1
|
Shan N, Lu Y, Guo H, Li D, Jiang J, Yan L, Gao J, Ren Y, Zhao X, Hou L. CITEdb: a manually curated database of cell-cell interactions in human. Bioinformatics 2022; 38:5144-5148. [PMID: 36179089 PMCID: PMC9665858 DOI: 10.1093/bioinformatics/btac654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION The interactions among various types of cells play critical roles in cell functions and the maintenance of the entire organism. While cell-cell interactions are traditionally revealed from experimental studies, recent developments in single-cell technologies combined with data mining methods have enabled computational prediction of cell-cell interactions, which have broadened our understanding of how cells work together, and have important implications in therapeutic interventions targeting cell-cell interactions for cancers and other diseases. Despite the importance, to our knowledge, there is no database for systematic documentation of high-quality cell-cell interactions at the cell type level, which hinders the development of computational approaches to identify cell-cell interactions. RESULTS We develop a publicly accessible database, CITEdb (Cell-cell InTEraction database, https://citedb.cn/), which not only facilitates interactive exploration of cell-cell interactions in specific physiological contexts (e.g. a disease or an organ) but also provides a benchmark dataset to interpret and evaluate computationally derived cell-cell interactions from different tools. CITEdb contains 728 pairs of cell-cell interactions in human that are manually curated. Each interaction is equipped with structured annotations including the physiological context, the ligand-receptor pairs that mediate the interaction, etc. Our database provides a web interface to search, visualize and download cell-cell interactions. Users can search for cell-cell interactions by selecting the physiological context of interest or specific cell types involved. CITEdb is the first attempt to catalogue cell-cell interactions at the cell type level, which is beneficial to both experimental, computational and clinical studies of cell-cell interactions. AVAILABILITY AND IMPLEMENTATION CITEdb is freely available at https://citedb.cn/ and the R package implementing benchmark is available at https://github.com/shanny01/benchmark. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nayang Shan
- School of Statistics, Capital University of Economics and Business, Beijing 100070, China
| | - Yao Lu
- Department of Industrial Engineering, Center for Statistical Science, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing 210042, China
| | - Dongyu Li
- Department of Industrial Engineering, Center for Statistical Science, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jitong Jiang
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Linlin Yan
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing 210042, China
| | - Jiudong Gao
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing 210042, China
| | - Yong Ren
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing 210042, China
| | - Xingming Zhao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (LCNBI) and ZJLab, Wuxi, China
| | - Lin Hou
- Department of Industrial Engineering, Center for Statistical Science, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Islam R, Dash D, Singh R. Intranasal curcumin and sodium butyrate modulates airway inflammation and fibrosis via HDAC inhibition in allergic asthma. Cytokine 2021; 149:155720. [PMID: 34634654 DOI: 10.1016/j.cyto.2021.155720] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023]
Abstract
Asthma being an inflammatory disease of the airways lead to structural alterations in lungs which often results in the severity of the disease. Curcumin, diferuloylmethane, is well known for its medicinal properties but its anti-inflammatory potential via Histone deacetylase inhibition (HDACi) has not been revealed yet. Therefore, we have explored here, anti-inflammatory and anti-fibrotic potential of intranasal curcumin via HDAC inhibition and compared its potential with Sodium butyrate (SoB), a known histone deacetylase inhibitor of Class I and II series. Anti-inflammatory potential of SoB, has been investigated in cancer but not been studied in asthma before. MATERIALS AND METHODS In present study, ovalbumin (OVA) was used to sensitize Balb/c mice and later exposed to (1%) OVA aerosol. Curcumin (5 mg/kg) and Sodium butyrate (50 mg/kg) was administered through intranasal route an hour before OVA aerosol challenge. Efficacies of SoB and Curcumin as HDAC inhibitors were evaluated in terms of different inflammatory parameters like, total inflammatory cell count, reactive oxygen species (ROS), histamine release, nitric oxide and serum IgE levels. Inflammatory cell recruitment was analyzed by H&E staining and structural alterations were revealed by Masson's Trichrome staining of lung sections. RESULTS Enhanced Matrix Metalloproteinase-2 and 9 (MMP-2 and MMP-9) activities were observed in bronchoalveolar lavage fluid (BALF) of asthmatic mice by gelatin zymography which was inhibited in both treatment groups. Protein expressions of MMP-9, HDAC 1, H3acK9 and NF-kB p65 were modulated in intranasal curcumin and SoB pretreatment groups. CONCLUSION This is the first report where intranasal curcumin inhibited asthma severity via affecting HDAC 1 (H3acK9) leading to NF-kB suppression in mouse model of allergic asthma.
Collapse
Affiliation(s)
- Ramiya Islam
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India
| | - D Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Loffredo LF, Coden ME, Jeong BM, Walker MT, Anekalla KR, Doan TC, Rodriguez R, Browning M, Nam K, Lee JJ, Abdala-Valencia H, Berdnikovs S. Eosinophil accumulation in postnatal lung is specific to the primary septation phase of development. Sci Rep 2020; 10:4425. [PMID: 32157178 PMCID: PMC7064572 DOI: 10.1038/s41598-020-61420-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Type 2 immune cells and eosinophils are transiently present in the lung tissue not only in pathology (allergic disease, parasite expulsion) but also during normal postnatal development. However, the lung developmental processes underlying airway recruitment of eosinophils after birth remain unexplored. We determined that in mice, mature eosinophils are transiently recruited to the lung during postnatal days 3-14, which specifically corresponds to the primary septation/alveolarization phase of lung development. Developmental eosinophils peaked during P10-14 and exhibited Siglec-Fmed/highCD11c-/low phenotypes, similar to allergic asthma models. By interrogating the lung transcriptome and proteome during peak eosinophil recruitment in postnatal development, we identified markers that functionally capture the establishment of the mesenchymal-epithelial interface (Nes, Smo, Wnt5a, Nog) and the deposition of the provisional extracellular matrix (ECM) (Tnc, Postn, Spon2, Thbs2) as a key lung morphogenetic event associating with eosinophils. Tenascin-C (TNC) was identified as one of the key ECM markers in the lung epithelial-mesenchymal interface both at the RNA and protein levels, consistently associating with eosinophils in development and disease in mice and humans. As determined by RNA-seq analysis, naïve murine eosinophils cultured with ECM enriched in TNC significantly induced expression of Siglec-F, CD11c, eosinophil peroxidase, and other markers typical for activated eosinophils in development and allergic inflammatory responses. TNC knockout mice had an altered eosinophil recruitment profile in development. Collectively, our results indicate that lung morphogenetic processes associated with heightened Type 2 immunity are not merely a tissue "background" but specifically guide immune cells both in development and pathology.
Collapse
Affiliation(s)
- Lucas F Loffredo
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mackenzie E Coden
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian M Jeong
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Matthew T Walker
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kishore Reddy Anekalla
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ton C Doan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Raul Rodriguez
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mandy Browning
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kiwon Nam
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
4
|
Sun J, Huang N, Ma W, Zhou H, Lai K. Protective effects of metformin on lipopolysaccharide‑induced airway epithelial cell injury via NF‑κB signaling inhibition. Mol Med Rep 2019; 19:1817-1823. [PMID: 30628691 DOI: 10.3892/mmr.2019.9807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/15/2018] [Indexed: 11/05/2022] Open
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation. It has been demonstrated that metformin, an extensively used drug for the treatment of type 2 diabetes, improves airway inflammation and remodeling. However, the mechanism by which this occurs remains poorly understood. The present study investigated the protective effects of metformin in lipopolysaccharide (LPS)‑induced human bronchial epithelial (16HBE) cells injury and the associated mechanisms. 16HBE cells were preincubated with metformin for 1 h and subsequently exposed to LPS for 12 h. A lactate dehydrogenase (LDH) leakage assay was used to determine the extent of injury to 16HBE cells. The expression of tumor necrosis factor‑α (TNF‑α) and interleukin‑6 (IL‑6) was measured by ELISA. The protein expression of intercellular adhesion molecule‑1 (ICAM‑1) and vascular cell adhesion molecule‑1 (VCAM‑1), as well as proteins associated with nuclear factor (NF)‑κB signaling, was measured by western blotting. Immunofluorescence assays confirmed the nuclear translocation of NF‑κB p65. The LDH leakage assays suggested that metformin significantly reduced LPS‑induced 16HBE cell injury. Furthermore, it was confirmed that metformin suppressed the LPS‑induced secretion of TNF‑α, IL‑6, ICAM‑1 and VCAM‑1. The mechanism occurred at least partially via inhibition of NF‑κB signaling. The results demonstrated that metformin inhibited NF‑κB mRNA expression and the nuclear translocation of NF‑κB p65. To the best of our knowledge, the present study was the first to demonstrate that metformin ameliorated LPS‑induced bronchial epithelial cell injury via NF‑κB signaling suppression.
Collapse
Affiliation(s)
- Jiayang Sun
- Department of Respiratory Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Niwen Huang
- Department of Respiratory Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Wen Ma
- Department of Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Haiyan Zhou
- Department of Clinical Research Centre, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Kefang Lai
- Department of Clinical Research State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
5
|
Schleimer RP, Berdnikovs S. Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J Allergy Clin Immunol 2017; 139:1752-1761. [PMID: 28583447 DOI: 10.1016/j.jaci.2017.04.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
Abstract
Epithelial barriers of the skin, gastrointestinal tract, and airway serve common critical functions, such as maintaining a physical barrier against environmental insults and allergens and providing a tissue interface balancing the communication between the internal and external environments. We now understand that in patients with allergic disease, regardless of tissue location, the homeostatic balance of the epithelial barrier is skewed toward loss of differentiation, reduced junctional integrity, and impaired innate defense. Importantly, epithelial dysfunction characterized by these traits appears to pre-date atopy and development of allergic disease. Despite our growing appreciation of the centrality of barrier dysfunction in initiation of allergic disease, many important questions remain to be answered regarding mechanisms disrupting normal barrier function. Although our external environment (proteases, allergens, and injury) is classically thought of as a principal contributor to barrier disruption associated with allergic sensitization, there is a need to better understand contributions of the internal environment (hormones, diet, and circadian clock). Systemic drivers of disease, such as alterations of the endocrine system, metabolism, and aberrant control of developmental signaling, are emerging as new players in driving epithelial dysfunction and allergic predisposition at various barrier sites. Identifying such central mediators of epithelial dysfunction using both systems biology tools and causality-driven laboratory experimentation will be essential in building new strategic interventions to prevent or reverse the process of barrier loss in allergic patients.
