1
|
Zhao Y, He J, Pang H, Li L, Cui X, Liu Y, Jiang W, Liu X. Anaerobic digestion and biochar/hydrochar enhancement of antibiotic-containing wastewater: Current situation, mechanism and future prospects. ENVIRONMENTAL RESEARCH 2024:120087. [PMID: 39455046 DOI: 10.1016/j.envres.2024.120087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024]
Abstract
The increasing consumption of antibiotics by humans and animals and their inappropriate disposal have increased antibiotic load in municipal and pharmaceutical industry waste, resulting in severe public health risks worldwide. Anaerobic digestion (AD) is the main force of antibiotic-containing wastewater treatment, and the adaptability of biochar/hydrochar (BC/HC) makes it an attractive addition to AD systems, which aim to promote methane production efficiency. Nevertheless, further studies are needed to better understand the multifaceted function of BC/HC and its role in antibiotic-containing wastewater AD. This review article examines the current status of AD of antibiotic-containing wastewater and the effects of different preparation conditions on the physicochemical properties of BC/HC and AD status. The incorporation of BC/HC into the AD process has several potential benefits, contingent upon the physical and chemical properties of BC/HC. These benefits include mitigation of antibiotic toxicity, establishment of a stable system, enrichment of functional microorganisms and enhancement of direct interspecies electron transfer. The mechanism by which BC/HC enhances the AD of antibiotic-containing wastewater, with focus on microbial enhancement, was analysed. A review of the literature revealed that the challenge of optimization and process improvement must be addressed to enhance efficiency and clarify the mechanism of BC/HC in the AD of antibiotic-containing wastewater. This review aims to provide significant insights and details into the BC/HC-enhanced AD of antibiotic-containing wastewater.
Collapse
Affiliation(s)
- Yuanyi Zhao
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou 510006, China
| | - Junguo He
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou 510006, China.
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Lin Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xinxin Cui
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou 510006, China
| | - Yunlong Liu
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou 510006, China
| | - Weixun Jiang
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou 510006, China
| | - Xinping Liu
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou 510006, China
| |
Collapse
|
2
|
Qiu Y, Zhang J, Tong YW, He Y. Reverse electron transfer: Novel anaerobic methanogenesis pathway regulated through exogenous CO 2 synergized with biochar. BIORESOURCE TECHNOLOGY 2024; 401:130741. [PMID: 38670292 DOI: 10.1016/j.biortech.2024.130741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
Acid accumulation and carbon emission are two major challenges in anaerobic digestion. Syntrophic consortia can employ reverse electron transfer (RET) to facilitate thermodynamically unfavorable redox reactions during acetogenesis. However, the potential mechanisms and regulatory methods of RET remain unclear. This study examines the regulatory mechanisms by which exogenous CO2 affects RET and demonstrates that biochar maximizes CO2 solubility at 25.8 mmol/L to enhance effects further. CO2 synergized with biochar significantly increases cumulative methane production and propionate degradation rate. From the bioenergetic perspective, CO2 decreases energy level to a maximum of -87 kJ/mol, strengthening the thermodynamic viability. The underlying mechanism can be attributed to RET promotion, as indicated by increased formate dehydrogenase and enrichment of H2/formate-producing bacteria with their partner Methanospirillum hungatei. Moreover, the 5 % 13CH4 and methane contribution result show that CO2 accomplishes directed methanogenesis. Overall, this investigation riches the roles of CO2 and biochar in AD surrounding RET.
Collapse
Affiliation(s)
- Yang Qiu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| | - Yen Wah Tong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Zhao S, Zhu S, Liu S, Song G, Zhao J, Liu R, Liu H, Qu J. Quorum Sensing Enhances Direct Interspecies Electron Transfer in Anaerobic Methane Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2891-2901. [PMID: 38308618 DOI: 10.1021/acs.est.3c08503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Direct interspecies electron transfer (DIET) provides an innovative way to achieve efficient methanogenesis, and this study proposes a new approach to upregulate the DIET pathway by enhancing quorum sensing (QS). Based on long-term reactor performance, QS enhancement achieved more vigorous methanogenesis with 98.7% COD removal efficiency. In the control system, methanogenesis failure occurred at the accumulated acetate of 7420 mg of COD/L and lowered pH of 6.04, and a much lower COD removal of 41.9% was observed. The more significant DIET in QS-enhancing system was supported by higher expression of conductive pili and the c-Cyts cytochrome secretion-related genes, resulting in 12.7- and 10.3-fold improvements. Moreover, QS enhancement also improved the energy production capability, with the increase of F-type and V/A-type ATPase expression by 6.3- and 4.2-fold, and this effect probably provided more energy for nanowires and c-Cyts cytochrome secretion. From the perspective of community structure, QS enhancement increased the abundance of Methanosaeta and Geobacter from 54.3 and 17.6% in the control to 63.0 and 33.8%, respectively. Furthermore, the expression of genes involved in carbon dioxide reduction and alcohol dehydrogenation increased by 0.6- and 7.1-fold, respectively. Taken together, this study indicates the positive effects of QS chemicals to stimulate DIET and advances the understanding of the DIET methanogenesis involved in environments such as anaerobic digesters and sediments.
Collapse
Affiliation(s)
- Shunan Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shaoqing Zhu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Suo Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ge Song
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Mills S, Trego AC, Prevedello M, De Vrieze J, O’Flaherty V, Lens PN, Collins G. Unifying concepts in methanogenic, aerobic, and anammox sludge granulation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100310. [PMID: 37705860 PMCID: PMC10495608 DOI: 10.1016/j.ese.2023.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/17/2023] [Accepted: 08/05/2023] [Indexed: 09/15/2023]
Abstract
The retention of dense and well-functioning microbial biomass is crucial for effective pollutant removal in several biological wastewater treatment technologies. High solids retention is often achieved through aggregation of microbial communities into dense, spherical aggregates known as granules, which were initially discovered in the 1980s. These granules have since been widely applied in upflow anaerobic digesters for waste-to-energy conversions. Furthermore, granular biomass has been applied in aerobic wastewater treatment and anaerobic ammonium oxidation (anammox) technologies. The mechanisms underpinning the formation of methanogenic, aerobic, and anammox granules are the subject of ongoing research. Although each granule type has been extensively studied in isolation, there has been a lack of comparative studies among these granulation processes. It is likely that there are some unifying concepts that are shared by all three sludge types. Identifying these unifying concepts could allow a unified theory of granulation to be formed. Here, we review the granulation mechanisms of methanogenic, aerobic, and anammox granular sludge, highlighting several common concepts, such as the role of extracellular polymeric substances, cations, and operational parameters like upflow velocity and shear force. We have then identified some unique features of each granule type, such as different internal structures, microbial compositions, and quorum sensing systems. Finally, we propose that future research should prioritize aspects of microbial ecology, such as community assembly or interspecies interactions in individual granules during their formation and growth.
Collapse
Affiliation(s)
- Simon Mills
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Anna Christine Trego
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Marco Prevedello
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Vincent O’Flaherty
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N.L. Lens
- University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
5
|
Song T, Liu Y, Kolton M, Wilson RM, Keller JK, Rolando JL, Chanton JP, Kostka JE. Porewater constituents inhibit microbially mediated greenhouse gas production (GHG) and regulate the response of soil organic matter decomposition to warming in anoxic peat from a Sphagnum-dominated bog. FEMS Microbiol Ecol 2023; 99:fiad060. [PMID: 37280172 DOI: 10.1093/femsec/fiad060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023] Open
Abstract
Northern peatlands store approximately one-third of terrestrial soil carbon. Climate warming is expected to stimulate the microbially mediated degradation of peat soil organic matter (SOM), leading to increasing greenhouse gas (GHG; carbon dioxide, CO2; methane, CH4) production and emission. Porewater dissolved organic matter (DOM) plays a key role in SOM decomposition; however, the mechanisms controlling SOM decomposition and its response to warming remain unclear. The temperature dependence of GHG production and microbial community dynamics were investigated in anoxic peat from a Sphagnum-dominated peatland. In this study, peat decomposition, which was quantified by GHG production and carbon substrate utilization is limited by terminal electron acceptors (TEA) and DOM, and these controls of microbially mediated SOM degradation are temperature-dependent. Elevated temperature led to a slight decrease in microbial diversity, and stimulated the growth of specific methanotrophic and syntrophic taxa. These results confirm that DOM is a major driver of decomposition in peatland soils contains inhibitory compounds, but the inhibitory effect is alleviated by warming.
Collapse
Affiliation(s)
- Tianze Song
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Yutong Liu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
- Department of Civil & Environmental Engineering, Pennsylvania State University, University Park, University Park, PA 16802, United States
| | - Max Kolton
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion, University of the Negev, Beer Sheva, 8499000, Israel
| | - Rachel M Wilson
- Department of Earth, Ocean & Atmospheric Science, Florida State University, Tallahassee, FL 32304, United States
| | - Jason K Keller
- Schmid College of Science and Technology, Chapman University, 1 University Dr, Orange, CA 92866, United States
| | - Jose L Rolando
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Jeffrey P Chanton
- Department of Earth, Ocean & Atmospheric Science, Florida State University, Tallahassee, FL 32304, United States
| | - Joel E Kostka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30318, United States
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
6
|
Wang S, Li D, Zhang K, Ma Y, Liu F, Li Z, Gao X, Gao W, Du L. Effects of initial volatile fatty acid concentrations on process characteristics, microbial communities, and metabolic pathways on solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 369:128461. [PMID: 36503086 DOI: 10.1016/j.biortech.2022.128461] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Solid-state anaerobic digestion (SSAD) is vulnerable to excess volatile fatty acids (VFA), mainly acetate and propionate. The co-effects of VFAs and microbial dynamics under VFA accumulation were investigated in SSAD of pig manure and corn straw. Adding 2 and 4 mg/g acetate or propionate caused initial increases in total VFAs, followed by decreases after day 6, resulting in 'mild' VFA accumulation, while adding 6 mg/g caused similarly increased VFAs, but with no subsequent decrease, causing 'severe' VFA accumulation and poor methanation performance. Mild propionate accumulation promoted acetate consumption, whereas acetate accumulation inhibited propionate degradation by affecting crucial redox reactions. Under severe VFA accumulation, hydrolysis and acidification mainly conducted by acid-tolerant Clostridium sp. exacerbated VFA inhibition, causing a competition between Methanosarcina and Methanosaeta, and impairments of acetoclastic and hydrogenotrophic methanogenesis and interspecies formate transfer. This study provides new insights into mechanisms of VFA accumulation in SSAD, and its effects on methanogenesis.
