1
|
Chen S, Abou-Khalil BW, Afawi Z, Ali QZ, Amadori E, Anderson A, Anderson J, Andrade DM, Annesi G, Arslan M, Auce P, Bahlo M, Baker MD, Balagura G, Balestrini S, Banks E, Barba C, Barboza K, Bartolomei F, Bass N, Baum LW, Baumgartner TH, Baykan B, Bebek N, Becker F, Bennett CA, Beydoun A, Bianchini C, Bisulli F, Blackwood D, Blatt I, Borggräfe I, Bosselmann C, Braatz V, Brand H, Brockmann K, Buono RJ, Busch RM, Caglayan SH, Canafoglia L, Canavati C, Castellotti B, Cavalleri GL, Cerrato F, Chassoux F, Cherian C, Cherny SS, Cheung CL, Chou IJ, Chung SK, Churchhouse C, Ciullo V, Clark PO, Cole AJ, Cosico M, Cossette P, Cotsapas C, Cusick C, Daly MJ, Davis LK, Jonghe PD, Delanty N, Dennig D, Depondt C, Derambure P, Devinsky O, Di Vito L, Dickerson F, Dlugos DJ, Doccini V, Doherty CP, El-Naggar H, Ellis CA, Epstein L, Evans M, Faucon A, Feng YCA, Ferguson L, Ferraro TN, Da Silva IF, Ferri L, Feucht M, Fields MC, Fitzgerald M, Fonferko-Shadrach B, Fortunato F, Franceschetti S, French JA, Freri E, Fu JM, Gabriel S, Gagliardi M, Gambardella A, Gauthier L, Giangregorio T, Gili T, Glauser TA, Goldberg E, Goldman A, Goldstein DB, Granata T, Grant R, Greenberg DA, Guerrini R, Gundogdu-Eken A, Gupta N, Haas K, Hakonarson H, Haryanyan G, Häusler M, Hegde M, Heinzen EL, Helbig I, Hengsbach C, Heyne H, Hirose S, Hirsch E, Ho CJ, Hoeper O, Howrigan DP, Hucks D, Hung PC, Iacomino M, Inoue Y, Inuzuka LM, Ishii A, Jehi L, Johnson MR, Johnstone M, Kälviäinen R, Kanaan M, Kara B, Kariuki SM, Kegele J, Kesim Y, Khoueiry-Zgheib N, Khoury J, King C, Klein KM, Kluger G, Knake S, Kok F, Korczyn AD, Korinthenberg R, Koupparis A, Kousiappa I, Krause R, Krenn M, Krestel H, Krey I, Kunz WS, Kurlemann G, Kuzniecky RI, Kwan P, La Vega-Talbott M, Labate A, Lacey A, Lal D, Laššuthová P, Lauxmann S, Lawthom C, Leech SL, Lehesjoki AE, Lemke JR, Lerche H, Lesca G, Leu C, Lewin N, Lewis-Smith D, Li GHY, Liao C, Licchetta L, Lin CH, Lin KL, Linnankivi T, Lo W, Lowenstein DH, Lowther C, Lubbers L, Lui CHT, Macedo-Souza LI, Madeleyn R, Madia F, Magri S, Maillard L, Marcuse L, Marques P, Marson AG, Matthews AG, May P, Mayer T, McArdle W, McCarroll SM, McGoldrick P, McGraw CM, McIntosh A, McQuillan A, Meador KJ, Mei D, Michel V, Millichap JJ, Minardi R, Montomoli M, Mostacci B, Muccioli L, Muhle H, Müller-Schlüter K, Najm IM, Nasreddine W, Neaves S, Neubauer BA, Newton CRJC, Noebels JL, Northstone K, Novod S, O'Brien TJ, Owusu-Agyei S, Özkara Ç, Palotie A, Papacostas SS, Parrini E, Pato C, Pato M, Pendziwiat M, Pennell PB, Petrovski S, Pickrell WO, Pinsky R, Pinto D, Pippucci T, Piras F, Piras F, Poduri A, Pondrelli F, Posthuma D, Powell RHW, Privitera M, Rademacher A, Ragona F, Ramirez-Hamouz B, Rau S, Raynes HR, Rees MI, Regan BM, Reif A, Reinthaler E, Rheims S, Ring SM, Riva A, Rojas E, Rosenow F, Ryvlin P, Saarela A, Sadleir LG, Salman B, Salmon A, Salpietro V, Sammarra I, Scala M, Schachter S, Schaller A, Schankin CJ, Scheffer IE, Schneider N, Schubert-Bast S, Schulze-Bonhage A, Scudieri P, Sedláčková L, Shain C, Sham PC, Shiedley BR, Siena SA, Sills GJ, Sisodiya SM, Smoller JW, Solomonson M, Spalletta G, Sparks KR, Sperling MR, Stamberger H, Steinhoff BJ, Stephani U, Štěrbová K, Stewart WC, Stipa C, Striano P, Strzelczyk A, Surges R, Suzuki T, Talarico M, Talkowski ME, Taneja RS, Tanteles GA, Timonen O, Timpson NJ, Tinuper P, Todaro M, Topaloglu P, Tsai MH, Tumiene B, Turkdogan D, Uğur-İşeri S, Utkus A, Vaidiswaran P, Valton L, van Baalen A, Vari MS, Vetro A, Vlčková M, von Brauchitsch S, von Spiczak S, Wagner RG, Watts N, Weber YG, Weckhuysen S, Widdess-Walsh P, Wiebe S, Wolf SM, Wolff M, Wolking S, Wong I, von Wrede R, Wu D, Yamakawa K, Yapıcı Z, Yis U, Yolken R, Yücesan E, Zagaglia S, Zahnert F, Zara F, Zimprich F, Zizovic M, Zsurka G, Neale BM, Berkovic SF. Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.02.22.23286310. [PMID: 36865150 PMCID: PMC9980234 DOI: 10.1101/2023.02.22.23286310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Identifying genetic risk factors for highly heterogeneous disorders like epilepsy remains challenging. Here, we present the largest whole-exome sequencing study of epilepsy to date, with >54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets, and four copy number variants at exome-wide significance. Genes encoding ion channels show strong association with multiple epilepsy subtypes, including epileptic encephalopathies, generalized and focal epilepsies, while most other gene discoveries are subtype-specific, highlighting distinct genetic contributions to different epilepsies. Combining results from rare single nucleotide/short indel-, copy number-, and common variants, we offer an expanded view of the genetic architecture of epilepsy, with growing evidence of convergence among different genetic risk loci on the same genes. Top candidate genes are enriched for roles in synaptic transmission and neuronal excitability, particularly postnatally and in the neocortex. We also identify shared rare variant risk between epilepsy and other neurodevelopmental disorders. Our data can be accessed via an interactive browser, hopefully facilitating diagnostic efforts and accelerating the development of follow-up studies.