Collapse
Affiliation(s)
- Robert P Schleimer
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
6
|
Liu MW, Liu R, Wu HY, Chen M, Dong MN, Huang YQ, Zhang CH, Wang YZ, Xia J, Shi Y, Xie FM, Luo H, Zhao XY, Wei W, Su MX. Atorvastatin has a protective effect in a mouse model of bronchial asthma through regulating tissue transglutaminase and triggering receptor expressed on myeloid cells-1 expression. Exp Ther Med 2017; 14:917-930. [PMID: 28810543 PMCID: PMC5526119 DOI: 10.3892/etm.2017.4576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/26/2017] [Indexed: 02/07/2023] Open
Abstract
Airway remodeling in asthma contributes to airway hyperreactivity, loss of lung function and persistent symptoms. Current therapies do not adequately treat the structural airway changes associated with asthma. Statin drugs have improved respiratory health and their therapeutic potential in asthma has been tested in clinical trials. However, the mechanism of action of statins in this context has remained elusive. The present study hypothesized that atorvastatin treatment of ovalbumin-exposed mice attenuates early features of airway remodeling via a mevalonate-dependent mechanism. BALB/c mice were sensitized with ovalbumin and atorvastatin was delivered via oral gavage prior to each ovalbumin exposure. Reverse transcription-semi-quantitative polymerase chain reaction (RT-semi-qPCR), ELISA and western blot analysis were used to assess the expression of a number of relevant genes, including tissue transglutaminase (tTG), triggering receptor expressed on myeloid cells (TREM)-1, nuclear factor erythroid 2-related factor (Nrf) 2, hypoxia-inducible factor (HIF)-1α, transforming growth factor (TGF)-β1, matrix metalloproteinase (MMP)-9 and tissue inhibitors of metalloproteinases (TIMP)-1 in lung tissue. α-Smooth muscle actin (α-SMA) activity was measured by immunohistochemistry. Airway hyperresponsiveness, lung collagen deposition, airway wall area, airway smooth muscle thickness and lung pathology were also assessed. Atorvastatin treatment led to downregulation of tTG and TREM-1 expression in lung tissue after ovalbumin sensitization, blocked the activity of MMP-9, vascular endothelial growth factor, nuclear factor-κB p65, α-SMA, HIF-α and TGF-β1 and up-regulated Nrf2 expression. Furthermore, the number of lymphocytes and eosinophils in the atorvastatin group was significantly lower than that in the control group. In addition, airway hyperresponsiveness, lung collagen deposition, airway wall area, airway smooth muscle thickness and pathological changes in the lung were significantly decreased in the atorvastatin group, and tumor necrosis factor-α, interleukin (IL)-8, IL-13 and IL-17 in serum were significantly decreased. Histological results demonstrated the attenuating effect of atorvastatin on ovalbumin-induced airway remodeling in asthma. In conclusion, the present study indicated that atorvastatin significantly alleviated ovalbumin-induced airway remodeling in asthma by downregulating tTG and TREM-1 expression. The marked protective effects of atorvastatin suggest its therapeutic potential in ovalbumin-induced airway remodeling in asthma treatment.
Collapse
Affiliation(s)
- Ming-Wei Liu
- Department of Emergency, The First Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rong Liu
- Department of Emergency, The First Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Hai-Ying Wu
- Department of Emergency, The First Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Mei Chen
- Department of Respiratory Medicine, The Yan'An Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Min-Na Dong
- Department of Emergency, The First Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yun-Qiao Huang
- Department of Emergency, The First Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chun-Hai Zhang
- Department of Emergency, The First Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yin-Zhong Wang
- Department of Emergency, The First Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jing Xia
- Department of Emergency, The First Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yang Shi
- Department of Emergency, The First Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Feng-Mei Xie
- Department of Gastroenterology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650106, P.R. China
| | - Hua Luo
- Department of Emergency, The First Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xin-Yuan Zhao
- Department of Emergency, The First Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Wei Wei
- Department of Emergency, The First Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Mei-Xian Su
- Department of Emergency, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650106, P.R. China
| |
Collapse
|
7
|
Øvrevik J, Refsnes M, Låg M, Brinchmann BC, Schwarze PE, Holme JA. Triggering Mechanisms and Inflammatory Effects of Combustion Exhaust Particles with Implication for Carcinogenesis. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:55-62. [PMID: 28001342 DOI: 10.1111/bcpt.12746] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022]
Abstract
A number of biological responses may contribute to the carcinogenic effects of combustion-derived particulate matter (CPM). Here, we focus on mechanisms that trigger CPM-induced pro-inflammatory responses. Inflammation has both genotoxic and non-genotoxic implications and is considered to play a central role in development of various health outcome associated with CPM exposure, including cancer. Chronic, low-grade inflammation may cause DNA damage through a persistent increased level of reactive oxygen species (ROS) produced and released by activated immune cells. Moreover, a number of pro-inflammatory cytokines and chemokines display mitogenic, motogenic, morphogenic and/or angiogenic properties and may therefore contribute to tumour growth and metastasis. The key triggering events involved in activation of pro-inflammatory responses by CPM and soluble CPM components can be categorized into (i) formation of ROS and oxidative stress, (ii) interaction with the lipid layer of cellular membranes, (iii) activation of receptors, ion channels and transporters on the cell surface and (iv) interactions with intracellular molecular targets including receptors such as the aryl hydrocarbon receptor (AhR). In particular, we will elucidate the effects of diesel exhaust particles (DEP) using human lung epithelial cells as a model system.
Collapse
Affiliation(s)
- Johan Øvrevik
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Per E Schwarze
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jørn A Holme
- Department of Air Pollution and Noise, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
8
|
Dai Y, Niu Y, Duan H, Bassig BA, Ye M, Zhang X, Meng T, Bin P, Jia X, Shen M, Zhang R, Hu W, Yang X, Vermeulen R, Silverman D, Rothman N, Lan Q, Yu S, Zheng Y. Effects of occupational exposure to carbon black on peripheral white blood cell counts and lymphocyte subsets. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:615-622. [PMID: 27671983 PMCID: PMC6759205 DOI: 10.1002/em.22036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
The International Agency for Research on Cancer has classified carbon black (CB) as a possible (Group 2B) human carcinogen. Given that most CB manufacturing processes result in the emission of various types of chemicals, it is uncertain if the adverse health effects that have been observed in CB-exposed workers are related to CB specifically or are due to other exposures. To address this issue, we conducted a cross-sectional molecular epidemiology study in China of 106 male factory workers who were occupationally exposed to pure CB and 112 unexposed male workers frequency-matched by age and smoking status from the same geographic region. Repeated personal exposure measurements were taken in workers before biological sample collection. Peripheral blood from all workers was used for the complete blood cell count and lymphocyte subsets analysis. Compared to unexposed workers, eosinophil counts in workers exposed to CB were increased by 30.8% (P = 0.07) after adjusting for potential confounders. When stratified by smoking status, statistically significant differences in eosinophils between CB exposed and unexposed workers were only present among never smokers (P = 0.040). Smoking is associated with alterations in various cell counts; however, no significant interaction between CB exposure and smoking status for any cell counts was observed. Given that inflammation, characterized in part by elevated eosinophils in peripheral blood, may be associated with increased cancer risk, our findings provide new biologic insights into the potential relationship between CB exposure and lung carcinogenesis. Environ. Mol. Mutagen. 57:589-604, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yufei Dai
- Key Laboratory, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland
| | - Yong Niu
- Key Laboratory, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Huawei Duan
- Key Laboratory, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Bryan A Bassig
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland
| | - Meng Ye
- Key Laboratory, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Xiao Zhang
- Key Laboratory, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Tao Meng
- Key Laboratory, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Ping Bin
- Key Laboratory, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Xiaowei Jia
- Key Laboratory, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Meili Shen
- Key Laboratory, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Rong Zhang
- Key Laboratory, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
- Department of Toxicology School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Wei Hu
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland
| | - Xiaofa Yang
- Jiao Zuo Center for Disease Control and Prevention, Jiaozuo, China
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Debra Silverman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland.
| | - Shanfa Yu
- Henan Provincial Institute for Occupational Health, Zhengzhou, China.
| | - Yuxin Zheng
- Key Laboratory, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
9
|
Låg M, Øvrevik J, Totlandsdal AI, Lilleaas EM, Thormodsæter A, Holme JA, Schwarze PE, Refsnes M. Air pollution-related metals induce differential cytokine responses in bronchial epithelial cells. Toxicol In Vitro 2016; 36:53-65. [PMID: 27427241 DOI: 10.1016/j.tiv.2016.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/21/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Abstract
Different transition metals have been shown to induce inflammatory responses in lung. We have compared eight different metal ions with regard to cytokine responses, cytotoxicity and signalling mechanisms in a human lung epithelial cell model (BEAS-2B). Among the metal ions tested, there were large differences with respect to pro-inflammatory potential. Exposure to Cd(2+), Zn(2+) and As(3+) induced CXCL8 and IL-6 release at concentrations below 100μM, and Mn(2+) and Ni(2+) at concentrations above 200μM. In contrast, VO4(3-), Cu(2+) and Fe(2+) did not induce any significant increase of these cytokines. An expression array of 20 inflammatory relevant genes also showed a marked up-regulation of CXCL10, IL-10, IL-13 and CSF2 by one or more of the metal ions. The most potent metals, Cd(2+), Zn(2+) and As(3+) induced highest levels of oxidative activity, and ROS appeared to be central in their CXCL8 and IL-6 responses. Activation of the MAPK p38 seemed to be a critical mediator. However, the NF-κB pathway appeared predominately to be involved only in Zn(2+)- and As(3+)-induced CXCL8 and IL-6 responses. Thus, the most potent metals Cd(2+), Zn(2+) and As(3+) seemed to induce a similar pattern for the cytokine responses, and with some exceptions, via similar signalling mechanisms.
Collapse
Affiliation(s)
- M Låg
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway.
| | - J Øvrevik
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - A I Totlandsdal
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - E M Lilleaas
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - A Thormodsæter
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - J A Holme
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - P E Schwarze
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - M Refsnes
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| |
Collapse
|
10
|
Schwarze PE, Ovrevik J, Låg M, Refsnes M, Nafstad P, Hetland RB, Dybing E. Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. Hum Exp Toxicol 2016; 25:559-79. [PMID: 17165623 DOI: 10.1177/096032706072520] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Identifying the ambient particulate matter (PM) fractions or constituents, critically involved in eliciting adverse health effects, is crucial to the implementation of more cost-efficient abatement strategies to improve air quality. This review focuses on the importance of different particle properties for PM-induced effects, and whether there is consistency in the results from epidemiological and experimental studies. An evident problem for such comparisons is that epidemiological and experimental data on the effects of specific components of ambient PM are limited. Despite this, some conclusions can be drawn. With respect to the importance of the PM size-fractions, experimental and epidemiological studies are somewhat conflicting, but there seems to be a certain consistency in that the coarse fraction (PM10-2.5) has an effect that should not be neglected. Better exposure characterization may improve the consistency between the results from experimental and epidemiological studies, in particular for ultrafine particles. Experimental data indicate that surface area is an important metric, but composition may play an even greater role in eliciting effects. The consistency between epidemiological and experimental findings for specific PM-components appears most convincing for metals, which seem to be important for the development of both pulmonary and cardiovascular disease. Metals may also be involved in PM-induced allergic sensitization, but the epidemiological evidence for this is scarce. Soluble organic compounds appear to be implicated in PM-induced allergy and cancer, but the data from epidemiological studies are insufficient for any conclusions. The present review suggests that there may be a need for improvements in research designs. In particular, there is a need for better exposure assessments in epidemiological investigations, whereas experimental data would benefit from an improved comparability of studies. Combined experimental and epidemiological investigations may also help answer some of the unresolved issues.
