), IL-10 (p < 0.001), IFN-γ (p = 0.023) and a significant reduction in TGF-β1 (p = 0.001). The levels of IL-2, IL-4, TNF and IL-17A were similar in the two groups. Higher concentrations of pro-inflammatory cytokines were associated with febrile in patients without apparent infection by using unsupervised machine learning algorithms. In conclusion, our results indicated a critical role for aberrant cytokine expression profiles in the progression of childhood B-ALL. Distinct cytokine subgroups with different clinical features and immune response have been identified in patients with B-ALL at the time of diagnosis.
Collapse
Affiliation(s)
- Qingkai Dai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Ge Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Yuefang Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Lei Ye
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Rui Shi
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Luyun Peng
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Siqi Guo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Jiajing He
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Hao Yang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Yingjun Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China.
| |
Collapse
|
22
|
Tuazon JA, Read KA, Sreekumar BK, Roettger JE, Yaeger MJ, Varikuti S, Pokhrel S, Jones DM, Warren RT, Powell MD, Rasheed MN, Duncan EG, Childs LM, Gowdy KM, Oestreich KJ. Eos Promotes TH2 Differentiation by Interacting with and Propagating the Activity of STAT5. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:365-376. [PMID: 37314436 PMCID: PMC10524986 DOI: 10.4049/jimmunol.2200861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
The Ikaros zinc-finger transcription factor Eos has largely been associated with sustaining the immunosuppressive functions of regulatory T cells. Paradoxically, Eos has more recently been implicated in promoting proinflammatory responses in the dysregulated setting of autoimmunity. However, the precise role of Eos in regulating the differentiation and function of effector CD4+ T cell subsets remains unclear. In this study, we find that Eos is a positive regulator of the differentiation of murine CD4+ TH2 cells, an effector population that has been implicated in both immunity against helminthic parasites and the induction of allergic asthma. Using murine in vitro TH2 polarization and an in vivo house dust mite asthma model, we find that EosKO T cells exhibit reduced expression of key TH2 transcription factors, effector cytokines, and cytokine receptors. Mechanistically, we find that the IL-2/STAT5 axis and its downstream TH2 gene targets are one of the most significantly downregulated pathways in Eos-deficient cells. Consistent with these observations, we find that Eos forms, to our knowledge, a novel complex with and supports the tyrosine phosphorylation of STAT5. Collectively, these data define a regulatory mechanism whereby Eos propagates STAT5 activity to facilitate TH2 cell differentiation.
Collapse
Affiliation(s)
- Jasmine A. Tuazon
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | - Kaitlin A. Read
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | | | - Jack E. Roettger
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | - Michael J. Yaeger
- Division of Pulmonary, Critical Care and Sleep Medicine; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Sanjay Varikuti
- Division of Pulmonary, Critical Care and Sleep Medicine; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Srijana Pokhrel
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Devin M. Jones
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | - Robert T. Warren
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Michael D. Powell
- Department of Microbiology and Immunology; Emory University School of Medicine, Atlanta, GA, 30322; USA
| | - Mustafa N. Rasheed
- Department of Emergency Medicine; Emory University Medical Center, Atlanta, GA, 30322; USA
| | | | - Lauren M. Childs
- Department of Mathematics; Virginia Tech, Blacksburg, VA, 24061; USA
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, Ohio, 43210; USA
- Infectious Diseases Institute; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| |
Collapse
|
23
|
Bao K, Isik Can U, Miller MM, Brown IK, Dell'Aringa M, Dooms H, Seibold MA, Scott-Browne J, Lee Reinhardt R. A bifurcated role for c-Maf in Th2 and Tfh2 cells during helminth infection. Mucosal Immunol 2023; 16:357-372. [PMID: 37088263 PMCID: PMC10290510 DOI: 10.1016/j.mucimm.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Differences in transcriptomes, transcription factor usage, and function have identified T follicular helper 2 (Tfh2) cells and T helper 2 (Th2) cells as distinct clusters of differentiation 4+",(CD4) T-cell subsets in settings of type-2 inflammation. Although the transcriptional programs driving Th2 cell differentiation and cytokine production are well defined, dependence on these classical Th2 programs by Tfh2 cells is less clear. Using cytokine reporter mice in combination with transcription factor inference analysis, the b-Zip transcription factor c-Maf and its targets were identified as an important regulon in both Th2 and Tfh2 cells. Conditional deletion of c-Maf in T cells confirmed its importance in type-2 cytokine expression by Th2 and Tfh2 cells. However, while c-Maf was not required for Th2-driven helminth clearance or lung eosinophilia, it was required for Tfh2-driven Immunoglobulin E production and germinal center formation. This differential regulation of cell-mediated and humoral immunity by c-Maf was a result of redundant pathways in Th2 cells that were absent in Tfh2 cells, and c-Maf-specific mechanisms in Tfh2 cells that were absent in Th2 cells. Thus, despite shared expression by Tfh2 and Th2 cells, c-Maf serves as a unique regulator of Tfh2-driven humoral hallmarks during type-2 immunity.
