1
|
Combined Toxicity of the Most Common Indoor Aspergilli. Pathogens 2023; 12:pathogens12030459. [PMID: 36986381 PMCID: PMC10058518 DOI: 10.3390/pathogens12030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The most common Aspergilli isolated from indoor air samples from occupied buildings and a grain mill were extracted and analyzed for their combined (Flavi + Nigri, Versicolores + Nigri) cytotoxic, genotoxic and pro-inflammatory properties on human adenocarcinoma cells (A549) and monocytic leukemia cells induced in macrophages (THP-1 macrophages). Metabolite mixtures from the Aspergilli series Nigri increase the cytotoxic and genotoxic potency of Flavi extracts in A549 cells suggesting additive and/or synergistic effects, while antagonizing the cytotoxic potency of Versicolores extracts in THP-1 macrophages and genotoxicity in A549 cells. All tested combinations significantly decreased IL-5 and IL-17, while IL-1β, TNF-α and IL-6 relative concentrations were increased. Exploring the toxicity of extracted Aspergilli deepens the understanding of intersections and interspecies differences in events of chronic exposure to their inhalable mycoparticles.
Collapse
|
2
|
Zamani B, Momen-Heravi M, Erami M, Motedayyen H, ArefNezhad R. Impacts of IL-27 and IL-32 in the pathogenesis and outcome of COVID-19 associated mucormycosis. J Immunoassay Immunochem 2023; 44:242-255. [PMID: 36602425 DOI: 10.1080/15321819.2022.2164506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Changes in the immune system participate in the pathogenesis and development of infectious diseases. Previous studies have indicated immune dysregulation in patients suffering from COVID-19 and mucormycosis. Therefore, this study investigated whether interleukin-27 (IL-27) and interleukin-32 (IL-32) levels may participate in the development and outcome of COVID-19 associated mucormycosis (CAM). The blood samples were obtained from 79 patients suffering from COVID-19 and mucormycosis and 25 healthy subjects. The serum samples were isolated from the whole blood and frequencies of some immune cells were measured by a cell counter. The levels of IL-27 and IL-32 were assessed by enzyme-linked immunosorbent assay. IL-27 and IL-32 levels were significantly lower in patients with COVID-19 and mucormycosis than healthy subjects (P < .05), although there was no significant difference in IL-27 between patients with COVID-19 and CAM. IL-27 level was significantly higher in severe COVID-19 survivors than dead cases (P < .01). Patients with CAM had significant increases in NLR compared to COVID-19 patients and healthy individuals (P < .0001-0.01). NLR was significantly associated with COVID-19 outcome (P < .05). Severe COVID-19 survivors had a significant reduction in NLR compared to non-survivors (P < .05). Changes in IL-27 and IL-32 levels may contribute to the pathogenesis of CAM. IL-27 may relate to the pathogenesis and outcomes of mucormycosis in COVID-19 patients.
Collapse
Affiliation(s)
- Batool Zamani
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mansooreh Momen-Heravi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahzad Erami
- Kashan Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | |
Collapse
|
3
|
Kanjanapruthipong T, Sukphopetch P, Reamtong O, Isarangkul D, Muangkaew W, Thiangtrongjit T, Sansurin N, Fongsodsri K, Ampawong S. Cytoskeletal Alteration Is an Early Cellular Response in Pulmonary Epithelium Infected with Aspergillus fumigatus Rather than Scedosporium apiospermum. MICROBIAL ECOLOGY 2022; 83:216-235. [PMID: 33890146 DOI: 10.1007/s00248-021-01750-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Invasive aspergillosis and scedosporiosis are life-threatening fungal infections with similar clinical manifestations in immunocompromised patients. Contrarily, Scedosporium apiospermum is susceptible to some azole derivative but often resistant to amphotericin B. Histopathological examination alone cannot diagnose these two fungal species. Pathogenesis studies could contribute to explore candidate protein markers for new diagnosis and treatment methods leading to a decrease in mortality. In the present study, proteomics was conducted to identify significantly altered proteins in A549 cells infected with or without Aspergillus fumigatus and S. apiospermum as measured at initial invasion. Protein validation was performed with immunogold labelling alongside immunohistochemical techniques in infected A549 cells and lungs from murine models. Further, cytokine production was measured, using the Bio-Plex-Multiplex immunoassay. The cytoskeletal proteins HSPA9, PA2G4, VAT1, PSMA2, PEX1, PTGES3, KRT1, KRT9, CLIP1 and CLEC20A were mainly changed during A. fumigatus infection, while the immunologically activated proteins WNT7A, GAPDH and ANXA2 were principally altered during S. apiospermum infection. These proteins are involved in fungal internalisation and structural destruction leading to pulmonary disorders. Interleukin (IL)-21, IL-1α, IL-22, IL-2, IL-8, IL-12, IL-17A, interferon-γ and tumour necrosis factor-α were upregulated in both aspergillosis and scedosporiosis, although more predominately in the latter, in accordance with chitin synthase-1 and matrix metalloproteinase levels. Our results demonstrated that during invasion, A. fumigatus primarily altered host cellular integrity, whereas S. apiospermum chiefly induced and extensively modulated host immune responses.