Collapse
Affiliation(s)
- Siwei Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bassel W Abou-Khalil
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zaid Afawi
- Tel-Aviv University Sackler Faculty of Medicine, Ramat Aviv 69978, Israel
| | | | | | - Alison Anderson
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia
- Department of Neuroscience, The School of Translational Medicine, Alfred Health, Monash University, Melbourne 3004, Australia
| | - Joe Anderson
- Neurology Department, Aneurin Bevan University Health Board, Newport, Wales, UK
| | | | - Grazia Annesi
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, Catanzaro, Italy
| | - Mutluay Arslan
- Department of Child Neurology, Gülhane Education and Research Hospital, Health Sciences University, Ankara, Turkey
| | - Pauls Auce
- St George's University Hospital NHS Foundation Trust, London, UK
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Biology, University of Melbourne, Parkville 3010, Australia
| | - Mark D Baker
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Eric Banks
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carmen Barba
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Karen Barboza
- University Health Network, University of Toronto, Toronto, ON, Canada
| | - Fabrice Bartolomei
- Clinical Neurophysiology and Epileptology Department, Timone Hospital, Marseille, France
| | - Nick Bass
- Division of Psychiatry, University College London
| | - Larry W Baum
- Department of Psychiatry, The University of Hong Kong, Pokulam, Hong Kong
| | - Tobias H Baumgartner
- Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany
| | - Betül Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nerses Bebek
- Department of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Felicitas Becker
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- Department of Neurology, University of Ulm, Ulm 89081, Germany
| | - Caitlin A Bennett
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| | - Ahmad Beydoun
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Claudia Bianchini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Francesca Bisulli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Douglas Blackwood
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ilan Blatt
- Tel-Aviv University Sackler Faculty of Medicine, Ramat Aviv 69978, Israel
- Department of Neurology, Sheba Medical Center, Ramat Gan, Israel
| | - Ingo Borggräfe
- Department of Pediatric Neurology, Dr von Hauner Children's Hospital, Ludwig Maximilians University, Munchen, Germany
| | - Christian Bosselmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Vera Braatz
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Knut Brockmann
- Children's Hospital, Dept. of Pediatric Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Russell J Buono
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Biomedical Sciences, Cooper Medical School of Rowan University Camden, NJ 08103, USA
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Robyn M Busch
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - S Hande Caglayan
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | | | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta Milano, Italy
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- The FutureNeuro Research Centre, Dublin, Ireland
| | - Felecia Cerrato
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francine Chassoux
- Epilepsy Unit, Department of Neurosurgery, Centre Hospitalier Sainte-Anne, and University Paris Descartes, Paris, France
| | - Christina Cherian
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stacey S Cherny
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong
| | - I-Jun Chou
- Department of Pediatric Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Seo-Kyung Chung
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
- Kids Research, Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Brain & Mind Centre, Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - Claire Churchhouse
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Valentina Ciullo
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Peggy O Clark
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrew J Cole
- Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Mahgenn Cosico
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Patrick Cossette
- Department of Neurosciences, Université de Montréal, Montréal, CA 26758, Canada
| | | | - Caroline Cusick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark J Daly
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter De Jonghe
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Edegem 2650, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Norman Delanty
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- The FutureNeuro Research Centre, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin D09 FT51, Ireland
| | | | - Chantal Depondt
- Department of Neurology, CUB Erasme Hospital, Hôpital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Philippe Derambure
- Department of Clinical Neurophysiology, Lille University Medical Center, EA 1046, University of Lille
| | - Orrin Devinsky
- Department of Neurology, New York University/Langone Health, New York NY, USA
| | - Lidia Di Vito
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Faith Dickerson
- Sheppard Pratt, 6501 North Charles Street, Baltimore, Maryland, USA
| | - Dennis J Dlugos
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Viola Doccini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Colin P Doherty
- The FutureNeuro Research Centre, Dublin, Ireland
- Neurology Department, St. James's Hospital, Dublin D03 VX82, Ireland
| | - Hany El-Naggar
- The FutureNeuro Research Centre, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin D09 FT51, Ireland
| | - Colin A Ellis
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | - Leon Epstein
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL USA
| | - Meghan Evans
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Annika Faucon
- Human Genetics Training Program, Vanderbilt University, Nashville, TN, USA
| | - Yen-Chen Anne Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Biostatistics, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Lisa Ferguson
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University Camden, NJ 08103, USA
- Department of Pharmacology and Psychiatry, University of Pennsylvania Perlman School of Medicine, Philadelphia, PA 19104, USA
| | - Izabela Ferreira Da Silva
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Lorenzo Ferri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Martha Feucht
- Department of Pediatrics and Neonatology, Medical University of Vienna, Vienna 1090, Austria
| | - Madeline C Fields
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark Fitzgerald
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | | | - Francesco Fortunato
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, Italy
| | | | - Jacqueline A French
- Department of Neurology, New York University/Langone Health, New York NY, USA
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stacey Gabriel
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monica Gagliardi
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, Catanzaro, Italy
| | - Antonio Gambardella
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Laura Gauthier
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tania Giangregorio
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Medical Genetics Unit, Bologna, Italy
| | - Tommaso Gili
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Tracy A Glauser
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ethan Goldberg
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | | | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Riley Grant
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David A Greenberg
- Department of Pediatrics, Nationwide Children's Hospital, Columbia, Ohio, USA
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Aslı Gundogdu-Eken
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kevin Haas
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hakon Hakonarson
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Garen Haryanyan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Martin Häusler
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, University Hospital, RWTH Aachen, Aachen, Germany
| | - Manu Hegde
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Erin L Heinzen
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | - Christian Hengsbach
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Henrike Heyne
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Germany
| | - Shinichi Hirose
- General Medical Research Center, School of Medicine, Fukuoka University, Japan
| | - Edouard Hirsch
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Olivia Hoeper
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| | - Daniel P Howrigan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Donald Hucks