Collapse
Affiliation(s)
- Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, USA
| | - Uryan Isik Can
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Mindy M Miller
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Ivy K Brown
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Mark Dell'Aringa
- Department of Immunology, Duke University Medical Center, Durham, USA; Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Hans Dooms
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, USA; Department of Pediatrics, National Jewish Health, Denver, USA; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, USA
| | - James Scott-Browne
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Richard Lee Reinhardt
- Department of Immunology, Duke University Medical Center, Durham, USA; Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
24
|
Bachus H, McLaughlin E, Lewis C, Papillion AM, Benveniste EN, Hill DD, Rosenberg AF, Ballesteros-Tato A, León B. IL-6 prevents Th2 cell polarization by promoting SOCS3-dependent suppression of IL-2 signaling. Cell Mol Immunol 2023; 20:651-665. [PMID: 37046042 PMCID: PMC10229632 DOI: 10.1038/s41423-023-01012-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Defective interleukin-6 (IL-6) signaling has been associated with Th2 bias and elevated IgE levels. However, the underlying mechanism by which IL-6 prevents the development of Th2-driven diseases remains unknown. Using a model of house dust mite (HDM)-induced Th2 cell differentiation and allergic airway inflammation, we showed that IL-6 signaling in allergen-specific T cells was required to prevent Th2 cell differentiation and the subsequent IgE response and allergic inflammation. Th2 cell lineage commitment required strong sustained IL-2 signaling. We found that IL-6 turned off IL-2 signaling during early T-cell activation and thus inhibited Th2 priming. Mechanistically, IL-6-driven inhibition of IL-2 signaling in responding T cells was mediated by upregulation of Suppressor Of Cytokine Signaling 3 (SOCS3). This mechanism could be mimicked by pharmacological Janus Kinase-1 (JAK1) inhibition. Collectively, our results identify an unrecognized mechanism that prevents the development of unwanted Th2 cell responses and associated diseases and outline potential preventive interventions.
Collapse
Affiliation(s)
- Holly Bachus
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Erin McLaughlin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Crystal Lewis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amber M Papillion
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
- Alexion Pharmaceuticals, Inc., New Haven, CT, USA
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dave Durell Hill
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander F Rosenberg
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Ballesteros-Tato
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
25
|
Tian H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Cytokine networks provide sufficient evidence for the differentiation of CD4 + T cells in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104627. [PMID: 36587713 DOI: 10.1016/j.dci.2022.104627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Cytokines, a class of small molecular proteins with a wide range of biological activities, are secreted mainly by immune cells and function by binding to the corresponding receptors to regulate cell growth, differentiation and effects. CD4+ T cells can be defined into different lineages based on the unique set of signature cytokines and transcription factors, including helper T cells (Th1, Th2, Th17) and regulatory T cells (Treg). In teleost, CD4+ T cells have been identified in a variety of fish species, thought to play roles as Th cells, and shown to be involved in the immune response following specific antigen stimulation. With the update of sequencing technologies, a variety of cytokines and transcription factors capable of characterizing CD4+ T cell subsets also have been described in fish, including hallmark cytokines such as IFN-γ, TNF-α, IL-4, IL-17, IL-10, TGF-β and unique transcription factors such as T-bet, GATA3, RORγt, and Foxp3. Hence, there is increasing evidence that the subpopulation of Th and Treg cells present in mammals may also exist in teleost fish. However, the differentiation, plasticity and precise roles of Th cell subsets in mammals remain controversial. Research on the identification and differentiation of fish Th cells is still in its infancy and requires more significant effort. Here we will review recent research advances in characterizing the differentiation of fish CD4+ T cells by cytokines and transcription factors, mainly including the identification of Th and Treg cell hallmark cytokines and transcription factors, the regulatory role of cytokines on Th cell differentiation, and the function of Th and Treg cells in the immune response. The primary purpose of this review is to deepen our understanding of cytokine networks in characterizing the differentiation of CD4+ T cells in teleost.
Collapse
Affiliation(s)
- Hongfei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
26
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
27
|
Meitei HT, Lal G. T cell receptor signaling in the differentiation and plasticity of CD4 + T cells. Cytokine Growth Factor Rev 2023; 69:14-27. [PMID: 36028461 DOI: 10.1016/j.cytogfr.2022.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
CD4+ T cells are critical components of the adaptive immune system. The T cell receptor (TCR) and co-receptor signaling cascades shape the phenotype and functions of CD4+ T cells. TCR signaling plays a crucial role in T cell development, antigen recognition, activation, and differentiation upon recognition of foreign- or auto-antigens. In specific autoimmune conditions, altered TCR repertoire is reported and can predispose autoimmunity with organ-specific inflammation and tissue damage. TCR signaling modulates various signaling cascades and regulates epigenetic and transcriptional regulation during homeostasis and disease conditions. Understanding the mechanism by which coreceptors and cytokine signals control the magnitude of TCR signal amplification will aid in developing therapeutic strategies to treat inflammation and autoimmune diseases. This review focuses on the role of the TCR signaling cascade and its components in the activation, differentiation, and plasticity of various CD4+ T cell subsets.
Collapse
Affiliation(s)
| | - Girdhari Lal
- National Centre for Cell Science, SPPU campus, Ganeshkhind, Pune, MH 411007, India.
| |
Collapse
|
28
|
Grimm D, Hwang PH, Lin YT. The link between allergic rhinitis and chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg 2023; 31:3-10. [PMID: 36729858 DOI: 10.1097/moo.0000000000000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Allergic rhinitis and chronic rhinosinusitis (CRS) are common disorders affecting millions of people worldwide. Although allergic rhinitis and CRS are distinct clinical entities, certain CRS endotypes share similar pathological mechanisms as those seen in patients with allergic rhinitis. This review assesses the literature behind the similarities and differences seen in patients with CRS and allergic rhinitis, and the role atopy might play in the pathophysiology of CRS. RECENT FINDINGS In examining the associations between allergic rhinitis and CRS, most studies have focused primarily on CRS with nasal polyps and type 2 inflammation in CRS. Recent studies have demonstrated the similarities and differences in pathologic mechanisms behind allergic rhinitis and CRS, with an emphasis on patient endotypes, genetics, and the nasoepithelial immunologic barrier. Related immunopathology shared by allergic rhinitis and type 2 inflammation in CRS has allowed for therapeutic overlap with biologic treatments. SUMMARY Allergic rhinitis and CRS often present as comorbid conditions, and understanding the relationship between allergic rhinitis and CRS is important when considering treatment options. Advances in understanding the genetics and immunology, as well as biologic and immunotherapeutic treatments have improved outcomes in patients with CRS, especially in the setting of atopy.
