1
|
Viana JPM, Costa FF, Dias TG, Mendes PM, Copeland GB, Nascimento WS, Mendes SSN, Figueiredo IFS, Fernandes ES, Bocca AL, Maciel MCG. Glucans: A Therapeutic Alternative for Sepsis Treatment. J Immunol Res 2024; 2024:6876247. [PMID: 38939744 PMCID: PMC11208795 DOI: 10.1155/2024/6876247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/29/2024] Open
Abstract
Sepsis treatment is a challenging condition due to its complexity, which involves host inflammatory responses to a severe and potentially fatal infection, associated with organ dysfunction. The aim of this study was to analyze the scientific literature on the immunomodulatory effects of glucans in a murine model of systemic infection induced by cecal ligation and puncture. This study comprises an integrative literature review based on systematic steps, with searches carried out in the PubMed, ScienceDirect, Scopus, Web of Science, and Embase databases. In most studies, the main type of glucan investigated was β-glucan, at 50 mg/kg, and a reduction of inflammatory responses was identified, minimizing the occurrence of tissue damage leading to increased animal survival. Based on the data obtained and discussed in this review, glucans represent a promising biotechnological alternative to modulate the immune response and could potentially be used in the clinical management of septic individuals.
Collapse
Affiliation(s)
- Jesse P. M. Viana
- Departamento de Biologia CelularInstituto de Ciências BiológicasPrograma de Pós Graduação em Ciências Biológicas (Biologia Molecular)Laboratório de Imunologia AplicadaUniversidade de Brasília (UnB), Brasília, Brazil
| | - Fernanda F. Costa
- Programa de Pós-graduação em Saúde e TecnologiaUniversidade Federal do Maranhão, São Luís, Brazil
| | - Tatielle G. Dias
- Programa de Pós-graduação em Ciências da SaúdeUniversidade Federal do Maranhão, São Luís, Brazil
| | - Priscila M. Mendes
- Programa de Pós-graduação em Ciências da SaúdeUniversidade Federal do Maranhão, São Luís, Brazil
| | - Gabriel B. Copeland
- Laboratório de Imunologia AplicadaUniversidade de Brasília (UnB), Brasília, Brazil
| | | | - Sofia S. N. Mendes
- Laboratório de Imunologia AplicadaUniversidade de Brasília (UnB), Brasília, Brazil
| | - Isabella F. S. Figueiredo
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente—Faculdades Pequeno PríncipeInstituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Elizabeth S. Fernandes
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente—Faculdades Pequeno PríncipeInstituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Anamelia L. Bocca
- Departamento de Biologia CelularInstituto de Ciências BiológicasPrograma de Pós Graduação em Ciências Biológicas (Biologia Molecular)Laboratório de Imunologia AplicadaUniversidade de Brasília (UnB), Brasília, Brazil
- Plataforma Bi-Institucional de Pesquisa Translacional—Fiocruz/SP, São Paulo, Brazil
| | - Márcia C. G. Maciel
- Departamento de Biologia CelularInstituto de Ciências BiológicasPrograma de Pós Graduação em Ciências Biológicas (Biologia Molecular)Laboratório de Imunologia AplicadaUniversidade de Brasília (UnB), Brasília, Brazil
- Programa de Pós-graduação em Saúde e TecnologiaUniversidade Federal do Maranhão, São Luís, Brazil
- Programa de Pós-graduação em Ciências da SaúdeUniversidade Federal do Maranhão, São Luís, Brazil
| |
Collapse
|
2
|
Pasula S, Gopalakrishnan J, Fu Y, Tessneer KL, Wiley MM, Pelikan RC, Kelly JA, Gaffney PM. Systemic lupus erythematosus variants modulate the function of an enhancer upstream of TNFAIP3. Front Genet 2022; 13:1011965. [PMID: 36199584 PMCID: PMC9527318 DOI: 10.3389/fgene.2022.1011965] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
TNFAIP3/A20 is a prominent autoimmune disease risk locus that is correlated with hypomorphic TNFAIP3 expression and exhibits complex chromatin architecture with over 30 predicted enhancers. This study aimed to functionally characterize an enhancer ∼55 kb upstream of the TNFAIP3 promoter marked by the systemic lupus erythematosus (SLE) risk haplotype index SNP, rs10499197. Allele effects of rs10499197, rs58905141, and rs9494868 were tested by EMSA and/or luciferase reporter assays in immune cell types. Co-immunoprecipitation, ChIP-qPCR, and 3C-qPCR were performed on patient-derived EBV B cells homozygous for the non-risk or SLE risk TNFAIP3 haplotype to assess haplotype-specific effects on transcription factor binding and chromatin regulation at the TNFAIP3 locus. This study found that the TNFAIP3 locus has a complex chromatin regulatory network that spans ∼1M bp from the promoter region of IL20RA to the 3' untranslated region of TNFAIP3. Functional dissection of the enhancer demonstrated co-dependency of the RelA/p65 and CEBPB binding motifs that, together, increase IL20RA and IFNGR1 expression and decreased TNFAIP3 expression in the context of the TNFAIP3 SLE risk haplotype through dynamic long-range interactions up- and downstream. Examination of SNPs in linkage disequilibrium (D' = 1.0) with rs10499197 identified rs9494868 as a functional SNP with risk allele-specific increase in nuclear factor binding and enhancer activation in vitro. In summary, this study demonstrates that SNPs carried on the ∼109 kb SLE risk haplotype facilitate hypermorphic IL20RA and IFNGR1 expression, while suppressing TNFAIP3 expression, adding to the mechanistic potency of this critically important locus in autoimmune disease pathology.
Collapse
Affiliation(s)
- Satish Pasula
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jaanam Gopalakrishnan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yao Fu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kandice L. Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Mandi M. Wiley
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Richard C. Pelikan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jennifer A. Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Patrick M. Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
3
|
Li M, Schweiger MW, Ryan DJ, Nakano I, Carvalho LA, Tannous BA. Olfactory receptor 5B21 drives breast cancer metastasis. iScience 2021; 24:103519. [PMID: 34917897 PMCID: PMC8666352 DOI: 10.1016/j.isci.2021.103519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/12/2021] [Accepted: 11/23/2021] [Indexed: 02/08/2023] Open
Abstract
Olfactory receptors (ORs), responsible for the sense of smell, play an essential role in various physiological processes outside the nasal epithelium, including cancer. In breast cancer, however, the expression and function of ORs remain understudied. We examined the significance of OR transcript abundance in primary and metastatic breast cancer to the brain, bone, and lung. Although 20 OR transcripts were differentially expressed in distant metastases, OR5B21 displayed an increased transcript abundance in all three metastatic sites compared with the primary tumor. Knockdown of OR5B21 significantly decreased the invasion and migration of breast cancer cells as well as metastasis to different organs especially the brain, whereas increasing of OR5B21 transcript abundance had the opposite effect. Mechanistically, OR5B21 expression was associated with epithelial to mesenchymal transition through the STAT3/NF-κB/CEBPβ signaling axis. We propose OR5B21 (and potentially other ORs) as a novel oncogene contributing to breast cancer metastasis and a potential target for adjuvant therapy.
Collapse
Affiliation(s)
- Mao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Markus W. Schweiger
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands
| | - Daniel J. Ryan
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Ichiro Nakano
- Department of Neurosurgery and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Litia A. Carvalho
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
4
|
AlSudais H, Wiper-Bergeron N. From quiescence to repair: C/EBPβ as a regulator of muscle stem cell function in health and disease. FEBS J 2021; 289:6518-6530. [PMID: 34854237 DOI: 10.1111/febs.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/21/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
CCAAT/Enhancer Binding protein beta (C/EBPβ) is a transcriptional regulator involved in numerous physiological processes. Herein, we describe a role for C/EBPβ as a regulator of skeletal muscle stem cell function. In particular, C/EBPβ is expressed in muscle stem cells in healthy muscle where it inhibits myogenic differentiation. Downregulation of C/EBPβ expression at the protein and transcriptional level allows for differentiation. Persistence of C/EBPβ promotes stem cell self-renewal and C/EBPβ expression is required for mitotic quiescence in this cell population. As a critical regulator of skeletal muscle homeostasis, C/EBPβ expression is stimulated in pathological conditions such as cancer cachexia, which perturbs muscle regeneration and promotes myofiber atrophy in the context of systemic inflammation. C/EBPβ is also an important regulator of cytokine expression and immune response genes, a mechanism by which it can influence muscle stem cell function. In this viewpoint, we describe a role for C/EBPβ in muscle stem cells and propose a functional intersection between C/EBPβ and NF-kB action in the regulation of cancer cachexia.
Collapse
Affiliation(s)
- Hamood AlSudais
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| |
Collapse
|
5
|
Azimi T, Ghafouri-Fard S, Badrlou E, Omrani MD, Nazer N, Sayad A, Taheri M. Abnormal expression of NF-κB-related transcripts in blood of patients with inflammatory peripheral nerve disorders. Metab Brain Dis 2021; 36:2369-2376. [PMID: 34410580 DOI: 10.1007/s11011-021-00778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/06/2021] [Indexed: 10/20/2022]
Abstract
The NF-κB family includes some transcription factors which have important functions in the regulation of immune responses, therefore participating in the pathophysiology of inflammatory conditions such as peripheral neuropathies. We have quantified expression of a number of NF-κB-related transcripts in patients with Guillain-Barré syndrome (GBS) or chronic inflammatory demyelinating polyneuropathy (CIDP) versus healthy subjects. These transcripts have been previously shown to be functionally related with this family of transcription factors. Expressions of ATG5, DICER-AS1, PACER, DILC, NKILA and ADINR have been increased in both CIDP and GBS patients compared with controls. However, expression of ATG5 was not different between female CIDP cases and female controls. Moreover, expression of PACER was not different between male GBS cases and male controls. Expression levels of CHAST and CEBPA were not different between patients and controls. Expression of none of the assessed genes was different between GBS and CIDP cases. Significant correlations have been revealed between expression amounts of NF-κB-related transcripts both among CIDP/ GBS patients and among controls except for NKILA/ATG5, ADINR/ATG5 and PACER/ATG5 and DICER-AS1/ATG5 pairs among controls whose expression levels have not been correlated. In the patient group, CEBPA/PACER, CHAST/PACER and CHAST/DICER-AS1 pairs had the most robust correlations (r = 0.94). Among controls, NKILA/ADINR pair had the most strong correlation (r = 0.78). ADINR and DICER-AS1 levels could differentiate CIDP cases from controls with 100% sensitivity and specificity. In differentiation of GBS cases from controls, these two transcripts had the AUC values of 0.99 and 1. Combination transcript levels of NF-κB-related transcripts similarly detects CIDP and GBS cases from healthy controls with 100% sensitivity and specificity. Therefore, NF-κB-related transcripts are possibly involved in the pathophysiology of inflammatory peripheral nerve disorders and can be used as diagnostic markers for these conditions.