Collapse
Affiliation(s)
- Siqi Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R, Beijing 100193, China
| | - Danni Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; East China University of Science and Technology, Shanghai 200237, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R, Beijing 100193, China
| | - Yingjun Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Fuyuan Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi 2553960, China
| | - Zhuowu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xingliang Gao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi 2553960, China
| | - Wenxuan Gao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R, Beijing 100193, China
| | - Lianzhu Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R, Beijing 100193, China.
| |
Collapse
|
7
|
Li Y, Liang L, Sun C, Wang Z, Yu Q, Zhao Z, Zhang Y. Glycol/glycerol-fed electrically conductive aggregates suggest a mechanism of stimulating direct interspecies electron transfer in methanogenic digesters. WATER RESEARCH 2022; 217:118448. [PMID: 35430471 DOI: 10.1016/j.watres.2022.118448] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The possibility of stimulating direct interspecies electron transfer (DIET) within aggregates of methanogenic digesters respectively with ethanol, glycol, and glycerol as a primary substrate was investigated to better understand the mechanisms of alcohol compounds stimulating DIET. Aggregates fed with ethanol, glycol, and glycerol were electrically conductive (10.4-19.4 uS/cm), with a temperature dependence of metallic-like conductivity. Close examination of transmission electron microscope images observed the potential interspecies connected networks assembled by filaments within these aggregates. Further investigations via metatranscriptomics found that, genes for electrically conductive pili (e-pili) (Log2FPKM, 9.39-10.96) and c-type cytochromes (8.90-9.64) were highly expressed within aggregates. Glycerol-fed aggregates exhibited the highest gene expression for e-pili, while glycol-fed aggregates exhibited the highest gene expression for c-type cytochromes. Methanothrix species were dominant and metabolically active within aggregates. Genes encoding the enzymes involved in carbon dioxide reduction were highly expressed in Methanothrix species, suggesting that they participated in DIET. In addition, transcript abundance of genes encoding alcohol dehydrogenase and NADH-quinone oxidoreductase in alcohol dehydrogenation closely associated with NADH/NAD+ transformation within glycol- and glycerol-fed aggregates was generally higher than that within ethanol-fed aggregates. These results, and the fact that NADH/NAD+ transformation was very linked to the ATP synthesis complex that further supported the formation of extracellular electrical connection components, e-pili and membrane-bound multi-heme c-type cytochromes (MHCs), provided a possibility that alcohol compounds comprised of hydroxy groups could stimulate DIET and more hydroxy groups comprised were better for this stimulation.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lianfu Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Cheng Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhenxin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Chen L, Fang W, Chang J, Liang J, Zhang P, Zhang G. Improvement of Direct Interspecies Electron Transfer via Adding Conductive Materials in Anaerobic Digestion: Mechanisms, Performances, and Challenges. Front Microbiol 2022; 13:860749. [PMID: 35432222 PMCID: PMC9005980 DOI: 10.3389/fmicb.2022.860749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Anaerobic digestion is an effective and sustainable technology for resource utilization of organic wastes. Recently, adding conductive materials in anaerobic digestion to promote direct interspecies electron transfer (DIET) has become a hot topic, which enhances the syntrophic conversion of various organics to methane. This review comprehensively summarizes the recent findings of DIET mechanisms with different mediating ways. Meanwhile, the influence of DIET on anaerobic digestion performance and the underlying mechanisms of how DIET mediated by conductive materials influences the lag phase, methane production, and system stability are systematically explored. Furthermore, current challenges such as the unclear biological mechanisms, influences of non-DIET mechanisms, limitations of organic matters syntrophically oxidized by way of DIET, and problems in practical application of DIET mediated by conductive materials are discussed in detail. Finally, the future research directions for practical application of DIET are outlined.
Collapse
Affiliation(s)
- Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
9
|
Djemai K, Drancourt M, Tidjani Alou M. Bacteria and Methanogens in the Human Microbiome: a Review of Syntrophic Interactions. MICROBIAL ECOLOGY 2022; 83:536-554. [PMID: 34169332 DOI: 10.1007/s00248-021-01796-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Methanogens are microorganisms belonging to the Archaea domain and represent the primary source of biotic methane. Methanogens encode a series of enzymes which can convert secondary substrates into methane following three major methanogenesis pathways. Initially recognized as environmental microorganisms, methanogens have more recently been acknowledged as host-associated microorganisms after their detection and initial isolation in ruminants in the 1950s. Methanogens have also been co-detected with bacteria in various pathological situations, bringing their role as pathogens into question. Here, we review reported associations between methanogens and bacteria in physiological and pathological situations in order to understand the metabolic interactions explaining these associations. To do so, we describe the origin of the metabolites used for methanogenesis and highlight the central role of methanogens in the syntrophic process during carbon cycling. We then focus on the metabolic abilities of co-detected bacterial species described in the literature and infer from their genomes the probable mechanisms of their association with methanogens. The syntrophic interactions between bacteria and methanogens are paramount to gut homeostasis. Therefore, any dysbiosis affecting methanogens might impact human health. Thus, the monitoring of methanogens may be used as a bio-indicator of dysbiosis. Moreover, new therapeutic approaches can be developed based on their administration as probiotics. We thus insist on the importance of investigating methanogens in clinical microbiology.
Collapse
Affiliation(s)
- Kenza Djemai
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-University, 19-12 Bd Jean Moulin, 13005, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Michel Drancourt
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-University, 19-12 Bd Jean Moulin, 13005, Marseille, France
| | - Maryam Tidjani Alou
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-University, 19-12 Bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
10
|
Mollaei M, Suarez-Diez M, Sedano-Nunez VT, Boeren S, Stams AJM, Plugge CM. Proteomic Analysis of a Syntrophic Coculture of Syntrophobacter fumaroxidans MPOB T and Geobacter sulfurreducens PCA T. Front Microbiol 2021; 12:708911. [PMID: 34950111 PMCID: PMC8691401 DOI: 10.3389/fmicb.2021.708911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022] Open
Abstract
We established a syntrophic coculture of Syntrophobacter fumaroxidans MPOBT (SF) and Geobacter sulfurreducens PCAT (GS) growing on propionate and Fe(III). Neither of the bacteria was capable of growth on propionate and Fe(III) in pure culture. Propionate degradation by SF provides acetate, hydrogen, and/or formate that can be used as electron donors by GS with Fe(III) citrate as electron acceptor. Proteomic analyses of the SF-GS coculture revealed propionate conversion via the methylmalonyl-CoA (MMC) pathway by SF. The possibility of interspecies electron transfer (IET) via direct (DIET) and/or hydrogen/formate transfer (HFIT) was investigated by comparing the differential abundance of associated proteins in SF-GS coculture against (i) SF coculture with Methanospirillum hungatei (SF-MH), which relies on HFIT, (ii) GS pure culture growing on acetate, formate, hydrogen as propionate products, and Fe(III). We noted some evidence for DIET in the SF-GS coculture, i.e., GS in the coculture showed significantly lower abundance of uptake hydrogenase (43-fold) and formate dehydrogenase (45-fold) and significantly higher abundance of proteins related to acetate metabolism (i.e., GltA; 62-fold) compared to GS pure culture. Moreover, SF in the SF-GS coculture showed significantly lower abundance of IET-related formate dehydrogenases, Fdh3 (51-fold) and Fdh5 (29-fold), and the rate of propionate conversion in SF-GS was 8-fold lower than in the SF-MH coculture. In contrast, compared to GS pure culture, we found lower abundance of pilus-associated cytochrome OmcS (2-fold) and piliA (5-fold) in the SF-GS coculture that is suggested to be necessary for DIET. Furthermore, neither visible aggregates formed in the SF-GS coculture, nor the pili-E of SF (suggested as e-pili) were detected. These findings suggest that the IET mechanism is complex in the SF-GS coculture and can be mediated by several mechanisms rather than one discrete pathway. Our study can be further useful in understanding syntrophic propionate degradation in bioelectrochemical and anaerobic digestion systems.
Collapse
Affiliation(s)
- Monir Mollaei
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Caroline M. Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
11
|
Liu Y, Li X, Wu S, Tan Z, Yang C. Enhancing anaerobic digestion process with addition of conductive materials. CHEMOSPHERE 2021; 278:130449. [PMID: 34126684 DOI: 10.1016/j.chemosphere.2021.130449] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion is widely used for the treatment of wastewater for its low costs and bioenergy production, but the performances of anaerobic digestion often need improving in practical applications. The addition of conductive materials could lead to direct interspecies electron transfer (DIET) among the anaerobic microorganisms, and consequently enhance the efficiencies of anaerobic digestion. In this paper, the effects of DIET via conductive materials on chemical organic demand (COD) removal, volatile fatty acid (VFA) consumption and methane production were reviewed. The reports on the increase of conductive microorganisms due to the addition of conductive materials were discussed. Results regarding activities of microorganisms and morphology and properties of sludge were described and commented, and future research needs were also proposed which included better understanding of the roles of DIET in each step of anaerobic digestion, mechanisms of metabolism of pollutants in DIET-established systems and inhibition of excessive dosage of conductive materials.
Collapse
Affiliation(s)
- Yiwei Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shaohua Wu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Zhao Tan
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan, 410001, China.
| |
Collapse
|
12
|
Cai G, Zhu G, Zhou M, Lv N, Wang R, Li C, Li J, Pan X. Syntrophic butyrate-oxidizing methanogenesis promoted by anthraquinone-2-sulfonate and cysteine: Distinct tendencies towards the enrichment of methanogens and syntrophic fatty-acid oxidizing bacteria. BIORESOURCE TECHNOLOGY 2021; 332:125074. [PMID: 33838452 DOI: 10.1016/j.biortech.2021.125074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Interspecies electron transfer (IET) between syntrophic fatty-acid oxidizing bacteria (SFOBs) and methanogens decided the performance of anaerobic digestion. Electron shuttles, as potential IET accelerators, were controversial concerning their influences on methanogenesis. In this study, concentration-dependent effects of anthraquinone-2-sulfonate (AQS) and cysteine on glucose digestion were firstly demonstrated: low dosage of AQS and cysteine (50 and 100 µM, respectively) had highest methane yield (133.5% and 148.6%, respectively). Using butyrate as substrate, distinct tendencies towards the enrichment of methanogenic community were further revealed. Cysteine just acted as a reductant which lowered ORP quickly and enriched most methanogens. It benefited methanogenesis right until methanogenic substrates accumulated. AQS, however, showed characteristic features of electron shuttles: it was firstly oxidized by SFOBs and then reduced by hydrogenotrophic methanogens, which accelerated methanogenic butyrate degradation. This study showed wide spectrum of SFOBs and methanogens benefited from the addition of electron shuttles, which laid foundation for future application.