Collapse
Affiliation(s)
| | - Peter H Hwang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yi-Tsen Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
29
|
Smith MR, Satter LRF, Vargas-Hernández A. STAT5b: A master regulator of key biological pathways. Front Immunol 2023; 13:1025373. [PMID: 36755813 PMCID: PMC9899847 DOI: 10.3389/fimmu.2022.1025373] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
The Signal Transducer and Activator of Transcription (STAT)-5 proteins are required in immune regulation and homeostasis and play a crucial role in the development and function of several hematopoietic cells. STAT5b activation is involved in the expression of genes that participate in cell development, proliferation, and survival. STAT5a and STAT5b are paralogs and only human mutations in STAT5B have been identified leading to immune dysregulation and hematopoietic malignant transformation. The inactivating STAT5B mutations cause impaired post-natal growth, recurrent infections and immune dysregulation, whereas gain of function somatic mutations cause dysregulated allergic inflammation. These mutations are rare, and they are associated with a wide spectrum of clinical manifestations which provide a disease model elucidating the biological mechanism of STAT5 by studying the consequences of perturbations in STAT5 activity. Further, the use of Jak inhibitors as therapy for a variety of autoimmune and malignant disorders has increased substantially heading relevant lessons for the consequences of Jak/STAT immunomodulation from the human model. This review summarizes the biology of the STAT5 proteins, human disease associate with molecular defects in STAT5b, and the connection between aberrant activation of STAT5b and the development of certain cancers.
Collapse
Affiliation(s)
- Madison R. Smith
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Lisa R. Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States,*Correspondence: Alexander Vargas-Hernández,
| |
Collapse
|
30
|
León B. Understanding the development of Th2 cell-driven allergic airway disease in early life. FRONTIERS IN ALLERGY 2023; 3:1080153. [PMID: 36704753 PMCID: PMC9872036 DOI: 10.3389/falgy.2022.1080153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Allergic diseases, including atopic dermatitis, allergic rhinitis, asthma, and food allergy, are caused by abnormal responses to relatively harmless foreign proteins called allergens found in pollen, fungal spores, house dust mites (HDM), animal dander, or certain foods. In particular, the activation of allergen-specific helper T cells towards a type 2 (Th2) phenotype during the first encounters with the allergen, also known as the sensitization phase, is the leading cause of the subsequent development of allergic disease. Infants and children are especially prone to developing Th2 cell responses after initial contact with allergens. But in addition, the rates of allergic sensitization and the development of allergic diseases among children are increasing in the industrialized world and have been associated with living in urban settings. Particularly for respiratory allergies, greater susceptibility to developing allergic Th2 cell responses has been shown in children living in urban environments containing low levels of microbial contaminants, principally bacterial endotoxins [lipopolysaccharide (LPS)], in the causative aeroallergens. This review highlights the current understanding of the factors that balance Th2 cell immunity to environmental allergens, with a particular focus on the determinants that program conventional dendritic cells (cDCs) toward or away from a Th2 stimulatory function. In this context, it discusses transcription factor-guided functional specialization of type-2 cDCs (cDC2s) and how the integration of signals derived from the environment drives this process. In addition, it analyzes observational and mechanistic studies supporting an essential role for innate sensing of microbial-derived products contained in aeroallergens in modulating allergic Th2 cell immune responses. Finally, this review examines whether hyporesponsiveness to microbial stimulation, particularly to LPS, is a risk factor for the induction of Th2 cell responses and allergic sensitization during infancy and early childhood and the potential factors that may affect early-age response to LPS and other environmental microbial components.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
31
|
Fang D, Healy A, Zhu J. Differential regulation of lineage-determining transcription factor expression in innate lymphoid cell and adaptive T helper cell subsets. Front Immunol 2023; 13:1081153. [PMID: 36685550 PMCID: PMC9846361 DOI: 10.3389/fimmu.2022.1081153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
CD4 T helper (Th) cell subsets, including Th1, Th2 and Th17 cells, and their innate counterparts innate lymphoid cell (ILC) subsets consisting of ILC1s, ILC2s and ILC3s, display similar effector cytokine-producing capabilities during pro-inflammatory immune responses. These lymphoid cell subsets utilize the same set of lineage-determining transcription factors (LDTFs) for their differentiation, development and functions. The distinct ontogeny and developmental niches between Th cells and ILCs indicate that they may adopt different external signals for the induction of LDTF during lineage commitment. Increasing evidence demonstrates that many conserved cis-regulatory elements at the gene loci of LDTFs are often preferentially utilized for the induction of LDTF expression during Th cell differentiation and ILC development at different stages. In this review, we discuss the functions of lineage-related cis-regulatory elements in inducing T-bet, GATA3 or RORγt expression based on the genetic evidence provided in recent publications. We also review and compare the upstream signals involved in LDTF induction in Th cells and ILCs both in vitro and in vivo. Finally, we discuss the possible mechanisms and physiological importance of regulating LDTF dynamic expression during ILC development and activation.
Collapse
Affiliation(s)
- Difeng Fang
- *Correspondence: Difeng Fang, ; Jinfang Zhu,
| | | | - Jinfang Zhu
- *Correspondence: Difeng Fang, ; Jinfang Zhu,
| |
Collapse
|
32
|
Villarino AV, Laurence ADJ, Davis FP, Nivelo L, Brooks SR, Sun HW, Jiang K, Afzali B, Frasca D, Hennighausen L, Kanno Y, O’Shea JJ. A central role for STAT5 in the transcriptional programing of T helper cell metabolism. Sci Immunol 2022; 7:eabl9467. [PMID: 36427325 PMCID: PMC9844264 DOI: 10.1126/sciimmunol.abl9467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Activated lymphocytes adapt their metabolism to meet the energetic and biosynthetic demands imposed by rapid growth and proliferation. Common gamma chain (cγ) family cytokines are central to these processes, but the role of downstream signal transducer and activator of transcription 5 (STAT5) signaling, which is engaged by all cγ members, is poorly understood. Using genome-, transcriptome-, and metabolome-wide analyses, we demonstrate that STAT5 is a master regulator of energy and amino acid metabolism in CD4+ T helper cells. Mechanistically, STAT5 localizes to an array of enhancers and promoters for genes encoding essential enzymes and transporters, where it facilitates p300 recruitment and epigenetic remodeling. We also find that STAT5 licenses the activity of two other key metabolic regulators, the mTOR signaling pathway and the MYC transcription factor. Building on the latter, we present evidence for transcriptome-wide cooperation between STAT5 and MYC in both normal and transformed T cells. Together, our data provide a molecular framework for transcriptional programing of T cell metabolism downstream of cγ cytokines and highlight the JAK-STAT pathway in mediating cellular growth and proliferation.