Collapse
Affiliation(s)
- Tahereh Azimi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Badrlou
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghme Nazer
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sun WS, Yang H, No JG, Lee H, Lee N, Lee M, Kang MJ, Oh KB. Select Porcine Elongation Factor 1α Sequences Mediate Stable High-Level and Upregulated Expression of Heterologous Genes in Porcine Cells in Response to Primate Serum. Genes (Basel) 2021; 12:genes12071046. [PMID: 34356062 PMCID: PMC8304002 DOI: 10.3390/genes12071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Genetically engineered (GE) pigs with various combinations of genetic profiles have been developed using heterologous promoters. This study aimed to identify autologous promoters for high and ubiquitous expression of xenotransplantation relevant genes in GE pigs. A 1.4 kb upstream regulatory sequence of porcine elongation factor 1α (pEF1α) gene was selected and isolated for use as a promoter. Activity of the pEF1α promoter was subsequently compared with that of the cytomegalovirus (CMV) promoter, CMV enhancer/chicken β-actin (CAG) promoter, and human EF1α (hEF1α) promoter in different types of pig-derived cells. Comparative analysis of luciferase and mutant human leukocyte antigen class E-F2A-β-2 microglobulin (HLA-E) expression driven by pEF1α, CMV, CAG, and hEF1α promoters revealed the pEF1α promoter mediated comparable expression levels with those of the CAG promoter in porcine ear skin fibroblasts (PEFs) and porcine kidney-15 (PK-15) cells, but lower than those of the CAG promoter in porcine aortic endothelial cells (PAECs). The pEF1α promoter provided long-term stable HLA-E expression in PEFs, but the CAG promoter failed to sustain those levels of expression. For xenogeneic serum-induced cytotoxicity assays, the cells were cultured for several hours in growth medium supplemented with primate serum. Notably, the pEF1α promoter induced significant increases in luciferase and HLA-E expression in response to primate serum in PAECs compared with those driven by the CAG promoter, suggesting the pEF1α promoter could regulate temporal expression of heterologous genes under xenogeneic-cytotoxic conditions. These results suggest the pEF1α promoter may be valuable for development of GE pigs spatiotemporally and stably expressing immunomodulatory genes for xenotransplantation.
Collapse
Affiliation(s)
- Wu-Sheng Sun
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Korea; (W.-S.S.); (H.Y.); (J.G.N.); (H.L.); (N.L.); (M.L.)
| | - Hyeon Yang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Korea; (W.-S.S.); (H.Y.); (J.G.N.); (H.L.); (N.L.); (M.L.)
| | - Jin Gu No
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Korea; (W.-S.S.); (H.Y.); (J.G.N.); (H.L.); (N.L.); (M.L.)
| | - Haesun Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Korea; (W.-S.S.); (H.Y.); (J.G.N.); (H.L.); (N.L.); (M.L.)
| | - Nahyun Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Korea; (W.-S.S.); (H.Y.); (J.G.N.); (H.L.); (N.L.); (M.L.)
| | - Minguk Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Korea; (W.-S.S.); (H.Y.); (J.G.N.); (H.L.); (N.L.); (M.L.)
| | - Man-Jong Kang
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea;
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Korea; (W.-S.S.); (H.Y.); (J.G.N.); (H.L.); (N.L.); (M.L.)
- Correspondence: ; Tel.: +82-63-238-7254
| |
Collapse
|
7
|
Allaeys I, Ribeiro de Vargas F, Bourgoin SG, Poubelle PE. Human Inflammatory Neutrophils Express Genes Encoding Peptidase Inhibitors: Production of Elafin Mediated by NF-κB and CCAAT/Enhancer-Binding Protein β. THE JOURNAL OF IMMUNOLOGY 2021; 206:1943-1956. [PMID: 33762327 DOI: 10.4049/jimmunol.2000852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/11/2021] [Indexed: 11/19/2022]
Abstract
The concept of plasticity of neutrophils is highlighted by studies showing their ability to transdifferentiate into APCs. In this regard, transdifferentiated neutrophils were found at inflammatory sites of autoimmune arthritis (AIA). Exposure of neutrophils to inflammatory stimuli prolongs their survival, thereby favoring the acquisition of pathophysiologically relevant phenotypes and functions. By using microarrays, quantitative RT-PCR, and ELISAs, we showed that long-lived (LL) neutrophils obtained after 48 h of culture in the presence of GM-CSF, TNF, and IL-4 differentially expressed genes related to apoptosis, MHC class II, immune response, and inflammation. The expression of anti-inflammatory genes mainly of peptidase inhibitor families is upregulated in LL neutrophils. Among these, the PI3 gene encoding elafin was the most highly expressed. The de novo production of elafin by LL neutrophils depended on a synergism between GM-CSF and TNF via the activation and cooperativity of C/EBPβ and NF-κB pathways, respectively. Elafin concentrations were higher in synovial fluids (SF) of patients with AIA than in SF of osteoarthritis. SF neutrophils produced more elafin than blood counterparts. These results are discussed with respect to implications of neutrophils in chronic inflammation and the potential influence of elafin in AIA.
Collapse
Affiliation(s)
- Isabelle Allaeys
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Flavia Ribeiro de Vargas
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Patrice E Poubelle
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| |
Collapse
|
8
|
Wei Z, Li C, Zhang Y, Lin C, Zhang Y, Shu L, Luo L, Zhuo J, Li L. Macrophage-Derived IL-1β Regulates Emergency Myelopoiesis via the NF-κB and C/ebpβ in Zebrafish. THE JOURNAL OF IMMUNOLOGY 2020; 205:2694-2706. [PMID: 33077646 DOI: 10.4049/jimmunol.2000473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
Myeloid phagocytes, neutrophils in particular, are easily consumed when they fight against a large number of invading microbes. Hence, they require efficient and constant replenishment from their progenitors via the well-orchestrated emergency myelopoiesis in the hematopoietic organs. The cellular and molecular details of the danger-sensing and warning processes to activate the emergency myelopoiesis are still under debate. In this study, we set up a systemic infection model in zebrafish (Danio rerio) larvae via circulative administration of LPS. We focused on the cross-talk of macrophages with myeloid progenitors in the caudal hematopoietic tissue. We revealed that macrophages first detected LPS and sent out the emergency message via il1β The myeloid progenitors, rather than hematopoietic stem and progenitor cells, responded and fulfilled the demand to adapt myeloid expansion through the synergistic cooperation of NF-κB and C/ebpβ. Our study unveiled a critical role of macrophages as the early "whistle blowers" to initiate emergency myelopoiesis.
Collapse
Affiliation(s)
- Zongfang Wei
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, People's Republic of China
| | - Chenzheng Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, People's Republic of China
| | - Yangping Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Chenyu Lin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, People's Republic of China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Liping Shu
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Science, Guizhou Medical University, Guiyang 550025, People's Republic of China; and
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, People's Republic of China
| | - Jian Zhuo
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, People's Republic of China
| | - Li Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
9
|
Chen J, Mishra R, Yu Y, McDonald JG, Eckert KM, Gao L, Mendelson CR. Decreased 11β-hydroxysteroid dehydrogenase 1 in lungs of steroid receptor coactivator (Src)-1/-2 double-deficient fetal mice is caused by impaired glucocorticoid and cytokine signaling. FASEB J 2020; 34:16243-16261. [PMID: 33070362 DOI: 10.1096/fj.202001809r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Our previous research revealed that steroid receptor coactivators (Src)-1 and -2 serve a critical cooperative role in production of parturition signals, surfactant protein A and platelet-activating factor, by the developing mouse fetal lung (MFL). To identify the global landscape of genes in MFL affected by Src-1/-2 double-deficiency, we conducted RNA-seq analysis of lungs from 18.5 days post-coitum (dpc) Src-1-/- /-2-/- (dKO) vs. WT fetuses. One of the genes most highly downregulated (~4.8 fold) in Src-1/-2 dKO fetal lungs encodes 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which catalyzes conversion of inactive 11-dehydrocorticosterone to the glucocorticoid receptor (GR) ligand, corticosterone. Glucocorticoids were reported to upregulate 11β-HSD1 expression in various cell types via induction of C/EBP transcription factors. We observed that C/ebpα and C/ebpβ mRNA and protein were markedly reduced in Src-1/-2 double-deficient (Src-1/-2d/d ) fetal lungs, compared to WT. Moreover, glucocorticoid induction of 11β-hsd1, C/ebpα and C/ebpβ in cultured MFL epithelial cells was prevented by the SRC family inhibitor, SI-2. Cytokines also contribute to the induction of 11β-HSD1. Expression of IL-1β and TNFα, which dramatically increased toward term in lungs of WT fetuses, was markedly reduced in Src-1/-2d/d fetal lungs. Our collective findings suggest that impaired lung development and surfactant synthesis in Src-1/-2d/d fetuses are likely caused, in part, by decreased GR and cytokine induction of C/EBP and NF-κB transcription factors. This results in reduced 11β-HSD1 expression and glucocorticoid signaling within the fetal lung, causing a break in the glucocorticoid-induced positive feedforward loop.
Collapse
Affiliation(s)
- Jingfei Chen
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ritu Mishra
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yaqin Yu
- Department of Physiology, Second Military Medical University, Shanghai, P.R. China
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kaitlyn M Eckert
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lu Gao
- Department of Physiology, Second Military Medical University, Shanghai, P.R. China.,School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Carole R Mendelson
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Robinson KF, Narasipura SD, Wallace J, Ritz EM, Al-Harthi L. β-Catenin and TCFs/LEF signaling discordantly regulate IL-6 expression in astrocytes. Cell Commun Signal 2020; 18:93. [PMID: 32546183 PMCID: PMC7296971 DOI: 10.1186/s12964-020-00565-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background The Wnt/β-catenin signaling pathway is a prolific regulator of cell-to-cell communication and gene expression. Canonical Wnt/β-catenin signaling involves partnering of β-catenin with members of the TCF/LEF family of transcription factors (TCF1, TCF3, TCF4, LEF1) to regulate gene expression. IL-6 is a key cytokine involved in inflammation and is particularly a hallmark of inflammation in the brain. Astrocytes, specialized glial cells in the brain, secrete IL-6. How astrocytes regulate IL-6 expression is not entirely clear, although in other cells NFκB and C/EBP pathways play a role. We evaluated here the interface between β-catenin, TCFs/LEF and C/EBP and NF-κB in relation to IL-6 gene regulation in astrocytes. Methods We performed molecular loss and/or gain of function studies of β-catenin, TCF/LEF, NFκB, and C/EBP to assess IL-6 regulation in human astrocytes. Specifically, siRNA mediated target gene knockdown, cDNA over expression of target gene, and pharmacological agents for regulation of target proteins were used. IL-6 levels was evaluated by real time quantitative PCR and ELISA. We also cloned the IL-6 promoter under a firefly luciferase reporter and used bioinformatics, site directed mutagenesis, and chromatin immunoprecipitation to probe the interaction between β-catenin/TCFs/LEFs and IL-6 promoter activity. Results β-catenin binds to TCF/LEF to inhibits IL-6 while TCFs/LEF induce IL-6 transcription through interaction with ATF-2/SMADs. β-catenin independent of TCFs/LEF positively regulates C/EBP and NF-κB, which in turn activate IL-6 expression. The IL-6 promoter has two putative regions for TCFs/LEF binding, a proximal site located at -91 nt and a distal site at -948 nt from the transcription start site, both required for TCF/LEF induction of IL-6 independent of β-catenin. Conclusion IL-6 regulation in human astrocytes engages a discordant interaction between β-catenin and TCF/LEF. These findings are intriguing given that no role for β-catenin nor TCFs/LEF to date is associated with IL-6 regulation and suggest that β-catenin expression in astrocytes is a critical regulator of anti-inflammatory responses and its disruption can potentially mediate persistent neuroinflammation. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- KaReisha F Robinson
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA
| | - Srinivas D Narasipura
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA
| | - Jennillee Wallace
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA
| | - Ethan M Ritz
- Rush Biostatistics Core, Rush University Medical College, Chicago, IL, USA
| | - Lena Al-Harthi
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA.