Collapse
Affiliation(s)
- Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Duangnate Isarangkul
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Nichapa Sansurin
- Northeast Laboratory Animal Center, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
4
|
Posch W, Wilflingseder D, Lass-Flörl C. Immunotherapy as an Antifungal Strategy in Immune Compromised Hosts. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00141-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Purpose of Review
IFIs cause high morbidity and mortality in the immunocompromised host worldwide. Although highly effective, conventional antifungal chemotherapy faces new challenges due to late diagnosis and increasing numbers of drug-resistant fungal strains. Thus, antifungal immunotherapy represents a viable treatment option, and recent advances in the field are summarized in this review.
Recent Findings
Antifungal immunotherapies include application of immune cells as well as the administration of cytokines, growth factors, and antibodies. Novel strategies to treat IFIs in the immunocompromised host target intracellular signaling pathways using SMTs such as checkpoint inhibitors.
Summary
Studies using cytokines or chemokines exerted a potential adjuvant role to conventional antifungal therapy, but issues on toxicity for some agents have to be resolved. Cell-based immunotherapies are very labor-intense and costly, but NK cell transfer and CAR T cell therapy provide exciting strategies to combat IFIs. Antibody-mediated protection and checkpoint inhibition are additional novel immunotherapeutic approaches.
Collapse
|
5
|
Jones CN, Ellett F, Robertson AL, Forrest KM, Judice K, Balkovec JM, Springer M, Markmann JF, Vyas JM, Warren HS, Irimia D. Bifunctional Small Molecules Enhance Neutrophil Activities Against Aspergillus fumigatus in vivo and in vitro. Front Immunol 2019; 10:644. [PMID: 31024528 PMCID: PMC6465576 DOI: 10.3389/fimmu.2019.00644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
Aspergillosis is difficult to treat and carries a high mortality rate in immunocompromised patients. Neutrophils play a critical role in control of infection but may be diminished in number and function during immunosuppressive therapies. Here, we measure the effect of three bifunctional small molecules that target Aspergillus fumigatus and prime neutrophils to generate a more effective response against the pathogen. The molecules combine two moieties joined by a chemical linker: a targeting moiety (TM) that binds to the surface of the microbial target, and an effector moiety (EM) that interacts with chemoattractant receptors on human neutrophils. We report that the bifunctional compounds enhance the interactions between primary human neutrophils and A. fumigatus in vitro, using three microfluidic assay platforms. The bifunctional compounds significantly enhance the recruitment of neutrophils, increase hyphae killing by neutrophils in a uniform concentration of drug, and decrease hyphal tip growth velocity in the presence of neutrophils compared to the antifungal targeting moiety alone. We validated that the bifunctional compounds are also effective in vivo, using a zebrafish infection model with neutrophils expressing the appropriate EM receptor. We measured significantly increased phagocytosis of A. fumigatus conidia by neutrophils expressing the EM receptor in the presence of the compounds compared to receptor-negative cells. Finally, we demonstrate that treatment with our lead compound significantly improved the antifungal activity of neutrophils from immunosuppressed patients ex vivo. This type of bifunctional compounds strategy may be utilized to redirect the immune system to destroy fungal, bacterial, and viral pathogens.