Collapse
Affiliation(s)
- Alejandro V. Villarino
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, Bethesda, MD, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Arian DJ Laurence
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Fred P. Davis
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, Bethesda, MD, USA
- Celsius Therapeutics, Cambridge, MA, USA
| | - Luis Nivelo
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Stephen R. Brooks
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, Bethesda, MD, USA
| | - Hong-Wei Sun
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, Bethesda, MD, USA
| | - Kan Jiang
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, Bethesda, MD, USA
| | - Behdad Afzali
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, USA
| | - Daniela Frasca
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Lothar Hennighausen
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, USA
| | - Yuka Kanno
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, Bethesda, MD, USA
| | - John J. O’Shea
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, Bethesda, MD, USA
| |
Collapse
|
33
|
Inflammatory Cytokines That Enhance Antigen Responsiveness of Naïve CD8 + T Lymphocytes Modulate Chromatin Accessibility of Genes Impacted by Antigen Stimulation. Int J Mol Sci 2022; 23:ijms232214122. [PMID: 36430600 PMCID: PMC9698886 DOI: 10.3390/ijms232214122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Naïve CD8+ T lymphocytes exposed to certain inflammatory cytokines undergo proliferation and display increased sensitivity to antigens. Such 'cytokine priming' can promote the activation of potentially autoreactive and antitumor CD8+ T cells by weak tissue antigens and tumor antigens. To elucidate the molecular mechanisms of cytokine priming, naïve PMEL-1 TCR transgenic CD8+ T lymphocytes were stimulated with IL-15 and IL-21, and chromatin accessibility was assessed using the assay for transposase-accessible chromatin (ATAC) sequencing. PMEL-1 cells stimulated by the cognate antigenic peptide mgp10025-33 served as controls. Cytokine-primed cells showed a limited number of opening and closing chromatin accessibility peaks compared to antigen-stimulated cells. However, the ATACseq peaks in cytokine-primed cells substantially overlapped with those of antigen-stimulated cells and mapped to several genes implicated in T cell signaling, activation, effector differentiation, negative regulation and exhaustion. Nonetheless, the expression of most of these genes was remarkably different between cytokine-primed and antigen-stimulated cells. In addition, cytokine priming impacted the expression of several genes following antigen stimulation in a synergistic or antagonistic manner. Our findings indicate that chromatin accessibility changes in cytokine-primed naïve CD8+ T cells not only underlie their increased antigen responsiveness but may also enhance their functional fitness by reducing exhaustion without compromising regulatory controls.
Collapse
|
34
|
Feng H, Zhao Z, Dong C. Adapting to the world: The determination and plasticity of T follicular helper cells. J Allergy Clin Immunol 2022; 150:981-989. [DOI: 10.1016/j.jaci.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
|
35
|
Zhou P. Emerging mechanisms and applications of low-dose IL-2 therapy in autoimmunity. Cytokine Growth Factor Rev 2022; 67:80-88. [DOI: 10.1016/j.cytogfr.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
|
36
|
Okwuofu EO, Hui AYC, Woei JLC, Stanslas J. Molecular and Immunomodulatory Actions of New Antiasthmatic Agents: Exploring the Diversity of Biologics in Th2 Endotype Asthma. Pharmacol Res 2022; 181:106280. [PMID: 35661709 DOI: 10.1016/j.phrs.2022.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
Asthma is a major respiratory disorder characterised by chronic inflammation and airway remodelling. It affects about 1-8% of the global population and is responsible for over 461,000 deaths annually. Until recently, the pharmacotherapy of severe asthma involved high doses of inhaled corticosteroids in combination with β-agonist for prolonged action, including theophylline, leukotriene antagonist or anticholinergic yielding limited benefit. Although the use of newer agents to target Th2 asthma endotypes has improved therapeutic outcomes in severe asthmatic conditions, there seems to be a paucity of understanding the diverse mechanisms through which these classes of drugs act. This article delineates the molecular and immunomodulatory mechanisms of action of new antiasthmatic agents currently being trialled in preclinical and clinical studies to remit asthmatic conditions. The ultimate goal in developing antiasthmatic agents is based on two types of approaches: either anti-inflammatory or bronchodilators. Biologic and most small molecules have been shown to modulate specific asthma endotypes, targeting thymic stromal lymphopoietin, tryptase, spleen tyrosine kinase (Syk), Janus kinase, PD-L1/PD-L2, GATA-3, and CD38 for the treatment and management of Th2 endotype asthma.
Collapse
Affiliation(s)
- Emmanuel Oshiogwe Okwuofu
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Jonathan Lim Chee Woei
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
37
|
Whetstone CE, Ranjbar M, Omer H, Cusack RP, Gauvreau GM. The Role of Airway Epithelial Cell Alarmins in Asthma. Cells 2022; 11:1105. [PMID: 35406669 PMCID: PMC8997824 DOI: 10.3390/cells11071105] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The airway epithelium is the first line of defense for the lungs, detecting inhaled environmental threats through pattern recognition receptors expressed transmembrane or intracellularly. Activation of pattern recognition receptors triggers the release of alarmin cytokines IL-25, IL-33, and TSLP. These alarmins are important mediators of inflammation, with receptors widely expressed in structural cells as well as innate and adaptive immune cells. Many of the key effector cells in the allergic cascade also produce alarmins, thereby contributing to the airways disease by driving downstream type 2 inflammatory processes. Randomized controlled clinical trials have demonstrated benefit when blockade of TSLP and IL-33 were added to standard of care medications, suggesting these are important new targets for treatment of asthma. With genome-wide association studies demonstrating associations between single-nucleotide polymorphisms of the TSLP and IL-33 gene and risk of asthma, it will be important to understand which subsets of asthma patients will benefit most from anti-alarmin therapy.