| |
Collapse
|
11
|
Dashti S, Ghafouri-Fard S, Esfandi F, Oskooei VK, Arsang-Jang S, Taheri M. Expression analysis of NF-κB interacting long noncoding RNAs in breast cancer. Exp Mol Pathol 2019; 112:104359. [PMID: 31837323 DOI: 10.1016/j.yexmp.2019.104359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
The nuclear factor-κB (NF-κB) has a prominent role in development of breast cancer and response of patients to conventional therapies. Several factors regulate the activity of this transcription factor. In the current investigation, we compared expression levels of five long non-coding RNAs (lncRNAs) with putative interactions with NF-κB namely CHAST, ADINR, DICER1-AS1, HNF1A-AS1 and NKILA between 78 breast cancer tissues and their paired adjacent non-cancerous tissues (ANCTs). We also assessed expression levels of ATG5 and CEBPA mRNA coding genes that are functionally linked with NF-κB signaling in these two sets of samples. All assessed genes except for NKILA were significantly down-regulated in tumoral tissues compared with ANCTs. Expression of NKILA was not significantly different between tumoral tissues and ANCTs. Expression levels of CEBPA and HNF1A-AS were significantly associated with cancer stage (P values of 0.03 and 0.02 respectively). Expression levels of ATG5 tended to be associated with mitotic rate (P = .05). The association between expression levels of ATG5 and tumor size was also significant (P = .02). Expression of CHAST was significantly associated with PR status (P = .04) and tended to be associated with ER status (P = .05). Finally, expression of NKILA was significantly associated with first pregnancy age (P = .01). No other significant association was detected between expression levels of assessed genes and clinical parameters. Expression levels of mentioned genes were significantly correlated with each other. The most significant correlations were found between CHAST and ADINR (correlation coefficients of 0.78 and 0.69 in tumoral tissues and ANCTs respectively). Based on the area under curve (AUC) values, DICER1-AS and CEBPA had the best performance in differentiation of tumoral tissues from ANCTs (AUC values of 0.92 and 0.90 respectively. Combination of transcript quantities of six genes could differentiate these two sets of samples with 92.3% sensitivity, 91% specificity and diagnostic power of 95%. The current project highlights dysregulation of NF-κB-associated genes in breast cancer tissues and suggests them as potential diagnostic markers in breast cancer.
Collapse
Affiliation(s)
- Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Vahid Kholghi Oskooei
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Shahram Arsang-Jang
- Clinical Research Development Center (CRDU), Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Ambrosini G, Do C, Tycko B, Realubit RB, Karan C, Musi E, Carvajal RD, Chua V, Aplin AE, Schwartz GK. Inhibition of NF-κB-Dependent Signaling Enhances Sensitivity and Overcomes Resistance to BET Inhibition in Uveal Melanoma. Cancer Res 2019; 79:2415-2425. [PMID: 30885979 DOI: 10.1158/0008-5472.can-18-3177] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/29/2019] [Accepted: 03/13/2019] [Indexed: 01/08/2023]
Abstract
Bromodomain and extraterminal protein inhibitors (BETi) are epigenetic therapies aimed to target dysregulated gene expression in cancer cells. Despite early successes of BETi in a range of malignancies, the development of drug resistance may limit their clinical application. Here, we evaluated the mechanisms of BETi resistance in uveal melanoma, a disease with little treatment options, using two approaches: a high-throughput combinatorial drug screen with the clinical BET inhibitor PLX51107 and RNA sequencing of BETi-resistant cells. NF-κB inhibitors synergistically sensitized uveal melanoma cells to PLX51107 treatment. Furthermore, genes involved in NF-κB signaling were upregulated in BETi-resistant cells, and the transcription factor CEBPD contributed to the mechanism of resistance. These findings suggest that inhibitors of NF-κB signaling may improve the efficacy of BET inhibition in patients with advanced uveal melanoma. SIGNIFICANCE: These findings provide evidence that inhibitors of NF-κB signaling synergize with BET inhibition in in vitro and in vivo models, suggesting a clinical utility of these targeted therapies in patients with uveal melanoma.
Collapse
Affiliation(s)
- Grazia Ambrosini
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
| | - Catherine Do
- Division of Genetics & Epigenetics, Department of Biomedical Research, Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, New Jersey
| | - Benjamin Tycko
- Division of Genetics & Epigenetics, Department of Biomedical Research, Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, New Jersey
| | - Ronald B Realubit
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Charles Karan
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Elgilda Musi
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Richard D Carvajal
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.,Division of Hematology/Oncology, Columbia University Medical Center, New York, New York
| | - Vivian Chua
- Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gary K Schwartz
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.,Division of Hematology/Oncology, Columbia University Medical Center, New York, New York
| |
Collapse
|
13
|
Yang M, Liu F, Higuchi K, Sawashita J, Fu X, Zhang L, Zhang L, Fu L, Tong Z, Higuchi K. Serum amyloid A expression in the breast cancer tissue is associated with poor prognosis. Oncotarget 2017; 7:35843-35852. [PMID: 27058895 PMCID: PMC5094967 DOI: 10.18632/oncotarget.8561] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/28/2016] [Indexed: 12/14/2022] Open
Abstract
Background Serum amyloid A (SAA), an acute-phase protein, is expressed primarily in the liver, and recently found also expressed in cancer tissues. However, its expression and prognostic value in breast cancer have not been described. Results SAA protein was found expressed in tumor cells in 44.2% cases and in TAM in 62.5% cases. FISH showed more frequent SAA mRNA expression in TAM than in tumor cells (76% versus 12%, p < 0.001), and a significant association between the frequencies of SAA mRNA expression in TAM and tumor cells (rs = 0.603, p < 0.001). The immunoreactivities of SAA protein in TAM and tumor cells were both associated with lymphovascular invasion and lymph node metastasis. Moreover, SAA-positivity in TAMs was associated with larger tumor-size, higher histological-grade, negative estrogen-receptor and progesterone-receptor statuses, and HER-2 overexpression. It was also linked to worse recurrence-free survival in a multivariable regression model. Methods Immunohistochemistry was applied on the tumor tissues from 208 breast cancer patients to evaluate the local SAA-protein expression with additional CD68 stain to identify the tumor-associated macrophage (TAM) on the serial tissue sections. Fluorescent in situ hybridization (FISH) was conducted on serial tissue sections from 25 of the 208 tumors to examine the expression and location of SAA mRNA. Conclusions Our results suggested that the TAMs may be a pivotal and main source of SAA production in tumor microenvironment of breast cancer. SAA immunoreactivity in TAM is associated with worse recurrence-free survival, and is therefore a biomarker candidate for postoperative surveillance and perhaps a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Mu Yang
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Fangfang Liu
- Department of Breast Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kayoko Higuchi
- Department of Pathology, Aizawa Hospital, Matsumoto, Japan
| | - Jinko Sawashita
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Xiaoying Fu
- Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Zhang
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lanjing Zhang
- Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ, USA.,Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Li Fu
- Department of Breast Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhongsheng Tong
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Keiichi Higuchi
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| |
Collapse
|
14
|
Noack K, Mahendrarajah N, Hennig D, Schmidt L, Grebien F, Hildebrand D, Christmann M, Kaina B, Sellmer A, Mahboobi S, Kubatzky K, Heinzel T, Krämer OH. Analysis of the interplay between all-trans retinoic acid and histone deacetylase inhibitors in leukemic cells. Arch Toxicol 2016; 91:2191-2208. [PMID: 27807597 DOI: 10.1007/s00204-016-1878-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022]
Abstract
The treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) induces granulocytic differentiation. This process renders APL cells resistant to cytotoxic chemotherapies. Epigenetic regulators of the histone deacetylases (HDACs) family, which comprise four classes (I-IV), critically control the development and progression of APL. We set out to clarify the parameters that determine the interaction between ATRA and histone deacetylase inhibitors (HDACi). Our assays included drugs against class I HDACs (MS-275, VPA, and FK228), pan-HDACi (LBH589, SAHA), and the novel HDAC6-selective compound Marbostat-100. We demonstrate that ATRA protects APL cells from cytotoxic effects of SAHA, MS-275, and Marbostat-100. However, LBH589 and FK228, which have a superior substrate-inhibitor dissociation constant (Ki) for the class I deacetylases HDAC1, 2, 3, are resistant against ATRA-dependent cytoprotective effects. We further show that HDACi evoke DNA damage, measured as induction of phosphorylated histone H2AX and by the comet assay. The ability of ATRA to protect APL cells from the induction of p-H2AX by HDACi is a readout for the cytoprotective effects of ATRA. Moreover, ATRA increases the fraction of cells in the G1 phase, together with an accumulation of the cyclin-dependent kinase inhibitor p21 and a reduced expression of thymidylate synthase (TdS). In contrast, the ATRA-dependent activation of the transcription factors STAT1, NF-κB, and C/EBP hardly influences the responses of APL cells to HDACi. We conclude that the affinity of HDACi for class I HDACs determines whether such drugs can kill naïve and maturated APL cells.