Collapse
Affiliation(s)
- Caroline N Jones
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Felix Ellett
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anne L Robertson
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Kevin Judice
- Cidara Therapeutics, San Diego, CA, United States
| | | | | | - James F Markmann
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Division of Transplantation, Massachusetts General Hospital, Boston, MA, United States
| | - Jatin M Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - H Shaw Warren
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Jakšić D, Kocsubé S, Bencsik O, Kecskeméti A, Szekeres A, Jelić D, Kopjar N, Vágvölgyi C, Varga J, Šegvić Klarić M. Aflatoxin production and in vitro toxicity of Aspergilli section Flavi isolated from air samples collected from different environments. Mycotoxin Res 2019; 35:217-230. [PMID: 30877631 DOI: 10.1007/s12550-019-00345-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/04/2019] [Accepted: 02/22/2019] [Indexed: 01/09/2023]
Abstract
Aspergilli section Flavi, originally isolated from air samples collected from inhabited apartments (AP), unoccupied basements (BS), and processing facilities of a grain mill (GM), were analyzed for their potential to produce aflatoxin B1 (AFB1) on solid media. The isolates were further characterized with regard to their cytotoxic, genotoxic, and pro-inflammatory properties in vitro. Aspergilli were identified based on partial calmodulin (CaM) gene sequencing; the producing capacities of isolates were analyzed by HPLC/FLD and confirmed by genes in biosynthesis (aflR, norA, omtA). In the grain mill, the Aspergilli section Flavi (up to 1.3 × 106 cfu/m3) dominated by AFB1-producing Aspergillus flavus (71%, 4.5-5254 ng/ml) which showed a serious health risk for workers. Living environments were not relevant sources of exposure. After 24 h, AFB1 (1-100 μmol/l) reduced cell viability (MTT test) in both A549 cells and THP-1 macrophage-like cells without reaching IC50. In A549 cells, the extract of the AFB1-producing A. flavus significantly decreased cell viability but not below 50%. THP-1 macrophage-like cells were more sensitive to both extracts, but IC50 was obtained only for the AFB1-producing strain (0.37 mg/ml; AFB1 2.78 μmol/l). AFB1 (1 and 10 μmol/l) induced significant DNA damage (tail intensity, alkaline comet assay) in A549 cells in contrast to Aspergilli extracts. AFB1 elevated IL-6 and IL-8, while Aspergilli extracts increased IL-1β, TNF-α, and IL-17 release in THP-1 macrophages (ELISA). Chronic exposure to AFB1 and/or other metabolites in airborne A. flavus from occupational environments may stimulate epithelial damage of airways accompanied by lowered macrophage viability.
Collapse
Affiliation(s)
- Daniela Jakšić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000, Zagreb, Croatia
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - Ottó Bencsik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - Anita Kecskeméti
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - Dubravko Jelić
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| | - Nevenka Kopjar
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - János Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000, Zagreb, Croatia.