Collapse
Affiliation(s)
| | | | | | | | - Gail M. Gauvreau
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.E.W.); (M.R.); (H.O.); (R.P.C.)
| |
Collapse
|
38
|
dos Passos Junior RR, Bomfim GF, Giachini FR, Tostes RC, Lima VV. O-Linked β-N-Acetylglucosamine Modification: Linking Hypertension and the Immune System. Front Immunol 2022; 13:852115. [PMID: 35371030 PMCID: PMC8967968 DOI: 10.3389/fimmu.2022.852115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) of proteins dynamically regulates protein function, localization, stability, and interactions. This post-translational modification is intimately linked to cardiovascular disease, including hypertension. An increasing number of studies suggest that components of innate and adaptive immunity, active players in the pathophysiology of hypertension, are targets for O-GlcNAcylation. In this review, we highlight the potential roles of O-GlcNAcylation in the immune system and discuss how those immune targets of O-GlcNAcylation may contribute to arterial hypertension.
Collapse
Affiliation(s)
- Rinaldo Rodrigues dos Passos Junior
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil
| | | | - Fernanda R. Giachini
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Victor Vitorino Lima
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
- *Correspondence: Victor Vitorino Lima,
| |
Collapse
|
39
|
Martynova E, Rizvanov A, Urbanowicz RA, Khaiboullina S. Inflammasome Contribution to the Activation of Th1, Th2, and Th17 Immune Responses. Front Microbiol 2022; 13:851835. [PMID: 35369454 PMCID: PMC8969514 DOI: 10.3389/fmicb.2022.851835] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammasomes are cytosolic polyprotein complexes formed in response to various external and internal stimuli, including viral and bacterial antigens. The main product of the inflammasome is active caspase 1 which proteolytically cleaves, releasing functional interleukin-1 beta (IL-1β) and interleukin-18 (IL-18). These cytokines play a central role in shaping immune response to pathogens. In this review, we will focus on the mechanisms of inflammasome activation, as well as their role in development of Th1, Th2, and Th17 lymphocytes. The contribution of cytokines IL-1β, IL-18, and IL-33, products of activated inflammasomes, are summarized. Additionally, the role of cytokines released from tissue cells in promoting differentiation of lymphocyte populations is discussed.
Collapse
Affiliation(s)
| | | | - Richard A. Urbanowicz
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
40
|
Schröder A, Lunding LP, Zissler UM, Vock C, Webering S, Ehlers JC, Orinska Z, Chaker A, Schmidt‐Weber CB, Lang NJ, Schiller HB, Mall MA, Fehrenbach H, Dinarello CA, Wegmann M. IL-37 regulates allergic inflammation by counterbalancing pro-inflammatory IL-1 and IL-33. Allergy 2022; 77:856-869. [PMID: 34460953 DOI: 10.1111/all.15072] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/08/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Children with asthma have impaired production of interleukin (IL) 37; in mice, IL-37 reduces hallmarks of experimental allergic asthma (EAA). However, it remains unclear how IL-37 exerts its inhibitory properties in asthma. This study aimed to identify the mechanism(s) by which IL-37 controls allergic inflammation. METHODS IL-37 target cells were identified by single-cell RNA-seq of IL-1R5 and IL-1R8. Airway tissues were isolated by laser-capture microdissection and examined by microarray-based gene expression analysis. Mononuclear cells (MNC) and airway epithelial cells (AECs) were isolated and stimulated with allergen, IL-1β, or IL-33 together with recombinant human (rh) IL-37. Wild-type, IL-1R1- and IL-33-deficient mice with EAA were treated with rhIL-37. IL-1β, IL-33, and IL-37 levels were determined in sputum and nasal secretions from adult asthma patients without glucocorticoid therapy. RESULTS IL-37 target cells included AECs, T cells, and dendritic cells. In mice with EAA, rhIL-37 led to differential expression of >90 genes induced by IL-1β and IL-33. rhIL-37 reduced production of Th2 cytokines in allergen-activated MNCs from wild-type but not from IL-1R1-deficient mice and inhibited IL-33-induced Th2 cytokine release. Furthermore, rhIL-37 attenuated IL-1β- and IL-33-induced pro-inflammatory mediator expression in murine AEC cultures. In contrast to wild-type mice, hIL-37 had no effect on EAA in IL-1R1- or IL-33-deficient mice. We also observed that expression/production ratios of both IL-1β and IL-33 to IL-37 were dramatically increased in asthma patients compared to healthy controls. CONCLUSION IL-37 downregulates allergic airway inflammation by counterbalancing the disease-amplifying effects of IL-1β and IL-33.