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Po-Chen Hung
- Department of Pediatric Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Yushi Inoue
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorder, Shizuoka, Japan
| | - Luciana Midori Inuzuka
- Epilepsy Clinic, Hospital Sirio-Libanes, Sao Paulo, Brazil
- Department of Neurology, University of Sao Paulo School of Medicine, Brazil
| | - Atsushi Ishii
- Department of Pediatrics, Fukuoka Sanno Hospital, Japan
| | - Lara Jehi
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael R Johnson
- Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mandy Johnstone
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Reetta Kälviäinen
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Kuopio 70210, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Moien Kanaan
- Hereditary Research Lab, Bethlehem University, Bethlehem, Palestine
| | - Bulent Kara
- Department of Child Neurology, Medical School, Kocaeli University, Kocaeli, Turkey
| | - Symon M Kariuki
- Neuroscience Unit, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Public Health, Pwani University, Kilifi, Kenya
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Josua Kegele
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Yeşim Kesim
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nathalie Khoueiry-Zgheib
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Jean Khoury
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chontelle King
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Karl Martin Klein
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
| | - Gerhard Kluger
- Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents, Vogtareuth, Germany
- Research Institute Rehabilitation / Transition, / Palliation, PMU Salzburg, Austria
| | - Susanne Knake
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Fernando Kok
- Department of Neurology, University of Sao Paulo School of Medicine, Brazil
- Mendelics Genomic Analysis, São Paulo, Brazil
| | - Amos D Korczyn
- Tel-Aviv University Sackler Faculty of Medicine, Ramat Aviv 69978, Israel
| | - Rudolf Korinthenberg
- Department of Neuropediatrics and Muscular Disorders, University Medical Center, University of Freiburg, Freiburg, Germany
| | | | | | - Roland Krause
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Martin Krenn
- Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Heinz Krestel
- Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Wolfram S Kunz
- Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerhard Kurlemann
- Bonifatius Hospital Lingen, Neuropediatrics Wilhelmstrasse 13, 49808 Lingen, Germany
| | - Ruben I Kuzniecky
- Department of Neurology, Hofstra-Northwell Medical School, New York, NY, USA
| | - Patrick Kwan
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia
- Department of Neuroscience, The School of Translational Medicine, Alfred Health, Monash University, Melbourne 3004, Australia
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
| | - Maite La Vega-Talbott
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angelo Labate
- Neurophysiopatology and Movement Disorders Clinic, University of Messina, Messina, Italy
| | - Austin Lacey
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- The FutureNeuro Research Centre, Dublin, Ireland
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Petra Laššuthová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - Stephan Lauxmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Charlotte Lawthom
- Neurology Department, Aneurin Bevan University Health Board, Newport, Wales, UK
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Stephanie L Leech
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Helsinki 00290, Finland
- Medicum, University of Helsinki, Helsinki 00290, Finland
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Gaetan Lesca
- Department of Medical Genetics, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Costin Leu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naomi Lewin
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - David Lewis-Smith
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Department of Clinical Neurosciences, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Gloria Hoi-Yee Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hum, Hong Kong
| | - Calwing Liao
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Kuang-Lin Lin
- Department of Pediatric Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tarja Linnankivi
- Child Neurology, New Childreńs Hospital, Helsinki, Finland
- Pediatric Research Center, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
| | - Warren Lo
- Department of Pediatrics and Neurology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel H Lowenstein
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Chelsea Lowther
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura Lubbers
- Citizens United for Research in Epilepsy, Chicago, Illinois, USA
| | - Colin H T Lui
- Department of Medicine, Tseung Kwan O Hospital, Hong Kong
| | - Lucia Inês Macedo-Souza
- Department of Biology, Institute of Biological Sciences and Center for Study on Human Genome, University of São Paulo, São Paulo, Brazil
| | - Rene Madeleyn
- Department of Pediatrics, Filderklinik, Filderstadt, Germany
| | | | - Stefania Magri
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Louis Maillard
- Neurology Department, University Hospital of Nancy, UMR 7039, CNRS, Lorraine University, Nancy, France
| | - Lara Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paula Marques
- University Health Network, University of Toronto, Toronto, ON, Canada
| | - Anthony G Marson
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, UK
| | | | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Thomas Mayer
- Epilepsy Center Kleinwachau, Radeberg 01454, Germany
| | - Wendy McArdle
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Steven M McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Patricia McGoldrick
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Boston Children's Health Physicians, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, New York, NY 10595, USA
| | | | - Andrew McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | | | - Raffaella Minardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Martino Montomoli
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Lorenzo Muccioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Hiltrud Muhle
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Karen Müller-Schlüter
- Epilepsy Center for Children, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Imad M Najm
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Wassim Nasreddine
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Samuel Neaves
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
| | | | - Charles R J C Newton
- Neuroscience Unit, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Public Health, Pwani University, Kilifi, Kenya
- Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Cape Town, South Africa
| | | | - Kate Northstone
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Sam Novod
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Terence J O'Brien
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia
- Department of Neuroscience, The School of Translational Medicine, Alfred Health, Monash University, Melbourne 3004, Australia
| | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana
- University of Health and Allied Science in Ho, Ghana
| | - Çiğdem Özkara
- Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Department of Neurology, Istanbul, Turkey
| | - Aarno Palotie
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Neurology, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 0014, Finland
| | | | - Elena Parrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Carlos Pato
- Departments of Psychiatry, Rutgers University, Robert Wood Johnson Medical School and New Jersey Medical School, New Brunswick, NJ, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Michele Pato
- Departments of Psychiatry, Rutgers University, Robert Wood Johnson Medical School and New Jersey Medical School, New Brunswick, NJ, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Manuela Pendziwiat
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Slavé Petrovski
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - William O Pickrell
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
- Department of Neurology, Morriston Hospital, Swansea Bay University Bay Health Board, Swansea, Wales, UK
| | - Rebecca Pinsky
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Dalila Pinto
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Medical Genetics Unit, Bologna, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Federica Pondrelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, the Netherlands
| | - Robert H W Powell
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
- Department of Neurology, Morriston Hospital, Swansea Bay University Bay Health Board, Swansea, Wales, UK