Collapse
Affiliation(s)
- Katrin Noack
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany.,Center for Molecular Biomedicine (CMB), Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Hans-Knöll-Strasse 2, 07745, Jena, Germany
| | - Nisintha Mahendrarajah
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Dorle Hennig
- Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
| | - Luisa Schmidt
- Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Dagmar Hildebrand
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Markus Christmann
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Katharina Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Thorsten Heinzel
- Center for Molecular Biomedicine (CMB), Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Hans-Knöll-Strasse 2, 07745, Jena, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany.
| |
Collapse
|
15
|
Holani R, Shah C, Haji Q, Inglis GD, Uwiera RRE, Cobo ER. Proline-arginine rich (PR-39) cathelicidin: Structure, expression and functional implication in intestinal health. Comp Immunol Microbiol Infect Dis 2016; 49:95-101. [PMID: 27865272 DOI: 10.1016/j.cimid.2016.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/29/2016] [Accepted: 10/20/2016] [Indexed: 01/22/2023]
Abstract
Proline-Arginine-39 (PR-39) is a small cationic, proline and arginine rich, cathelicidin that plays an important role in the porcine innate immune system. Although PR-39 was first discovered in intestinal cell lysates of pigs, subsequent research has indicated that it is primarily expressed in bone marrow and other lymphoid tissues including the thymus and spleen, as well as in leukocytes. Mature PR-39 cathelicidin has anti-microbial activity against many gram-negative and some gram-positive bacteria. PR-39 is also a bridge between the innate and adaptive immune system with recognized immunomodulatory, wound healing, anti-apoptotic, and pro-angiogenic functions. The purpose of this review is to summarize our current knowledge about the structure, expression, and functions of PR-39 and its potential to promote intestinal homeostasis. This understanding is relevant in the search of alternative therapeutics against diarrheic enterocolitis, a major problem faced by pork producers both in terms of costs and risk of zoonosis.
Collapse
Affiliation(s)
- Ravi Holani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Chaitanya Shah
- Bachelor of Health Sciences, University of Calgary, Canada
| | - Qahir Haji
- Bachelor of Health Sciences, University of Calgary, Canada
| | - G Douglas Inglis
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Canada
| | - Richard R E Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada
| | - Eduardo R Cobo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Canada.
| |
Collapse
|
16
|
Pantsulaia I, Ciszewski WM, Niewiarowska J. Senescent endothelial cells: Potential modulators of immunosenescence and ageing. Ageing Res Rev 2016; 29:13-25. [PMID: 27235855 DOI: 10.1016/j.arr.2016.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Recent studies have demonstrated that the accumulation of senescent endothelial cells may be the primary cause of cardiovascular diseases. Because of their multifunctional properties, endothelial cells actively take part in stimulating the immune system and inflammation. In addition, ageing is characterized by the progressive deterioration of immune cells and a decline in the activation of the immune response. This results in a loss of the primary function of the immune system, which is eliminating damaged/senescent cells and neutralizing potential sources of harmful inflammatory reactions. In this review, we discuss cellular senescence and the senescence-associated secretory phenotype (SASP) of endothelial cells and summarize the link between endothelial cells and immunosenescence. We describe the possibility that age-related changes in Toll-like receptors (TLRs) and microRNAs can affect the phenotypes of senescent endothelial cells and immune cells via a negative feedback loop aimed at restraining the excessive pro-inflammatory response. This review also addresses the following questions: how do senescent endothelial cells influence ageing or age-related changes in the inflammatory burden; what is the connection between ECs and immunosenescence, and what are the crucial hypothetical pathways linking endothelial cells and the immune system during ageing.
Collapse
|
17
|
Jin C, Jia L, Huang Y, Zheng Y, Du N, Liu Y, Zhou Y. Inhibition of lncRNA MIR31HG Promotes Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Stem Cells 2016; 34:2707-2720. [PMID: 27334046 DOI: 10.1002/stem.2439] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/30/2016] [Indexed: 01/04/2023]
Abstract
Osteogenic differentiation and bone formation is suppressed under condition of inflammation induced by proinflammation cytokines. A number of studies indicate miRNAs play a significant role in tumor necrosis factor-α-induced inhibition of bone formation, but whether long non-coding RNAs are also involved in this process remains unknown. In this study, we evaluated the role of MIR31HG in osteogenesis of human adipose-derived stem cells (hASCs) in vitro and in vivo. The results suggested that knockdown of MIR31HG not only significantly promoted osteogenic differentiation, but also dramatically overcame the inflammation-induced inhibition of osteogenesis in hASCs. Mechanistically, we found MIR31HG regulated bone formation and inflammation via interacting with NF-κB. The p65 subunit bound to the MIR31HG promoter and promoted MIR31HG expression. In turn, MIR31HG directly interacted with IκBα and participated in NF-κB activation, which builds a regulatory circuitry with NF-κB. Targeting this MIR31HG-NF-κB regulatory loop may be helpful to improve the osteogenic capacity of hASCs under inflammatory microenvironment in bone tissue engineering. Stem Cells 2016;34:2707-2720.
Collapse
Affiliation(s)
- Chanyuan Jin
- Department of Prosthodontics.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery.,Central Laboratory
| | | | | | | | | | - Yongsheng Zhou
- Department of Prosthodontics.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
18
|
Pavón MA, Parreño M, Téllez-Gabriel M, León X, Arroyo-Solera I, López M, Céspedes MV, Casanova I, Gallardo A, López-Pousa A, Mangues MA, Quer M, Barnadas A, Mangues R. CKMT1 and NCOA1 expression as a predictor of clinical outcome in patients with advanced-stage head and neck squamous cell carcinoma. Head Neck 2015; 38 Suppl 1:E1392-403. [PMID: 26516695 DOI: 10.1002/hed.24232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND We studied the association between the expression of a subset of previously identified genes and clinical outcome in patients with head and neck cancer. METHODS We analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) the expression of 89 genes in tumor biopsies from stage III to IVa/b chemotherapy treated patients (n = 46). Two additional cohorts analyzed by RNAseq (The Cancer Genome Atlas [TCGA] project; n = 371) or immunohistochemistry (IHC; n = 73) were used to validate results. RESULTS Thirty genes were associated with local-recurrence or progression-free survival. The best multi-gene decision-tree model to predict local recurrence included nuclear receptor coactivator 1 (NCOA1) and serum-amyloid A2 (SAA2) expression, whereas the best model to predict disease recurrence included creatine kinase mitochondrial 1 (CKMT1) and metal-regulatory transcription factor 1 (MTF1). Both models were associated with cancer-specific survival. Results were confirmed analyzing the RNAseq data included in the TCGA project. CKMT1 and NCOA1 were identified as independent risk factors for survival in an independent cohort analyzed by immunohistochemistry. CONCLUSION CKMT1 and NCOA1 expression has prognostic significance in advanced-stage head and neck carcinoma. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1392-E1403, 2016.
Collapse
Affiliation(s)
- Miguel Angel Pavón
- Grup d'Oncogènesi i Antitumorals (GOA), Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Matilde Parreño
- Translational Molecular Oncology, IIB-Sant Pau, HSCSP, Barcelona, Spain
| | - Marta Téllez-Gabriel
- Grup d'Oncogènesi i Antitumorals (GOA), Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Xavier León
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Department of Otorhinolaryngology, IIB-Sant Pau, HSCSP, Barcelona, Spain
| | - Irene Arroyo-Solera
- Grup d'Oncogènesi i Antitumorals (GOA), Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Montserrat López
- Department of Otorhinolaryngology, IIB-Sant Pau, HSCSP, Barcelona, Spain
| | - Maria Virtudes Céspedes
- Grup d'Oncogènesi i Antitumorals (GOA), Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Isolda Casanova
- Grup d'Oncogènesi i Antitumorals (GOA), Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | | | - Antonio López-Pousa
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Department of Medical Oncology, IIB-Sant Pau, HSCSP, Barcelona, Spain
| | | | - Miquel Quer
- Department of Otorhinolaryngology, IIB-Sant Pau, HSCSP, Barcelona, Spain
| | - Agustí Barnadas
- Department of Medical Oncology, IIB-Sant Pau, HSCSP, Barcelona, Spain
| | - Ramón Mangues
- Grup d'Oncogènesi i Antitumorals (GOA), Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
19
|
Zante MD, Borchel A, Brunner RM, Goldammer T, Rebl A. Cloning and characterization of the proximal promoter region of rainbow trout (Oncorhynchus mykiss) interleukin-6 gene. FISH & SHELLFISH IMMUNOLOGY 2015; 43:249-256. [PMID: 25549935 DOI: 10.1016/j.fsi.2014.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
Interleukin-6 (IL6) is a pleiotropic cytokine with important immunoregulatory functions. Its expression is inducible in immune cells and tissues of several fish species. We also found that IL6 mRNA abundance was significantly increased in spleen, liver, and gill of rainbow trout after experimental infection with Aeromonas salmonicida. Genomic DNA sequences of IL6 orthologs from three salmonid species revealed a conserved exon/intron structure and a high overall nucleotide identity of >88%. To uncover key mechanisms regulating IL6 expression in salmonid fish, we amplified a fragment of the proximal IL6 promoter from rainbow trout and identified in-silico conserved binding sites for NF-κB and CEBP. The activity of this IL6 promoter fragment was analyzed in the established human embryonic kidney line HEK-293. Luciferase- and GFP-based reporter systems revealed that the proximal IL6 promoter is activated by Escherichia coli. Essentially, both reporter systems proved that NF-κB p50, but not NF-κB p65 or CEBP, activates the IL6 promoter fragment. Truncation of this fragment caused a significant decrease in IL6 promoter activation. This characterization of the proximal promoter of the IL6-encoding gene provides basic knowledge about the IL6 gene expression in rainbow trout.
Collapse
Affiliation(s)
- Merle D Zante
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Andreas Borchel
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Ronald M Brunner
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
20
|
Li F, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G. NF-κB in cancer therapy. Arch Toxicol 2015; 89:711-31. [PMID: 25690730 DOI: 10.1007/s00204-015-1470-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/05/2015] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor kappa B (NF-κB) has attracted increasing attention in the field of cancer research from last few decades. Aberrant activation of this transcription factor is frequently encountered in a variety of solid tumors and hematological malignancies. NF-κB family members and their regulated genes have been linked to malignant transformation, tumor cell proliferation, survival, angiogenesis, invasion/metastasis, and therapeutic resistance. In this review, we highlight the diverse molecular mechanism(s) by which the NF-κB pathway is constitutively activated in different types of human cancers, and the potential role of various oncogenic genes regulated by this transcription factor in cancer development and progression. Additionally, various pharmacological approaches employed to target the deregulated NF-κB signaling pathway, and their possible therapeutic potential in cancer therapy is also discussed briefly.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, Cancer Science Institute, National University of Singapore, Singapore, 117597, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ko CY, Chang WC, Wang JM. Biological roles of CCAAT/Enhancer-binding protein delta during inflammation. J Biomed Sci 2015; 22:6. [PMID: 25591788 PMCID: PMC4318212 DOI: 10.1186/s12929-014-0110-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/25/2014] [Indexed: 01/13/2023] Open
Abstract
CCAAT/enhancer-binding protein delta (CEBPD) belongs to the CCAAT/enhancer-binding protein family, and these proteins function as transcription factors in many biological processes, including cell differentiation, motility, growth arrest, proliferation, cell death, metabolism and immune responses. The functional diversity of CEBPD depends, in part, on the cell type and cellular context, which indicates that CEBPD could interpret a variety of cues to adjust cellular responses in specific situations. Here, we review the regulation of the CEBPD gene and its function in response to inflammatory stimuli. We also address its effects in inflammation-related diseases through a discussion of its recently discovered downstream targets. Regarding to the previous discoveries and new insights in inflammation-associated diseases, suggesting CEBPD could also be a central gene in inflammation. Importantly, the results of this study indicate that the investigation of CEBPD could open a new avenue to help better understand the inflammatory response.