Collapse
Affiliation(s)
- Alexandra Schröder
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| | - Lars P. Lunding
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM) Technische Universität and Helmholtz Center Munich Member of the German Center for Lung Research (DZL) Munich Germany
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
| | - Christina Vock
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Sina Webering
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| | - Johanna C. Ehlers
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Zane Orinska
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Adam Chaker
- Center of Allergy and Environment (ZAUM) Technische Universität and Helmholtz Center Munich Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical, University of Munich Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) Technische Universität and Helmholtz Center Munich Member of the German Center for Lung Research (DZL) Munich Germany
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
| | - Niklas J. Lang
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
- Institute of Lung Biology and Disease Helmholtz Zentrum München Munich Germany
| | - Herbert B. Schiller
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
- Institute of Lung Biology and Disease Helmholtz Zentrum München Munich Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine Charité ‐ Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
- German Center for Lung Research (DZL), associated partner site Berlin Germany
| | - Heinz Fehrenbach
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Charles A. Dinarello
- Department of Medicine University of Colorado Denver Denver CO USA
- Department of Medicine Radboud University Medical Center Nijmegen The Netherlands
| | - Michael Wegmann
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| |
Collapse
|
41
|
Fleury M, Vazquez-Mateo C, Hernandez-Escalante J, Dooms H. Partial STAT5 signaling is sufficient for CD4 + T cell priming but not memory formation. Cytokine 2022; 150:155770. [PMID: 34839177 PMCID: PMC8761165 DOI: 10.1016/j.cyto.2021.155770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/06/2021] [Indexed: 02/03/2023]
Abstract
Signal transducer and activator of transcription 5 (STAT5) plays an important role in regulating gene expression in response to cytokines of the common (γc) chain family. In this capacity, STAT5 promotes CD8+ effector and memory T cell survival and regulatory T cell development. However, its function in conventional CD4+ T cells is less clear. In this study, the requirement of intact STAT5 signaling for CD4+ effector and memory T cell generation and maintenance was investigated by using DO11.10 TCR transgenic T cells that are genetically deficient in STAT5A or B, as well as by transducing DO11 T cells with a dominant-negative STAT5 to temporally block STAT5 function. We found that the presence of STAT5A or B alone was sufficient for primary CD4+ effector T cell generation, but not for establishing a long-lived memory cell population. Similarly, blocking STAT5 signaling during priming did not prevent initial T cell activation, but inhibited the generation of memory cells. Surprisingly, blocking STAT5 post-priming did not impact the long-term survival of CD4+ memory T cells in vivo. Mechanistically, intact STAT5B, but not STAT5A, was required for IL-7Rα re-expression in activated T cells, which is an important cytokine receptor for CD4+ memory generation. These data show that fully functional STAT5 is essential to deliver an early, non-redundant signal for memory programming during the primary CD4+ T cell response, while partial STAT5 signaling is sufficient for effector differentiation. Our results have implications for the precise use of STAT5 inhibitors to timely inhibit memory T cell responses.
Collapse
Affiliation(s)
- Michelle Fleury
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston MA 02118, United States; Department of Microbiology, Boston University School of Medicine, Boston MA 02118, United States
| | - Cristina Vazquez-Mateo
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston MA 02118, United States
| | - Jaileene Hernandez-Escalante
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston MA 02118, United States; Department of Microbiology, Boston University School of Medicine, Boston MA 02118, United States
| | - Hans Dooms
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston MA 02118, United States; Department of Microbiology, Boston University School of Medicine, Boston MA 02118, United States; Department of Pathology, University of California San Francisco, San Francisco CA 94143, United States.
| |
Collapse
|
42
|
Campe J, Ullrich E. T Helper Cell Lineage-Defining Transcription Factors: Potent Targets for Specific GVHD Therapy? Front Immunol 2022; 12:806529. [PMID: 35069590 PMCID: PMC8766661 DOI: 10.3389/fimmu.2021.806529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) represents a potent and potentially curative treatment for many hematopoietic malignancies and hematologic disorders in adults and children. The donor-derived immunity, elicited by the stem cell transplant, can prevent disease relapse but is also responsible for the induction of graft-versus-host disease (GVHD). The pathophysiology of acute GVHD is not completely understood yet. In general, acute GVHD is driven by the inflammatory and cytotoxic effect of alloreactive donor T cells. Since several experimental approaches indicate that CD4 T cells play an important role in initiation and progression of acute GVHD, the contribution of the different CD4 T helper (Th) cell subtypes in the pathomechanism and regulation of the disease is a central point of current research. Th lineages derive from naïve CD4 T cell progenitors and lineage commitment is initiated by the surrounding cytokine milieu and subsequent changes in the transcription factor (TF) profile. Each T cell subtype has its own effector characteristics, immunologic function, and lineage specific cytokine profile, leading to the association with different immune responses and diseases. Acute GVHD is thought to be mainly driven by the Th1/Th17 axis, whereas Treg cells are attributed to attenuate GVHD effects. As the differentiation of each Th subset highly depends on the specific composition of activating and repressing TFs, these present a potent target to alter the Th cell landscape towards a GVHD-ameliorating direction, e.g. by inhibiting Th1 and Th17 differentiation. The finding, that targeting of Th1 and Th17 differentiation appears more effective for GVHD-prevention than a strategy to inhibit Th1 and Th17 cytokines supports this concept. In this review, we shed light on the current advances of potent TF inhibitors to alter Th cell differentiation and consecutively attenuate GVHD. We will focus especially on preclinical studies and outcomes of TF inhibition in murine GVHD models. Finally, we will point out the possible impact of a Th cell subset-specific immune modulation in context of GVHD.
Collapse
Affiliation(s)
- Julia Campe
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung (DKTK)), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| |
Collapse
|
43
|
Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res 2022; 91:297-327. [PMID: 34239066 DOI: 10.1038/s41390-021-01630-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of transcription is a collective term that refers to mechanisms known to regulate gene transcription without changing the underlying DNA sequence. These mechanisms include DNA methylation and histone tail modifications which influence chromatin accessibility, and microRNAs that act through post-transcriptional gene silencing. Epigenetics is known to regulate a variety of biological processes, and the role of epigtenetics in immunity and immune-mediated diseases is becoming increasingly recognized. While DNA methylation is the most widely studied, each of these systems play an important role in the development and maintenance of appropriate immune responses. There is clear evidence that epigenetic mechanisms contribute to developmental stage-specific immune responses in a cell-specific manner. There is also mounting evidence that prenatal exposures alter epigenetic profiles and subsequent immune function in exposed offspring. Early life exposures that are associated with poor long-term health outcomes also appear to impact immune specific epigenetic patterning. Finally, each of these epigenetic mechanisms contribute to the pathogenesis of a wide variety of diseases that manifest during childhood. This review will discuss each of these areas in detail. IMPACT: Epigenetics, including DNA methylation, histone tail modifications, and microRNA expression, dictate immune cell phenotypes. Epigenetics influence immune development and subsequent immune health. Prenatal, perinatal, and postnatal exposures alter immune cell epigenetic profiles and subsequent immune function. Numerous pediatric-onset diseases have an epigenetic component. Several successful strategies for childhood diseases target epigenetic mechanisms.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatology, University of Iowa, Iowa City, IA, USA. .,Iowa Inflammation Program, University of Iowa, Iowa City, IA, USA.