Collapse
Affiliation(s)
- Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gefu Zhu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, China.
| | - Mingdian Zhou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruming Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Junjie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
13
|
Pan X, Zhao L, Li C, Angelidaki I, Lv N, Ning J, Cai G, Zhu G. Deep insights into the network of acetate metabolism in anaerobic digestion: focusing on syntrophic acetate oxidation and homoacetogenesis. WATER RESEARCH 2021; 190:116774. [PMID: 33387947 DOI: 10.1016/j.watres.2020.116774] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Acetate is a pivotal intermediate product during anaerobic decomposition of organic matter. Its generation and consumption network is quite complex, which almost covers the most steps in anaerobic digestion (AD) process. Besides acidogenesis, acetogenesis and methanogenesis, syntrophic acetate oxidation (SAO) replaced acetoclastic methanogenesis to release the inhibition of AD at some special conditions, and the importance of considering homoacetogenesis had also been proved when analysing anaerobic fermentations. Syntrophic acetate-oxidizing bacteria (SAOB), with function of SAO, can survive under high temperature and ammonia/ volatile fatty acids (VFAs) concentrations, while, homoacetogens, performed homoacetogenesis, are more active under acidic, alkaline and low temperature (10°C-20°C) conditions, This review summarized the roles of SAO and homoacetogenesis in AD process, which contains the biochemical reactions, metabolism pathways, physiological characteristics and energy conservation of functional bacteria. The specific roles of these two processes in the subprocess of AD (i.e., acidogenesis, acetogenesis and methanogenesis) were also analyzed in detail. A two phases anaerobic digester is proposed for protein-rich waste(water) treatment by enhancing the functions of homoacetogens and SAOB compared to the traditional two-phases anaerobic digesters, in which the first phase is fermentation phase including acidogens and homoacetogens for acetate production, and second phase is a mixed culture coupling syntrophic fatty acids bacteria, SAOB and hydrogenotrophic methanogens for methane production. This review provides a new insight into the network on production and consumption of acetate in AD process.
Collapse
Affiliation(s)
- Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing100081, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Nan Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
| | - Jing Ning
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China.
| |
Collapse
|
14
|
Cai G, Zhao L, Wang T, Lv N, Li J, Ning J, Pan X, Zhu G. Variation of volatile fatty acid oxidation and methane production during the bioaugmentation of anaerobic digestion system: Microbial community analysis revealing the influence of microbial interactions on metabolic pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142425. [PMID: 33254934 DOI: 10.1016/j.scitotenv.2020.142425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is widely used on waste treatment for its great capability of organic degradation and energy recovery. Accumulation of volatile fatty acids (VFAs) caused by impact loadings often leads to the acidification and failure of AD systems. Bioaugmentation is a promising way to accelerate VFA degradation but the succession of microbial communities usually caused unpredictable consequences. In this study, we used the sludge previously acclimated with VFAs for the bioaugmentation of an acidified anaerobic digestion system and increased the methane yield by 8.03-9.59 times. To see how the succession of microbial communities affected bioaugmentation, dual-chamber devices separated by membrane filters were used to control the interactions between the acidified and acclimated sludges. The experimental group with separated sludges showed significant advantages of VFA consumption (5.5 times less final VFA residue than the control), while the group with mixed sludge produced more methane (4.0 times higher final methane yield than the control). Microbial community analysis further highlighted the great influences of microbial interaction on the differentiation of metabolic pathways. Acetoclastic methanogens from the acclimated sludge acted as the main contributors to pH neutralization and methane production during the early phase of bioaugmentation, and maintained active in the mixed sludge but degenerated in the separated sludges where interactions between sludge microbiotas were limited. Instead, syntrophic butyrate and acetate oxidation coupled with nitrate and sulfate reduction was enriched in the separated sludges, which lowered the methane conversion rate and would cause the failure of bioaugmentation. Our study revealed the importance of microbial interactions and the functionality of enriched microbes, as well as the potential strategies to optimize the durability and efficiency of bioaugmentation.
Collapse
Affiliation(s)
- Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, China
| | - Tao Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Nan Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ning
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
15
|
Comprehensive Bioenergetic Evaluation of Microbial Pathway Variants in Syntrophic Propionate Oxidation. mSystems 2020; 5:5/6/e00814-20. [PMID: 33293404 PMCID: PMC7743110 DOI: 10.1128/msystems.00814-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, an original methodology was developed that quantifies bioenergetically and physiologically feasible net ATP yields for large numbers of microbial metabolic pathways and their variants under different conditions. All variants are evaluated, which ensures global optimality in finding the pathway variant(s) leading to the highest ATP yield. In this work, a systematic methodology was developed (based on known biochemistry, physiology, and bioenergetics) for the automated feasibility evaluation and net ATP yield quantification of large sets of pathway variants. Possible pathway variants differ in their intermediate metabolites, in which electron carriers are involved, in which steps are consuming/producing ATP, and in which steps are coupled to (and to how many) proton (or its equivalent) translocations. A pathway variant is deemed feasible, under a given set of physiological and environmental conditions, only if all pathway reaction steps have nonpositive Gibbs energy changes and if all the metabolite concentrations remain within an acceptable physiological range (10−6 to 10−2 M). The complete understanding of syntrophic propionate oxidation remains elusive due to uncertainties in pathways and the mechanisms for interspecies electron transfer (IET). Several million combinations of pathway variants and parameters/conditions were evaluated for propionate oxidation, providing unprecedented mechanistic insight into its biochemical and bioenergetic landscape. Our results show that, under a scenario of optimum environmental conditions for propionate oxidation, the Smithella pathway yields the most ATP and the methylmalonyl-coenzyme A (CoA) pathways can generate sufficient ATP for growth only under a cyclical pathway configuration with pyruvate. The results under conditions typical of methanogenic environments show that propionate oxidation via the lactate and via the hydroxypropionyl-CoA pathways yield the most ATP. IET between propionate oxidizers and methanogens can proceed either by dissolved hydrogen via the Smithella pathway or by different mechanisms (e.g., formate or direct IET) if other pathways are used. IMPORTANCE In this work, an original methodology was developed that quantifies bioenergetically and physiologically feasible net ATP yields for large numbers of microbial metabolic pathways and their variants under different conditions. All variants are evaluated, which ensures global optimality in finding the pathway variant(s) leading to the highest ATP yield. The methodology is designed to be especially relevant to hypothesize on which microbial pathway variants should be most favored in microbial ecosystems under high selective pressure for efficient metabolic energy conservation. Syntrophic microbial oxidation of propionate to acetate has an extremely small quantity of available energy and requires an extremely high metabolic efficiency to sustain life. Our results bring mechanistic insights into the optimum pathway variants, other metabolic bottlenecks, and the impact of environmental conditions on the ATP yields. Additionally, our results conclude that, as previously reported, under specific conditions, IET mechanisms other than hydrogen must exist to simultaneously sustain the growth of both propionate oxidizers and hydrogenotrophic methanogens.
Collapse
|
16
|
Lv N, Zhao L, Wang R, Ning J, Pan X, Li C, Cai G, Zhu G. Novel strategy for relieving acid accumulation by enriching syntrophic associations of syntrophic fatty acid-oxidation bacteria and H 2/formate-scavenging methanogens in anaerobic digestion. BIORESOURCE TECHNOLOGY 2020; 313:123702. [PMID: 32615503 DOI: 10.1016/j.biortech.2020.123702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 05/28/2023]
Abstract
Aiming at relieving acid accumulation in anaerobic digestion (AD), syntrophic associations of syntrophic fatty acid-oxidation bacteria and H2/formate-scavenging methanogens were enriched by feeding propionate, butyrate and formate in an up-flow anaerobic sludge blanket (UASB) reactor. Results showed that methane yield increased by 50% with increasing formate concentration (0-2000 mg COD/L). In addition, the abundance and quantity of SFOB (Syntrophobacter, Smithella and Syntrophomonas) and H2/formate-scavenging methanogens (Methanobacteriales and Methanomicrobiales) were increased after microbial acclimation. The enriched syntrophic associations showed higher propionate and butyrate removal efficiencies of 98.48 ± 1.14% and 99.71 ± 0.71%, respectively. Furthermore, encoding genes of formate dehydrogenase and hydrogenases presented higher abundances after microbial enrichment, which suggested that the enhancements of interspecies formate transfer and interspecies hydrogen transfer between syntrophic associations benefited volatile fatty acids (VFAs) conversion. This research provided an effective strategy to relieve acid accumulation.
Collapse
Affiliation(s)
- Nan Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Ruming Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ning
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
17
|
Rodrigues ICB, Leão VA. Producing electrical energy in microbial fuel cells based on sulphate reduction: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36075-36084. [PMID: 32613514 DOI: 10.1007/s11356-020-09728-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Combination of the treatment of effluents with high organic loads and the production of electricity is the driving forces stimulating the development of microbial fuel cells (MFC). The increase in electricity production in MFCs requires not only the optimization of the operational parameters but also the inhibition of the metabolic pathways, which compete with electricity production, such as methanogenesis. The presence of both sulphate and sulphide ions in conventional anaerobic reactors hampers the growth of methanogenic archaea and justifies the use of sulphate and therefore sulphate-reducing bacteria (SRB) in the anodic half-cell of MFC. Most importantly, the literature on the subject reveals that SRB are able to directly transfer electrons to solid electrodes, enabling the production of electrical energy. This technology is versatile because it associates the removal of both sulphate and the chemical oxygen demand (COD) with the production of electricity. Therefore, the current work revises the main aspects related to the inoculation of MFC with SRB focusing on (i) the microbial interactions in the anodic chamber, (ii) the electron transfer pathways to the solid anode, and also (iii) the sulphate and COD removal yields along with the electricity production efficiencies.
Collapse
Affiliation(s)
- Isabel Cristina Braga Rodrigues
- Programa de Pós-Graduação em Engenharia Ambiental da Universidade Federal de Ouro Preto, Ouro Preto, Brazil.