Collapse
Affiliation(s)
- Chiung-Yuan Ko
- Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Ju-Ming Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan. .,Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan. .,Center of Molecular Inflammation, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
22
|
Rebl A, Rebl H, Korytář T, Goldammer T, Seyfert HM. The proximal promoter of a novel interleukin-8-encoding gene in rainbow trout (Oncorhynchus mykiss) is strongly induced by CEBPA, but not NF-κB p65. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:155-164. [PMID: 24721762 DOI: 10.1016/j.dci.2014.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Interleukin-8 (IL8) is an immediate-early chemokine that has been well characterized in several fish species. Ten IL8 gene variants have already been described in rainbow trout, but none of their promoters has structurally been defined or functionally characterized in teleost fish. To uncover key factors regulating IL8 expression, we intended to functionally characterize an IL8 promoter from rainbow trout. Incidentally, we isolated a novel IL8 gene variant (IL8-G). It is structurally highly similar to the other trout IL8 gene variants and its mRNA concentration increased significantly in secondary lymphoid tissues after infecting healthy fish with Aeromonas salmonicida. The proximal promoter sequence of the IL8-G-encoding gene features in close proximity two consensus elements for CEBP attachment. The proximal site overlaps with a NF-κB-binding site. Cotransfection of an IL8-G promoter-driven reporter gene together with vectors expressing various mammalian CEBP or NF-κB factors revealed in human HEK-293 cells that CEBPA and NF-κB p50, but not NF-κB p65 activate this promoter. The stimulatory effect of NF-κB p50 is likely conveyed by synergizing with CEBPA. Deletion or mutation of either the distal or the proximal CEBP-binding site, respectively, caused a significant decrease in IL8-G promoter activation. We confirmed the significance of the CEBPA factor for IL8-G expression by comparing the stimulatory capacity of the trout CEBPA and -B factors, thereby reducing the evolutionary distance in the inter-species expression assays. Similar promoter induction potential and intracellular localization of the mammalian and teleostean CEBPA and -B factors suggests their functional conservation throughout evolution.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Henrike Rebl
- Rostock University Medical Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock, Germany
| | - Tomáš Korytář
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Hans-Martin Seyfert
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
23
|
Manea SA, Todirita A, Raicu M, Manea A. C/EBP transcription factors regulate NADPH oxidase in human aortic smooth muscle cells. J Cell Mol Med 2014; 18:1467-77. [PMID: 24797079 PMCID: PMC4124029 DOI: 10.1111/jcmm.12289] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/21/2014] [Indexed: 11/30/2022] Open
Abstract
In atherosclerosis, oxidative stress-induced vascular smooth muscle cells (SMCs) dysfunction is partially mediated by up-regulated NADPH oxidase (Nox); the mechanisms of enzyme regulation are not entirely defined. CCAAT/enhancer-binding proteins (C/EBP) regulate cellular proliferation and differentiation, and the expression of many inflammatory and immune genes. We aimed at elucidating the role of C/EBP in the regulation of Nox in SMCs exposed to pro-inflammatory conditions. Human aortic SMCs were treated with interferon-γ (IFN-γ) for up to 24 hrs. Lucigenin-enhanced chemiluminescence, real-time PCR, Western blot, promoter-luciferase reporter analysis and chromatin immunoprecipitation assays were employed to investigate Nox regulation. IFN-γ dose-dependently induced Nox activity and expression, nuclear translocation and up-regulation of C/EBPα, C/EBPβ and C/EBPδ protein expression levels. Silencing of C/EBPα, C/EBPβ or C/EBPδ reduced significantly but differentially the IFN-γ-induced up-regulation of Nox activity, gene and protein expression. In silico analysis indicated the existence of typical C/EBP sites within Nox1, Nox4 and Nox5 promoters. Transient overexpression of C/EBPα, C/EBPβ or C/EBPδ enhanced the luciferase level directed by the promoters of the Nox subtypes. Chromatin immunoprecipitation demonstrated the physical interaction of C/EBPα, C/EBPβ and C/EBPδ proteins with the Nox1/4/5 promoters. C/EBP transcription factors are important regulators of Nox enzymes in IFN-γ-exposed SMCs. Activation of C/EBP may induce excessive Nox-derived reactive oxygen species formation, further contributing to SMCs dysfunction and atherosclerotic plaque development. Pharmacological targeting of C/EBP-related signalling pathways may be used to counteract the adverse effects of oxidative stress.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Molecular and Cellular Pharmacology - Functional Genomics Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | | | | | | |
Collapse
|
24
|
Complex regulation of acute and chronic neuroinflammatory responses in mouse models deficient for nuclear factor kappa B p50 subunit. Neurobiol Dis 2014; 64:16-29. [DOI: 10.1016/j.nbd.2013.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/11/2013] [Accepted: 12/04/2013] [Indexed: 12/29/2022] Open
|
25
|
CCAAT-enhancer binding protein-β expression and elevation in Alzheimer's disease and microglial cell cultures. PLoS One 2014; 9:e86617. [PMID: 24466171 PMCID: PMC3899300 DOI: 10.1371/journal.pone.0086617] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 01/24/2023] Open
Abstract
CCAAT-enhancer binding proteins are transcription factors that help to regulate a wide range of inflammatory mediators, as well as several key elements of energy metabolism. Because C/EBPs are expressed by rodent astrocytes and microglia, and because they are induced by pro-inflammatory cytokines that are chronically upregulated in the Alzheimer’s disease (AD) cortex, we have investigated whether C/EBPs are expressed and upregulated in the AD cortex. Here, we demonstrate for the first time that C/EBPβ can be detected by Western blots in AD and nondemented elderly (ND) cortex, and that it is significantly increased in AD cortical samples. In situ, C/EBPβ localizes immunohistochemically to microglia. In microglia cultured from rapid autopsies of elderly patient’s brains and in the BV-2 murine microglia cell line, we have shown that C/EBPβ can be upregulated by C/EBP-inducing cytokines or lipopolysaccharide and exhibits nuclear translocation possibly indicating functional activity. Given the known co-regulatory role of C/EBPs in pivotal inflammatory mechanisms, many of which are present in AD, we propose that upregulation of C/EBPs in the AD brain could be an important orchestrator of pathogenic changes.
Collapse
|
26
|
Ren Y, Wang H, Lu D, Xie X, Chen X, Peng J, Hu Q, Shi G, Liu S. Expression of serum amyloid A in uterine cervical cancer. Diagn Pathol 2014; 9:16. [PMID: 24447576 PMCID: PMC3907664 DOI: 10.1186/1746-1596-9-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 12/03/2013] [Indexed: 01/14/2023] Open
Abstract
Background As an acute-phase protein, serum amyloid A (SAA) is expressed primarily in the liver. However, its expression in extrahepatic tissues, especially in tumor tissues, was also demonstrated recently. In our study, we investigated the expression of SAA in uterine cervical carcinomas, and our results suggested its potential as a serum biomarker. Methods Quantitative real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the SAA gene and protein expression levels in the tissues and sera of patients with non-neoplastic lesions (NNLs), cervical intraepithelial neoplasia (CIN) and cervical carcinoma (CC). Results Compared with NNLs, the SAA gene (SAA1 and SAA4) expression levels were significantly higher in uterine CC (mean copy numbers: 138.7 vs. 5.01, P < 0.000; and 1.8 vs. 0.079, P = 0.001, respectively) by real-time PCR. IHC revealed cytoplasmic SAA protein staining in tissues from adenocarcinoma and squamous cell carcinoma of the cervix. The median serum concentrations (μg/ml) of SAA were 6.02 in patients with NNLs and 10.98 in patients with CIN (P = 0.31). In contrast, the median serum SAA concentration was 23.7 μg/ml in uterine CC patients, which was significantly higher than the SAA concentrations of the NNL group (P = 0.002) and the CIN group (P = 0.024). Conclusions Our data suggested that SAA might be a uterine CC cell product. High SAA concentrations in the serum of CC patients may have a role in monitoring disease occurrence and could have therapeutic applications. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1433263219102962.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gang Shi
- Department of Obstetrics&Gynecology, West China Second University Hospital, Sichuan University, No, 20, 3rd Section of Ren Min Nan Road, Chengdu 610041, China.
| | | |
Collapse
|
27
|
High glucose-induced increased expression of endothelin-1 in human endothelial cells is mediated by activated CCAAT/enhancer-binding proteins. PLoS One 2013; 8:e84170. [PMID: 24376792 PMCID: PMC3871648 DOI: 10.1371/journal.pone.0084170] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/20/2013] [Indexed: 12/30/2022] Open
Abstract
High glucose-induced endothelial dysfunction is partially mediated by the down-stream pathophysiological effects triggered by increased expression of endothelin-1 (ET-1). The molecular control mechanisms of ET-1 synthesis are yet to be discovered. Members of the CCAAT/enhancer-binding proteins (C/EBP) family are important regulators of key metabolic processes, cellular differentiation and proinflammatory genes. In this study, we aimed at elucidating the role of C/EBP in mediating the high glucose effect on ET-1 expression in human endothelial cells (EC). Human umbilical vein cells (EAhy926) and primary cultures of human aortic EC were exposed to high levels of glucose (16.5-25 mM). Real-time PCR, Western blot, enzyme-linked immunosorbent assay, ET-1 promoter-luciferase reporter analysis, and chromatin immunoprecipitation assays were employed to investigate ET-1 regulation. High glucose activated C/EBPα, C/EBPβ, and C/EBPδ in a dose-dependent manner. It also promoted significant increases in ET-1 gene and peptide expression. Chemical inhibition of JNK, p38MAPK and ERK1/2 diminished significantly the high glucose-induced nuclear translocation of C/EBP and ET-1 expression. Silencing of C/EBPα, C/EBPβ or C/EBPδ greatly reduced the high glucose-induced upregulation of ET-1 mRNA, pre-pro-ET-1, and ET-1 secretion. The expression of various C/EBP isoforms was selectively downregulated by siRNA-mediated gene silencing. In silico analysis indicated the existence of typical C/EBP elements within human ET-1 gene promoter. Transient overexpression of C/EBPα, C/EBPβ or C/EBPδ upregulated the luciferase level controlled by the ET-1 gene promoter. The direct interaction of C/EBPα, C/EBPβ or C/EBPδ proteins with the ET-1 promoter in high glucose-exposed EC was confirmed by chromatin immunoprecipitation assay. High glucose-induced ET-1 expression is mediated through multiple mechanisms. We present evidence that members of the C/EBP proinflammatory transcription factors are important regulators of ET-1 in high glucose-exposed human endothelial cells. High glucose-induced activation of C/EBP-related signaling pathways may induce excessive ET-1 synthesis, thus promoting vasoconstriction and dysfunction of the vascular wall cells in diabetes.