Collapse
Affiliation(s)
- P E Schwarze
- Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
11
|
Dai Y, Zhang X, Zhang R, Zhao X, Duan H, Niu Y, Huang C, Meng T, Ye M, Bin P, Shen M, Jia X, Wang H, Yu S, Zheng Y. Long-term exposure to diesel engine exhaust affects cytokine expression among occupational population. Toxicol Res (Camb) 2016; 5:674-681. [PMID: 30090380 PMCID: PMC6060680 DOI: 10.1039/c5tx00462d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/31/2016] [Indexed: 11/21/2022] Open
Abstract
Diesel engine exhaust (DEE) is a predominant contributor to urban air pollution. The International Agency for Research on Cancer classified DEE as a group I carcinogen. Inflammatory response is considered to be associated with various health outcomes including carcinogenesis. However, human data linking inflammation with long-term DEE exposure are still lacking. In this study, a total of 137 diesel engine testing workers with an average exposure of 8.2 years and 108 unexposed controls were enrolled. Peripheral blood samples were collected from all subjects, and the association of DEE exposure with inflammatory biomarkers was analyzed. Overall, DEE exposed workers had a significant increase in the C-reactive protein (CRP) and a significant decrease in cytokines including interleukin (IL)-1β, IL-6, IL-8, and macrophage inflammatory protein (MIP)-1β compared to controls after adjusting for age, BMI, smoking status, and alcohol use, and findings were highly consistent when stratified by smoking status. In addition, exposure time dependent patterns for IL-6 and CRP were also found (Ptrend = 0.006 and 0.026, respectively); however, the levels of IL-1β and MIP-1β were significantly lower in subjects with a DEE working time of less than 10 years compared with the controls and then recovered to control levels in workers exposed for >10 years. There were no significant differences in blood cell counts and major lymphocyte subsets between exposed workers and the controls. Our results provide epidemiological evidence for the relationship between DEE exposure and immunotoxicity considering the important roles of cytokines in immunological processes.
Collapse
Affiliation(s)
- Yufei Dai
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Xiao Zhang
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Rong Zhang
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
- Department of Toxicology , School of Public Health , Hebei Medical University , Shijiazhuang , 050017 , China
| | - Xuezheng Zhao
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
- Beijing Xicheng District Tianqiao Community Health Service Center , Beijing , 100050 , China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Chuanfeng Huang
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Tao Meng
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Meng Ye
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Ping Bin
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Meili Shen
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Xiaowei Jia
- School and Hospital of Stomatology , Peking University , Beijing , 100081 , China
| | - Haisheng Wang
- Luoyang Center for Disease Control and Prevention , Luoyang , Henan Province 471000 , China
| | - Shanfa Yu
- Henan Provincial Institute for Occupational Health , Zhengzhou , 450052 , China
| | - Yuxin Zheng
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| |
Collapse
|
12
|
McLellan K, Shields M, Power U, Turner S. Primary airway epithelial cell culture and asthma in children-lessons learnt and yet to come. Pediatr Pulmonol 2015; 50:1393-405. [PMID: 26178976 DOI: 10.1002/ppul.23249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 11/08/2022]
Abstract
Until recently the airway epithelial cell (AEC) was considered a simple barrier that prevented entry of inhaled matter into the lung parenchyma. The AEC is now recognized as having an important role in the inflammatory response of the respiratory system to inhaled exposures, and abnormalities of these responses are thought to be important to asthma pathogenesis. This review first explores how the challenges of studying nasal and bronchial AECs in children have been addressed and then summarizes the results of studies of primary AEC function in children with and without asthma. There is good evidence that nasal AECs may be a suitable surrogate for the study of certain aspects of bronchial AEC function, although bronchial AECs remain the gold standard for asthma research. There are consistent differences between children with and without asthma for nasal and bronchial AEC mediator release following exposure to a range of pro-inflammatory stimulants including interleukins (IL)-1β, IL-4, and IL-13. However, there are inconsistencies between studies, e.g., release of IL-6, an important pro-inflammatory cytokine, is not increased in children with asthma relative to controls in all studies. Future work should expand current understanding of the "upstream" signalling pathways in AEC, study AEC from children before the onset of asthma symptoms and in vitro models should be developed that replicate the in vivo status more completely, e.g., co-culture with dendritic cells. AECs are difficult to obtain from children and collaboration between centers is expected to yield meaningful advances in asthma understanding and ultimately help deliver novel therapies.
Collapse
Affiliation(s)
- Kirsty McLellan
- Child Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Mike Shields
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, United Kingdom
| | - Ultan Power
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, United Kingdom
| | - Steve Turner
- Child Health, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
13
|
Lu X, Luo F, Liu Y, Zhang A, Li J, Wang B, Xu W, Shi L, Liu X, Lu L, Liu Q. The IL-6/STAT3 pathway via miR-21 is involved in the neoplastic and metastatic properties of arsenite-transformed human keratinocytes. Toxicol Lett 2015; 237:191-9. [DOI: 10.1016/j.toxlet.2015.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/10/2015] [Accepted: 06/13/2015] [Indexed: 12/19/2022]
|
14
|
Kalita M, Tian B, Gao B, Choudhary S, Wood TG, Carmical JR, Boldogh I, Mitra S, Minna JD, Brasier AR. Systems approaches to modeling chronic mucosal inflammation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:505864. [PMID: 24228254 PMCID: PMC3818818 DOI: 10.1155/2013/505864] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 12/27/2022]
Abstract
The respiratory mucosa is a major coordinator of the inflammatory response in chronic airway diseases, including asthma and chronic obstructive pulmonary disease (COPD). Signals produced by the chronic inflammatory process induce epithelial mesenchymal transition (EMT) that dramatically alters the epithelial cell phenotype. The effects of EMT on epigenetic reprogramming and the activation of transcriptional networks are known, its effects on the innate inflammatory response are underexplored. We used a multiplex gene expression profiling platform to investigate the perturbations of the innate pathways induced by TGF β in a primary airway epithelial cell model of EMT. EMT had dramatic effects on the induction of the innate pathway and the coupling interval of the canonical and noncanonical NF- κ B pathways. Simulation experiments demonstrate that rapid, coordinated cap-independent translation of TRAF-1 and NF- κ B2 is required to reduce the noncanonical pathway coupling interval. Experiments using amantadine confirmed the prediction that TRAF-1 and NF- κ B2/p100 production is mediated by an IRES-dependent mechanism. These data indicate that the epigenetic changes produced by EMT induce dynamic state changes of the innate signaling pathway. Further applications of systems approaches will provide understanding of this complex phenotype through deterministic modeling and multidimensional (genomic and proteomic) profiling.
Collapse
Affiliation(s)
- Mridul Kalita
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Bing Tian
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, Department of Internal Medicine Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sanjeev Choudhary
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Institute for Translational Sciences, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Thomas G. Wood
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Institute for Translational Sciences, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Departments of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Joseph R. Carmical
- Departments of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Istvan Boldogh
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Microbiology and Immunology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Sankar Mitra
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Departments of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, Department of Internal Medicine Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Allan R. Brasier
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Institute for Translational Sciences, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| |
Collapse
|
15
|
Song MK, Lee HS, Choi HS, Shin CY, Kim YJ, Park YK, Ryu JC. Octanal-induced inflammatory responses in cells relevant for lung toxicity. Hum Exp Toxicol 2013; 33:710-21. [DOI: 10.1177/0960327113506722] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inhalation is an important route of aldehyde exposure, and lung is one of the main targets of aldehyde toxicity. Octanal is distributed ubiquitously in the environment and is a component of indoor air pollutants. We investigated whether octanal exposure enhances the inflammatory response in the human respiratory system by increasing the expression and release of cytokines and chemokines. The effect of octanal in transcriptomic modulation was assessed in the human alveolar epithelial cell line A549 using oligonucleotide arrays. We identified a set of genes differentially expressed upon octanal exposure that may be useful for monitoring octanal pulmonary toxicity. These genes were classified according to the Gene Ontology functional category and Kyoto Encyclopedia of Genes and Genomes analysis to explore the biological processes related to octanal-induced pulmonary toxicity. The results show that octanal affects the expression of several chemokines and inflammatory cytokines and increases the levels of interleukin 6 (IL-6) and IL-8 released. In conclusion, octanal exposure modulates the expression of cytokines and chemokines important in the development of lung injury and disease. This suggests that inflammation contributes to octanal-induced lung damage and that the inflammatory genes expressed should be studied in detail, thereby laying the groundwork for future biomonitoring studies.
Collapse
Affiliation(s)
- M-K Song
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
- School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, Korea
| | - H-S Lee
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
| | - H-S Choi
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
| | - C-Y Shin
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
| | - Y-J Kim
- Department of Marine Sciences, Incheon National University, Yeonsu-gu, Incheon, Korea
| | - Y-K Park
- School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, Korea
| | - J-C Ryu
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
| |
Collapse
|
16
|
Xu Y, Zhao Y, Xu W, Luo F, Wang B, Li Y, Pang Y, Liu Q. Involvement of HIF-2α-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells. Toxicol Appl Pharmacol 2013; 272:542-50. [PMID: 23811328 DOI: 10.1016/j.taap.2013.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/23/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
Abstract
Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested a link between inflammation and lung cancer; however, it is unknown if arsenite-induced inflammation causally contributes to arsenite-caused malignant transformation of cells. In this study, we investigated the molecular mechanisms underlying inflammation during neoplastic transformation induced in human bronchial epithelial (HBE) cells by chronic exposure to arsenite. The results showed that, on acute or chronic exposure to arsenite, HBE cells over-expressed the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β). The data also indicated that HIF-2α was involved in arsenite-induced inflammation. Moreover, IL-6 and IL-8 were essential for the malignant progression of arsenite-transformed HBE cells. Thus, these experiments show that HIF-2α mediates arsenite-induced inflammation and that such inflammation is involved in arsenite-induced malignant transformation of HBE cells. The results provide a link between the inflammatory response and the acquisition of a malignant transformed phenotype by cells chronically exposed to arsenite and thus establish a previously unknown mechanism for arsenite-induced carcinogenesis.
Collapse
Affiliation(s)
- Yuan Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Damsker JM, Dillingham BC, Rose MC, Balsley MA, Heier CR, Watson AM, Stemmy EJ, Jurjus RA, Huynh T, Tatem K, Uaesoontrachoon K, Berry DM, Benton AS, Freishtat RJ, Hoffman EP, McCall JM, Gordish-Dressman H, Constant SL, Reeves EKM, Nagaraju K. VBP15, a glucocorticoid analogue, is effective at reducing allergic lung inflammation in mice. PLoS One 2013; 8:e63871. [PMID: 23667681 PMCID: PMC3646769 DOI: 10.1371/journal.pone.0063871] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 04/11/2013] [Indexed: 01/22/2023] Open
Abstract
Asthma is a chronic inflammatory condition of the lower respiratory tract associated with airway hyperreactivity and mucus obstruction in which a majority of cases are due to an allergic response to environmental allergens. Glucocorticoids such as prednisone have been standard treatment for many inflammatory diseases for the past 60 years. However, despite their effectiveness, long-term treatment is often limited by adverse side effects believed to be caused by glucocorticoid receptor-mediated gene transcription. This has led to the pursuit of compounds that retain the anti-inflammatory properties yet lack the adverse side effects associated with traditional glucocorticoids. We have developed a novel series of steroidal analogues (VBP compounds) that have been previously shown to maintain anti-inflammatory properties such as NFκB-inhibition without inducing glucocorticoid receptor-mediated gene transcription. This study was undertaken to determine the effectiveness of the lead compound, VBP15, in a mouse model of allergic lung inflammation. We show that VBP15 is as effective as the traditional glucocorticoid, prednisolone, at reducing three major hallmarks of lung inflammation—NFκB activity, leukocyte degranulation, and pro-inflammatory cytokine release from human bronchial epithelial cells obtained from patients with asthma. Moreover, we found that VBP15 is capable of reducing inflammation of the lung in vivo to an extent similar to that of prednisone. We found that prednisolone–but not VBP15 shortens the tibia in mice upon a 5 week treatment regimen suggesting effective dissociation of side effects from efficacy. These findings suggest that VBP15 may represent a potent and safer alternative to traditional glucocorticoids in the treatment of asthma and other inflammatory diseases.