| | - Matthew Schaller
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
44
|
Spaner DE. O-GlcNAcylation in Chronic Lymphocytic Leukemia and Other Blood Cancers. Front Immunol 2021; 12:772304. [PMID: 34868034 PMCID: PMC8639227 DOI: 10.3389/fimmu.2021.772304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
In the past decade, aberrant O-GlcNAcylation has emerged as a new hallmark of cancer. O-GlcNAcylation is a post-translational modification that results when the amino-sugar β-D-N-acetylglucosamine (GlcNAc) is made in the hexosamine biosynthesis pathway (HBP) and covalently attached to serine and threonine residues in intracellular proteins by the glycosyltransferase O-GlcNAc transferase (OGT). O-GlcNAc moieties reflect the metabolic state of a cell and are removed by O-GlcNAcase (OGA). O-GlcNAcylation affects signaling pathways and protein expression by cross-talk with kinases and proteasomes and changes gene expression by altering protein interactions, localization, and complex formation. The HBP and O-GlcNAcylation are also recognized to mediate survival of cells in harsh conditions. Consequently, O-GlcNAcylation can affect many of the cellular processes that are relevant for cancer and is generally thought to promote tumor growth, disease progression, and immune escape. However, recent studies suggest a more nuanced view with O-GlcNAcylation acting as a tumor promoter or suppressor depending on the stage of disease or the genetic abnormalities, proliferative status, and state of the p53 axis in the cancer cell. Clinically relevant HBP and OGA inhibitors are already available and OGT inhibitors are in development to modulate O-GlcNAcylation as a potentially novel cancer treatment. Here recent studies that implicate O-GlcNAcylation in oncogenic properties of blood cancers are reviewed, focusing on chronic lymphocytic leukemia and effects on signal transduction and stress resistance in the cancer microenvironment. Therapeutic strategies for targeting the HBP and O-GlcNAcylation are also discussed.
Collapse
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Medical Oncology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
45
|
Herath KHINM, Cho J, Kim HJ, Dinh DTT, Kim HS, Ahn G, Jeon YJ, Jee Y. Polyphenol containing Sargassum horneri attenuated Th2 differentiation in splenocytes of ovalbumin-sensitised mice: involvement of the transcription factors GATA3/STAT5/NLRP3 in Th2 polarization. PHARMACEUTICAL BIOLOGY 2021; 59:1464-1472. [PMID: 34726583 PMCID: PMC8567878 DOI: 10.1080/13880209.2021.1992451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/09/2021] [Accepted: 10/07/2021] [Indexed: 05/10/2023]
Abstract
CONTEXT Sargassum horneri (Turner) C. Agardh (Sargassaceae) is a brown marine alga used in oriental medicine to treat allergic conditions. OBJECTIVE This study clarifies the effect of polyphenol-containing S. horneri ethanol extract (SHE) on T-helper type-2 (Th2) polarisation. MATERIALS AND METHODS All mice (BALB/c mice, n = 12) except in the healthy control group were first sensitised with an intraperitoneal injection of ovalbumin (OVA; 20 µg) and alum (2 mg) on Day 0 and Day 14. Similarly, phosphate-buffered saline (PBS) was injected according to the same schedule into the healthy control mice. After the final administration, splenocytes were obtained. OVA sensitised mice were challenged with OVA (100 µg/mL) in the absence or presence (62.5 and 125 µg/mL) of SHE while healthy control group remained untreated. RESULTS SHE (0-1000 µg/mL) was not cytotoxic to splenocytes and demonstrated IC50 values of 3.27 and 3.92 mg/mL, respectively, at 24 and 48 h of incubation. SHE suppressed cell proliferation at concentrations ≥62.5 µg/mL. SHE treatment (125 µg/mL) subdued (by 1.8-fold) the population expansion of CD3+CD4+ helper T cells induced by OVA challenge. SHE attenuated the OVA-induced activation of respective transcription factors GATA3 and NLRP3. Simultaneously, highly elevated levels of cytokines interleukin (IL)-4 and IL-5 caused by OVA stimulation were removed completely and IL-13 suppressed by 1.5-fold. CONCLUSIONS SHE exhibits Th2 immune suppression under OVA stimulation via GATA3- and NLRP3-dependent IL-4, IL-5, and IL-13 suppression. Therefore, SHE could be therapeutically useful for alleviating the symptoms of allergen-mediated immune diseases.