- Departamento de Bioquímica, Biotecnologia e Engenharia de Bioprocessos da Universidade Federal de São João del-Rei, Campus Alto Paraopeba, Ouro Branco, Brazil.
| | - Versiane A Leão
- Programa de Pós-Graduação em Engenharia Ambiental da Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
18
|
Yang DD, Alexander A, Kinnersley M, Cook E, Caudy A, Rosebrock A, Rosenzweig F. Fitness and Productivity Increase with Ecotypic Diversity among Escherichia coli Strains That Coevolved in a Simple, Constant Environment. Appl Environ Microbiol 2020; 86:e00051-20. [PMID: 32060029 PMCID: PMC7117940 DOI: 10.1128/aem.00051-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
The productivity of a biological community often correlates with its diversity. In the microbial world this phenomenon can sometimes be explained by positive, density-dependent interactions such as cross-feeding and syntrophy. These metabolic interactions help account for the astonishing variety of microbial life and drive many of the biogeochemical cycles without which life as we know it could not exist. While it is difficult to recapitulate experimentally how these interactions evolved among multiple taxa, we can explore in the laboratory how they arise within one. These experiments provide insight into how different bacterial ecotypes evolve and from these, possibly new "species." We have previously shown that in a simple, constant environment a single clone of Escherichia coli can give rise to a consortium of genetically and phenotypically differentiated strains, in effect, a set of ecotypes, that coexist by cross-feeding. We marked these different ecotypes and their shared ancestor by integrating fluorescent protein into their genomes and then used flow cytometry to show that each evolved strain is more fit than the shared ancestor, that pairs of evolved strains are fitter still, and that the entire consortium is the fittest of all. We further demonstrate that the rank order of fitness values agrees with estimates of yield, indicating that an experimentally evolved consortium more efficiently converts primary and secondary resources to offspring than its ancestor or any member acting in isolation.IMPORTANCE Polymicrobial consortia occur in both environmental and clinical settings. In many cases, diversity and productivity correlate in these consortia, especially when sustained by positive, density-dependent interactions. However, the evolutionary history of such entities is typically obscure, making it difficult to establish the relative fitness of consortium partners and to use those data to illuminate the diversity-productivity relationship. Here, we dissect an Escherichia coli consortium that evolved under continuous glucose limitation in the laboratory from a single common ancestor. We show that a partnership consisting of cross-feeding ecotypes is better able to secure primary and secondary resources and to convert those resources to offspring than the ancestral clone. Such interactions may be a prelude to a special form of syntrophy and are likely determinants of microbial community structure in nature, including those having clinical significance such as chronic infections.
Collapse
Affiliation(s)
- Dong-Dong Yang
- Division Biological Sciences, University of Montana, Missoula, Montana, USA
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ashley Alexander
- Division Biological Sciences, University of Montana, Missoula, Montana, USA
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Margie Kinnersley
- Division Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Emily Cook
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Amy Caudy
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Adam Rosebrock
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Frank Rosenzweig
- Division Biological Sciences, University of Montana, Missoula, Montana, USA
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Pan X, Wang L, Lv N, Ning J, Zhou M, Wang T, Li C, Zhu G. Impact of physical structure of granular sludge on methanogenesis and methanogenic community structure. RSC Adv 2019; 9:29570-29578. [PMID: 35702508 PMCID: PMC9116110 DOI: 10.1039/c9ra04257a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/15/2019] [Accepted: 09/05/2019] [Indexed: 11/21/2022] Open
Abstract
Physical structures of sludge are critical factors determining the performance of the anaerobic digestion process, especially for the rate-limiting step, methanogenesis. Thus, to evaluate the effect of granular physical structure on methanogenesis and methanogenic community variation, intact and disintegrated granules were applied as inocula with formate, hydrogen and acetate as sole substrates in batch reactors. Kinetics results revealed that the physical structure of sludge had little impact on methane yield potential from three substrates, while a significantly different impact on methanogenesis rates of formate, hydrogen and acetate. The methanogenesis rate of formate in disintegrated granules was higher than that in the intact granular system, the methanogenesis rate of H2/CO2 in the intact granular system was higher than that in the disintegrated granules and the methanogenesis rate of acetate was similar with the in intact and disintegrated granular systems. Besides, in both intact and disintegrated granular systems, methanogenesis rates of formate were the highest, then followed the H2/CO2 and acetate was the lowest, indicating formate consumption has an advantage over hydrogen in the studied system. A microbial assay indicated that Methanobacteriales, Methanosarcinales and Methanomicrobiales are dominant methanogens on the order level, and the physical structure of granular sludge has little influence on methanogenic communities on the order level but showed significant influence on the species level. It enlightens us that the physical structure of sludge could be considered for regulating the anaerobic digestion via influencing the methanogenesis rates.
Collapse
Affiliation(s)
- Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences Xiamen 361021 China +86-592-6190790 +86-592-6190790
| | - Lina Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University 126 Xiantai Street Changchun 130000 China
| | - Nan Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences Xiamen 361021 China +86-592-6190790 +86-592-6190790
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jing Ning
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences Xiamen 361021 China +86-592-6190790 +86-592-6190790
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Mingdian Zhou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences Xiamen 361021 China +86-592-6190790 +86-592-6190790
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tao Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences Xiamen 361021 China +86-592-6190790 +86-592-6190790
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark Kgs. Lyngby DK-2800 Denmark
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences Xiamen 361021 China +86-592-6190790 +86-592-6190790
| |
Collapse
|
20
|
Xia X, Zhang J, Song T, Lu Y. Stimulation of Smithella-dominating propionate oxidation in a sediment enrichment by magnetite and carbon nanotubes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:236-248. [PMID: 30790444 DOI: 10.1111/1758-2229.12737] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Recent studies have shown that application of conductive materials including magnetite and carbon nanotubes (CNTs) can promote the methanogenic decomposition of short-chain fatty acids and even more complex organic matter in anaerobic digesters and natural habitats. The linkage to microbial identity and the mechanisms, however, remain poorly understood. Here, we evaluate the effects of nanoscale magnetite (nanoFe3 O4 ) and multiwalled CNTs on the syntrophic oxidation of propionate in an enrichment obtained from lake sediment. The microbial populations were composed mainly of Smithella, Syntrophomonas, Methanosaeta, Methanosarcina and Methanoregula. In addition to acetate, butyrate was transiently accumulated indicating that propionate was oxidized by Smithella via the dismutation pathway and part of the leaked butyrate was oxidized by Syntrophomonas. Propionate oxidation and CH4 production were significantly accelerated in the presence of nanoFe3 O4 and CNTs. While propionate oxidation was suppressed upon H2 application and suspended completely upon formate application in the control, this suppressive effect was substantially compromised in the presence of nanoFe3 O4 and CNTs. The tests on hydrogenotrophic methanogenesis of a pure culture methanogen and of the enrichment culture without propionate showed negative effect by both materials. The positive effect of nanoFe3 O4 disappeared when it was insulated by surface-coating with silica. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated the extensive formation of microbial cell-conductive material mixture aggregates. Our results suggest that direct interspecies electron transfer is likely activated by the conductive materials and operates in concert with H2 /formate-dependent electron transfer for syntrophic propionate oxidation in the sediment enrichment.
Collapse
Affiliation(s)
- Xingxuan Xia
- Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jianchao Zhang
- Institute of Surface-Earth System Science, Tianjin University, 300072, China
| | - Tianze Song
- Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yahai Lu
- Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
21
|
Montag D, Schink B. Formate and Hydrogen as Electron Shuttles in Terminal Fermentations in an Oligotrophic Freshwater Lake Sediment. Appl Environ Microbiol 2018; 84:e01572-18. [PMID: 30097443 PMCID: PMC6182907 DOI: 10.1128/aem.01572-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/03/2018] [Indexed: 11/20/2022] Open
Abstract
The energetic situation of terminal fermentations in methanogenesis was analyzed by pool size determinations in sediment cores taken in the oligotrophic Lake Constance, Germany. Distribution profiles of fermentation intermediates and products were measured at three different water depths (2, 10, and 80 m). Methane concentrations were constant below 10 cm of sediment depth. Within the methanogenic zone, concentrations of formate, acetate, propionate, and butyrate varied between 1 and 40 μM, and hydrogen was between 0.5 and 5 Pa. From the distribution profiles of the fermentation intermediates, Gibbs free energy changes for their interconversion were calculated. Pool sizes of formate and hydrogen were energetically nearly equivalent, with -5 ± 5 kJ per mol difference of free energy change (ΔG) for a hypothetical conversion of formate to hydrogen plus CO2 The ΔG values for conversion of fatty acids to methanogenic substrates and their further conversion to methane and CO2 were calculated with hydrogen and with formate as intermediates. Syntrophic propionate oxidation reached energetic equilibrium with formate as the sole electron carrier but was sufficiently exergonic if at least some of the electrons were transferred via hydrogen. The energetic consequences of formate versus hydrogen transfer in secondary and methanogenic fermentations indicate that both carrier systems are probably used simultaneously to optimize the energy yields for the partners involved.IMPORTANCE In the terminal steps of methane formation in freshwater lake sediments, fermenting bacteria cooperate syntrophically with methanogens and homoacetogens at minimum energy increments via interspecies electron transfer. The energy yields of the partner organisms in these cooperations have so far been calculated based mainly on in situ hydrogen partial pressures. In the present study, we also analyzed pools of formate as an alternative electron carrier in sediment cores of an oligotrophic lake. The formate and hydrogen pools appeared to be energetically nearly equivalent and are likely to be used simultaneously for interspecies electron transfer. Calculations of reaction energies of the partners involved suggest that propionate degradation may also proceed through the Smithella pathway, which converts propionate via butyrate and acetate to three acetate residues, thus circumventing one energetically difficult fatty acid oxidation step.