Collapse
|
28
|
Hanzu FA, Musri MM, Sánchez-Herrero A, Claret M, Esteban Y, Kaliman P, Gomis R, Párrizas M. Histone demethylase KDM1A represses inflammatory gene expression in preadipocytes. Obesity (Silver Spring) 2013; 21:E616-25. [PMID: 23595969 DOI: 10.1002/oby.20479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Persistent inflammation and impaired adipogenesis are frequent features of obesity and underlie the development of its complications. However, the factors behind adipose tissue dysfunction are not completely understood. Previously it was shown that histone demethylase KDM1A is required for adipogenesis. DESIGN AND METHODS Kdm1a expression was knocked down in 3T3-L1 preadipocytes by siRNA transfection and whole-genome expression profiling was performed by microarray hybridization. The role of NF-κβ and C/EBPβ was analyzed by incubation with the inhibitor parthenolide and by cebpb knockdown, respectively. RESULTS Knockdown of kdm1a or rcor2 in 3T3-L1 preadipocytes results in impaired differentiation and induction of inflammatory gene expression. Enhanced expression of il6 in kdm1a knocked down preadipocytes is associated with increased recruitment of C/EBPβ and the NF-κβ subunit RelA to the il6 promoter. Cebpb knockdown attenuates the induction of il6 expression in kdm1a knocked down cells, whereas simultaneous cebpb knockdown and NF-κβ inhibition abrogates it. Dietary-induced and genetic mouse models of obesity display decreased KDM1A in adipose tissue, and this correlates with increased expression of proinflammatory genes and C/EBPβ. CONCLUSION KDM1A represses the expression of inflammatory genes in preadipocytes. Dysregulated kdm1a expression in preadipocytes may thus participate in the development of obesity-associated inflammation.
Collapse
Affiliation(s)
- Felicia A Hanzu
- Diabetes and Obesity Laboratory, IDIBAPS, CIBERDEM, Barcelona, Spain; Endocrinology and Nutrition Unit, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
CCAAT/enhancer-binding protein δ facilitates bacterial dissemination during pneumococcal pneumonia in a platelet-activating factor receptor-dependent manner. Proc Natl Acad Sci U S A 2012; 109:9113-8. [PMID: 22615380 DOI: 10.1073/pnas.1202641109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CCAAT/enhancer-binding protein δ (C/EBPδ) recently emerged as an essential player in the inflammatory response to bacterial infections. C/EBPδ levels increase rapidly after a proinflammatory stimulus, and increasing C/EBPδ levels seem to be indispensable for amplification of the inflammatory response. Here we aimed to elucidate the role of C/EBPδ in host defense in community-acquired pneumococcal pneumonia. We show that C/EBPδ(-/-) mice are relatively resistant to pneumococcal pneumonia, as indicated by delayed and reduced mortality, diminished outgrowth of pneumococci in lungs, and reduced dissemination of the infection. Moreover, expression of platelet-activating factor receptor (PAFR), which is known to potentiate bacterial translocation of gram-positive bacteria, was significantly reduced during infection in C/EBPδ(-/-) mice compared with WT controls. Importantly, cell stimulation experiments revealed that C/EBPδ potentiates PAFR expression induced by lipoteichoic acid and pneumococci. Thus, C/EBPδ exaggerates bacterial dissemination during Streptococcus pneumoniae-induced pulmonary infection, suggesting an important role for PAFR-dependent bacterial translocation.
Collapse
|
30
|
Straccia M, Gresa-Arribas N, Dentesano G, Ejarque-Ortiz A, Tusell JM, Serratosa J, Solà C, Saura J. Pro-inflammatory gene expression and neurotoxic effects of activated microglia are attenuated by absence of CCAAT/enhancer binding protein β. J Neuroinflammation 2011; 8:156. [PMID: 22074460 PMCID: PMC3223504 DOI: 10.1186/1742-2094-8-156] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/10/2011] [Indexed: 11/21/2022] Open
Abstract
Background Microglia and astrocytes respond to homeostatic disturbances with profound changes of gene expression. This response, known as glial activation or neuroinflammation, can be detrimental to the surrounding tissue. The transcription factor CCAAT/enhancer binding protein β (C/EBPβ) is an important regulator of gene expression in inflammation but little is known about its involvement in glial activation. To explore the functional role of C/EBPβ in glial activation we have analyzed pro-inflammatory gene expression and neurotoxicity in murine wild type and C/EBPβ-null glial cultures. Methods Due to fertility and mortality problems associated with the C/EBPβ-null genotype we developed a protocol to prepare mixed glial cultures from cerebral cortex of a single mouse embryo with high yield. Wild-type and C/EBPβ-null glial cultures were compared in terms of total cell density by Hoechst-33258 staining; microglial content by CD11b immunocytochemistry; astroglial content by GFAP western blot; gene expression by quantitative real-time PCR, western blot, immunocytochemistry and Griess reaction; and microglial neurotoxicity by estimating MAP2 content in neuronal/microglial cocultures. C/EBPβ DNA binding activity was evaluated by electrophoretic mobility shift assay and quantitative chromatin immunoprecipitation. Results C/EBPβ mRNA and protein levels, as well as DNA binding, were increased in glial cultures by treatment with lipopolysaccharide (LPS) or LPS + interferon γ (IFNγ). Quantitative chromatin immunoprecipitation showed binding of C/EBPβ to pro-inflammatory gene promoters in glial activation in a stimulus- and gene-dependent manner. In agreement with these results, LPS and LPS+IFNγ induced different transcriptional patterns between pro-inflammatory cytokines and NO synthase-2 genes. Furthermore, the expressions of IL-1β and NO synthase-2, and consequent NO production, were reduced in the absence of C/EBPβ. In addition, neurotoxicity elicited by LPS+IFNγ-treated microglia co-cultured with neurons was completely abolished by the absence of C/EBPβ in microglia. Conclusions These findings show involvement of C/EBPβ in the regulation of pro-inflammatory gene expression in glial activation, and demonstrate for the first time a key role for C/EBPβ in the induction of neurotoxic effects by activated microglia.
Collapse
Affiliation(s)
- Marco Straccia
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Khanjani S, Terzidou V, Lee YS, Thornton S, Johnson MR, Bennett PR. Synergistic Regulation of Human Oxytocin Receptor Promoter by CCAAT/ Enhancer-Binding Protein and RELA1. Biol Reprod 2011; 85:1083-8. [DOI: 10.1095/biolreprod.111.092304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
32
|
Abstract
NF-κB transcription factors are critical regulators of immunity, stress responses, apoptosis and differentiation. A variety of stimuli coalesce on NF-κB activation, which can in turn mediate varied transcriptional programs. Consequently, NF-κB-dependent transcription is not only tightly controlled by positive and negative regulatory mechanisms but also closely coordinated with other signaling pathways. This intricate crosstalk is crucial to shaping the diverse biological functions of NF-κB into cell type- and context-specific responses.
Collapse
|
33
|
Pena OM, Pistolic J, Raj D, Fjell CD, Hancock REW. Endotoxin Tolerance Represents a Distinctive State of Alternative Polarization (M2) in Human Mononuclear Cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:7243-54. [DOI: 10.4049/jimmunol.1001952] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Ryll A, Samaga R, Schaper F, Alexopoulos LG, Klamt S. Large-scale network models of IL-1 and IL-6 signalling and their hepatocellular specification. MOLECULAR BIOSYSTEMS 2011; 7:3253-70. [DOI: 10.1039/c1mb05261f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
John AE, Zhu YM, Brightling CE, Pang L, Knox AJ. Human airway smooth muscle cells from asthmatic individuals have CXCL8 hypersecretion due to increased NF-kappa B p65, C/EBP beta, and RNA polymerase II binding to the CXCL8 promoter. THE JOURNAL OF IMMUNOLOGY 2009; 183:4682-92. [PMID: 19734226 DOI: 10.4049/jimmunol.0803832] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CXCL8 is a neutrophil and mast cell chemoattractant that is involved in regulating inflammatory cell influx in asthma. Here, we investigated the transcriptional mechanism involved in CXCL8 induction by TNF-alpha in cultured human airway smooth muscle (HASM) cells and compared these in cells from nonasthmatic and asthmatic individuals. Transfection studies with mutated CXCL8 promoter constructs identified NF-kappaB, activating protein-1, and CAAT/enhancer binding protein (C/EBP)beta as key transcription factors, and binding of these three transcription factors to the CXCL8 promoter after TNF-alpha stimulation was confirmed by chromatin immunoprecipitation analysis. Cells derived from asthmatic individuals produced significantly higher levels of CXCL8 than nonasthmatic cells both basally and following 24 h of stimulation with TNF-alpha (p < 0.001). Furthermore, chromatin immunoprecipitation studies detected increased binding of NF-kappaB p65 and RNA polymerase II to the CXCL8 promoter of asthmatic HASM cells both in the presence and absence of TNF-alpha stimulation. This was not due to either an increased activation or phosphorylation of NF-kappaB per se or to an increase in its translocation to the nucleus. Increased binding of C/EBPbeta to the CXCL8 promoter of unstimulated cells was also detected in the asthmatic HASM cells. Collectively these studies show that HASM cells from asthmatic individuals have increased CXCL8 production due to the presence of a transcription complex on the CXCL8 promoter, which contains NF-kappaB, C/EBPbeta, and RNA polymerase II. This is the first description of an abnormality in transcription factor binding altering chemokine expression in airway structural cells in asthma.