| |
Collapse
|
7
|
Nami S, Aghebati-Maleki A, Morovati H, Aghebati-Maleki L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed Pharmacother 2019; 110:857-868. [DOI: 10.1016/j.biopha.2018.12.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/20/2018] [Accepted: 12/02/2018] [Indexed: 12/21/2022] Open
|
8
|
Posch W, Steger M, Wilflingseder D, Lass-Flörl C. Promising immunotherapy against fungal diseases. Expert Opin Biol Ther 2017; 17:861-870. [DOI: 10.1080/14712598.2017.1322576] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wilfried Posch
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marion Steger
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Dongari-Bagtzoglou A, Fidel PL. The Host Cytokine Responses and Protective Immunity in Oropharyngeal Candidiasis. J Dent Res 2016; 84:966-77. [PMID: 16246925 DOI: 10.1177/154405910508401101] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Over the last three decades, the prevalence of oropharyngeal fungal infections has increased enormously, mainly due to an increasing population of immunocompromised patients, including individuals with HIV infection, transplant recipients, and patients receiving cancer therapy. The vast majority of these infections are caused by Candida species. The presence of cytokines in infected tissues ultimately dictates the host defense processes that are specific to each pathogenic organism. During oral infection with Candida, a large number of pro-inflammatory and immunoregulatory cytokines are generated in the oral mucosa. The main sources of these cytokines are oral epithelial cells, which maintain a central role in the protection against fungal organisms. These cytokines may drive the chemotaxis and effector functions of innate and/or adaptive effector cells, such as infiltrating neutrophils and T-cells in immunocompetent hosts, and CD8+ T-cells in HIV+ hosts. Epithelial cells also have direct anti- Candida activity. Several studies have provided a potential link between lower levels of certain pro-inflammatory cytokines and susceptibility to oral C. albicans infection, suggesting that such cytokines may be involved in immune protection. The exact role of these cytokines in immune protection against oropharyngeal candidiasis is still incompletely understood and requires further investigation. Identification of such cytokines with the ability to enhance anti-fungal activities of immune effector cells may have therapeutic implications in the treatment of this oral infection in the severely immunocompromised host.
Collapse
Affiliation(s)
- A Dongari-Bagtzoglou
- School of Dental Medicine, Department of Oral Health and Diagnostic Sciences, University of Connecticut, 263 Farmington Ave., Farmington, CT 06030-1710, USA.
| | | |
Collapse
|
10
|
Abstract
Infectious and noninfectious skin diseases are observed in about 90% of HIV patients, and their incidence increases and is more severe as the immune system weakens. Cutaneous manifestations are considered good clinical predictors for the immunological condition of the patient with AIDS and the introduction of highly effective antiretroviral therapy totally changed the prognosis of the mycoses, among other diseases associated with AIDS, permitting longer survival and acceptable level of quality of life for these patients. This contribution describes the systemic mycoses that are more frequent in the seropositive population, that is, patients with HIV/AIDS, which are cryptococcosis, histoplasmosis, coccidioidomycosis, blastomycosis, paracoccidioidomycosis, sporotrichosis, penicilliosis, and aspergillosis. Their causative agents, mode of transmission, clinics, laboratorial diagnosis and therapy, in the aspects related to immunodepressed patients, are reviewed.
Collapse
|
11
|
Abstract
Management of invasive aspergillosis in high-risk patients remains challenging. There is an increasing demand for novel therapeutic strategies aimed at enhancing or restoring antifungal immunity in immunocompromised patients. In this regard, modulation of specific innate immune functions and vaccination are promising immunotherapeutic strategies. Recent findings have also provided a compelling rationale for assessment of the contribution of the individual genetic profile to the immunotherapy outcome. Altogether, integration of immunological and genetic data may contribute to the optimization of therapeutic strategies exerting control over immune pathways, ultimately improving the management of fungal infections in high-risk settings.
Collapse
Affiliation(s)
- A Carvalho
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
12
|
Ramaprasad C, Pouch S, Pitrak DL. Neutrophil function after bone marrow and hematopoietic stem cell transplant. Leuk Lymphoma 2010; 51:756-67. [DOI: 10.3109/10428191003695678] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Filioti I, Iosifidis E, Roilides E. Therapeutic strategies for invasive fungal infections in neonatal and pediatric patients. Expert Opin Pharmacother 2009; 9:3179-96. [PMID: 19040339 DOI: 10.1517/14656560802560005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Invasive Candida and Aspergillus infections are the most commonly encountered fungal infections. They appear to be life threatening in the setting of profound immunosuppression, whereas cases that are resistant to antifungal therapy are occasionally encountered. Novel antifungal triazole and echinocandin agents appear to exhibit good activity as first-line or salvage therapy, whereas the use of amphotericin B formulations is particularly valuable in neonates. Significant differences in toxicity have been demonstrated among various antifungal agents with in vitro activity from available comparative data on fungal infections in children: however, no clear difference in treatment efficacy has been demonstrated. However, very little data are available about neonates. Host factors and responsible fungal species most frequently guide the choice of therapy.