| | - Michael Privitera
- Department of Neurology, Gardner Neuroscience Institute, University of Cincinnati Medical Center, Cincinnati, OH 45220, USA
| | - Annika Rademacher
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Byron Ramirez-Hamouz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah Rau
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Hillary R Raynes
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark I Rees
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
- Brain & Mind Centre, Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - Brigid M Regan
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital Würzburg
| | - Eva Reinthaler
- Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, France
- Lyon's Neuroscience Research Center, INSERM U1028 / CNRS UMR 5292, Lyon, France
| | - Susan M Ring
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
| | - Antonella Riva
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Enrique Rojas
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL USA
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Centre Hospitalo-Universitaire Vaudois, Lausanne, Switzerland
| | - Anni Saarela
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Kuopio 70210, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Barış Salman
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Andrea Salmon
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Ilaria Sammarra
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, Catanzaro, Italy
| | - Marcello Scala
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Steven Schachter
- Departments of Neurology, Beth Israel Deaconess Medical Center, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02215, USA
| | - André Schaller
- Institute of Human Genetics, Bern University Hospital, Bern, Switzerland
| | - Christoph J Schankin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - Ingrid E Scheffer
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
- Florey and Murdoch Children's Research Institutes, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Natascha Schneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Department of Neuropediatrics, Children's Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Paolo Scudieri
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Lucie Sedláčková
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - Catherine Shain
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Pokulam, Hong Kong
| | - Beth R Shiedley
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - S Anthony Siena
- Medical School, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Graeme J Sills
- School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Matthew Solomonson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn R Sparks
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL USA
| | - Michael R Sperling
- Department of Neurology and Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hannah Stamberger
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Edegem 2650, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | | | - Ulrich Stephani
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Katalin Štěrbová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - William C Stewart
- Department of Pediatrics, Nationwide Children's Hospital, Columbia, Ohio, USA
| | - Carlotta Stipa
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany
| | - Toshimitsu Suzuki
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mariagrazia Talarico
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, Catanzaro, Italy
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Randip S Taneja
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Oskari Timonen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Nicholas John Timpson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Marian Todaro
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia
- Department of Neuroscience, The School of Translational Medicine, Alfred Health, Monash University, Melbourne 3004, Australia
| | - Pınar Topaloglu
- Department of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Birute Tumiene
- Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Dilsad Turkdogan
- Department of Child Neurology, Medical School, Marmara University, Istanbul, Turkey
| | - Sibel Uğur-İşeri
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Algirdas Utkus
- Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Priya Vaidiswaran
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Luc Valton
- Department of Neurology, UMR 5549, CNRS, Toulouse University Hospital, University of Toulouse, Toulouse, France
| | - Andreas van Baalen
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | | | - Annalisa Vetro
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Markéta Vlčková
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - Sophie von Brauchitsch
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Sarah von Spiczak
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
- DRK-Northern German Epilepsy Centre for Children and Adolescents, 24223 Schwentinental-Raisdorf, Germany
| | - Ryan G Wagner
- MRC/Wits Rural Public Health & Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Nick Watts
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yvonne G Weber
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- Department of Neurology and Epileptology, University of Aachen, Aachen 52074, Germany
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Edegem 2650, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Peter Widdess-Walsh
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- The FutureNeuro Research Centre, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin D09 FT51, Ireland
| | - Samuel Wiebe
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
- Clinical Research Unit, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Steven M Wolf
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Boston Children's Health Physicians, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, New York, NY 10595, USA
| | - Markus Wolff
- Department of Pediatric Neurology, Vivantes Hospital Neukölln, 12351 Berlin, Germany
| | - Stefan Wolking
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- Department of Neurology and Epileptology, University of Aachen, Aachen 52074, Germany
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany
| | - David Wu
- Human Genetics Training Program, Vanderbilt University, Nashville, TN, USA
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Zuhal Yapıcı
- Department of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Uluc Yis
- Department of Child Neurology, Medical School, Dokuz Eylul University, Izmir, Turkey
| | - Robert Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emrah Yücesan
- Bezmialem Vakif University, Institute of Life Sciences and Biotechnology, Istanbul, Turkey
| | - Sara Zagaglia
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Felix Zahnert
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Federico Zara
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Milena Zizovic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Gábor Zsurka
- Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin M Neale
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| |
Collapse
|
2
|
Ouyang J, Peng S, Wu G, Liu R. Association Between Neurodegenerative Diseases and an Increased Risk of Epilepsy Based on Single Nucleotide Polymorphisms: A Mendelian Randomization Study. Mol Neurobiol 2024; 61:5950-5957. [PMID: 38261256 DOI: 10.1007/s12035-024-03955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Epilepsy is a common neurological disorder characterized by transient brain dysfunction, attributed to a multitude of factors. The purpose of this study is to explore whether neurodegenerative diseases, specifically Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), have a causal effect on epilepsy. Mendelian randomization (MR) methods were used to analyze the causal association between neurodegenerative diseases (AD, PD, ALS, and MS) and epilepsy based on single nucleotide polymorphisms from genome-wide association studies, including inverse-variance weighted, weighted median, MR-Egger, and weighted mode methods. The reliability and stability of the MR analysis results were assessed by the MR-Egger intercept, MR-PRESSO, and heterogeneity tests. Forty-three SNPs were selected for the MR analysis of MS and epilepsy. The inverse-variance weighted method showed a significant causal association between MS and increased risk of epilepsy (odds ratio 1.046; 95% confidence interval 1.001-1.093; P = 0.043). However, AD (P = 0.986), PD (P = 0.894), and ALS (P = 0.533) were not causally associated with epilepsy. Sensitivity analysis showed that the results were robust. The MR study confirmed the causal relationship between genetically predicted MS and epilepsy but did not support the causal relationship between genetically predicted AD, PD, and ALS on epilepsy.