Collapse
Affiliation(s)
- Jesse M Damsker
- ReveraGen BioPharma, Rockville, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hallstrand TS, Kippelen P, Larsson J, Bougault V, van Leeuwen JC, Driessen JMM, Brannan JD. Where to from here for exercise-induced bronchoconstriction: the unanswered questions. Immunol Allergy Clin North Am 2013; 33:423-42, ix. [PMID: 23830134 DOI: 10.1016/j.iac.2013.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of epithelial injury is an unanswered question in those with established asthma and in elite athletes who develop features of asthma and exercise-induced bronchorestriction (EIB) after years of training. The movement of water in response to changes in osmolarity is likely to be an important signal to the epithelium that may be central to the onset of EIB. It is generally accepted that the mast cell and its mediators play a major role in EIB and the presence of eosinophils is likely to enhance EIB severity.
Collapse
Affiliation(s)
- Teal S Hallstrand
- Division of Pulmonary and Critical Care, University of Washington, Department of Medicine, 1959 NE Pacific Street, Box 356166, Seattle, WA 98195-6522, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Inflammation-related effects of diesel engine exhaust particles: studies on lung cells in vitro. BIOMED RESEARCH INTERNATIONAL 2013; 2013:685142. [PMID: 23509760 PMCID: PMC3586454 DOI: 10.1155/2013/685142] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/04/2013] [Accepted: 01/15/2013] [Indexed: 01/17/2023]
Abstract
Diesel exhaust and its particles (DEP) have been under scrutiny for health effects in humans. In the development of these effects inflammation is regarded as a key process. Overall, in vitro studies report similar DEP-induced changes in markers of inflammation, including cytokines and chemokines, as studies in vivo. In vitro studies suggest that soluble extracts of DEP have the greatest impact on the expression and release of proinflammatory markers. Main DEP mediators of effects have still not been identified and are difficult to find, as fuel and engine technology developments lead to continuously altered characteristics of emissions. Involved mechanisms remain somewhat unclear. DEP extracts appear to comprise components that are able to activate various membrane and cytosolic receptors. Through interactions with receptors, ion channels, and phosphorylation enzymes, molecules in the particle extract will trigger various cell signaling pathways that may lead to the release of inflammatory markers directly or indirectly by causing cell death. In vitro studies represent a fast and convenient system which may have implications for technology development. Furthermore, knowledge regarding how particles elicit their effects may contribute to understanding of DEP-induced health effects in vivo, with possible implications for identifying susceptible groups of people and effect biomarkers.
Collapse
|
20
|
Sharma N, Tripathi P, Awasthi S. Role of ADAM33 gene and associated single nucleotide polymorphisms in asthma. ALLERGY & RHINOLOGY 2012; 2:e63-70. [PMID: 22852121 PMCID: PMC3390120 DOI: 10.2500/ar.2011.2.0018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Asthma is a multifactorial disorder, primarily resulting from interactions between genetic and environmental factors. ADAM33 gene (located on chromosome 20p13) has been reported to play an important role in asthma. This review article is intended to include all of the publications, to date, which have assessed the association of ADAM33 gene polymorphisms as well as have shown the role of ADAM33 gene in airway remodeling and their expression with asthma. A PubMed search was performed for studies published between 1990 and 2010. The terms “ADAM33,” “ADAM33 gene and asthma,” and “ADAM33 gene polymorphisms” were used as search criteria. Based on available literature we can only speculate its role in the morphogenesis and functions of the lung. Fourteen studies conducted in different populations were found showing an association of ADAM33 gene polymorphisms with asthma. However, none of the single nucleotide polymorphisms (SNPs) of ADAM33 gene had found association with asthma across all ethnic groups. Because higher expression of ADAM33 is found in the fibroblast and smooth muscle cells of the lung, over- or underexpression of ADAM33 gene may result in alterations in airway remodeling and repair processes. However, no SNP of ADAM33 gene showed significant associations with asthma across all ethnic groups; the causative polymorphism, if any, still has to be identified.
Collapse
Affiliation(s)
- Neeraj Sharma
- Department of Pediatrics, Chhatrapati Shahuji Maharaj Medical University, Lucknow, Uttar Pradesh, India
| | | | | |
Collapse
|
21
|
Royce SG, Dang W, Yuan G, Tran J, El-Osta A, Karagiannis TC, Tang MLK. Effects of the histone deacetylase inhibitor, trichostatin A, in a chronic allergic airways disease model in mice. Arch Immunol Ther Exp (Warsz) 2012; 60:295-306. [PMID: 22684086 DOI: 10.1007/s00005-012-0180-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 02/20/2012] [Indexed: 01/26/2023]
Abstract
There is a need for new asthma therapies that can concurrently address airway remodeling, airway hyperresponsiveness and progressive irreversible loss of lung function, in addition to inhibiting inflammation. Histone deacetylase inhibitors (HDACi) alter gene expression by interfering with the removal of acetyl groups from histones. The HDACi trichostatin A (TSA) has pleiotropic effects targeting key pathological processes in asthma including inflammation, proliferation, angiogenesis and fibrosis. The aim was to evaluate the effects of TSA treatment in a mouse model of chronic allergic airways disease (AAD). Wild-type BALB/c mice with AAD were treated intraperitoneally with 5 mg/kg TSA or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid (BALF) cell counts and histological examination of lung tissue sections. Remodeling was assessed by morphometric analysis and airway hyperresponsiveness was assessed by invasive plethysmography. TSA-treated mice had a reduced number of total inflammatory cells and eosinophils within the BALF as compared to vehicle-treated mice (both p < 0.05). Furthermore, airway remodeling changes were significantly reduced with TSA compared to vehicle-treated mice, with fewer goblet cells (p < 0.05), less subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness at the highest methacholine dose. These findings demonstrate that treatment with an HDACi can concurrently reduce structural airway remodeling changes and airway hyperresponsiveness, in addition to attenuating airway inflammation in a chronic AAD model. This has important implications for the development of novel treatments for severe asthma.
Collapse
Affiliation(s)
- Simon G Royce
- Allergy and Immune Disorders, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Lummus ZL, Wisnewski AV, Bernstein DI. Pathogenesis and disease mechanisms of occupational asthma. Immunol Allergy Clin North Am 2012; 31:699-716, vi. [PMID: 21978852 DOI: 10.1016/j.iac.2011.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Occupational asthma (OA) is one of the most common forms of work-related lung disease in all industrialized nations. The clinical management of patients with OA depends on an understanding of the multifactorial pathogenetic mechanisms that can contribute to this disease. This article discusses the various immunologic and nonimmunologic mechanisms and genetic susceptibility factors that drive the inflammatory processes of OA.
Collapse
Affiliation(s)
- Zana L Lummus
- Department of Internal Medicine, University of Cincinnati College of Medicine, 3255 Eden Avenue, Cincinnati, OH 45267-0563, USA
| | | | | |
Collapse
|
23
|
Royce SG, Lim C, Muljadi RC, Tang MLK. Trefoil factor 2 regulates airway remodeling in animal models of asthma. J Asthma 2011; 48:653-9. [PMID: 21793772 DOI: 10.3109/02770903.2011.599906] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Epithelial denudation and metaplasia are important in the pathogenesis of airway remodeling and asthma. Trefoil factor 2 (TFF2) is a member of a family of peptides involved in protection and healing of the gastrointestinal epithelium but which are also secreted in the airway mucosa. METHODS We investigated the role of TFF2 in airway remodeling by histological and morphometric analysis of lung tissue from TFF2-deficient mice subjected to two relevant animal models of asthma: an ovalbumin model of allergic airways disease and an Aspergillus fumigatus antigen sensitization model. RESULTS In the ovalbumin model TFF2-deficient mice had increased goblet cell hyperplasia, but not epithelial thickening compared to wild-type (WT) counterparts. In the Aspergillus model TFF2-deficient mice also had increased goblet cell hyperplasia, and epithelial thickness was also increased in the Aspergillus-sensitized mice compared to WT controls. TFF2 deficiency was also associated with increased subepithelial collagen layer thickness. DISCUSSION The current study demonstrates a role of TFF2 in airway remodeling in mouse models of airway disease. Further studies into the mechanisms of action of TFF2 and its role in asthma are warranted.
Collapse
Affiliation(s)
- Simon G Royce
- Allergy and Immune Disorders, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | | | | | | |
Collapse
|
24
|
Freishtat RJ, Watson AM, Benton AS, Iqbal SF, Pillai DK, Rose MC, Hoffman EP. Asthmatic airway epithelium is intrinsically inflammatory and mitotically dyssynchronous. Am J Respir Cell Mol Biol 2011; 44:863-9. [PMID: 20705942 PMCID: PMC3135846 DOI: 10.1165/rcmb.2010-0029oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 07/12/2010] [Indexed: 12/30/2022] Open
Abstract
Asthma is an inflammatory condition for which anti-inflammatory glucocorticoids are the standard of care. However, similar efficacy has not been shown for agents targeting inflammatory cells and pathways. This suggests a noninflammatory cell contributor (e.g., epithelium) to asthmatic inflammation. Herein, we sought to define the intrinsic and glucocorticoid-affected properties of asthmatic airway epithelium compared with normal epithelium. Human primary differentiated normal and asthmatic airway epithelia were cultured in glucocorticoid-free medium beginning at -48 hours. They were pulsed with dexamethasone (20 nM) or vehicle for 2 hours at -26, -2, +22, and +46 hours. Cultures were mechanically scrape-wounded at 0 hours and exposed continuously to bromodeoxyuridine (BrdU). Cytokine secretions were analyzed using cytometric bead assays. Wound regeneration/mitosis was analyzed by microscopy and flow cytometry. Quiescent normal (n = 3) and asthmatic (n = 6) epithelia showed similar minimal inflammatory cytokine secretion and mitotic indices. After wounding, asthmatic epithelia secreted more basolateral TGF-β1, IL-10, IL-13, and IL-1β (P < 0.05) and regenerated less efficiently than normal epithelia (+48 h wound area reduction = [mean ± SEM] 50.2 ± 7.5% versus 78.6 ± 7.7%; P = 0.02). Asthmatic epithelia showed 40% fewer BrdU(+) cells at +48 hours (0.32 ± 0.05% versus 0.56 ± 0.07% of total cells; P = 0.03), and those cells were more dyssynchronously distributed along the cell cycle (52 ± 10, 25 ± 4, 23 ± 7% for G1/G0, S, and G2/M, respectively) than normal epithelia (71 ± 1, 12 ± 2, and 17 ± 2% for G1/G0, S, and G2/M, respectively). Dexamethasone pulses improved asthmatic epithelial inflammation and regeneration/mitosis. In summary, we show that inflammatory/fibrogenic cytokine secretions are correlated with dyssynchronous mitosis upon injury. Intermittent glucocorticoids simultaneously decreased epithelial cytokine secretions and resynchronized mitosis. These data, generated in an airway model lacking inflammatory cells, support the concept that epithelium contributes to asthmatic inflammation.