Collapse
Affiliation(s)
- Ioanna Filioti
- Pediatrician Aristotle University, Hippokration Hospital, Third Department of Pediatrics, Konstantinoupoleos 49, GR-54642 Thessaloniki, Greece
| | | | | |
Collapse
|
14
|
Warman M, Lahav J, Feldberg E, Halperin D. Invasive tracheal aspergillosis treated successfully with voriconazole: clinical report and review of the literature. Ann Otol Rhinol Laryngol 2007; 116:713-6. [PMID: 17987775 DOI: 10.1177/000348940711601001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Invasive tracheal aspergillosis is a rare and highly fatal fungal infection that manifests as a progressive airway obstruction in immunocompromised patients. Otolaryngologists should be familiar with the entity of invasive necrotizing tracheal aspergillosis. METHODS In this report we describe a young patient with acute myeloid leukemia who was affected by invasive tracheal aspergillosis. This entity and the relevant literature are reviewed. RESULTS On the basis of the presented clinical report, we discuss the clinical and pathologic characteristics of invasive tracheal aspergillosis as an opportunistic infection. The classic symptoms are of progressive dyspnea in an immunosuppressed patient. Diagnosis is via pathological evidence of fungal hyphae invading the endoluminal upper respiratory tree. The present patient was successfully treated with an azole antifungal agent, combined with tracheostomy for airway control. CONCLUSIONS Invasive tracheal aspergillosis is a life-threatening fungal infection that affects immunosuppressed patients. Because the mortality rate is high, awareness of this entity is essential for early diagnosis and treatment. A favorable outcome in this type of invasive aspergillosis correlates with resolution of the bone marrow suppression and early antifungal medical therapy combined with aggressive surgical intervention for airway control, if needed.
Collapse
Affiliation(s)
- Meir Warman
- Department of Otolaryngology-Head and Neck Surgery, Kaplan Medical Center, Rehovot, Israel
| | | | | | | |
Collapse
|
15
|
van Eijk M, van Roomen CPAA, Renkema GH, Bussink AP, Andrews L, Blommaart EFC, Sugar A, Verhoeven AJ, Boot RG, Aerts JMFG. Characterization of human phagocyte-derived chitotriosidase, a component of innate immunity. Int Immunol 2005; 17:1505-12. [PMID: 16214810 DOI: 10.1093/intimm/dxh328] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Man has been found to produce highly conserved chitinases. The most prominent is the phagocyte-derived chitotriosidase, the plasma levels of which are markedly elevated in some pathological conditions. Here, we report that both polymorphonuclear neutrophils (PMNs) and macrophages (m) are a source of chitotriosidase. The enzyme is located in specific granules of human PMNs and secreted following stimulation with granulocyte macrophage colony-stimulating factor (GM-CSF). In addition, GM-CSF induces expression of chitotriosidase in m that constitutively secrete the enzyme and partly accumulate it in their lysosomes. Studies with recombinant human chitotriosidase revealed that the enzyme targets chitin-containing fungi. These findings are consistent with earlier observations concerning anti-fungal activity of homologous plant chitinases and beneficial effects of GM-CSF administration in individuals suffering from invasive fungal infections. In conclusion, chitotriosidase should be viewed as a component of the innate immunity that may play a role in defence against chitin-containing pathogens and the expression and release of which by human phagocytes is highly regulated.