Collapse
Affiliation(s)
- Jia Ouyang
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Shijun Peng
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Guangyong Wu
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
| |
Collapse
|
3
|
Wang S, Xie Z, Jun T, Ma X, Zhang M, Rao F, Xu H, Lu J, Ding X, Li Z. Identification of potential crucial genes and therapeutic targets for epilepsy. Eur J Med Res 2024; 29:43. [PMID: 38212777 PMCID: PMC10782668 DOI: 10.1186/s40001-024-01643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Epilepsy, a central neurological disorder, has a complex genetic architecture. There is some evidence suggesting that genetic factors play a role in both the occurrence of epilepsy and its treatment. However, the genetic determinants of epilepsy are largely unknown. This study aimed to identify potential therapeutic targets for epilepsy. METHODS Differentially expressed genes (DEGs) were extracted from the expression profiles of GSE44031 and GSE1834. Gene co-expression analysis was used to confirm the regulatory relationship between newly discovered epilepsy candidate genes and known epilepsy genes. Expression quantitative trait loci analysis was conducted to determine if epilepsy risk single-nucleotide polymorphisms regulate DEGs' expression in human brain tissue. Finally, protein-protein interaction analysis and drug-gene interaction analysis were performed to assess the role of DEGs in epilepsy treatment. RESULTS The study found that the protein tyrosine phosphatase receptor-type O gene (PTPRO) and the growth arrest and DNA damage inducible alpha gene (GADD45A) were significantly upregulated in epileptic rats compared to controls in both datasets. Gene co-expression analysis revealed that PTPRO was co-expressed with RBP4, NDN, PAK3, FOXG1, IDS, and IDS, and GADD45A was co-expressed with LRRK2 in human brain tissue. Expression quantitative trait loci analysis suggested that epilepsy risk single-nucleotide polymorphisms could be responsible for the altered PTPRO and GADD45A expression in human brain tissue. Moreover, the protein encoded by GADD45A had a direct interaction with approved antiepileptic drug targets, and GADD45A interacts with genistein and cisplatin. CONCLUSIONS The results of this study highlight PTPRO and GADD45A as potential genes for the diagnosis and treatment of epilepsy.
Collapse
Affiliation(s)
- Shitao Wang
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China.
| | - Zhenrong Xie
- The Medical Biobank, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Tian Jun
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Xuelu Ma
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Mengen Zhang
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Feng Rao
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Hui Xu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Jinghong Lu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Xiangqian Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zongyou Li
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| |
Collapse
|
4
|
Krey I, Platzer K, Esterhuizen A, Berkovic SF, Helbig I, Hildebrand MS, Lerche H, Lowenstein D, Møller RS, Poduri A, Sadleir L, Sisodiya SM, Weckhuysen S, Wilmshurst JM, Weber Y, Lemke JR. Current practice in diagnostic genetic testing of the epilepsies. Epileptic Disord 2022; 24:765-786. [PMID: 35830287 PMCID: PMC10752379 DOI: 10.1684/epd.2022.1448] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2022] [Indexed: 01/19/2023]
Abstract
Epilepsy genetics is a rapidly developing field, in which novel disease-associated genes, novel mechanisms associated with epilepsy, and precision medicine approaches are continuously being identified. In the past decade, advances in genomic knowledge and analysis platforms have begun to make clinical genetic testing accessible for, in principle, people of all ages with epilepsy. For this reason, the Genetics Commission of the International League Against Epilepsy (ILAE) presents this update on clinical genetic testing practice, including current techniques, indications, yield of genetic testing, recommendations for pre- and post-test counseling, and follow-up after genetic testing is completed. We acknowledge that the resources vary across different settings but highlight that genetic diagnostic testing for epilepsy should be prioritized when the likelihood of an informative finding is high. Results of genetic testing, in particular the identification of causative genetic variants, are likely to improve individual care. We emphasize the importance of genetic testing for individuals with epilepsy as we enter the era of precision therapy.
Collapse
Affiliation(s)
- Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Alina Esterhuizen
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Heidelberg, VIC, Australia
| | - Ingo Helbig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Building C, Arnold-Heller-Straße 3, 24105 Kiel, Germany
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg and Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, Australia
| | - Holger Lerche
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Daniel Lowenstein
- Department of Neurology, University of California, San Francisco, USA
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology London, UK and Chalfont Centre for Epilepsy, Buckinghamshire, UK
| | - Sarah Weckhuysen
- Center for Molecular Neurology, VIB-University of Antwerp, VIB, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Jo M. Wilmshurst
- Department of Paediatric Neurology, Paediatric and Child Health, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town, South Africa
| | - Yvonne Weber
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
- Department of Epileptology and Neurology, University of Aachen, Germany
| | - Johannes R. Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
5
|
Lv YQ, Wang X, Jiao YZ, Wang YH, Wang N, Gao L, Zhang JJ. Interactome overlap between risk genes of epilepsy and targets of anti-epileptic drugs. PLoS One 2022; 17:e0272428. [PMID: 36006933 PMCID: PMC9409560 DOI: 10.1371/journal.pone.0272428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Aanti-epileptic drugs have been used for treating epilepsy for decades, meanwhile, more than one hundred genes have been identified to be associated with risk of epilepsy; however, the interaction mechanism between anti-epileptic drugs and risk genes of epilepsy was still not clearly understood. In this study, we systematically explored the interaction of epilepsy risk genes and anti-epileptic drug targets through a network-based approach. Our results revealed that anti-epileptic drug targets were significantly over-represented in risk genes of epilepsy with 17 overlapping genes and P-value = 2.2 ×10 −16. We identified a significantly localized PPI network with 55 epileptic risk genes and 94 anti-epileptic drug target genes, and network overlap analysis showed significant interactome overlap between risk genes and drug targets with P-value = 0.04. Besides, genes from PPI network were significantly enriched in the co-expression network of epilepsy with 22 enriched genes and P-value = 1.3 ×10 −15; meanwhile, cell type enrichment analysis indicated genes in this network were significantly enriched in 4 brain cell types (Interneuron, Medium Spiny Neuron, CA1 pyramidal Neuron, and Somatosensory pyramidal Neuron). These results provide evidence for significant interactions between epilepsy risk genes and anti-epileptic drug targets from the perspective of network biology.