Collapse
Affiliation(s)
- Dominik Montag
- Department of Biology, University of Konstanz, Constance, Germany
| | - Bernhard Schink
- Department of Biology, University of Konstanz, Constance, Germany
| |
Collapse
|
22
|
Liu P, Lu Y. Concerted Metabolic Shifts Give New Insights Into the Syntrophic Mechanism Between Propionate-Fermenting Pelotomaculum thermopropionicum and Hydrogenotrophic Methanocella conradii. Front Microbiol 2018; 9:1551. [PMID: 30038609 PMCID: PMC6046458 DOI: 10.3389/fmicb.2018.01551] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
Microbial syntrophy is a thermodynamically-based cooperation between microbial partners that share the small amounts of free energy for anaerobic growth. To gain insights into the mechanism by which syntrophic microorganisms coordinate their metabolism, we constructed cocultures of propionate-oxidizing Pelotomaculum thermopropionicum and hydrogenotrophic Methanocella conradii and compared them to monocultures. Transcriptome analysis was performed on these cultures using strand-specific mRNA sequencing (RNA-Seq). The results showed that in coculture both P. thermopropionicum and M. conradii significantly upregulated the expression of genes involved in catabolism but downregulated those for anabolic biosynthesis. Specifically, genes coding for the methylmalonyl-CoA pathway in P. thermopropionicum and key genes for methanogenesis in M. conradii were substantially upregulated in coculture compared to monoculture. The putative flavin-based electron bifurcation/confurcation systems in both organisms were also upregulated in coculture. Formate dehydrogenase encoding genes in both organisms were markedly upregulated, indicating that formate was produced and utilized by P. thermopropionicum and M. conradii, respectively. The inhibition of syntrophic activity by formate and 2-bromoethanesulphonate (2-BES) but not H2/CO2 also suggested that formate production was used by P. thermopropionicum for the recycling of intracellular redox mediators. Finally, flagellum-induced signal transduction and amino acids exchange was upregulated for syntrophic interactions. Together, our study suggests that syntrophic organisms employ multiple strategies including global metabolic shift, utilization of electron bifurcation/confurcation and employing formate as an alternate electron carrier to optimize their metabolisms for syntrophic growth.
Collapse
Affiliation(s)
- Pengfei Liu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
23
|
Fu L, Song T, Zhang W, Zhang J, Lu Y. Stimulatory Effect of Magnetite Nanoparticles on a Highly Enriched Butyrate-Oxidizing Consortium. Front Microbiol 2018; 9:1480. [PMID: 30026737 PMCID: PMC6041394 DOI: 10.3389/fmicb.2018.01480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/13/2018] [Indexed: 11/13/2022] Open
Abstract
Syntrophic oxidation of butyrate is catabolized by a few bacteria specialists in the presence of methanogens. In the present study, a highly enriched butyrate-oxidizing consortium was obtained from a wetland sediment in Tibetan Plateau. During continuous transfers of the enrichment, the addition of magnetite nanoparticles (nanoFe3O4) consistently enhanced butyrate oxidation and CH4 production. Molecular analysis revealed that all bacterial sequences from the consortium belonged to Syntrophomonas with the closest relative of Syntrophomonas wolfei and 96% of the archaeal sequences were related to Methanobacteria with the remaining sequences to Methanocella. Addition of graphite and carbon nanotubes for a replacement of nanoFe3O4 caused the similar stimulatory effect. Silica coating of nanoFe3O4 surface, however, completely eliminated the stimulatory effect. The control experiment with axenic cultivation of a Syntrophomonas strain and two methanogen strains showed no effect by nanoFe3O4. Together, the results in the present study support that syntrophic oxidation of butyrate is likely facilitated by direct interspecies electron transfer in the presence of conductive nanomaterials.
Collapse
Affiliation(s)
- Li Fu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianze Song
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wei Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jie Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
24
|
Müller N, Timmers P, Plugge CM, Stams AJM, Schink B. Syntrophy in Methanogenic Degradation. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2018. [DOI: 10.1007/978-3-319-98836-8_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Schink B, Montag D, Keller A, Müller N. Hydrogen or formate: Alternative key players in methanogenic degradation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:189-202. [PMID: 28205388 DOI: 10.1111/1758-2229.12524] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hydrogen and formate are important electron carriers in methanogenic degradation in anoxic environments such as sediments, sewage sludge digestors and biogas reactors. Especially in the terminal steps of methanogenesis, they determine the energy budgets of secondary (syntrophically) fermenting bacteria and their methanogenic partners. The literature provides considerable data on hydrogen pool sizes in such habitats, but little data exist for formate concentrations due to technical difficulties in formate determination at low concentration. Recent evidence from biochemical and molecular biological studies indicates that several secondary fermenters can use both hydrogen and formate for electron release, and may do so even simultaneously. Numerous strictly anaerobic bacteria contain enzymes which equilibrate hydrogen and formate pools to energetically equal values, and recent measurements in sewage digestors and biogas reactors indicate that - beyond occasional fluctuations - the pool sizes of hydrogen and formate are indeed energetically nearly equivalent. Nonetheless, a thermophilic archaeon from a submarine hydrothermal vent, Thermococcus onnurineus, can obtain ATP from the conversion of formate to hydrogen plus bicarbonate at 80°C, indicating that at least in this extreme environment the pools of formate and hydrogen are likely to be sufficiently different to support such an unusual type of energy conservation.
Collapse
Affiliation(s)
- Bernhard Schink
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
| | - Dominik Montag
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
| | - Anja Keller
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
| | - Nicolai Müller
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
| |
Collapse
|
26
|
Zhao Z, Li Y, Quan X, Zhang Y. Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials. WATER RESEARCH 2017; 115:266-277. [PMID: 28284093 DOI: 10.1016/j.watres.2017.02.067] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 05/12/2023]
Abstract
Conductive materials have been widely investigated to accelerate and stabilize the conversion of organic wastes to methane. However, the potential mechanisms involved with different types of conductive materials are still unclear. In this study, magnetite (Fe3O4) and granular activated carbon (GAC), as the two typical conductive materials, were respectively supplemented to acidogenesis and methanogenesis of a two-phase anaerobic digestion (AD) system in an attempt to explore their different mechanisms. The results showed that, magnetite supplemented to the acidogenic phase could enhance the decomposition of complex organics into simples, but significantly raise the hydrogen partial pressure as well as enrich the hydrogen-utilizing methanogens, which were not expected for aceticlastic methanogenesis known as a mainstream of methanogenesis in most of traditional digesters. GAC supplemented to the methanogenic phase had less influences on syntrophic metabolism of alcohols and fatty acids when acidogenesis was ineffective or out of work. Microbial community analysis suggested that direct interspecies electron transfer (DIET) had been established on the GAC, though the insignificant improvement of performances. Once magnetite was supplemented to the acidogenesis to improve the acidification efficiency, the syntrophic conversion of alcohols and fatty acids to methane in the GAC-supplemented methanogenic phase was significantly improved. These results suggested that, DIET was unlikely to participate in the direct decomposition of complex organics, even in the presence of GAC, but it could work effectively once acidogenesis functioned well.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
27
|
Qiao W, Takayanagi K, Li Q, Shofie M, Gao F, Dong R, Li YY. Thermodynamically enhancing propionic acid degradation by using sulfate as an external electron acceptor in a thermophilic anaerobic membrane reactor. WATER RESEARCH 2016; 106:320-329. [PMID: 27736707 DOI: 10.1016/j.watres.2016.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/12/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
In this study, sulfate was employed as an external electron acceptor for enhancing the degradation of propionate in a thermophilic anaerobic membrane reactor (AnMBR). The organic loading rate (OLR) was increased gradually from the initial 3.9 kg-COD/m3d to the inhibiting OLR of 14.6 kg-COD/m3d. Feeding was stopped for 98 days but the process did not recover until 500 mg/L of sulfate was added into the AnMBR. After that, the enhanced propionate degradation was achieved up to an OLR of 15 kg-COD/m3d with a reduced sulfate addition of 300 mg/L. However, the thermodynamic calculation indicated that the syntrophic propionic acid degradation, coupled with methanogenesis, was unfavorable with a △G of +3 kJ/mol under the enhanced conditions. Conversely, the utilization of propionic acid by sulfate reduction bacterial (SRB) would be more favourable by having a much lower △G of -180 kJ/mol. The hydrogen conversion was presumed to go through the methanogenesis pathway according to the thermodynamic results. The mechanism of the propionic and hydrogen metabolism was supported as well by comparing the microbial communities with and without sulfate addition. As a result, the role of the sulfate enhancing propionic degradation can be concluded by combining the process performance, thermodynamic, and microbiology results.
Collapse
Affiliation(s)
- Wei Qiao
- Biomass Engineering Center, College of Engineering, China Agricultural University, 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BGFeuls), 100083, China
| | - Kazuyuki Takayanagi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 980-8579, Japan
| | - Qian Li
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Mohammad Shofie
- Department of Environmental Science, Graduate School of Environmental Studies, Tohoku University, 980-8579, Japan
| | - Fang Gao
- Center for Environmental Education and Communications of Ministry of Environmental Protection, 100029, China
| | - Renjie Dong
- Biomass Engineering Center, College of Engineering, China Agricultural University, 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BGFeuls), 100083, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 980-8579, Japan; Department of Environmental Science, Graduate School of Environmental Studies, Tohoku University, 980-8579, Japan
| |
Collapse
|
28
|
Crable BR, Sieber JR, Mao X, Alvarez-Cohen L, Gunsalus R, Ogorzalek Loo RR, Nguyen H, McInerney MJ. Membrane Complexes of Syntrophomonas wolfei Involved in Syntrophic Butyrate Degradation and Hydrogen Formation. Front Microbiol 2016; 7:1795. [PMID: 27881975 PMCID: PMC5101538 DOI: 10.3389/fmicb.2016.01795] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 11/18/2022] Open
Abstract
Syntrophic butyrate metabolism involves the thermodynamically unfavorable production of hydrogen and/or formate from the high potential electron donor, butyryl-CoA. Such redox reactions can occur only with energy input by a process called reverse electron transfer. Previous studies have demonstrated that hydrogen production from butyrate requires the presence of a proton gradient, but the biochemical machinery involved has not been clearly elucidated. In this study, the gene and enzyme systems involved in reverse electron transfer by Syntrophomonas wolfei were investigated using proteomic and gene expression approaches. S. wolfei was grown in co-culture with Methanospirillum hungatei or Dehalococcoides mccartyi under conditions requiring reverse electron transfer and compared to both axenic S. wolfei cultures and co-cultures grown in conditions that do not require reverse electron transfer. Blue native gel analysis of membranes solubilized from syntrophically grown cells revealed the presence of a membrane-bound hydrogenase, Hyd2, which exhibited hydrogenase activity during in gel assays. Bands containing a putative iron-sulfur (FeS) oxidoreductase were detected in membranes of crotonate-grown and butyrate grown S. wolfei cells. The genes for the corresponding hydrogenase subunits, hyd2ABC, were differentially expressed at higher levels during syntrophic butyrate growth when compared to growth on crotonate. The expression of the FeS oxidoreductase gene increased when S. wolfei was grown with M. hungatei. Additional membrane-associated proteins detected included FoF1 ATP synthase subunits and several membrane transporters that may aid syntrophic growth. Furthermore, syntrophic butyrate metabolism can proceed exclusively by interspecies hydrogen transfer, as demonstrated by growth with D. mccartyi, which is unable to use formate. These results argue for the importance of Hyd2 and FeS oxidoreductase in reverse electron transfer during syntrophic butyrate degradation.