Collapse
Affiliation(s)
- Marco van Eijk
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Simitsopoulou M, Roilides E, Dotis J, Dalakiouridou M, Dudkova F, Andreadou E, Walsh TJ. Differential expression of cytokines and chemokines in human monocytes induced by lipid formulations of amphotericin B. Antimicrob Agents Chemother 2005; 49:1397-403. [PMID: 15793118 PMCID: PMC1068615 DOI: 10.1128/aac.49.4.1397-1403.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunomodulatory effects of liposomal amphotericin B (LAMB), amphotericin B lipid complex (ABLC), and amphotericin B colloidal dispersion (ABCD) on mRNA and protein profiles of five cytokines and chemokines expressed by human monocyte-enriched mononuclear leukocytes (MNCs) were comprehensively evaluated by semiquantitative reverse transcription-PCR and enzyme-linked immunosorbent assays; they were compared to those of deoxycholate amphotericin B (DAMB). mRNAs of interleukin-1beta (IL-1beta), IL-1 receptor antagonist (IL-1ra), tumor necrosis factor alpha (TNF-alpha), monocyte chemotactic protein 1 (MCP-1), and macrophage inflammatory protein 1beta (MIP-1beta) were assessed after treatment of MNCs with each drug for 0.5, 2, 6, and 22 h. The cytokine protein profiles were obtained after incubation of MNCs with the drugs for 2 h (TNF-alpha) or 6 h (all the others). In the mRNA studies, DAMB resulted in an early increase of inflammatory cytokines or chemokines IL-1beta, TNF-alpha, MCP-1, and MIP-1beta (2 to 6 h) and in a late increase of anti-inflammatory IL-1ra (22 h). ABCD showed a general similar trend of inflammatory gene up-regulation. LAMB and ABLC decreased or did not affect IL-1beta and TNF-alpha, whereas ABLC additionally decreased MIP-1beta. In protein measurement studies, DAMB and ABCD up-regulated production of IL-1beta (P < 0.05), decreased the IL-1ra/IL-1beta ratio, and up-regulated the production of MCP-1 and MIP-1beta. In comparison, LAMB and ABLC down-regulated or did not affect the production of these cytokines/chemokines compared to untreated MNCs; furthermore, ABLC tended to increase the IL-1ra/IL-1beta ratio. These studies demonstrate that amphotericin B formulations differentially affect gene expression and release of an array of proinflammatory and anti-inflammatory cytokines that potentially may explain the differences in infusion-related reactions and dose-dependent nephrotoxicity as well as modulation of the host immune response to invasive fungal infections.
Collapse
Affiliation(s)
- M Simitsopoulou
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
17
|
Perruccio K, Bozza S, Montagnoli C, Bellocchio S, Aversa F, Martelli M, Bistoni F, Velardi A, Romani L. Prospects for dendritic cell vaccination against fungal infections in hematopoietic transplantation. Blood Cells Mol Dis 2005; 33:248-55. [PMID: 15528139 DOI: 10.1016/j.bcmd.2004.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Indexed: 11/20/2022]
Abstract
Dendritic cells (DCs) are uniquely able to initiate and control the immune response to fungi. DCs function at three levels in the manipulation of the immune response to these pathogens. First, they mount an immediate or innate response to them, for example, by producing inflammatory mediators upon capture and phagocytosis; second, through these preceding innate functions, they decode the fungus-associated information and translate it in qualitatively different Th responses, and third, they are key in containing and dampening inflammatory responses by tolerization through the induction of regulatory T cells (Treg). DCs sense fungi in a morphotype-specific manner, through the engagement of distinct recognition receptors ultimately affecting cytokine production and costimulation. Both myeloid and plasmacytoid murine and human DCs phagocytose fungi and undergo functional maturation in response to them. However, their activation program for cytokine production was different, being IL-12 mainly produced by myeloid DCs and IL-12, IL-10 and IFN-alpha mainly produced by plasmacytoid DCs. This resulted in a distinct ability for T cell priming, being Th1, Th2, and Treg differently activated by the different DC subsets. The ability of fungus-pulsed DCs to prime for Th1 and Th2 cell activation upon adoptive transfer in vivo correlated with the occurrence of resistance and susceptibility to the infections, respectively. Antifungal protective immunity was also induced upon adoptive transfer of DCs transfected with fungal RNA. The efficacy was restricted to DCs transfected with RNA from yeasts or conidia but not with RNA from fungal hyphae. The effect was fungus-specific, as no cross-protection was observed upon adoptive transfer of DCs pulsed with either fungal species. The infusion of fungus-pulsed or RNA-transfected DCs accelerated the recovery of functional antifungal Th1 responses in mice with allogeneic hematopoietic stem cell transplantation (HSCT) and affected the outcome of the infections. As the ability of phagocytose fungi was defective in peripheral DCs from patients with HSCT, soon after the transplant, our findings suggest that the adoptive transfer of DCs may restore immunocompetence in HSCT by contributing to the educational program of T cells. Thus, the remarkable functional plasticity of DCs in response to fungi can be exploited for the deliberate targeting of cells and pathways of cell-mediated immunity in response to fungal vaccines.