Collapse
Affiliation(s)
- Alison E John
- Centre for Respiratory Research and Nottingham Respiratory Biomedical Research Unit, University of Nottingham, Nottingham, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Wang D, Paz-Priel I, Friedman AD. NF-kappa B p50 regulates C/EBP alpha expression and inflammatory cytokine-induced neutrophil production. THE JOURNAL OF IMMUNOLOGY 2009; 182:5757-62. [PMID: 19380823 DOI: 10.4049/jimmunol.0803861] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NF-kappaB is a key transcriptional inducer of the inflammatory response in mature myeloid cells, and also stimulates cell survival, but its role in immature myeloid cell development has not been well characterized. C/EBPalpha is required for the development of monocytic and granulocytic myeloid cells from early progenitors, and NF-kappaB and C/EBPbeta cooperatively induce several inflammatory mediators. Having found that C/EBPalpha binds NF-kappaB p50 preferentially compared with NF-kappaB p65, we have now investigated myelopoiesis in nfkb1(-/-) mice lacking NF-kappaB p50. Absence of p50 leads to a significant reduction in the number of granulocytic progenitors, CFU-granulocyte, obtained with G-CSF or GM-CSF in vitro and reduces neutrophil production in vivo in response to G-CSF, with preservation of monopoiesis in vitro in response to cytokines or LPS. To gain insight into the mechanism underlying reduced granulopoiesis in the absence of NF-kappaB p50, we assessed the expression of several myeloid regulatory proteins in lineage-negative, immature myeloid cells. Although PU.1, C/EBPbeta, and STAT3 levels were unchanged, C/EBPalpha protein and RNA levels were reduced approximately 3-fold in the absence of NF-kappaB p50. In addition, NF-kappaB p50 and C/EBPalpha bound the endogenous C/EBPalpha promoter in a chromatin immunoprecipitation assay, and NF-kappaB p50 trans activated the C/EBPalpha promoter, alone or in cooperation with C/EBPalpha. Despite reduction of C/EBPalpha, G-CSFR and M-CSFR levels were maintained in total marrow and in lineage-negative cells. Together, these data indicate that acute inflammation not only activates mature myeloid cells, but also stimulates neutrophil production via NF-kappaB p50 induction of C/EBPalpha transcription.
Collapse
Affiliation(s)
- Dehua Wang
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | |
Collapse
|
37
|
Reboredo M, Kramer MG, Smerdou C, Prieto J, Rivas JDL. Transcriptomic Effects of Tet-On and Mifepristone-Inducible Systems in Mouse Liver. Hum Gene Ther 2008; 19:1233-47. [DOI: 10.1089/hum.2008.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mercedes Reboredo
- Division of Gene Therapy, Center for Applied Medical Research (CIMA) and University Clinic-University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University Clinic, 31008 Pamplona, Spain
| | - Maria Gabriela Kramer
- Division of Gene Therapy, Center for Applied Medical Research (CIMA) and University Clinic-University of Navarra, 31008 Pamplona, Spain
- Peter MacCallum Cancer Research Institute, Cancer Immunology Program, East Melbourne 3001, Australia
| | - Cristian Smerdou
- Division of Gene Therapy, Center for Applied Medical Research (CIMA) and University Clinic-University of Navarra, 31008 Pamplona, Spain
| | - Jesús Prieto
- Division of Gene Therapy, Center for Applied Medical Research (CIMA) and University Clinic-University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University Clinic, 31008 Pamplona, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group, Cancer Research Center (IBMCC-CIC), CSIC and University of Salamanca (CSIC/USAL), E37007 Salamanca, Spain
| |
Collapse
|
38
|
Lynn DJ, Winsor GL, Chan C, Richard N, Laird MR, Barsky A, Gardy JL, Roche FM, Chan THW, Shah N, Lo R, Naseer M, Que J, Yau M, Acab M, Tulpan D, Whiteside MD, Chikatamarla A, Mah B, Munzner T, Hokamp K, Hancock REW, Brinkman FSL. InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol Syst Biol 2008; 4:218. [PMID: 18766178 PMCID: PMC2564732 DOI: 10.1038/msb.2008.55] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 07/17/2008] [Indexed: 01/31/2023] Open
Abstract
Although considerable progress has been made in dissecting the signaling pathways involved in the innate immune response, it is now apparent that this response can no longer be productively thought of in terms of simple linear pathways. InnateDB (www.innatedb.ca) has been developed to facilitate systems-level analyses that will provide better insight into the complex networks of pathways and interactions that govern the innate immune response. InnateDB is a publicly available, manually curated, integrative biology database of the human and mouse molecules, experimentally verified interactions and pathways involved in innate immunity, along with centralized annotation on the broader human and mouse interactomes. To date, more than 3500 innate immunity-relevant interactions have been contextually annotated through the review of 1000 plus publications. Integrated into InnateDB are novel bioinformatics resources, including network visualization software, pathway analysis, orthologous interaction network construction and the ability to overlay user-supplied gene expression data in an intuitively displayed molecular interaction network and pathway context, which will enable biologists without a computational background to explore their data in a more systems-oriented manner.
Collapse
Affiliation(s)
- David J Lynn
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
REBOREDO MERCEDES, Kramer MG, Smerdou C, Prieto J, De Las Rivas J. TRANSCRIPTOMIC EFFECTS OF TET-ON AND MIFEPRISTONE INDUCIBLE SYSTEMS IN MOUSE LIVER. Hum Gene Ther 2008. [DOI: 10.1089/hgt.2008.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
40
|
Kijima I, Ye J, Glackin C, Chen S. CCAAT/enhancer binding protein delta up-regulates aromatase promoters I.3/II in breast cancer epithelial cells. Cancer Res 2008; 68:4455-64. [PMID: 18519709 DOI: 10.1158/0008-5472.can-07-3249] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aromatase is the enzyme responsible for the last step of estrogen synthesis. The female hormone, estrogen, is known to stimulate breast cancer cell growth. Because the expression of aromatase in breast cancer tissues is driven by unique promoters I.3 and II, a more complete understanding of the regulatory mechanism of aromatase expression through promoters I.3/II in breast tumors should be valuable in developing targeted therapies, which selectively suppress estrogen production in breast tumor tissue. Results from in vivo footprinting analyses revealed several protein binding sites, numbered 1 to 5. When site 2 (-124/-112 bp, exon I.3 start site as +1) was mutated, promoters I.3/II activity was dramatically reduced, suggesting that site 2 is a positive regulatory element. Yeast one-hybrid screening revealed that a potential protein binding to site 2 was CCAAT/enhancer binding protein delta (C/EBP delta). C/EBP delta was shown to bind to site 2 of aromatase promoters I.3/II in vitro and in vivo. C/EBP delta up-regulated promoters I.3/II activity through this site and, as a result, it also up-regulated aromatase transcription and enzymatic activity. p65, a subunit of nuclear factor-kappaB (NF-kappaB) transcription factor, inhibited C/EBP delta-up-regulated aromatase promoters I.3/II and enzymatic activity. This inhibitory effect of p65 was mediated, in part, through prevention of the C/EBP delta binding to site 2. This C/EBP delta binding site in aromatase promoters I.3/II seems to act as a positive regulatory element in non-p65-overexpressing breast cancer epithelial cells, whereas it is possibly inactive in p65 overexpressing cancer epithelial cells, such as estrogen receptor-negative breast cancer cells.
Collapse
Affiliation(s)
- Ikuko Kijima
- Department of Surgical Research, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
41
|
Friedman AD. C/EBPalpha induces PU.1 and interacts with AP-1 and NF-kappaB to regulate myeloid development. Blood Cells Mol Dis 2007; 39:340-3. [PMID: 17669672 PMCID: PMC2083642 DOI: 10.1016/j.bcmd.2007.06.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 06/21/2007] [Indexed: 11/28/2022]
Abstract
C/EBPalpha and PU.1 are key regulators of early myeloid development. Mice lacking C/EBPalpha or PU.1 have reduced granulocytes and monocytes. Consistent with a model in which induction of PU.1 by C/EBPalpha contributes to monocyte lineage specification, mice with reduced PU.1 have diminished monocytes but retain granulocytes, C/EBPalpha directly activates PU.1 gene transcription, and exogenous C/EBPalpha increases monocytic lineage commitment from bipotential myeloid progenitors. In addition to C/EBPalpha, AP-1 proteins also have the capacity to induce monocytic maturation. C/EBPalpha:c-Jun or C/EBPalpha:c-Fos leucine zipper heterodimers induce monopoiesis more potently than C/EBPalpha or c-Jun homodimers or c-Fos:c-Jun heterodimers. C/EBPs and NF-kappaB cooperatively regulate numerous genes during the inflammatory response. The C/EBPalpha basic region interacts with NF-kappaB p50, but not p65, to induce bcl-2, and this interaction may be relevant to myeloid cell survival and development.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, CRB I, Room 253, 1650 Orleans St., Baltimore, MD 21231, USA.
| |
Collapse
|
42
|
|
43
|
Gene expression profiling of long-term changes in rat liver following burn injury. J Surg Res 2007; 152:3-17,17.e1-2. [PMID: 18755477 DOI: 10.1016/j.jss.2007.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 05/16/2007] [Accepted: 05/29/2007] [Indexed: 12/16/2022]
Abstract
The inflammatory response initiated upon burn injury is also associated with extensive metabolic adjustments. While there is a significant body of literature on the characterization of these changes at the metabolite level, little is known on the mechanisms of induction, especially with respect to the role of gene expression. We have comprehensively analyzed changes in gene expression in rat livers during the first 7 d after 20% total body surface area burn injury using Affymetrix microarrays. A total of 740 genes were significantly altered in expression at 1, 2, 4, and 7 d after burn injury compared to sham-burn controls. Functional classification based on gene ontology terms indicated that metabolism, transport, signaling, and defense/inflammation response accounted for more than 70% of the significantly altered genes. Fisher least-significant difference post-hoc testing of the 740 differentially expressed genes indicated that over 60% of the genes demonstrated significant changes in expression either on d 1 or on d 7 postburn. The gene expression trends were corroborated by biochemical measurements of triglycerides and fatty acids 24 h postburn but not at later time points. This suggests that fatty acids are used, at least in part, in the liver as energy substrates for the first 4 d after injury. Our data also suggest that long-term regulation of energy substrate utilization in the liver following burn injury is primarily at the posttranscriptional level. Last, relevance networks of significantly expressed genes indicate the involvement of key small molecules in the hepatic response to 20% total body surface area burn injury.
Collapse
|
44
|
Mukerjee R, Sawaya BE, Khalili K, Amini S. Association of p65 and C/EBPbeta with HIV-1 LTR modulates transcription of the viral promoter. J Cell Biochem 2007; 100:1210-6. [PMID: 17031851 DOI: 10.1002/jcb.21109] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In human immunodeficiency virus type 1 (HIV-1) latently infected cells, NF-kappaB (NF-kappaB) plays a critical role in the transcriptional induction of the HIV-1 promoter. The trans-activating ability of NF-kappaB can be modified by another nuclear factor C/EBPbeta that can physically bind to NF-kappaB and regulate its activity. Because the HIV-1 promoter also contains a C/EBPbeta site adjacent to the NF-kappaB site, the present study examined cooperative functional in vivo interaction of the p65 subunit of NF-kappaB and C/EBPbeta, and the impact of Tat in this event. We demonstrated that ectopic expression of p65 along with Tat increases p65 binding to HIV-1 LTR, and that this increase correlates with enhanced HIV-1 promoter activity. Further, co-expression of C/EBPbeta and Tat leads to a decrease in p65 binding, which allows C/EBPbeta to bind more efficiently to the LTR. Inhibition of p65 expression by siRNA significantly decreases C/EBPbeta-binding and LTR expression. Using ChIP assay, we confirmed the existence of an interchange between p65 and C/EBPbeta and their abilities to bind to the LTR in vivo. These observations demonstrate that a delicate balance of interaction between p65, C/EBPbeta, and Tat can dictate the level of HIV-1 LTR transcription.