Collapse
Affiliation(s)
- Yu-Qin Lv
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xing Wang
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yu-Zhuang Jiao
- Shandong Provincial Qianfoshan Hospital, First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Yan-Hua Wang
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Na Wang
- Department of Internal Medicine, Taishan Vocational College of Nursing, Tai’an, Shandong, China
| | - Lei Gao
- Department of Bioinformatics, School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong, China
- * E-mail: (JJZ); (LG)
| | - Jing-Jun Zhang
- Department of Neurology, The second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
- * E-mail: (JJZ); (LG)
| |
Collapse
|
6
|
Molecular Mechanism and Regulation of Autophagy and Its Potential Role in Epilepsy. Cells 2022; 11:cells11172621. [PMID: 36078029 PMCID: PMC9455075 DOI: 10.3390/cells11172621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an evolutionally conserved degradation mechanism for maintaining cell homeostasis whereby cytoplasmic components are wrapped in autophagosomes and subsequently delivered to lysosomes for degradation. This process requires the concerted actions of multiple autophagy-related proteins and accessory regulators. In neurons, autophagy is dynamically regulated in different compartments including soma, axons, and dendrites. It determines the turnover of selected materials in a spatiotemporal control manner, which facilitates the formation of specialized neuronal functions. It is not surprising, therefore, that dysfunctional autophagy occurs in epilepsy, mainly caused by an imbalance between excitation and inhibition in the brain. In recent years, much attention has been focused on how autophagy may cause the development of epilepsy. In this article, we overview the historical landmarks and distinct types of autophagy, recent progress in the core machinery and regulation of autophagy, and biological roles of autophagy in homeostatic maintenance of neuronal structures and functions, with a particular focus on synaptic plasticity. We also discuss the relevance of autophagy mechanisms to the pathophysiology of epileptogenesis.
Collapse
|
7
|
A Multi-Disciplinary Team Approach to Genomic Testing for Drug-Resistant Epilepsy Patients—The GENIE Study. J Clin Med 2022; 11:jcm11144238. [PMID: 35888005 PMCID: PMC9319736 DOI: 10.3390/jcm11144238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Background. The genomic era has led to enormous progress in clinical care and a multi-disciplinary team (MDT) approach is imperative for integration of genomics into epilepsy patient care. Methods. The MDT approach involved patient selection, genomic testing choice, variant discussions and return of results. Genomics analysis included cytogenomic testing and whole exome sequencing (WES). Neurologist surveys were undertaken at baseline and after genomic testing to determine if genomic diagnoses would alter their management, and if there was a change in confidence in genomic testing and neurologist perceptions of the MDT approach. Results. The total diagnostic yield from all genomic testing was 17% (11/66), with four diagnoses from cytogenomic analyses. All chromosomal microarray (CMA) diagnoses were in patients seen by adult neurologists. Diagnostic yield for WES was 11% (7/62). The most common gene with pathogenic variants was DCX, reported in three patients, of which two were mosaic. The genomic diagnosis impacted management in 82% (9/11). There was increased confidence with integrating genomics into clinical care (Pearson chi square = 83, p = 0.004) and qualitative comments were highly supportive of the MDT approach. Conclusions. We demonstrated diagnostic yield from genomic testing, and the impact on management in a cohort with drug-resistant epilepsy. The MDT approach increased confidence in genomic testing and neurologists valued the input from this approach. The utility of CMA was demonstrated in epilepsy patients seen by adult neurologists as was the importance of considering mosaicism for previously undiagnosed patients.
Collapse
|
8
|
Osuntokun OS, Olayiwola G, Oriare AK, Oyedokun SO, Abayomi TA, Tokunbo OS, Ayoka AO. Mucuna pruriens seed protects the hippocampal neurons and abrogates seizure indices in chemically-convulsed mice: evidence of the Nrf2 expression defense pathway. J Chem Neuroanat 2022; 123:102115. [PMID: 35662582 DOI: 10.1016/j.jchemneu.2022.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
Abstract
The anticonvulsant mechanisms and neuroprotective effects of Mucuna pruriens (MP) seed in male BALB/c mice were evaluated. Ninety mice were kindled with picrotoxin, strychnine, or pilocarpine hydrochloride at the 30th minute of intraperitoneal injection (i.p) of normal saline (0.2ml), MP (200, 100, 50mg/kg), diazepam (7.5mg/kg), or haloperidol (5mg/kg). The onset of convulsion and percentage mortality was recorded. The histoarchitectural and immunohistochemical profiles of the brains were determined. Data were expressed as mean ± SEM with a one-way analysis of variance (ANOVA), while p < 0.05 was considered significant. There was a significant prolongation of the latency to first seizure across the treatment groups following picrotoxin, and pilocarpine-induced convulsion; a decrease in percentage mortality in the MP (50mg/kg) treatment group, and an increase in the hippocampal nuclear factor erythroid 2-related factor 2 count, and Neu-N expression in the MP (200mg/kg, and 100mg/kg) treated mice. Treatment with MP seed may abolish seizure occurrence and consequential mortality; mechanisms traceable to its GABAergic expression and hippocampal NRF 2 and Neu N expression.
Collapse
Affiliation(s)
- Opeyemi Samson Osuntokun
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, Federal University Oye Ekiti, Ekiti State, Nigeria.
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Ayomide Karimat Oriare
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria
| | - Samuel Oyeyemi Oyedokun
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria
| | - Taiwo Adekemi Abayomi
- Department of Anatomy, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria
| | | | - Abiodun Oladele Ayoka
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State Nigeria
| |
Collapse
|
9
|
Skotte L, Fadista J, Bybjerg-Grauholm J, Appadurai V, Hildebrand MS, Hansen TF, Banasik K, Grove J, Albiñana C, Geller F, Bjurström CF, Vilhjálmsson BJ, Coleman M, Damiano JA, Burgess R, Scheffer IE, Pedersen OBV, Erikstrup C, Westergaard D, Nielsen KR, Sørensen E, Bruun MT, Liu X, Hjalgrim H, Pers TH, Mortensen PB, Mors O, Nordentoft M, Dreier JW, Børglum AD, Christensen J, Hougaard DM, Buil A, Hviid A, Melbye M, Ullum H, Berkovic SF, Werge T, Feenstra B. Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes. Brain 2022; 145:555-568. [PMID: 35022648 PMCID: PMC9128543 DOI: 10.1093/brain/awab260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/09/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Febrile seizures represent the most common type of pathological brain activity in
young children and are influenced by genetic, environmental and developmental
factors. In a minority of cases, febrile seizures precede later development of
epilepsy. We conducted a genome-wide association study of febrile seizures in 7635 cases
and 83 966 controls identifying and replicating seven new loci, all with
P < 5 × 10−10. Variants at two loci were functionally related to altered expression of the fever
response genes PTGER3 and IL10, and four other
loci harboured genes (BSN, ERC2,
GABRG2, HERC1) influencing neuronal
excitability by regulating neurotransmitter release and binding, vesicular
transport or membrane trafficking at the synapse. Four previously reported loci
(SCN1A, SCN2A, ANO3 and
12q21.33) were all confirmed. Collectively, the seven novel and four previously
reported loci explained 2.8% of the variance in liability to febrile
seizures, and the single nucleotide polymorphism heritability based on all
common autosomal single nucleotide polymorphisms was 10.8%.