Collapse
Affiliation(s)
- Katia Perruccio
- Division of Hematology, Clinical Immunology, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Qureshi MH, Empey KM, Garvy BA. Modulation of proinflammatory responses to Pneumocystis carinii f. sp. muris in neonatal mice by granulocyte-macrophage colony-stimulating factor and IL-4: role of APCs. THE JOURNAL OF IMMUNOLOGY 2005; 174:441-8. [PMID: 15611269 DOI: 10.4049/jimmunol.174.1.441] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clearance of Pneumocystis carinii f. sp. muris (PC) organisms from the lungs of neonatal mice is delayed due to failure of initiation of inflammation over the first 3 wk after infection. The ability of neonatal lung CD11c(+) dendritic cells (DCs) to induce Ag-specific T cell proliferative responses was significantly reduced compared with adult lung DCs. However, neonatal bone marrow-derived DCs were as competent at presenting PC Ag as were adult bone marrow-derived DCs. Because GM-CSF mRNA expression and activity were significantly reduced in neonatal lungs compared with adults, we treated neonates with exogenous GM-CSF and IL-4 and found enhanced clearance of PC compared with untreated neonates. This was associated with increased lung TNF-alpha, IL-12p35, and IL-18 mRNA expression, indicating enhanced innate immune responses. Cytokine-treated mice had marked expansion of CD11c(+) DCs with up-regulated MHC-II in the lungs. Moreover, increased numbers of activated CD4(+)CD44(high)CD62L(low) cells in the lungs and draining lymph nodes suggested improved Ag presentation by the APCs. Together these data indicate that neonatal lungs lack maturation factors for efficient cellular functioning, including APC maturation.
Collapse
Affiliation(s)
- Mahboob H Qureshi
- Department of Microbiology, University of Kentucky, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
19
|
van Hal SJ, Clezy K. Emergence of invasive cerebral aspergillosis in an HIV-positive patient on voriconazole therapy. HIV Med 2005; 6:45-6. [PMID: 15670252 DOI: 10.1111/j.1468-1293.2005.00256.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- S J van Hal
- Infectious Diseases Department, Prince of Wales Hospital, Randwick, Sydney, Australia
| | | |
Collapse
|
20
|
Simitsopoulou M, Gil-Lamaignere C, Avramidis N, Maloukou A, Lekkas S, Havlova E, Kourounaki L, Loebenberg D, Roilides E. Antifungal activities of posaconazole and granulocyte-macrophage colony-stimulating factor ex vivo and in mice with disseminated infection due to Scedosporium prolificans. Antimicrob Agents Chemother 2004; 48:3801-5. [PMID: 15388437 PMCID: PMC521885 DOI: 10.1128/aac.48.10.3801-3805.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Invasive infection due to Scedosporium prolificans is characterized by drug resistance and a high rate of mortality. The effects of posaconazole (POS), an investigational antifungal triazole, murine granulocyte-macrophage colony-stimulating factor (GM-CSF), and their combination against S. prolificans were evaluated ex vivo and in a newly developed murine model of disseminated infection due to this organism. When POS was combined with polymorphonuclear leukocytes from untreated or GM-CSF-treated mice (P < 0.01) ex vivo, it had increased activity in terms of the percentage of hyphal damage. Immunocompetent BALB/c mice were infected with 4 x 10(4) conidia of S. prolificans via the lateral tail vein. At 24 h postinfection the mice were treated with GM-CSF (5 microg/kg of body weight/day subcutaneously), POS (50 mg/kg/day by gavage), both agents, or saline only. Half of the brain, lung, liver, and kidney from each animal were cultured; and the other half of each organ was processed for histopathology. The mean survival times were 7.0 +/- 0.3 days for the controls, 7.4 +/- 0.4 days for POS-treated mice, 8.0 +/- 0.3 days for GM-CSF-treated mice (P = 0.08 compared with the results for the controls), and 7.3 +/- 0.3 days for POS-GM-CSF-treated mice. Fungal burdens (determined as the numbers of CFU per gram of tissue) were found in descending orders of magnitude in the kidneys, brains, livers, and lungs. The burdens were significantly reduced in the brains of GM-CSF-treated mice (P < 0.05) and the livers of POS-treated mice (P < 0.05). The numbers of lesions in the organs closely corresponded to the fungal burdens. GM-CSF tended to prolong survival (P = 0.08 compared with the results for the controls). While the combination of POS and GM-CSF showed enhanced activity ex vivo, it did not increase the activities of the two agents against this highly refractory filamentous fungus in mice.