Collapse
Affiliation(s)
| | - Jinhee Cho
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, Jeju, Republic of Korea
| | - Duong Thi Thuy Dinh
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Hyun-Soo Kim
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, Republic of Korea
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
- Department of Marine Bio Food Science, Chonnam National University, Yeosu, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, Republic of Korea
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
46
|
Zhou L, Zhang L, Chen S, Sun D, Qu J. Elevated Neddylation Pathway Promotes Th2 Cells Infiltration by Transactivating STAT5A in Hepatocellular Carcinoma. Front Oncol 2021; 11:709170. [PMID: 34804916 PMCID: PMC8602568 DOI: 10.3389/fonc.2021.709170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Neddylation is a process in which a ubiquitin-like molecule NEDD8 is conjugated to a lysine residue of the substrate protein via successive enzymatic cascade reactions. Inactivation of neddylation pathway triggers tumor cell apoptosis or senescence to suppress the tumor growth. So far, there has been limited research on the role of the neddylation pathway (NEDD8-UBE2M-RBX1 axis) in the immune response. In this study, we investigated the association between the neddylation pathway and immune function in HCC by comprehensively analyzing transcriptome and clinical data of HCC samples from TCGA database. The analysis showed that the mRNA expression of neddylation pathway components was up-regulated in HCC and increased with disease severity. Moreover, we observed that activated neddylation pathway was associated with enriched infiltration of T helper 2 (Th2) cells in HCC, while transactivation of STAT5A signaling may mediate this association. On the contrary, no significant correlation between the neddylation pathway and Th1 cells infiltration was identified. Taken together, these findings suggest a potential role of the neddylation pathway in promoting a shift in Th1/Th2 balance toward Th2-dominant immunosuppression. Hence, targeting neddylation pathway could serve as an attractive immunotherapy strategy for suppressing the development of Th2 cells.
Collapse
Affiliation(s)
- Lisha Zhou
- Department of Basic Medical Science, Medical College, Taizhou University, Taizhou, China
| | - Luyi Zhang
- Department of Basic Medical Science, Medical College, Taizhou University, Taizhou, China
| | - Siyuan Chen
- Department of Basic Medical Science, Medical College, Taizhou University, Taizhou, China
| | - Dongsheng Sun
- Department of Basic Medical Science, Medical College, Taizhou University, Taizhou, China
| | - Jianhua Qu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
47
|
Abstract
Interleukin-4 (IL-4) is a four-α-helical bundle type I cytokine with broad pleiotropic actions on multiple lineages. Major actions of IL-4 were initially discovered for B and T cells, but this cytokine acts on more than a dozen different target cells spanning the innate and adaptive immune systems and is produced by multiple different cellular sources. While IL-4 was discovered just under 40 years ago in 1982, the interest in and discoveries related to this cytokine continue to markedly expand. There are important new advances related to its biological actions and to its mechanisms of signaling, including critical genes and downstream targets in a range of cell types. IL-4 is critical not only for careful control of immunoglobulin production but also related to inflammation, fibrosis, allergic reactions, and antitumor activity, with actions of IL-4 occurring through two different types of receptors, one of which is also used by IL-13, a closely related cytokine with partially overlapping actions. In this review, we cover critical older information but also highlight newer advances. An area of evolving interest relates to the therapeutic blockade of IL-4 signaling pathway to treat atopic dermatitis and asthma. Thus, this cytokine is historically important, and research in this area has both elucidated major biological pathways and led to therapeutic advances for diseases that affect millions of individuals.
Collapse
Affiliation(s)
- Achsah D Keegan
- Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, and Veterans Affairs Maryland Health Care System, Baltimore Veterans Affairs Medical Center, Baltimore, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| |
Collapse
|
48
|
Abstract
Primary T-cell culture is an invaluable model for investigating mechanisms underlying T-cell differentiation and function in health and disease. However, different culture conditions are required for immature versus mature CD4+ T cells. Here, we provide an improved culture protocol for immature naïve mouse CD4+ T cells, including details for splenocyte isolation, naïve CD4+ T-cell purification and differentiation, and functional evaluation via flow cytometry. This protocol can also be applied for immature human CD4+ T cells. For complete details on the execution of this protocol, please refer to Wang et al. (2019).
Collapse
Affiliation(s)
- Wei Wang
- Division of Neonatology, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Xingbin Ai
- Division of Neonatology, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02115, USA
| |
Collapse
|
49
|
Canaria DA, Yan B, Clare MG, Zhang Z, Taylor GA, Boone DL, Kazemian M, Olson MR. STAT5 Represses a STAT3-Independent Th17-like Program during Th9 Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2021; 207:1265-1274. [PMID: 34348976 DOI: 10.4049/jimmunol.2100165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022]
Abstract
IL-9-producing Th cells, termed Th9 cells, contribute to immunity against parasites and cancers but have detrimental roles in allergic disease and colitis. Th9 cells differentiate in response to IL-4 and TGF-β, but these signals are insufficient to drive Th9 differentiation in the absence of IL-2. IL-2-induced STAT5 activation is required for chromatin accessibility within Il9 enhancer and promoter regions and directly transactivates the Il9 locus. STAT5 also suppresses gene expression during Th9 cell development, but these roles are less well defined. In this study, we demonstrate that human allergy-associated Th9 cells exhibited a signature of STAT5-mediated gene repression that is associated with the silencing of a Th17-like transcriptional signature. In murine Th9 cell differentiation, blockade of IL-2/STAT5 signaling induced the expression of IL-17 and the Th17-associated transcription factor Rorγt. However, IL-2-deprived Th9 cells did not exhibit a significant Th17- or STAT3-associated transcriptional signature. Consistent with these observations, differentiation of IL-17-producing cells under these conditions was STAT3-independent but did require Rorγt and BATF. Furthermore, ectopic expression of Rorγt and BATF partially rescued IL-17 production in STAT3-deficient Th17 cells, highlighting the importance of these factors in this process. Although STAT3 was not required for the differentiation of IL-17-producing cells under IL-2-deprived Th9 conditions, their prolonged survival was STAT3-dependent, potentially explaining why STAT3-independent IL-17 production is not commonly observed in vivo. Together, our data suggest that IL-2/STAT5 signaling plays an important role in controlling the balance of a Th9 versus a Th17-like differentiation program in vitro and in allergic disease.
Collapse
Affiliation(s)
| | - Bingyu Yan
- Department of Biochemistry, Purdue University, West Lafayette, IN
| | - Maia G Clare
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Zonghao Zhang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN
| | - Grace A Taylor
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - David L Boone
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN; and
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN.,Department of Computer Science, Purdue University, West Lafayette, IN
| | - Matthew R Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN;
| |
Collapse
|
50
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|