Collapse
Affiliation(s)
- Robert J Freishtat
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Royce SG, Dang W, Yuan G, Tran J, El Osta A, Karagiannis TC, Tang MLK. Resveratrol has protective effects against airway remodeling and airway hyperreactivity in a murine model of allergic airways disease. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2011; 1:PBA-1-7134. [PMID: 22953028 PMCID: PMC3417665 DOI: 10.3402/pba.v1i0.7134] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 12/14/2022]
Abstract
Background New therapies for asthma which can address three main interrelated features of the disease, airway inflammation, airway remodeling and airway hyperreactivity, are urgently required. Resveratrol, a well known red wine polyphenol has received much attention due to its potential anti-aging properties. This compound is an agonist of silent information regulator two histone deacetylases and has many effects that are relevant to key aspects of the pathophysiology of asthma including inflammation, cell proliferation and fibrosis. Therefore, resveratrol may offer a novel asthma therapy that simultaneously inhibits airway inflammation, and airway remodeling which are the main contributors to airway hyperreactivity and irreversible lung function loss. Methods We evaluated the effects of systemic resveratrol treatment in a murine model of chronic allergic airways disease which displays most of the clinicopathological features of severe human asthma. Wild-type Balb/c mice with allergic airways disease were treated with 12.5 mg/kg resveratrol or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and histological examination of lung tissue sections. Further, remodeling was assessed by morphometric analysis and lung function was assessed by invasive plethysmography measurement of airway resistance and dynamic compliance. Results Mice treated with resveratrol exhibited reduced tissue inflammation as compared to vehicle treated mice (p<0.05). Additionally, resveratrol treatment resulted in reduced subepithelial collagen deposition as compared to vehicle treated mice (p<0.05) and attenuated airway hyperreactivity (p<0.05). Conclusions These novel findings demonstrate that treatment with resveratrol can reduce structural airway remodeling changes and hyperreactivity. This has important implications for the development of new therapeutic approaches to asthma.
Collapse
Affiliation(s)
- Simon G Royce
- Allergy and Immune Disorders, Murdoch Children's Research Institute, Melbourne, Vic., Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Karagiannis TC, Li X, Tang MM, Orlowski C, El-Osta A, Tang MLK, Royce SG. Molecular model of naphthalene-induced DNA damage in the murine lung. Hum Exp Toxicol 2011; 31:42-50. [PMID: 21508073 DOI: 10.1177/0960327111407228] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Airway epithelial damage and repair represents a novel therapeutic target in asthma and chronic obstructive pulmonary disease. An established mouse model of airway epithelial damage involves the Clara cell cytotoxicity of parenterally administered naphthalene, an important environmental toxicant with genotoxic and carcinogenic potential. The objective of the current study was to investigate naphthalene-induced toxicity and to identify and quantify DNA double-strand breaks in a murine naphthalene model of airway epithelial damage. Male C57/BL6 mice were injected with 200 mg/kg naphthalene and culled at 12-, 24-, 48- and 72-h time points. Lung function and bronchoalveolar lavage was performed and the lungs were dissected for histological analysis and for quantitation of DNA double-strand breaks using γH2AX as a molecular marker. Mice injected with naphthalene had increased epithelial denudation, bronchoalveolar lavage fluid cellularity and reactivity to nebulized methacholine chloride as compared to corn oil vehicle controls. Histological changes were most pronounced at the 12- and 24-h time points. DNA double-strand breaks, quantitated as the number of γH2AX foci per cell, were highest at the 24- and 48-h time points. All parameters had decreased at the 72-h time point, consistent with airway re-epithelization and cellular repair. Our findings indicate a time-dependent accumulation of γH2AX foci in mouse airway epithelial cells following administration of naphthalene. Naphthalene airway epithelial injury constitutes a model of DNA double-strand breaks in mice, which can be adapted as a suitable model for further investigation of genotoxic damage for evaluating the efficacy of potential therapeutics.
Collapse
Affiliation(s)
- Tom C Karagiannis
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Le Cras TD, Acciani TH, Mushaben EM, Kramer EL, Pastura PA, Hardie WD, Korfhagen TR, Sivaprasad U, Ericksen M, Gibson AM, Holtzman MJ, Whitsett JA, Hershey GKK. Epithelial EGF receptor signaling mediates airway hyperreactivity and remodeling in a mouse model of chronic asthma. Am J Physiol Lung Cell Mol Physiol 2010; 300:L414-21. [PMID: 21224214 DOI: 10.1152/ajplung.00346.2010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increases in the epidermal growth factor receptor (EGFR) have been associated with the severity of airway thickening in chronic asthmatic subjects, and EGFR signaling is induced by asthma-related cytokines and inflammation. The goal of this study was to determine the role of EGFR signaling in a chronic allergic model of asthma and specifically in epithelial cells, which are increasingly recognized as playing an important role in asthma. EGFR activation was assessed in mice treated with intranasal house dust mite (HDM) for 3 wk. EGFR signaling was inhibited in mice treated with HDM for 6 wk, by using either the drug erlotinib or a genetic approach that utilizes transgenic mice expressing a mutant dominant negative epidermal growth factor receptor in the lung epithelium (EGFR-M mice). Airway hyperreactivity (AHR) was assessed by use of a flexiVent system after increasing doses of nebulized methacholine. Airway smooth muscle (ASM) thickening was measured by morphometric analysis. Sensitization to HDM (IgG and IgE), inflammatory cells, and goblet cell changes were also assessed. Increased EGFR activation was detected in HDM-treated mice, including in bronchiolar epithelial cells. In mice exposed to HDM for 6 wk, AHR and ASM thickening were reduced after erlotinib treatment and in EGFR-M mice. Sensitization to HDM and inflammatory cell counts were similar in all groups, except neutrophil counts, which were lower in the EGFR-M mice. Goblet cell metaplasia with HDM treatment was reduced by erlotinib, but not in EGFR-M transgenic mice. This study demonstrates that EGFR signaling, especially in the airway epithelium, plays an important role in mediating AHR and remodeling in a chronic allergic asthma model.
Collapse
Affiliation(s)
- Timothy D Le Cras
- Division of Pulmonary Biology, Cincinnati Children's Hospital, OH 45229, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Evans MJ, Fanucchi MV, Plopper CG, Hyde DM. Postnatal development of the lamina reticularis in primate airways. Anat Rec (Hoboken) 2010; 293:947-54. [PMID: 20503389 DOI: 10.1002/ar.20824] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The basement membrane zone (BMZ) appears as three component layers: the lamina lucida, lamina densa, and lamina reticularis. The laminas lucida and densa are present during all stages of development. The lamina reticularis appears during postnatal development. Collagens I, III, and V form heterogeneous fibers that account for the thickness of the lamina reticularis. Additionally, there are three proteoglycans considered as integral components of the BMZ: perlecan, collagen XVIII, and bamacan. Perlecan is the predominant heparan sulfate proteoglycan in the airway BMZ. It is responsible for many of the functions attributed to the BMZ, in particular, trafficking of growth factors and cytokines between epithelial and mesenchymal cells. Growth factor binding sites on perlecan include FGF-1, FGF-2, FGF-7, FGF-10, PDGF, HGF, HB-EGF, VEGF, and TGF-beta. Growth factors pass through the BMZ when moving between the epithelial and mesenchymal cell layers. They move by rapid reversible binding with sites on both the heparan sulfate chains and core protein of perlecan. In this manner, perlecan regulates movement of growth factors between tissues. Another function of the BMZ is storage and regulation of FGF-2. FGF-2 has been shown to be involved with normal growth and thickening of the BMZ. Thickening of the BMZ is a feature of airway remodeling in asthma. It may have a positive effect by protecting against airway narrowing and air trapping. Conversely, it may have a negative effect by influencing trafficking of growth factors in the epithelial mesenchymal trophic unit. However, currently the significance of BMZ thickening is not known.
Collapse
Affiliation(s)
- Michael J Evans
- California National Primate Research Center, University of California, Davis, California, USA.
| | | | | | | |
Collapse
|
29
|
Carreño E, Enríquez-de-Salamanca A, Tesón M, García-Vázquez C, Stern ME, Whitcup SM, Calonge M. Cytokine and chemokine levels in tears from healthy subjects. Acta Ophthalmol 2010; 88:e250-8. [PMID: 20738261 DOI: 10.1111/j.1755-3768.2010.01978.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE There is growing evidence for the existence of an 'immune tone' in normal tears. The aim of this study was to determine the levels of a large panel of cytokines and chemokines in tears obtained from healthy subjects. These levels can then serve as baseline values for comparison with patients suffering from ocular surface diseases. SUBJECTS AND METHODS Nine healthy subjects participated in this study, and normal ocular surface health was documented by the results of a dry eye questionnaire, Schirmer strip wetting, and vital staining of the cornea. Four microliters of tears were collected from each eye and analysed separately with multiplex bead-based assays for the concentration of 30 cytokines and chemokines. RESULTS Twenty-five cytokines/chemokines were detected. CCL11/Eotaxin1, GM-CSF, G-CSF, IFN-γ, IL-2, IL-3, IL-4, IL-5, IL-10, IL-13, IL-12p70, IL-15, CX3CL1/Fractalkine, TNF-α, epidermal growth factor, and CCL4/MIP-1β were present at 5-100 pg/ml. IL-1β, IL-6, IL-7A, CXCL8/IL-8, and CCL2/MCP-1 were present at 100-400 pg/ml. IL-1Ra, CXCL10/IP-10 and vascular endothelial growth factor were present at more than 1000 pg/ml. CONCLUSION Multiplex bead-based assays are convenient for cytokine/chemokine detection in tears. Fracktalkine has been detected in human healthy tears for the first time. The knowledge of cytokine/chemokine concentrations in tears from normal subjects is an important reference for further comparison with patients suffering from ocular surface diseases. Variability in their levels can reflect a phenomenon of potential importance for the understanding of the ocular surface cytokine pattern.
Collapse
Affiliation(s)
- Ester Carreño
- Instituto Universitario de Oftalmobiología, University of Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Enríquez-de-Salamanca A, Calonge M. Cytokines and chemokines in immune-based ocular surface inflammation. Expert Rev Clin Immunol 2010; 4:457-67. [PMID: 20477574 DOI: 10.1586/1744666x.4.4.457] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Altered levels of several cytokines and chemokines have been found in different types of inflammatory ocular surface diseases, such as allergy or dry-eye syndrome. It has also been demonstrated that epithelial cells play a key role in the persistence and even initiation of chronic mucosal inflammation. The recent development of 'multiplex detection' technologies has facilitated the identification of specific patterns of expression of these molecules in some ocular immune-based inflammatory disorders. Analysis of these molecules in tissues, cells (in vivo and in vitro) and tears has revealed that not only inflammatory cells but also epithelial and fibroblast resident cells are sources of these molecules. The purpose of this review is to summarize recent studies in this field.