Collapse
Affiliation(s)
- M Simitsopoulou
- 3rd Department of Pediatrics, Hippokration Hospital, 49 Konstantinoupoleos St., GR-546 42 Thessaloniki, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dotis J, Roilides E. Osteomyelitis due to Aspergillus spp. in patients with chronic granulomatous disease: comparison of Aspergillus nidulans and Aspergillus fumigatus. Int J Infect Dis 2004; 8:103-10. [PMID: 14732328 DOI: 10.1016/j.ijid.2003.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Chronic granulomatous disease (CGD) is a rare inherited disorder of NADPH oxidase in which phagocytes fail to generate reactive antimicrobial oxidants. Invasive fungal infections are an important cause of morbidity and mortality in CGD patients, with Aspergillus spp. being the most frequent fungal pathogens. We reviewed the reported cases of osteomyelitis in CGD patients due to Aspergillus nidulans and compared them with those due to Aspergillus fumigatus. METHODS Twenty-four cases of osteomyelitis due to Aspergillus spp. in 22 male CGD patients were found in MEDLINE. RESULTS Fourteen cases (58%) were due to Aspergillus nidulans and ten cases to Aspergillus fumigatus. No other aspergilli were reported as causes of osteomyelitis. Osteomyelitis due to Aspergillus nidulans was associated with pulmonary infection and involved 'small bones' more frequently than Aspergillus fumigatus osteomyelitis (p=0.032). Half of the CGD patients with Aspergillus nidulans osteomyelitis died compared with none of those with Aspergillus fumigatus osteomyelitis (p=0.019). In both Aspergillus nidulans and Aspergillus fumigatus cases, cure was achieved by prompt antifungal treatment combined with surgery and immunotherapy. CONCLUSION Aspergillus nidulans causes osteomyelitis in CGD patients relatively frequently compared with Aspergillus fumigatus and may be accompanied by higher mortality. This contrasts with the low frequency with which Aspergillus nidulans causes osteomyelitis in patients with other types of immunodeficiency.
Collapse
Affiliation(s)
- John Dotis
- 3rd Department of Pediatrics, Aristotle University of Thessaloniki, Konstantinoupoleos 49, GR 54642, Thessaloniki, Greece
| | | |
Collapse
|
22
|
Gonzalez CE. Recent advances in the therapy against invasive aspergillosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 549:237-47. [PMID: 15250538 DOI: 10.1007/978-1-4419-8993-2_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Abstract
The topic of immunity to fungal infections is of interest to a wide range of disciplines, from microbiology to immunology. It is of particular interest in terms of therapy of HIV-infected individuals, and patients with cancer or individuals who have received transplants. Understanding the nature and function of the immune response to fungi is an exciting challenge that might set the stage for new approaches to the treatment of fungal diseases, from immunotherapy to vaccines. The past decade has witnessed the development of a wide range of new approaches to elucidate events that occur at the host-fungus interface.
Collapse
Affiliation(s)
- Luigina Romani
- Department of Experimental Medicine and Biochemical Sciences, Microbiology Section, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| |
Collapse
|