Collapse
Affiliation(s)
- Bryan R. Crable
- Department of Microbiology and Plant Biology, University of Oklahoma, NormanOK, USA
| | - Jessica R. Sieber
- Department of Microbiology and Plant Biology, University of Oklahoma, NormanOK, USA
| | - Xinwei Mao
- Department of Civil and Environmental Engineering, University of California, Berkeley, BerkeleyCA, USA
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, BerkeleyCA, USA
| | - Robert Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los AngelesCA, USA
| | - Rachel R. Ogorzalek Loo
- Department of Biological Chemistry, University of California, Los Angeles, Los AngelesCA, USA
| | - Hong Nguyen
- Department of Biological Chemistry, University of California, Los Angeles, Los AngelesCA, USA
| | - Michael J. McInerney
- Department of Microbiology and Plant Biology, University of Oklahoma, NormanOK, USA
| |
Collapse
|
29
|
Pan X, Angelidaki I, Alvarado-Morales M, Liu H, Liu Y, Huang X, Zhu G. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization. BIORESOURCE TECHNOLOGY 2016; 218:796-806. [PMID: 27423547 DOI: 10.1016/j.biortech.2016.07.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
For evaluating the methanogenesis from typical methanogenic precursors (formate, acetate and H2/CO2), CH4 production kinetics were investigated at 37±1°C in batch anaerobic digestion tests and stimulated by modified Gompertz model. The results showed that maximum methanation rate from formate, acetate and H2/CO2 were 19.58±0.49, 42.65±1.17 and 314.64±3.58NmL/gVS/d in digested manure system and 6.53±0.31, 132.04±3.96 and 640.16±19.92NmL/gVS/d in sewage sludge system during second generation incubation. Meanwhile the model could not fit well in granular sludge system, while the rate of formate methanation was faster than from H2/CO2 and acetate. Considering both the kinetic results and microbial assay we could conclude that H2/CO2 methanation was the fastest methanogenic step in digested manure and sewage sludge system with Methanomicrobiales as dominant methanogens, while granular sludge with Methanobacteriales as dominant methanogens contributed to the fastest formate methanation.
Collapse
Affiliation(s)
- Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environment Engineering, Technical University of Denmark, Copenhagen Lyngby 2800, Denmark
| | - Irini Angelidaki
- Department of Environment Engineering, Technical University of Denmark, Copenhagen Lyngby 2800, Denmark
| | - Merlin Alvarado-Morales
- Department of Environment Engineering, Technical University of Denmark, Copenhagen Lyngby 2800, Denmark
| | - Houguang Liu
- The Third Hospital of Xiamen, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Xiamen 350122, China
| | - Yuhong Liu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Huang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Zhao Z, Zhang Y, Yu Q, Dang Y, Li Y, Quan X. Communities stimulated with ethanol to perform direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate. WATER RESEARCH 2016; 102:475-484. [PMID: 27403870 DOI: 10.1016/j.watres.2016.07.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 05/28/2023]
Abstract
Direct interspecies electron transfer (DIET) has been considered as an alternative to interspecies H2 transfer (IHT) for syntrophic metabolism, but the microorganisms capable of metabolizing the key intermediates, such as propionate and butyrate, via DIET have yet to be described. A strategy of culturing the enrichments with ethanol as a DIET substrate to stimulate the communities for the syntrophic metabolism of propionate and/or butyrate was proposed in this study. The results showed that the syntrophic propionate and/or butyrate degradation was significantly improved in the ethanol-stimulated reactor when propionate/butyrate was the sole carbon source. The conductivity of the ethanol-stimulated enrichments was as 5 folds (for propionate)/76 folds (for butyrate) as that of the traditional enrichments (never ethanol fed). Microbial community analysis revealed that Geobacter species known to proceed DIET were only detected in the ethanol-stimulated enrichments. Together with the significant increase of Methanosaeta and Methanosarcina species in these enrichments, the potential DIET between Geobacter and Methanosaeta or Methanosarcina species might be established to improve the syntrophic propionate and/or butyrate degradation. Further experiments demonstrated that granular activated carbon (GAC) could improve the syntrophic metabolism of propionate and/or butyrate of the ethanol-stimulated enrichments, while almost no effects on the traditional enrichments. Also, the high H2 partial pressure could inhibit the syntrophic propionate and/or butyrate degradation of the traditional enrichments, but its effect on that of the ethanol-stimulated enrichments was negligible.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083, China; Department of Microbiology, University of Massachusetts, Amherst, MA, 01003-9298, USA
| | - Yang Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
31
|
Juste-Poinapen NMS, Turner MS, Rabaey K, Virdis B, Batstone DJ. Evaluating the potential impact of proton carriers on syntrophic propionate oxidation. Sci Rep 2015; 5:18364. [PMID: 26670292 PMCID: PMC4680937 DOI: 10.1038/srep18364] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023] Open
Abstract
Anaerobic propionic acid degradation relies on interspecies electron transfer (IET) between propionate oxidisers and electron acceptor microorganisms, via either molecular hydrogen, formate or direct transfers. We evaluated the possibility of stimulating direct IET, hence enhancing propionate oxidation, by increasing availability of proton carriers to decrease solution resistance and reduce pH gradients. Phosphate was used as a proton carrying anion, and chloride as control ion together with potassium as counter ion. Propionic acid consumption in anaerobic granules was assessed in a square factorial design with ratios (1:0, 2:1, 1:1, 1:2 and 0:1) of total phosphate (TP) to Cl(-), at 1X, 10X, and 30X native conductivity (1.5 mS.cm(-1)). Maximum specific uptake rate, half saturation, and time delay were estimated using model-based analysis. Community profiles were analysed by fluorescent in situ hybridisation and 16S rRNA gene pyrosequencing. The strongest performance was at balanced (1:1) ratios at 10X conductivity where presumptive propionate oxidisers namely Syntrophobacter and Candidatus Cloacamonas were more abundant. There was a shift from Methanobacteriales at high phosphate, to Methanosaeta at low TP:Cl ratios and low conductivity. A lack of response to TP, and low percentage of presumptive electroactive organisms suggested that DIET was not favoured under the current experimental conditions.
Collapse
Affiliation(s)
| | - Mark S. Turner
- The University of Queensland, School of Agriculture and Food Sciences, St. Lucia, QLD 4072, Australia
| | - Korneel Rabaey
- Ghent University, Laboratory of Microbial Ecology and Technology (LabMET), 9000 Ghent, Belgium
| | - Bernardino Virdis
- The University of Queensland, Advanced Water Management Centre, St. Lucia, QLD 4072, Australia
- The University of Queensland, Centre for Microbial Electrochemical Systems, St. Lucia, QLD 4072, Australia
| | - Damien J. Batstone
- The University of Queensland, Advanced Water Management Centre, St. Lucia, QLD 4072, Australia
| |
Collapse
|
32
|
Hamilton JJ, Calixto Contreras M, Reed JL. Thermodynamics and H2 Transfer in a Methanogenic, Syntrophic Community. PLoS Comput Biol 2015; 11:e1004364. [PMID: 26147299 PMCID: PMC4509577 DOI: 10.1371/journal.pcbi.1004364] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 06/01/2015] [Indexed: 11/19/2022] Open
Abstract
Microorganisms in nature do not exist in isolation but rather interact with other species in their environment. Some microbes interact via syntrophic associations, in which the metabolic by-products of one species serve as nutrients for another. These associations sustain a variety of natural communities, including those involved in methanogenesis. In anaerobic syntrophic communities, energy is transferred from one species to another, either through direct contact and exchange of electrons, or through small molecule diffusion. Thermodynamics plays an important role in governing these interactions, as the oxidation reactions carried out by the first community member are only possible because degradation products are consumed by the second community member. This work presents the development and analysis of genome-scale network reconstructions of the bacterium Syntrophobacter fumaroxidans and the methanogenic archaeon Methanospirillum hungatei. The models were used to verify proposed mechanisms of ATP production within each species. We then identified additional constraints and the cellular objective function required to match experimental observations. The thermodynamic S. fumaroxidans model could not explain why S. fumaroxidans does not produce H2 in monoculture, indicating that current methods might not adequately estimate the thermodynamics, or that other cellular processes (e.g., regulation) play a role. We also developed a thermodynamic coculture model of the association between the organisms. The coculture model correctly predicted the exchange of both H2 and formate between the two species and suggested conditions under which H2 and formate produced by S. fumaroxidans would be fully consumed by M. hungatei. Natural and engineered microbial communities can contain up to hundreds of interacting microbes. These interactions may be positive, negative, or neutral, as well as obligate or facultative. Syntrophy is an obligate, positive interaction, in which one species lives off the metabolic by-products of another. Syntrophic associations play an important role in sustaining a variety of natural communities, including those involved in the breakdown and conversion of short-chain fatty acids (e.g., propionate) to methane. In many syntrophic communities, electrons are transferred from one species to the other through small molecule diffusion. In this work, we expand the study of a two-member syntrophic, methanogenic community through the development and analysis of computational models for both species: the bacterium Syntrophobacter fumaroxidans and the methanogenic archaeon Methanospirillum hungatei. These models were used to analyze energy conservation mechanisms within each species, as well as small molecule exchange between the two organisms in coculture. The coculture model correctly predicted the exchange of both H2 and formate between the two species and suggested conditions under which these molecules would be fully metabolized within the community.