Collapse
Affiliation(s)
- Amalia Enríquez-de-Salamanca
- IOBA (Institute of Applied Opthalmobiology), Ocular Surface Group, Campus Miguel Delibes, University of Valladolid, Valladolid, Spain.
| | | |
Collapse
|
31
|
Enhancement of inflammatory mediator release by beta(2)-adrenoceptor agonists in airway epithelial cells is reversed by glucocorticoid action. Br J Pharmacol 2010; 160:410-20. [PMID: 20423350 DOI: 10.1111/j.1476-5381.2010.00708.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Due to their potent bronchodilator properties, beta(2)-adrenoceptor agonists are a mainstay of therapy in asthma. However, the effects of beta(2)-adrenoceptor agonists on inflammation are less clear. Accordingly, we have investigated the effects of beta(2)-adrenoceptor agonists on inflammatory mediator release. EXPERIMENTAL APPROACH Transcription factor activation, and both release and mRNA expression of IL-6 and IL-8 were examined by luciferase reporter assay, elisa and real-time RT-PCR in bronchial human epithelial BEAS-2B cells or primary human bronchial epithelial cells grown at an air-liquid interface. KEY RESULTS Pre-incubation with beta(2)-adrenoceptor agonists (salbutamol, salmeterol, formoterol) augmented the release and mRNA expression of IL-6 and IL-8 induced by IL-1beta and IL-1beta plus histamine, whereas NF-kappaB-dependent transcription was significantly repressed, and AP-1-dependent transcription was unaffected. These effects were mimicked by other cAMP-elevating agents (PGE(2), forskolin). Enhancement of cytokine release by beta(2)-adrenoceptor agonists also occurred in primary bronchial epithelial cells. Addition of dexamethasone with salmeterol repressed IL-6 and IL-8 release to levels that were similar to the repression achieved in the absence of salmeterol. IL-6 release was enhanced when salmeterol was added before, concurrently or after IL-1beta plus histamine stimulation, whereas IL-8 release was only enhanced by salmeterol addition prior to stimulation. CONCLUSIONS AND IMPLICATIONS Enhancement of IL-6 and IL-8 release may contribute to the deleterious effects of beta(2)-adrenoceptor agonists in asthma. As increased inflammatory mediator expression is prevented by the addition of glucocorticoid to the beta(2)-adrenoceptor, our data provide further mechanistic support for the use of combination therapies in asthma management.
Collapse
|
32
|
Låg M, Rodionov D, Øvrevik J, Bakke O, Schwarze PE, Refsnes M. Cadmium-induced inflammatory responses in cells relevant for lung toxicity: Expression and release of cytokines in fibroblasts, epithelial cells and macrophages. Toxicol Lett 2010; 193:252-60. [DOI: 10.1016/j.toxlet.2010.01.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 01/01/2023]
|
33
|
Freishtat RJ, Benton AS, Watson AM, Wang Z, Rose MC, Hoffman EP. Delineation of a gene network underlying the pulmonary response to oxidative stress in asthma. J Investig Med 2010. [PMID: 19730131 DOI: 10.231/jim.0b013e3181b91a83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cigarette smoke exposure induces a respiratory epithelial response that is mediated in part by oxidative stress. The contribution of oxidative stress to cigarette smoke-induced responses in asthmatic respiratory epithelium is not well understood. We sought to increase this understanding by employing data integration and systems biology approaches to publicly available microarray data deposited over the last several years. In this study, we analyzed 14 publicly available asthma- or tobacco-relevant data series and found 4 (2 mice and 2 human) that fulfilled adequate signal/noise thresholds using unsupervised clustering and F test statistics. Using significance filters and a 4-way Venn diagram approach, we identified 26 overlapping genes in the epithelial transcriptional stress response to cigarette smoke and asthma. This test set corresponded to a 26-member gene/protein network containing 18 members that were highly regulated in a fifth data series of direct lung oxidative stress. Of those network members, 2 stood out (ie, tissue inhibitor of metalloproteinase 1 and thrombospondin 1) owing to central location within the network and marked up-regulation sustained at later times in response to oxidative stress. These analyses identified key relationships and primary hypothetical targets for future studies of cigarette smoke-induced oxidative stress in asthma.
Collapse
Affiliation(s)
- Robert J Freishtat
- Division of Emergency Medicine, Children's National Medical Center, The George Washington University, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Freishtat RJ, Benton AS, Watson AM, Wang Z, Rose MC, Hoffman EP. Delineation of a gene network underlying the pulmonary response to oxidative stress in asthma. J Investig Med 2010; 57:756-64. [PMID: 19730131 DOI: 10.2310/jim.0b013e3181b91a83] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cigarette smoke exposure induces a respiratory epithelial response that is mediated in part by oxidative stress. The contribution of oxidative stress to cigarette smoke-induced responses in asthmatic respiratory epithelium is not well understood. We sought to increase this understanding by employing data integration and systems biology approaches to publicly available microarray data deposited over the last several years. In this study, we analyzed 14 publicly available asthma- or tobacco-relevant data series and found 4 (2 mice and 2 human) that fulfilled adequate signal/noise thresholds using unsupervised clustering and F test statistics. Using significance filters and a 4-way Venn diagram approach, we identified 26 overlapping genes in the epithelial transcriptional stress response to cigarette smoke and asthma. This test set corresponded to a 26-member gene/protein network containing 18 members that were highly regulated in a fifth data series of direct lung oxidative stress. Of those network members, 2 stood out (ie, tissue inhibitor of metalloproteinase 1 and thrombospondin 1) owing to central location within the network and marked up-regulation sustained at later times in response to oxidative stress. These analyses identified key relationships and primary hypothetical targets for future studies of cigarette smoke-induced oxidative stress in asthma.
Collapse
Affiliation(s)
- Robert J Freishtat
- Division of Emergency Medicine, Children's National Medical Center, The George Washington University, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Carpe N, Mandeville I, Ribeiro L, Ponton A, Martin JG, Kho AT, Chu JH, Tantisira K, Weiss ST, Raby BA, Kaplan F. Genetic influences on asthma susceptibility in the developing lung. Am J Respir Cell Mol Biol 2010; 43:720-30. [PMID: 20118217 DOI: 10.1165/rcmb.2009-0412oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Asthma is the leading serious pediatric chronic illness in the United States, affecting 7.1 million children. The prevalence of asthma in children under 4 years of age has increased dramatically in the last 2 decades. Existing evidence suggests that this increase in prevalence derives from early environmental exposures acting on a pre-existing asthma-susceptible genotype. We studied the origins of asthma susceptibility in developing lung in rat strains that model the distinct phenotypes of airway hyperresponsiveness (Fisher rats) and atopy (brown Norway [BN] rats). Postnatal BN rat lungs showed increased epithelial proliferation and tracheal goblet cell hyperplasia. Fisher pups showed increased lung resistance at age 2 weeks, with elevated neutrophils throughout the postnatal period. Diverse transcriptomic signatures characterized the distinct respiratory phenotypes of developing lung in both rat models. Linear regression across age and strain identified developmental variation in expression of 1,376 genes, and confirmed both strain and temporal regulation of lung gene expression. Biological processes that were heavily represented included growth and development (including the T Box 1 transcription factor [Tbx5], the epidermal growth factor receptor [Egfr], the transforming growth factor beta-1-induced transcript 1 [Tgfbr1i1]), extracellular matrix and cell adhesion (including collagen and integrin genes), and immune function (including lymphocyte antigen 6 (Ly6) subunits, IL-17b, Toll-interacting protein, and Ficolin B). Genes validated by quantitative RT-PCR and protein analysis included collagen III alpha 1 Col3a1, Ly6b, glucocorticoid receptor and Importin-13 (specific to the BN rat lung), and Serpina1 and Ficolin B (specific to the Fisher lung). Innate differences in patterns of gene expression in developing lung that contribute to individual variation in respiratory phenotype are likely to contribute to the pathogenesis of asthma.
Collapse
Affiliation(s)
- Nicole Carpe
- Department of Human Genetics, McGill University, 4060 Saint Catherine West, Montreal, PQ, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Øvrevik J, Låg M, Holme J, Schwarze P, Refsnes M. Cytokine and chemokine expression patterns in lung epithelial cells exposed to components characteristic of particulate air pollution. Toxicology 2009; 259:46-53. [DOI: 10.1016/j.tox.2009.01.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 01/28/2009] [Accepted: 01/29/2009] [Indexed: 11/26/2022]
|
37
|
Enríquez-de-Salamanca A, Calder V, Gao J, Galatowicz G, García-Vázquez C, Fernández I, Stern ME, Diebold Y, Calonge M. Cytokine responses by conjunctival epithelial cells: an in vitro model of ocular inflammation. Cytokine 2008; 44:160-7. [PMID: 18760623 DOI: 10.1016/j.cyto.2008.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 07/16/2008] [Accepted: 07/18/2008] [Indexed: 12/18/2022]
Abstract
OBJECTIVES We examined the differential secretion of cytokines by a conjunctival epithelial cell line in response to proinflammatory cytokines to identify the potential contributions during ocular surface inflammation. METHODS A conjunctival epithelial cell line was exposed to IFN-gamma, TNF-alpha, IL-4, or IL-13, and cytokine production was determined in supernatants at different times after exposure. Cell apoptosis was measured by flow cytometry. RESULTS TNF-alpha induced the greatest effect on cytokine secretion, which was time-dependent. TNF-alpha-stimulated secretion of IL-12p40 was significantly increased by 30 min; GM-CSF, MCP-1, IL-6, IL-7, IL-8, and RANTES were significantly increased by 2 h, and IFN-gamma and IL-1alpha by 24 h. After 48 h, TNF-alpha also induced a significant increase in IL-1beta, IL-3, and IP-10 secretion. IFN-gamma significantly enhanced IP-10 and RANTES secretion after 48 h of exposure. Following IL-4 treatment there was a significant increase in eotaxin-1 after 24h, and IL-12p40 and IL-3 after 48 h. IL-13 significantly increased the secretion of eotaxin-1 after 24 h, and IL-8 after 48 h. CONCLUSION Our results suggest that conjunctival epithelial cells are an important source of cytokines and chemokines that are regulated by proinflammatory cytokines and may play an important role in ocular surface inflammation.
Collapse
Affiliation(s)
- Amalia Enríquez-de-Salamanca
- IOBA (Institute of Applied Ophthalmobiology)-Ocular Surface Group, University of Valladolid, Campus Miguel Delibes, Valladolid E-47011, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cho YS, Oh SY, Zhu Z. Tyrosine phosphatase SHP-1 in oxidative stress and development of allergic airway inflammation. Am J Respir Cell Mol Biol 2008; 39:412-9. [PMID: 18441283 DOI: 10.1165/rcmb.2007-0229oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress has been implicated in allergic responses. SHP-1 is a target of oxidants and has been reported as a negative regulator in a mouse model of asthma. We investigated the effect of oxidative stress on the development of allergic airway inflammation in heterozygous viable motheaten (mev/+) mice deficient of SHP-1. Wild-type (WT) and mev/+ mice were compared in this study. Human alveolar epithelial cells (A549) transfected with mutant SHP-1 gene were used to evaluate the role of SHP-1 in lung epithelial cells. Hydrogen peroxide (H(2)O(2)) and Paraquat were used in vitro and in vivo, respectively. We also investigated whether mev/+ mice can break immune tolerance when exposed to aeroallergen intranasally. Compared with WT mice, bronchoalveolar lavage (BAL) cells and splenocytes from mev/+ mice showed a different response to oxidant stress. This includes a significant enhancement of intracellular reactive oxygen species and STAT6 phosphorylation in vitro and increased CCL20, decreased IL-10, and increased number of dendritic cells in BAL fluid in vivo. Mutant SHP-1-transfected epithelial cells secreted higher levels of CCL20 and RANTES after exposure to oxidative stress. Furthermore, break of immune tolerance, as development of allergic airway inflammation, was observed in mev/+ mice after allergen exposure, which was suppressed by antioxidant N-acetylcystein. These data suggest that SHP-1 plays an important role in regulating oxidative stress. Thus, increased intracellular oxidative stress and lack of SHP-1 in the presence of T helper cell type 2-prone cellular activation may lead to the development of allergic airway inflammation.