GABRG2, SCN1A and SCN2A
are well-established epilepsy genes and, overall, we found positive genetic
correlations with epilepsies (rg = 0.39,
P = 1.68 × 10−4). Further,
we found that higher polygenic risk scores for febrile seizures were associated
with epilepsy and with history of hospital admission for febrile seizures.
Finally, we found that polygenic risk of febrile seizures was lower in febrile
seizure patients with neuropsychiatric disease compared to febrile seizure
patients in a general population sample. In conclusion, this largest genetic investigation of febrile seizures to date
implicates central fever response genes as well as genes affecting neuronal
excitability, including several known epilepsy genes. Further functional and
genetic studies based on these findings will provide important insights into the
complex pathophysiological processes of seizures with and without fever.
Collapse
Affiliation(s)
- Line Skotte
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - João Fadista
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jonas Bybjerg-Grauholm
- Danish Centre for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Vivek Appadurai
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Mental Health Center Sct. Hans, Mental Health Services, Capital Region Denmark, Roskilde, Denmark
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Thomas F Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Grove
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine–Human Genetics, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Clara Albiñana
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Carmen F Bjurström
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Bjarni J Vilhjálmsson
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Matthew Coleman
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - John A Damiano
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Victoria, Australia
| | - Rosemary Burgess
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Victoria, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Victoria, Australia
- Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Flemington, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Kaspar René Nielsen
- Department of Clinical Immunology, Aalborg University Hospital North, Aalborg, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Xueping Liu
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Haematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Preben Bo Mortensen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Merete Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mental Health Center Copenhagen, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Julie W Dreier
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine–Human Genetics, Aarhus University, Aarhus, Denmark
| | - Jakob Christensen
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - David M Hougaard
- Danish Centre for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Alfonso Buil
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Mental Health Center Sct. Hans, Mental Health Services, Capital Region Denmark, Roskilde, Denmark
| | - Anders Hviid
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Pharmacovigilance Research Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Statens Serum Institut, Copenhagen, Denmark
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Victoria, Australia
| | - Thomas Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Mental Health Center Sct. Hans, Mental Health Services, Capital Region Denmark, Roskilde, Denmark
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
10
|
Gozzelino L, Kochlamazashvili G, Baldassari S, Mackintosh AI, Licchetta L, Iovino E, Liu YC, Bennett CA, Bennett MF, Damiano JA, Zsurka G, Marconi C, Giangregorio T, Magini P, Kuijpers M, Maritzen T, Norata GD, Baulac S, Canafoglia L, Seri M, Tinuper P, Scheffer IE, Bahlo M, Berkovic SF, Hildebrand MS, Kunz WS, Giordano L, Bisulli F, Martini M, Haucke V, Hirsch E, Pippucci T. OUP accepted manuscript. Brain 2022; 145:2313-2331. [PMID: 35786744 PMCID: PMC9337808 DOI: 10.1093/brain/awac082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/13/2022] [Accepted: 02/12/2022] [Indexed: 11/20/2022] Open
Abstract
Epilepsy is one of the most frequent neurological diseases, with focal epilepsy accounting for the largest number of cases. The genetic alterations involved in focal epilepsy are far from being fully elucidated. Here, we show that defective lipid signalling caused by heterozygous ultra-rare variants in PIK3C2B, encoding for the class II phosphatidylinositol 3-kinase PI3K-C2β, underlie focal epilepsy in humans. We demonstrate that patients’ variants act as loss-of-function alleles, leading to impaired synthesis of the rare signalling lipid phosphatidylinositol 3,4-bisphosphate, resulting in mTORC1 hyperactivation. In vivo, mutant Pik3c2b alleles caused dose-dependent neuronal hyperexcitability and increased seizure susceptibility, indicating haploinsufficiency as a key driver of disease. Moreover, acute mTORC1 inhibition in mutant mice prevented experimentally induced seizures, providing a potential therapeutic option for a selective group of patients with focal epilepsy. Our findings reveal an unexpected role for class II PI3K-mediated lipid signalling in regulating mTORC1-dependent neuronal excitability in mice and humans.
Collapse
Affiliation(s)
| | | | | | - Albert Ian Mackintosh
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (Reference Center for Rare and Complex Epilepsies—EpiCARE), Bologna, Italy
| | - Emanuela Iovino
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Yu Chi Liu
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VictoriaAustralia
| | - Caitlin A Bennett
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Mark F Bennett
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VictoriaAustralia
| | - John A Damiano
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Gábor Zsurka
- Department of Experimental Epileptology and Cognition Research and Department of Epileptology, University Bonn Medical Center, Venusberg Campus 1, D-53105 Bonn, Germany
| | - Caterina Marconi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Tania Giangregorio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Pamela Magini
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marijn Kuijpers
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Tanja Maritzen
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
- Department of Nanophysiology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Giuseppe Danilo Norata
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan and Center for the Study of Atherosclerosis, SISA Bassini Hospital Cinisello B, Italy
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, F-75013 Paris, France
| | - Laura Canafoglia
- Unit of Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Seri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paolo Tinuper
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (Reference Center for Rare and Complex Epilepsies—EpiCARE), Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Melbourne, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Melanie Bahlo
- Spedali Civili, Neuropsychiatric Department, Brescia, Italy
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Melbourne, Victoria, Australia
| | - Wolfram S Kunz
- Department of Experimental Epileptology and Cognition Research and Department of Epileptology, University Bonn Medical Center, Venusberg Campus 1, D-53105 Bonn, Germany
| | - Lucio Giordano
- Spedali Civili, Neuropsychiatric Department, Brescia, Italy
| | - Francesca Bisulli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (Reference Center for Rare and Complex Epilepsies—EpiCARE), Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | - Volker Haucke
- Volker Haucke Robert-Roessle-Strasse 10, 13125 Berlin, Germany E-mail:
| | - Emilio Hirsch
- Correspondence may also be addressed to: Emilio Hirsch via Nizza 52, 10126 Torino (TO), Italy E-mail:
| | - Tommaso Pippucci
- Correspondence to: Tommaso Pippucci Via Giuseppe Massarenti 9, 40138 Bologna (BO), Italy E-mail:
| |
Collapse
|
11
|
Podkorytova I, Hays R, Perven G, Alick Lindstrom S. Epilepsy surgery in patient with monogenic epilepsy related to SCN8A mutation. Epilepsy Behav Rep 2022; 18:100536. [PMID: 35492509 PMCID: PMC9038545 DOI: 10.1016/j.ebr.2022.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/05/2022] Open
Abstract
This is the first epilepsy surgery report in patient with SCN8A mutation. Stereo-EEG evaluation localized seizure onset to the right hippocampus. Resection led to 1.5-year seizure freedom, then seizures relapsed. Seizure frequency after relapse was significantly lower than preoperatively. Epilepsy surgery reduced seizure burden in patient with SCN8A-related epilepsy.