Collapse
Affiliation(s)
- Joshua J. Hamilton
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Montserrat Calixto Contreras
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer L. Reed
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
33
|
Li Y, Zhang Y, Quan X, Zhang J, Chen S, Afzal S. Enhanced anaerobic fermentation with azo dye as electron acceptor: simultaneous acceleration of organics decomposition and azo decolorization. J Environ Sci (China) 2014; 26:1970-1976. [PMID: 25288539 DOI: 10.1016/j.jes.2014.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
Accumulation of hydrogen during anaerobic processes usually results in low decomposition of volatile organic acids (VFAs). On the other hand, hydrogen is a good electron donor for dye reduction, which would help the acetogenic conversion in keeping low hydrogen concentration. The main objective of the study was to accelerate VFA composition through using azo dye as electron acceptor. The results indicated that the azo dye serving as an electron acceptor could avoid H2 accumulation and accelerate anaerobic digestion of VFAs. After adding the azo dye, propionate decreased from 2400.0 to 689.5mg/L and acetate production increased from 180.0 to 519.5mg/L. It meant that the conversion of propionate into acetate was enhanced. Fluorescence in situ hybridization analysis showed that the abundance of propionate-utilizing acetogens with the presence of azo dye was greater than that in a reference without azo dye. The experiments via using glucose as the substrate further demonstrated that the VFA decomposition and the chemical oxygen demand (COD) removal increased by 319.7mg/L and 23.3% respectively after adding the azo dye. Therefore, adding moderate azo dye might be a way to recover anaerobic system from deterioration due to the accumulation of H2 or VFAs.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingxin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shahzad Afzal
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
34
|
Cruz Viggi C, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7536-43. [PMID: 24901501 DOI: 10.1021/es5016789] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Interspecies electron transfer mechanisms between Bacteria and Archaea play a pivotal role during methanogenic degradation of organic matter in natural and engineered anaerobic ecosystems. Growing evidence suggests that in syntrophic communities electron transfer does not rely exclusively on the exchange of diffusible molecules and energy carriers such as hydrogen or formate, rather microorganisms have the capability to exchange metabolic electrons in a more direct manner. Here, we show that supplementation of micrometer-size magnetite (Fe3O4) particles to a methanogenic sludge enhanced (up to 33%) the methane production rate from propionate, a key intermediate in the anaerobic digestion of organic matter and a model substrate to study energy-limited syntrophic communities. The stimulatory effect most probably resulted from the establishment of a direct interspecies electron transfer (DIET), based on magnetite particles serving as electron conduits between propionate-oxidizing acetogens and carbon dioxide-reducing methanogens. Theoretical calculations revealed that DIET allows electrons to be transferred among syntrophic partners at rates which are substantially higher than those attainable via interspecies H2 transfer. Besides the remarkable potential for improving anaerobic digestion, which is a proven biological strategy for renewable energy production, the herein described conduction-based DIET could also have a role in natural methane emissions from magnetite-rich soils and sediments.
Collapse
Affiliation(s)
- Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR) , via Salaria km 29.300, 00015 Monterotondo (RM), Italy
| | | | | | | | | | | |
Collapse
|
35
|
Shrestha PM, Rotaru AE. Plugging in or going wireless: strategies for interspecies electron transfer. Front Microbiol 2014; 5:237. [PMID: 24904551 PMCID: PMC4032928 DOI: 10.3389/fmicb.2014.00237] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/30/2014] [Indexed: 11/13/2022] Open
Abstract
Interspecies exchange of electrons enables a diversity of microbial communities to gain energy from reactions that no one microbe can catalyze. The first recognized strategies for interspecies electron transfer were those that relied on chemical intermediates that are recycled through oxidized and reduced forms. Well-studied examples are interspecies H2 transfer and the cycling of sulfur intermediates in anaerobic photosynthetic communities. Direct interspecies electron transfer (DIET) in which two species establish electrical contact is an alternative. Electrical contacts documented to date include electrically conductive pili, as well as conductive iron minerals and conductive carbon moieties such as activated carbon and biochar. Interspecies electron transfer is central to the functioning of methane-producing microbial communities. The importance of interspecies H2 transfer in many methanogenic communities is clear, but under some circumstances DIET predominates. It is expected that further mechanistic studies and broadening investigations to a wider range of environments will help elucidate the factors that favor specific forms of interspecies electron exchange under different environmental conditions.
Collapse
Affiliation(s)
- Pravin Malla Shrestha
- Department of Microbiology, University of MassachusettsAmherst, MA, USA
- Energy Biosciences Institute, University of CaliforniaBerkeley, CA, USA
| | - Amelia-Elena Rotaru
- Nordic Center for Earth Evolution, University of Southern DenmarkOdense, Denmark
| |
Collapse
|
36
|
Hong JH, Lee WC, Hsu YM, Liang HJ, Wan CH, Chien CL, Lin CY. Characterization of the biochemical effects of naphthalene on the mouse respiratory system using NMR-based metabolomics. J Appl Toxicol 2014; 34:1379-88. [PMID: 24478122 DOI: 10.1002/jat.2970] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/08/2013] [Accepted: 11/08/2013] [Indexed: 11/09/2022]
Abstract
Naphthalene is a ubiquitous environmental pollutant to which humans are exposed. Previous studies have demonstrated that naphthalene causes bronchiolar epithelial necrosis in the mouse distal airway, after parenteral administration. In this study, metabolic variations in the bronchoalveolar lavage fluid (BALF) and the lung tissues of naphthalene-treated mice and controls were examined using nuclear magnetic resonance (NMR)-based metabolomics to identify the toxic mechanism. Male ICR mice were treated with naphthalene [0, 50, 100 and 200 mg kg(-1), intraperitoneally (i.p.)]. After 24 h, BALF and lung tissues were collected and prepared for (1)H and J-resolved (JRES) NMR analysis after principal component analysis (PCA). PCA modeling of p-JRES spectra from the BALF, as well as hydrophilic and hydrophobic lung metabolites, enabled the high-dose group to be discriminated from the control group; increased levels of isopropanol, ethane, and acetone and lower levels of ethanol, acetate, formate, and glycerophosphocholine were detected in the BALF of mice treated with higher doses of naphthalene. Furthermore, increased isopropanol and phosphorylcholine-containing lipid levels and decreased succinate and glutamine levels were discovered in the lungs of naphthalene-exposed mice. These metabolic changes may be related to lipid peroxidation, disruptions of membrane components and imbalanced energy supply, and these results may partially explain the loss of cell membrane integrity in the airway epithelial cells of naphthalene-treated mice. We conclude that NMR-based metabolomic studies on BALF and lung tissues are a powerful tool to understand the mechanisms underlying respiratory toxicity.
Collapse
Affiliation(s)
- Jia-Huei Hong
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, 10055, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Leng RA. Interactions between microbial consortia in biofilms: a paradigm shift in rumen microbial ecology and enteric methane mitigation. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an13381] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Minimising enteric CH4 emissions from ruminants is a current research priority because CH4 contributes to global warming. The most effective mitigation strategy is to adjust the animal’s diet to complement locally available feed resources so that optimal production is gained from a minimum of animals. This essay concentrates on a second strategy – the use of feed additives that are toxic to methanogens or that redirect H2 (and electrons) to inhibit enteric CH4 emissions from individual animals. Much of the published research in this area is contradictory and may be explained when the microbial ecology of the rumen is considered. Rumen microbes mostly exist in organised consortia within biofilms composed of self-secreted extracellular polymeric substances attached to or within feed particles. In these biofilms, individual colonies are positioned to optimise their use of preferred intermediates from an overall process of organic matter fermentation that generates end-products the animal can utilise. Synthesis of CH4 within biofilms prevents a rise in the partial pressure of H2 (pH2) to levels that inhibit bacterial dehydrogenases, and so reduce fermentation rate, feed intake and digestibility. In this context, hypotheses are advanced to explain changes in hydrogen disposal from the biofilms in the rumen resulting from use of anti-methanogenic feed additives as follows. Nitrate acts as an alternative electron sink when it is reduced via NO2– to NH3 and CH4 synthesis is reduced. However, efficiency of CH4 mitigation is always lower than that predicted and decreases as NO3– ingestion increases. Suggested reasons include (1) variable levels of absorption of NO3–or NO2– from the rumen and (2) increases in H2 production. One suggestion is that NO3– reduction may lower pH2 at the surface of biofilms, thereby creating an ecological niche for growth of syntrophic bacteria that oxidise propionate and/or butyrate to acetate with release of H2. Chlorinated hydrocarbons also inhibit CH4 synthesis and increase H2 and formate production by some rumen methanogens. Formate diffuses from the biofilm and is converted to HCO3– and H2 in rumen fluid and is then excreted via the breath. Short-chain nitro-compounds inhibit both CH4 and formate synthesis when added to ruminal fluid but have little or no effect in redirecting H2 to other sinks, so the pH2 within biofilms may increase to levels that support reductive acetogenesis. Biochar or activated charcoal may also alter biofilm activity and reduce net CH4 synthesis; direct electron transfer between microbes within biofilms may also be involved. A final suggestion is that, during their sessile life stage, protozoa interact with biofilm communities and help maintain pH2 in the biofilm, supporting methanogenesis.
Collapse
|
38
|
Lindeboom REF, Ferrer I, Weijma J, van Lier JB. Effect of substrate and cation requirement on anaerobic volatile fatty acid conversion rates at elevated biogas pressure. BIORESOURCE TECHNOLOGY 2013; 150:60-6. [PMID: 24152787 DOI: 10.1016/j.biortech.2013.09.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/19/2013] [Accepted: 09/22/2013] [Indexed: 05/24/2023]
Abstract
This work studied the anaerobic conversion of neutralized volatile fatty acids (VFA) into biogas under Autogenerative High Pressure Digestion (AHPD) conditions. The effects of the operating conditions on the biogas quality, and the substrate utilisation rates were evaluated using 3 AHPD reactors (0.6 L); feeding a concentration of acetate and VFA (1-10 g COD/L) corresponding to an expected pressure increase of 1-20 bar. The biogas composition improved with pressure up to 4.5 bar (>93% CH4), and stabilized at 10 and 20 bar. Both, acetotrophic and hydrogenotrophic methanogenic activity was observed. Substrate utilisation rates of 0.2, 0.1 and 0.1 g CODCH4/g VSS/d for acetate, propionate and butyrate were found to decrease by up to 50% with increasing final pressure. Most likely increased Na(+)-requirement to achieve CO2 sequestration at higher pressure rather than end-product inhibition was responsible.
Collapse
Affiliation(s)
- Ralph E F Lindeboom
- Sub-Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
39
|
Sieber JR, Le HM, McInerney MJ. The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism. Environ Microbiol 2013; 16:177-88. [DOI: 10.1111/1462-2920.12269] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/14/2013] [Accepted: 08/26/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Jessica R. Sieber
- Department of Microbiology and Plant Biology; University of Oklahoma; Norman OK 73019 USA
| | - Huynh M. Le
- Department of Microbiology and Plant Biology; University of Oklahoma; Norman OK 73019 USA
| | - Michael J. McInerney
- Department of Microbiology and Plant Biology; University of Oklahoma; Norman OK 73019 USA
| |
Collapse
|
40
|
Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C. Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 2013; 37:384-406. [PMID: 23480449 DOI: 10.1111/1574-6976.12019] [Citation(s) in RCA: 457] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 11/30/2022] Open
Abstract
Classical definitions of syntrophy focus on a process, performed through metabolic interaction between dependent microbial partners, such as the degradation of complex organic compounds under anoxic conditions. However, examples from past and current scientific discoveries suggest that a new, simple but wider definition is necessary to cover all aspects of microbial syntrophy. We suggest the term 'obligately mutualistic metabolism', which still focuses on microbial metabolic cooperation but also includes an ecological aspect: the benefit for both partners. By the combined metabolic activity of microorganisms, endergonic reactions can become exergonic through the efficient removal of products and therefore enable a microbial community to survive with minimal energy resources. Here, we explain the principles of classical and non-classical syntrophy and illustrate the concepts with various examples. We present biochemical fundamentals that allow microorganism to survive under a range of environmental conditions and to drive important biogeochemical processes. Novel technologies have contributed to the understanding of syntrophic relationships in cultured and uncultured systems. Recent research highlights that obligately mutualistic metabolism is not limited to certain metabolic pathways nor to certain environments or microorganisms. This beneficial microbial interaction is not restricted to the transfer of reducing agents such as hydrogen or formate, but can also involve the exchange of organic, sulfurous- and nitrogenous compounds or the removal of toxic compounds.