Collapse
Affiliation(s)
- You Sook Cho
- Division of Allergy and Clinical Immunology, Johns Hopkins Asthma Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
39
|
Malavia NK, Mih JD, Raub CB, Dinh BT, George SC. IL-13 induces a bronchial epithelial phenotype that is profibrotic. Respir Res 2008; 9:27. [PMID: 18348727 PMCID: PMC2292179 DOI: 10.1186/1465-9921-9-27] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 03/18/2008] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Inflammatory cytokines (e.g. IL-13) and mechanical perturbations (e.g. scrape injury) to the epithelium release profibrotic factors such as TGF-beta2, which may, in turn, stimulate subepithelial fibrosis in asthma. We hypothesized that prolonged IL-13 exposure creates a plastic epithelial phenotype that is profibrotic through continuous secretion of soluble mediators at levels that stimulate subepithelial fibrosis. METHODS Normal human bronchial epithelial cells (NHBE) were treated with IL-13 (0, 0.1, 1, or 10 ng/ml) for 14 days (day 7 to day 21 following seeding) at an air-liquid interface during differentiation, and then withdrawn for 1 or 7 days. Pre-treated and untreated NHBE were co-cultured for 3 days with normal human lung fibroblasts (NHLF) embedded in rat-tail collagen gels during days 22-25 or days 28-31. RESULTS IL-13 induced increasing levels of MUC5AC protein, and TGF-beta2, while decreasing beta-Tubulin IV at day 22 and 28 in the NHBE. TGF-beta2, soluble collagen in the media, salt soluble collagen in the matrix, and second harmonic generation (SHG) signal from fibrillar collagen in the matrix were elevated in the IL-13 pre-treated NHBE co-cultures at day 25, but not at day 31. A TGF-beta2 neutralizing antibody reversed the increase in collagen content and SHG signal. CONCLUSION Prolonged IL-13 exposure followed by withdrawal creates an epithelial phenotype, which continuously secretes TGF-beta2 at levels that increase collagen secretion and alters the bulk optical properties of an underlying fibroblast-embedded collagen matrix. Extended withdrawal of IL-13 from the epithelium followed by co-culture does not stimulate fibrosis, indicating plasticity of the cultured airway epithelium and an ability to return to a baseline. Hence, IL-13 may contribute to subepithelial fibrosis in asthma by stimulating biologically significant TGF-beta2 secretion from the airway epithelium.
Collapse
Affiliation(s)
- Nikita K Malavia
- Department of Chemical Engineering and Materials Science, University of California - Irvine, Irvine, CA, USA.
| | | | | | | | | |
Collapse
|
40
|
Holden NS, Gong W, King EM, Kaur M, Giembycz MA, Newton R. Potentiation of NF-kappaB-dependent transcription and inflammatory mediator release by histamine in human airway epithelial cells. Br J Pharmacol 2007; 152:891-902. [PMID: 17891168 PMCID: PMC2078227 DOI: 10.1038/sj.bjp.0707457] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND PURPOSE In asthma, histamine contributes to bronchoconstriction, vasodilatation and oedema, and is associated with the late phase response. The current study investigates possible inflammatory effects of histamine acting on nuclear factor kappaB (NF-kappaB)-dependent transcription and cytokine release. EXPERIMENTAL APPROACH Using BEAS-2B bronchial epithelial cells, NF-kappaB-dependent transcription and both release and mRNA expression of IL-6 and IL-8 were examined by reporter assay, ELISA and quantitative RT-PCR. Histamine receptors were detected using qualitative RT-PCR and function examined using selective agonists and antagonists. KEY RESULTS Addition of histamine to TNFalpha-stimulated BEAS-2B cells maximally potentiated NF-kappaB-dependent transcription 1.8 fold, whereas IL-6 and IL-8 protein release were enhanced 7.3- and 2.7-fold respectively. These responses were, in part, NF-kappaB-dependent and were associated with 2.6- and 1.7-fold enhancements of IL-6 and IL-8 mRNA expression. The H(1) receptor antagonist, mepyramine, caused a rightward shift in the concentration-response curves of TNFalpha-induced NF-kappaB-dependent transcription (pA(2)=9.91) and release of IL-6 (pA(2)=8.78) and IL-8 (pA(2)=8.99). Antagonists of histamine H(2), H(3) and H(4) receptors were without effect. Similarly, H(3) and H(4) receptor agonists did not affect TNFalpha-induced NF-kappaB-dependent transcription, or IL-6 and IL-8 release at concentrations below 10 microM. The anti-inflammatory glucocorticoid, dexamethasone, inhibited the histamine enhanced NF-kappaB-dependent transcription and IL-6 and IL-8 release. CONCLUSIONS AND IMPLICATIONS Potentiation of NF-kappaB-dependent transcription and inflammatory cytokine release by histamine predominantly involves receptors of the H(1) receptor subtype. These data support an anti-inflammatory role for H(1) receptor antagonists by preventing the transcription and release of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- N S Holden
- Department of Cell Biology and Anatomy, Respiratory Research Group, Faculty of Medicine, University of Calgary Calgary, Alberta, Canada
| | - W Gong
- Department of Cell Biology and Anatomy, Respiratory Research Group, Faculty of Medicine, University of Calgary Calgary, Alberta, Canada
| | - E M King
- Department of Cell Biology and Anatomy, Respiratory Research Group, Faculty of Medicine, University of Calgary Calgary, Alberta, Canada
| | - M Kaur
- Department of Cell Biology and Anatomy, Respiratory Research Group, Faculty of Medicine, University of Calgary Calgary, Alberta, Canada
- Department of Pharmacology and Therapeutics, Respiratory Research Group, Faculty of Medicine, University of Calgary Calgary, Alberta, Canada
| | - M A Giembycz
- Department of Pharmacology and Therapeutics, Respiratory Research Group, Faculty of Medicine, University of Calgary Calgary, Alberta, Canada
| | - R Newton
- Department of Cell Biology and Anatomy, Respiratory Research Group, Faculty of Medicine, University of Calgary Calgary, Alberta, Canada
- Author for correspondence:
| |
Collapse
|
41
|
Booth BW, Sandifer T, Martin EL, Martin LD. IL-13-induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17. Respir Res 2007; 8:51. [PMID: 17620132 PMCID: PMC1976612 DOI: 10.1186/1465-9921-8-51] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 07/09/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pleiotrophic cytokine interleukin (IL)-13 features prominently in allergic and inflammatory diseases. In allergic asthma, IL-13 is well established as an inducer of airway inflammation and tissue remodeling. We demonstrated previously that IL-13 induces release of transforming growth factor-alpha (TGFalpha) from human bronchial epithelial cells, with proliferation of these cells mediated by the autocrine/paracrine action of this growth factor. TGFalpha exists as an integral membrane protein and requires proteolytic processing to its mature form, with a disintegrin and metalloproteinase (ADAM)17 responsible for this processing in a variety of tissues. METHODS In this study, normal human bronchial epithelial (NHBE) cells grown in air/liquid interface (ALI) culture were used to examine the mechanisms whereby IL-13 induces release of TGFalpha and cellular proliferation. Inhibitors and antisense RNA were used to examine the role of ADAM17 in these processes, while IL-13-induced changes in the intracellular expression of TGFalpha and ADAM17 were visualized by confocal microscopy. RESULTS IL-13 was found to induce proliferation of NHBE cells, and release of TGFalpha, in an ADAM17-dependent manner; however, this IL-13-induced proliferation did not appear to result solely from ADAM17 activation. Rather, IL-13 induced a change in the location of TGFalpha expression from intracellular to apical regions of the NHBE cells. The apical region was also found to be a site of significant ADAM17 expression, even prior to IL-13 stimulation. CONCLUSION Results from this study indicate that ADAM17 mediates IL-13-induced proliferation and TGFalpha shedding in NHBE cells. Furthermore, they provide the first example wherein a cytokine (IL-13) induces a change in the intracellular expression pattern of a growth factor, apparently inducing redistribution of intracellular stores of TGFalpha to the apical region of NHBE cells where expression of ADAM17 is prominent. Thus, IL-13-induced, ADAM17-mediated release of TGFalpha, and subsequent epithelial cell proliferation, could contribute to the epithelial hypertrophy, as well as other features, associated with airway remodeling in allergic asthma.
Collapse
Affiliation(s)
- Brian W Booth
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tracy Sandifer
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Epidemiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA, USA
| | - Erika L Martin
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Linda D Martin
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
42
|
Bergeron C, Boulet LP. Structural changes in airway diseases: characteristics, mechanisms, consequences, and pharmacologic modulation. Chest 2006; 129:1068-87. [PMID: 16608960 DOI: 10.1378/chest.129.4.1068] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In airway diseases such as asthma and COPD, specific structural changes may be observed, very likely secondary to an underlying inflammatory process. Although it is still controversial, airway remodeling may contribute to the development of these diseases and to their clinical expression and outcome. Airway remodeling has been described in asthma in various degrees of severity, and correlations have been found between such features as increase in subepithelial collagen or proteoglycan deposits and airway responsiveness. Although the clinical significance of airway remodeling remains a matter of debate, it has been suggested as a potential target for treatments aimed at reducing asthma severity, improving its control, and possibly preventing its development. To date, drugs used to treat airway diseases have a little influence on airway structural changes. More research should be done to identify key changes, valuable treatments, and proper interventional timing to counteract these changes. The potential of novel therapeutic agents to reverse or prevent airway remodeling is an exciting avenue and warrants further evaluation.
Collapse
|
43
|
Ward C, Reid DW, Orsida BE, Feltis B, Ryan VA, Johns DP, Walters EH. Inter-relationships between airway inflammation, reticular basement membrane thickening and bronchial hyper-reactivity to methacholine in asthma; a systematic bronchoalveolar lavage and airway biopsy analysis. Clin Exp Allergy 2006; 35:1565-71. [PMID: 16393322 DOI: 10.1111/j.1365-2222.2005.02365.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Asthma is accepted as a disease characterized by airway inflammation, with evidence that airway structural changes, or 'remodelling' occurs. There are few studies relating airway physiology, inflammation and remodelling, however. We have carried out a study of inter-relationships between airway inflammation, airway remodelling, reticular basement membrane (RBM) thickening, and bronchial hyper-reactivity (BHR), before and after high-dose inhaled corticosteroid (fluticasone propionate 750 microg b.d.), in a group of relatively mild but symptomatic, steroid naïve asthma patients. METHODS Double-blind, randomized, placebo-controlled, parallel group study of inhaled corticosteroid (ICS) in 35 asthmatics, with bronchoalveolar lavage (BAL) and airway endobronchial biopsy (EBB) for inflammatory cell profiles and EBB for airway remodelling carried out at baseline, 3 and 12 months. RESULTS At baseline RBM thickening was related to BAL mast cells and EBB eosinophil counts. In turn baseline log EBB EG2 eosinophil count, log%BAL epithelial cells and log RBM thickness explained 55% of the variability in BHR. CONCLUSION We provide new information that airway inflammation, remodelling, and BHR in asthma are inter-related and improved by ICS therapy. Our data potentially support the need for early and long-term intervention with ICS even in relatively mild asthmatics, and the need to further assess the potential merit of longitudinal BHR testing in management of some patients, as this may reflect both airway inflammation and remodelling.