Collapse
Affiliation(s)
- Ruma Mukerjee
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19122, USA
| | | | | | | |
Collapse
|
45
|
Vlasova MA, Moshkovskii SA. Molecular interactions of acute phase serum amyloid A: possible involvement in carcinogenesis. BIOCHEMISTRY (MOSCOW) 2007; 71:1051-9. [PMID: 17125452 DOI: 10.1134/s0006297906100014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acute phase serum amyloid A (A-SAA) is a well-known marker of inflammation. The present review summarizes data on the regulation of A-SAA expression, signaling pathways which it is involved in, its effects, and possible influences on progression of malignant tumors.
Collapse
Affiliation(s)
- M A Vlasova
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, 119121, Russia
| | | |
Collapse
|
46
|
Chumakov AM, Silla A, Williamson EA, Koeffler HP. Modulation of DNA binding properties of CCAAT/enhancer binding protein epsilon by heterodimer formation and interactions with NFkappaB pathway. Blood 2007; 109:4209-19. [PMID: 17255362 PMCID: PMC1885488 DOI: 10.1182/blood-2005-09-031963] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C/EBP epsilon is a transcription factor involved in myeloid cell differentiation. Along with C/EBP-alpha, -beta, -gamma, -delta, and -zeta, C/EBP-epsilon belongs to the family of CCAAT/enhancer binding proteins that are implicated in control of growth and differentiation of several cell lineages in inflammation and stress response. We have previously shown that C/EBP-epsilon preferentially binds DNA as a heterodimer with other C/EBP family members such as C/EBP-delta, CHOP (C/EBP-zeta), and the b-zip family protein ATF4. In this study, we define the consensus binding sites for C/EBP-epsilon dimers and C/EBP-epsilon-ATF4 heterodimers. We show that the activated NFkappaB pathway promotes interaction of the C/EBP-epsilon subunit with its cognate DNA binding site via interaction with RelA. RelA-C/EBP interaction is enhanced by phosphorylation of threonine at amino acid 75 and results in increased DNA binding compared with the wild-type nonphosphorylated C/EBP both in vitro and in vivo. We suggest that interaction of the activated NFkappaB pathway and C/EBP-epsilon may be important in selective activation of a subset of C/EBP-epsilon-responsive genes.
Collapse
Affiliation(s)
- Alexey M Chumakov
- Department of Medicine, Cedars-Sinai Medical Center, University of California at Los Angeles, CA 90048, USA.
| | | | | | | |
Collapse
|
47
|
Soloff MS, Izban MG, Cook DL, Jeng YJ, Mifflin RC. Interleukin-1-induced NF-κB recruitment to the oxytocin receptor gene inhibits RNA polymerase II–promoter interactions in cultured human myometrial cells. ACTA ACUST UNITED AC 2006; 12:619-24. [PMID: 16888077 DOI: 10.1093/molehr/gal067] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The myometrial oxytocin receptor (OTR) is highly regulated during pregnancy, reaching maximal concentrations near term. These levels are then abruptly reduced in advanced labour and the post-partum period. Our goal was to examine the molecular basis for this reduction, using chromatin immunoprecipitation (ChIP). Interleukin-1alpha (IL1A) treatment of cultured human myometrial cells has previously been shown to reduce steady-state levels of OTR mRNA. We show further that IL1A reduced RNA polymerase II cross-linking to the otr promoter, as reflective of transcriptional inhibition. IL1A also increased the recruitment of nuclear factor kappaB (NF-kappaB) to a site 955 bp upstream from the transcriptional start site. Inhibition of NF-kappaB activation negated the effects of IL1A on polymerase II dissociation, indicating a causal relationship, at least in part, between recruitment of NF-kappaB and detachment of polymerase from the otherwise constitutively active otr promoter. IL1A treatment also resulted in increased histone H4 acetylation in the otr promoter region. Whereas NF-kappaB recruitment and histone acetylation are generally associated with activation of gene expression, our findings show that both processes can be involved in dissociation of RNA polymerase II from an active promoter. The results of these studies suggest that the elevation of IL1 in the myometrium occurring at the end of pregnancy initiates the process of down-regulation of OTRs in advanced labour, resulting in the desensitization of the myometrium to elevated levels of OT in the blood during lactation.
Collapse
Affiliation(s)
- Melvyn S Soloff
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555-1062, USA.
| | | | | | | | | |
Collapse
|
48
|
Koenders MI, Lubberts E, van de Loo FAJ, Oppers-Walgreen B, van den Bersselaar L, Helsen MM, Kolls JK, Di Padova FE, Joosten LAB, van den Berg WB. Interleukin-17 acts independently of TNF-alpha under arthritic conditions. THE JOURNAL OF IMMUNOLOGY 2006; 176:6262-9. [PMID: 16670337 DOI: 10.4049/jimmunol.176.10.6262] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The proinflammatory T cell cytokine IL-17 is a potent inducer of other cytokines such as IL-1 and TNF-alpha. The contribution of TNF in IL-17-induced joint inflammation is unclear. In this work we demonstrate using TNF-alpha-deficient mice that TNF-alpha is required in IL-17-induced joint pathology under naive conditions in vivo. However, overexpression of IL-17 aggravated K/BxN serum transfer arthritis to a similar degree in TNF-alpha-deficient mice and their wild-type counterparts, indicating that the TNF dependency of IL-17-induced pathology is lost under arthritic conditions. Also, during the course of the streptococcal cell wall-induced arthritis model, IL-17 was able to enhance inflammation and cartilage damage in the absence of TNF. Additional blocking of IL-1 during IL-17-enhanced streptococcal cell wall-induced arthritis did not reduce joint pathology in TNF-deficient mice, indicating that IL-1 is not responsible for this loss of TNF dependency. These data provide further understanding of the cytokine interplay during inflammation and demonstrate that, despite a strong TNF dependency under naive conditions, IL-17 acts independently of TNF under arthritic conditions.
Collapse
Affiliation(s)
- Marije I Koenders
- Experimental Rheumatology and Advanced Therapeutics, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zwergal A, Quirling M, Saugel B, Huth KC, Sydlik C, Poli V, Neumeier D, Ziegler-Heitbrock HWL, Brand K. C/EBPβ Blocks p65 Phosphorylation and Thereby NF-κB-Mediated Transcription in TNF-Tolerant Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:665-72. [PMID: 16785565 DOI: 10.4049/jimmunol.177.1.665] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TNF is a major mediator of inflammation, immunity, and apoptosis. Pre-exposure to TNF reduces sensitivity to restimulation, a phenomenon known as tolerance, considered as protective in sepsis, but also as a paradigm for immunoparalysis. Earlier experiments in TNF-tolerant cells display inhibition of NF-kappaB-dependent IL-8 gene expression at the transcriptional level with potential involvement of C/EBPbeta. In this study, we have shown that a kappaB motive was sufficient to mediate transcriptional inhibition under TNF tolerance conditions in monocytic cells. Furthermore, in tolerant cells, TNF-induced NF-kappaB p65 phosphorylation was markedly decreased, which was accompanied by the formation of C/EBPbeta-p65 complexes. Remarkably, in C/EBPbeta(-/-) cells incubated under the conditions of TNF tolerance, neither impairment of transcription nor inhibition of p65 phosphorylation was observed. Finally, we showed that C/EBPbeta overexpression reduced p65-mediated transactivation and that association of C/EBPbeta with p65 specifically prevented p65 phosphorylation. Our data demonstrate that C/EBPbeta is an essential signaling component for inhibition of NF-kappaB-mediated transcription in TNF-tolerant cells and suggest that this is caused by blockade of p65 phosphorylation. These results define a new molecular mechanism responsible for TNF tolerance in monocytic cells that may contribute to the unresponsiveness seen in patients with sepsis.
Collapse
Affiliation(s)
- Andreas Zwergal
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Paz-Priel I, Cai DH, Wang D, Kowalski J, Blackford A, Liu H, Heckman CA, Gombart AF, Koeffler HP, Boxer LM, Friedman AD. CCAAT/enhancer binding protein alpha (C/EBPalpha) and C/EBPalpha myeloid oncoproteins induce bcl-2 via interaction of their basic regions with nuclear factor-kappaB p50. Mol Cancer Res 2006; 3:585-96. [PMID: 16254192 DOI: 10.1158/1541-7786.mcr-05-0111] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The CEBPA gene is mutated in 10% of acute myeloid leukemia (AML) cases. We find that CEBPA and Bcl-2 RNA levels correlate highly in low-risk human AMLs, suggesting that inhibition of apoptosis via induction of bcl-2 by CCAAT/enhancer binding protein alpha (C/EBPalpha) or its mutant variants contributes to transformation. C/EBPalphap30, lacking a NH2-terminal transactivation domain, or C/EBPalphaLZ, carrying in-frame mutations in the leucine zipper that prevent DNA binding, induced bcl-2 in hematopoietic cell lines, and C/EBPalpha induced bcl-2 in normal murine myeloid progenitors and in the splenocytes of H2K-C/EBPalpha-Emu transgenic mice. C/EBPalpha protected Ba/F3 cells from apoptosis on interleukin-3 withdrawal but not if bcl-2 was knocked down. Remarkably, C/EBPalphaLZ oncoproteins activated the bcl-2 P2 promoter despite lack of DNA binding, and C/EBPalphap30 also activated the promoter. C/EBPalpha and the C/EBPalpha oncoproteins cooperated with nuclear factor-kappaB (NF-kappaB) p50, but not p65, to induce bcl-2 transcription. Endogenous C/EBPalpha preferentially coimmunoprecipitated with p50 versus p65 in myeloid cell extracts. Mutation of residues 297 to 302 in the C/EBPalpha basic region prevented induction of endogenous bcl-2 or the bcl-2 promoter and interaction with p50 but not p65. These findings suggest that C/EBPalpha or its mutant variants tether to a subset of NF-kappaB target genes, including Bcl-2, via p50 to facilitate gene activation and offer an explanation for preferential in-frame rather than out-of-frame mutation of the leucine zipper with sparing of the basic region in C/EBPalphaLZ oncoproteins. Targeting interaction between C/EBPalpha basic region and NF-kappaB p50 may contribute to the therapy of AML and other malignancies expressing C/EBPs.
Collapse
MESH Headings
- Adult
- Animals
- Apoptosis/physiology
- CCAAT-Enhancer-Binding Protein-alpha/genetics
- CCAAT-Enhancer-Binding Protein-alpha/metabolism
- Cell Line
- HL-60 Cells
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- NF-kappa B p50 Subunit/metabolism
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Transcriptional Activation
Collapse
Affiliation(s)
- Ido Paz-Priel
- Division of Pediatric Oncology, Johns Hopkins University, CRB 253, 1650 Orleans Street, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|