Collapse
Affiliation(s)
- Brandon E L Morris
- Microbiology, Institute for Biology II, University of Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
41
|
Reply to "syntrophic propionate oxidation via butyrate: a novel window of opportunity under methanogenic conditions". Appl Environ Microbiol 2013; 79:4517. [PMID: 23787900 DOI: 10.1128/aem.00606-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Ban Q, Li J, Zhang L, Jha AK, Nies L. Linking Performance with Microbial Community Characteristics in an Anaerobic Baffled Reactor. Appl Biochem Biotechnol 2013; 169:1822-36. [DOI: 10.1007/s12010-013-0105-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 01/13/2013] [Indexed: 11/24/2022]
|
43
|
Interspecies distances between propionic acid degraders and methanogens in syntrophic consortia for optimal hydrogen transfer. Appl Microbiol Biotechnol 2012; 97:9193-205. [DOI: 10.1007/s00253-012-4616-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
|
44
|
Kitamura K, Fujita T, Akada S, Tonouchi A. Methanobacterium kanagiense sp. nov., a hydrogenotrophic methanogen, isolated from rice-field soil. Int J Syst Evol Microbiol 2011; 61:1246-1252. [DOI: 10.1099/ijs.0.026013-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A pure culture of an obligately anaerobic, hydrogenotrophic, methanogenic archaeon, designated strain 169T, which grows with hydrogen and carbon dioxide as the sole energy and carbon sources, was isolated from an anaerobic propionate-oxidizing enrichment culture originally obtained as an inoculant from rice-field soil in Japan. Cells of strain 169T were non-motile, Gram-reaction-variable and rod-shaped or slightly curved rods with rounded ends (1.6–5.0×0.35–0.5 µm). Strain 169T had fimbriae at both ends of the cell (up to ~10 per cell) but did not possess flagella. Ultrathin sections showed a single-layered, electron-dense cell wall about 6 nm thick, which is typical of Gram-positive bacteria. Growth was observed at 15 °C–45 °C (optimum 40 °C), at pH 6.5–9.6 (optimum pH 7.5–8.5) and in 0–70 g NaCl l−1 (0–1.2 M) (optimum 5 g NaCl l−1; 0.086 M). Strain 169T utilized only hydrogen and carbon dioxide as energy and carbon sources. The DNA G+C content was 39.3 mol%. The results of 16S rRNA gene sequence analysis indicated that strain 169T was most closely related to Methanobacterium subterraneum DSM 11074T (96.8 % sequence similarity) and Methanobacterium formicicum DSM 1535T (96.4 %). On the basis of its morphological, physiological and phylogenetic characteristics, strain 169T ( = DSM 22026T = JCM 15797T) represents a novel species of the genus Methanobacterium, for which the name Methanobacterium kanagiense sp. nov. is proposed.
Collapse
Affiliation(s)
- Koji Kitamura
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8, Ueda, Morioka, Iwate 020-8550, Japan
| | - Takashi Fujita
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Shinji Akada
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Akio Tonouchi
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| |
Collapse
|
45
|
Abstract
Isolated, clonal populations of cells are rarely found in nature. The emergent properties of microbial consortia present a challenge for the systems approach to biology, as chances for competition, communication, or collaboration multiply with the number of interacting agents. This review focuses on recent work on intercourse within biofilms, among quorum-sensing populations, and between cross-feeding metabolic cooperators. New tools from synthetic biology allow microbial interactions to be designed and tightly controlled, creating valuable model systems. We address both natural and synthetic partnerships, with an emphasis on how system behaviors derive from the properties of their components. Essential features of microbial biology arose in the context of a very mixed culture and cannot be understood without unscrambling it.
Collapse
Affiliation(s)
- Edwin H Wintermute
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
46
|
Wagner AO, Gstrauntaler G, Illmer P. Utilisation of single added fatty acids by consortia of digester sludge in batch culture. WASTE MANAGEMENT (NEW YORK, N.Y.) 2010; 30:1822-7. [PMID: 20558054 DOI: 10.1016/j.wasman.2010.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 04/23/2010] [Accepted: 05/21/2010] [Indexed: 05/24/2023]
Abstract
Inocula derived from an anaerobic digester were used to study (i) their potential for methane production and (ii) the utilisation rates of different short chain fatty acids (SCFAs) by the microbial community in defined media with mono-carbon sources (formic-, acetetic-, propionic-, butyric acid) in batch culture. It could be demonstrated that the microbial reactor population could be transferred successfully to the lab, and its ability to build up methane was present even with deteriorating biogas plant performance. Therefore, this reduction in performance of the biogas plant was not due to a decrease in abundance, but due to an inactivity of the microbial community. Generally, the physico-chemical properties of the biogas plant seemed to favour hydrogenotrophic methanogens, as seen by the high metabolisation rates of formate compared with all other carbon sources. In contrast, acetoclastic methanogenesis could be shown to play a minor role in the methane production of the investigated biogas plant, although the origin of up to 66% of methane is generally suggested to be generated through acetoclastic pathway.
Collapse
Affiliation(s)
- Andreas Otto Wagner
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
47
|
Worm P, Stams AJM, Cheng X, Plugge CM. Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei. MICROBIOLOGY-SGM 2010; 157:280-289. [PMID: 20884694 DOI: 10.1099/mic.0.043927-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transcription of genes coding for formate dehydrogenases (fdh genes) and hydrogenases (hyd genes) in Syntrophobacter fumaroxidans and Methanospirillum hungatei was studied following growth under different conditions. Under all conditions tested, all fdh and hyd genes were transcribed. However, transcription levels of the individual genes varied depending on the substrate and growth conditions. Our results strongly suggest that in syntrophically grown S. fumaroxidans cells, the [FeFe]-hydrogenase (encoded by Sfum_844-46), FDH1 (Sfum_2703-06) and Hox (Sfum_2713-16) may confurcate electrons from NADH and ferredoxin to protons and carbon dioxide to produce hydrogen and formate, respectively. Based on bioinformatic analysis, a membrane-integrated energy-converting [NiFe]-hydrogenase (Mhun_1741-46) of M. hungatei might be involved in the energy-dependent reduction of CO(2) to formylmethanofuran. The best candidates for F(420)-dependent N(5),N(10)-methyl-H(4) MPT and N(5),N(10),-methylene-H(4)MPT reduction are the cytoplasmic [NiFe]-hydrogenase and FDH1. 16S rRNA ratios indicate that in one of the triplicate co-cultures of S. fumaroxidans and M. hungatei, less energy was available for S. fumaroxidans. This led to enhanced transcription of genes coding for the Rnf-complex (Sfum_2694-99) and of several fdh and hyd genes. The Rnf-complex probably reoxidized NADH with ferredoxin reduction, followed by ferredoxin oxidation by the induced formate dehydrogenases and hydrogenases.
Collapse
Affiliation(s)
- Petra Worm
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Xu Cheng
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
48
|
Müller N, Worm P, Schink B, Stams AJM, Plugge CM. Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:489-99. [PMID: 23766220 DOI: 10.1111/j.1758-2229.2010.00147.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In anoxic environments such as swamps, rice fields and sludge digestors, syntrophic microbial communities are important for decomposition of organic matter to CO2 and CH4 . The most difficult step is the fermentative degradation of short-chain fatty acids such as propionate and butyrate. Conversion of these metabolites to acetate, CO2 , formate and hydrogen is endergonic under standard conditions and occurs only if methanogens keep the concentrations of these intermediate products low. Butyrate and propionate degradation pathways include oxidation steps of comparably high redox potential, i.e. oxidation of butyryl-CoA to crotonyl-CoA and of succinate to fumarate, respectively, that require investment of energy to release the electrons as hydrogen or formate. Although investigated for several decades, the biochemistry of these reactions is still not completely understood. Genome analysis of the butyrate-oxidizing Syntrophomonas wolfei and Syntrophus aciditrophicus and of the propionate-oxidizing Syntrophobacter fumaroxidans and Pelotomaculum thermopropionicum reveals the presence of energy-transforming protein complexes. Recent studies indicated that S. wolfei uses electron-transferring flavoproteins coupled to a menaquinone loop to drive butyryl-CoA oxidation, and that S. fumaroxidans uses a periplasmic formate dehydrogenase, cytochrome b:quinone oxidoreductases, a menaquinone loop and a cytoplasmic fumarate reductase to drive energy-dependent succinate oxidation. Furthermore, we propose that homologues of the Thermotoga maritima bifurcating [FeFe]-hydrogenase are involved in NADH oxidation by S. wolfei and S. fumaroxidans to form hydrogen.
Collapse
Affiliation(s)
- Nicolai Müller
- Faculty for Biology, University of Konstanz, D-78457 Konstanz, Germany. Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Stams AJM, Plugge CM. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 2009; 7:568-77. [PMID: 19609258 DOI: 10.1038/nrmicro2166] [Citation(s) in RCA: 704] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interspecies electron transfer is a key process in methanogenic and sulphate-reducing environments. Bacteria and archaea that live in syntrophic communities take advantage of the metabolic abilities of their syntrophic partner to overcome energy barriers and break down compounds that they cannot digest by themselves. Here, we review the transfer of hydrogen and formate between bacteria and archaea that helps to sustain growth in syntrophic methanogenic communities. We also describe the process of reverse electron transfer, which is a key requirement in obligately syntrophic interactions. Anaerobic methane oxidation coupled to sulphate reduction is also carried out by syntrophic communities of bacteria and archaea but, as we discuss, the exact mechanism of this syntrophic interaction is not yet understood.
Collapse
Affiliation(s)
- Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
| | | |
Collapse
|