Collapse
Affiliation(s)
- C Ward
- Applied Immunobiology and Transplantation Research Group, The Freeman Hospital and University of Newcastle upon Tyne, UK.
| | | | | | | | | | | | | |
Collapse
|
44
|
Hastie AT, Wu M, Foster GC, Hawkins GA, Batra V, Rybinski KA, Cirelli R, Zangrilli JG, Peters SP. Alterations in vasodilator-stimulated phosphoprotein (VASP) phosphorylation: associations with asthmatic phenotype, airway inflammation and beta2-agonist use. Respir Res 2006; 7:25. [PMID: 16480498 PMCID: PMC1388207 DOI: 10.1186/1465-9921-7-25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 02/15/2006] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Vasodilator-stimulated phosphoprotein (VASP) mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this "brake" on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inflammation. Two hypotheses were examined: (1) injury from segmental allergen challenge increases VASP phosphorylation in airway epithelium in asthmatic but not nonasthmatic normal subjects, (2) regular in vivo beta2-agonist use increases VASP phosphorylation in asthmatic epithelium, altering cell adhesion. METHODS Bronchial epithelium was obtained from asthmatic and non-asthmatic normal subjects before and after segmental allergen challenge, and after regularly inhaled albuterol, in three separate protocols. VASP phosphorylation was examined in Western blots of epithelial samples. DNA was obtained for beta2-adrenergic receptor haplotype determination. RESULTS Although VASP phosphorylation increased, it was not significantly greater after allergen challenge in asthmatics or normals. However, VASP phosphorylation in epithelium of nonasthmatic normal subjects was double that observed in asthmatic subjects, both at baseline and after challenge. Regularly inhaled albuterol significantly increased VASP phosphorylation in asthmatic subjects in both unchallenged and antigen challenged lung segment epithelium. There was also a significant increase in epithelial cells in the bronchoalveolar lavage of the unchallenged lung segment after regular inhalation of albuterol but not of placebo. The haplotypes of the beta2-adrenergic receptor did not appear to associate with increased or decreased phosphorylation of VASP. CONCLUSION Decreased VASP phosphorylation was observed in epithelial cells of asthmatics compared to nonasthmatic normals, despite response to beta-agonist. The decreased phosphorylation does not appear to be associated with a particular beta2-adrenergic receptor haplotype. The observed decrease in VASP phosphorylation suggests greater inhibition of actin reorganization which is necessary for altering attachment and migration required during epithelial repair.
Collapse
Affiliation(s)
- Annette T Hastie
- Department of Internal Medicine, & Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Min Wu
- Department of Internal Medicine, & Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gayle C Foster
- Department of Internal Medicine, & Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gregory A Hawkins
- Department of Internal Medicine, & Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Vikas Batra
- Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Rosemary Cirelli
- Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - James G Zangrilli
- Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen P Peters
- Department of Internal Medicine, & Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
45
|
Chaudhary NI, Schnapp A, Park JE. Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. Am J Respir Crit Care Med 2006; 173:769-76. [PMID: 16415276 DOI: 10.1164/rccm.200505-717oc] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The model most often used to study the pathogenesis of pulmonary fibroses is the bleomycin (BLM)-induced lung fibrosis model. Several treatments have been efficacious in this model, but not in the clinic. OBJECTIVES To describe the time course of inflammation and fibrosis in the BLM model and to study the effect of timing of antiinflammatory and antifibrotic treatments on efficacy. METHODS AND MEASUREMENTS Rats were given single intratracheal injections of BLM on Day 0. At specified time points, 10 rats were killed and their lungs studied for proinflammatory cytokines and for profibrotic growth factor mRNA. After a single intratracheal injection of BLM on Day 0, rats were treated from Day 1 or 10 daily with oral prednisolone (10 mg/kg) or oral imatinib mesylate (50 mg/kg) for 21 d. RESULTS After BLM administration, the expression of inflammatory cytokines was elevated and returned to background levels at later time points. Profibrotic gene expression peaked between Days 9 and 14 and remained elevated till the end of the experiment, suggesting a "switch" between inflammation and fibrosis in this interval. Antiinflammatory treatment (oral prednisolone) was beneficial when commenced at Day 1, but had no effect if administered from Day 10 onward. However, imatinib mesylate was effective independently of the dosing regime. CONCLUSIONS The response of the BLM model to antifibrotic or antiinflammatory interventions is critically dependent on timing after the initial injury.
Collapse
Affiliation(s)
- Nveed I Chaudhary
- Department of Pulmonary Research, Boehringer Ingelheim Pharma GmbH & Co., KG, Biberach an der Riss, Germany
| | | | | |
Collapse
|
46
|
Calonge M, Enríquez-de-Salamanca A. The role of the conjunctival epithelium in ocular allergy. Curr Opin Allergy Clin Immunol 2005; 5:441-5. [PMID: 16131921 DOI: 10.1097/01.all.0000182545.75842.77] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The epithelium of target organs is playing an increasing role in allergy. Several studies have shown that epithelial cells participate actively in inflammatory processes. This review will focus on recent advances in the role of conjunctival epithelium in allergy as a potential target for therapeutic interventions. RECENT FINDINGS Several studies have already shown the involvement of ocular surface epithelial cells in allergic inflammatory diseases, because they are able to produce and secrete cytokines and chemokines upon stimulation. They also express adhesion molecules as well as receptors for several substances implicated in inflammation. Some studies have also shown that conjunctival epithelial cells express co-stimulatory molecules when they interact with activated T cells, adding more evidence to the important role that epithelial cells play in the pathogenesis of ocular inflammatory diseases. Recent reports have also demonstrated that during inflammatory conditions, conjunctival epithelial cells show an altered expression of their neuroreceptors, suggesting that a modulation of neural regulation may be of therapeutic value. SUMMARY The ocular surface epithelium is not just a simple physical barrier to the entrance of foreign bodies. It participates in the allergic inflammatory process by being influenced by inflammatory molecules, and by secreting inflammatory cytokines and chemokines. Moreover, the epithelium not only actively participates in the inflammation process but can also initiate it. This relevant spectrum of actions makes epithelium an attractive target for therapeutic interventions.
Collapse
Affiliation(s)
- Margarita Calonge
- Ocular Surface Group, Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain.
| | | |
Collapse
|
47
|
Postma DS, Koppelman GH. Confirmation of GPRA: a putative drug target for asthma. Am J Respir Crit Care Med 2005; 171:1323-4. [PMID: 15941840 DOI: 10.1164/rccm.2503006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Ennis DP, Cassidy JP, Mahon BP. Whole-cell pertussis vaccine protects against Bordetella pertussis exacerbation of allergic asthma. Immunol Lett 2005; 97:91-100. [PMID: 15626480 DOI: 10.1016/j.imlet.2004.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 10/01/2004] [Accepted: 10/04/2004] [Indexed: 12/11/2022]
Abstract
The prevalence of asthma and allergic disease has increased in many countries and there has been speculation that immunization promotes allergic sensitization. Bordetella pertussis infection exacerbates allergic asthmatic responses. We investigated whether whole-cell pertussis vaccine (Pw) enhanced or prevented B. pertussis induced exacerbation of allergic asthma. Groups of mice were immunized with Pw, infected with B. pertussis and/or sensitized to ovalbumin. Immunological, pathological and physiological changes were measured to assess the impact of Pw immunization on immune deviation and airway function. Pw immunization modulated ovalbumin-specific serum IgE production, and reduced local and systemic IL-13 and other cytokine responses to sensitizing allergen. Histopathological examination revealed Pw immunization reduced the severity of airway pathology and decreased bronchial hyperreactivity to methacholine exposure. Pw does not enhance airway IL-13 and consequently does not enhance but protects against the exacerbation of allergic responses. We find no evidence of Pw contributing to allergic asthma, but rather provide evidence of a mechanism whereby whole-cell pertussis vaccination has a protective role.
Collapse
Affiliation(s)
- Darren P Ennis
- Mucosal Immunology Laboratory, Institute of Immunology, NUI Maynooth, Ireland
| | | | | |
Collapse
|
49
|
Caproni M, Giomi B, Volpi W, Melani L, Schincaglia E, Macchia D, Manfredi M, D'Agata A, Fabbri P. Chronic idiopathic urticaria: infiltrating cells and related cytokines in autologous serum-induced wheals. Clin Immunol 2005; 114:284-92. [PMID: 15721839 DOI: 10.1016/j.clim.2004.10.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 10/13/2004] [Indexed: 02/08/2023]
Abstract
The term chronic autoimmune urticaria (CAIU) is used for chronic urticaria in subjects who present a whealing response to the intradermal injection of autologous serum, suggesting the presence of pathogenic antibody activities. In this study, we examined 28 chronic urticaria subjects with positive autologous serum skin test (ASST), all of whom presented autologous serum-induced lesions at different evolutive stages. Punch biopsies were taken from lesional skin of six subjects at 10', eight subjects at 30', six subjects at 60', and four subjects each at 24 and 48 h. Immunological studies focussed on infiltrating cell immunophenotype and related cytokines, chemokines and chemokine receptors, adhesion molecules. Immunohistochemical staining was performed to measure expression of CD3, CD4, CD8, tryptase, eosinophil cationic protein, myeloperoxidase, basophil granular protein, IL-4, IL-5, IL-8, CCR3 and CXCR3, ICAM-1, VCAM and ELAM. Control staining was done on unaffected skin from the patients and normal skin from four healthy donors. The main infiltrating population was represented by neutrophils, seen focally in both unaffected skin (P = 0.001) and healthy controls (P = 0.003). IFN-gamma and IL-5 were expressed focally in autologous wheals. Significant staining for IL-4 was seen at 30'. CCR3 and CXCR3 were expressed less in autologous wheals than in uninvolved skin (P < 0.0001; P = 0.002). Cellular adhesion molecules (CAMs) reached their highest expression at 30' and 60' in induced lesions, and they showed strong expression also in unaffected skin (ICAM-1: P < 0.0001). Our data show that the immunoinflammatory features of ASST-induced wheals involve a prevalent role of lymphocytes (with a mixed Th1/Th2 response), with strong neutrophil infiltration and activity and involvement of the chemokine pathway. We interpreted the finding of inflammatory cells and mediator up-regulation in uninvolved CIU skin as a sign of prolonged and widespread "urticarial status".
Collapse
Affiliation(s)
- Marzia Caproni
- II Department of Dermatological Sciences, University of Florence, Via degli Alfani, 37, 50121 Florence Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Johnson PRA, Burgess JK. Airway smooth muscle and fibroblasts in the pathogenesis of asthma. Curr Allergy Asthma Rep 2004; 4:102-8. [PMID: 14769258 DOI: 10.1007/s11882-004-0054-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Asthma is a disease characterized by marked structural changes within the airway wall. These changes include deposition of extracellular matrix proteins and an increase in the numbers of airway smooth muscle cells and subepithelial fibroblasts. Both these cell types possess properties that would enable them to be involved in remodeling and inflammation. These properties include the production of a variety of cytokines; growth factors and fibrogenic mediators; proliferation, migration and release of extracellular matrix proteins; matrix metalloproteinases; and their tissue inhibitors. Airway smooth muscle and subepithelial fibroblasts are likely to be key players in the asthmatic airway pathophysiology through their interaction with each other, inflammatory cells, and other mesenchymal cells, such as the epithelium. Current asthma therapies lack the ability to completely prevent or reverse the remodeling of the airways, therefore indicating the need for new therapeutic strategies to counter this important aspect of asthma.
Collapse
Affiliation(s)
- Peter R A Johnson
- Department of Pharmacology, The University of Sydney, NSW Australia 2006.
| | | |
Collapse
|