Epilepsy surgery is superior to prolonged medical therapy in patients with drug-resistant focal epilepsy, but reports on epilepsy surgery outcomes for patients with a genetic etiology are limited, especially in adults. This is the first documented report of a stereoelectroencephalography (SEEG) evaluation and resective surgery outcome in an adult patient with epilepsy related to SCN8A mutation. We describe a patient with epilepsy related to SCN8A mutation which was reported as a variant of uncertain significance at time of his pre-surgical evaluation and reclassified as likely pathogenic about 3 years after resective epilepsy surgery. Most of his pre-surgical evaluation results suggested right temporal lobe epilepsy, but few reported semiological symptoms, ictal SPECT, and neuropsychology results were discordant, and brain MRI was non-lesional. Therefore, SEEG was recommended; ultimately, seizures were localized to the right hippocampus. He was seizure-free for 1.5 years after right anterior temporal lobectomy, then reported three focal to bilateral tonic-clonic (FBTC) seizures in the subsequent 12 months (preoperatively, 6 focal impaired awareness seizures and 4–6 FBTC per year). This case demonstrates that epilepsy surgery reduced seizure burden in a patient with SCN8A-related epilepsy granting him short-term seizure freedom after resection, and then decreased seizure frequency after relapse compared to the preoperative baseline.
Collapse
|
12
|
Fanjul-Fernández M, Brown NJ, Hickey P, Diakumis P, Rafehi H, Bozaoglu K, Green CC, Rattray A, Young S, Alhuzaimi D, Mountford HS, Gillies G, Lukic V, Vick T, Finlay K, Coe BP, Eichler EE, Delatycki MB, Wilson SJ, Bahlo M, Scheffer IE, Lockhart PJ. A family study implicates GBE1 in the etiology of autism spectrum disorder. Hum Mutat 2022; 43:16-29. [PMID: 34633740 PMCID: PMC8720068 DOI: 10.1002/humu.24289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/17/2021] [Accepted: 10/07/2021] [Indexed: 11/06/2022]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders with an estimated heritability of >60%. Family-based genetic studies of ASD have generally focused on multiple small kindreds, searching for de novo variants of major effect. We hypothesized that molecular genetic analysis of large multiplex families would enable the identification of variants of milder effects. We studied a large multigenerational family of European ancestry with multiple family members affected with ASD or the broader autism phenotype (BAP). We identified a rare heterozygous variant in the gene encoding 1,4-ɑ-glucan branching enzyme 1 (GBE1) that was present in seven of seven individuals with ASD, nine of ten individuals with the BAP, and none of four tested unaffected individuals. We genotyped a community-acquired cohort of 389 individuals with ASD and identified three additional probands. Cascade analysis demonstrated that the variant was present in 11 of 13 individuals with familial ASD/BAP and neither of the two tested unaffected individuals in these three families, also of European ancestry. The variant was not enriched in the combined UK10K ASD cohorts of European ancestry but heterozygous GBE1 deletion was overrepresented in large ASD cohorts, collectively suggesting an association between GBE1 and ASD.
Collapse
Affiliation(s)
- Miriam Fanjul-Fernández
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute Victoria, Parkville, Victoria, Australia
- Royal Children’s Hospital Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Barwon Health, Geelong, Victoria, Australia
| | - Peter Hickey
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter Diakumis
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer, Melbourne, Victoria, Australia
| | - Haloom Rafehi
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Kiymet Bozaoglu
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Cherie C Green
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Audrey Rattray
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Savannah Young
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Dana Alhuzaimi
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Hayley S Mountford
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Greta Gillies
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Vesna Lukic
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Tanya Vick
- Barwon Health, Geelong, Victoria, Australia
| | | | - Bradley P Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Martin B Delatycki
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sarah J Wilson
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Florey Institute, Melbourne, Victoria, Australia
| | - Melanie Bahlo
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ingrid E Scheffer
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Florey Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Paul J Lockhart
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Wang S, Zhou L, He C, Wang D, Cai X, Yu Y, Chen L, Lu D, Bian L, Du S, Wu Q, Han Y. The Association Between STX1B Polymorphisms and Treatment Response in Patients With Epilepsy. Front Pharmacol 2021; 12:701575. [PMID: 34305610 PMCID: PMC8299048 DOI: 10.3389/fphar.2021.701575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Epilepsy is a debilitating brain disease with complex inheritance and frequent treatment resistance. However, the role of STX1B single nucleotide polymorphisms (SNPs) in epilepsy treatment remains unknown. Objective: This study aimed to explore the genetic association of STX1B SNPs with treatment response in patients with epilepsy in a Han Chinese population. Methods: We first examined the associations between STX1B SNPs and epilepsy in 1000 Han Chinese and the associations between STX1B SNPs and drug-resistant epilepsy in 450 subjects. Expression quantitative trait loci analysis was then conducted using 16 drug-resistant epileptic brain tissue samples and results from the BrainCloud database (http://eqtl.brainseq.org). Results: The allelic frequencies of rs140820592 were different between the epilepsy and control groups (p = 0.002) after Bonferroni correction. The rs140820592 was associated with significantly lower epilepsy risk among 1,000 subjects in the dominant model after adjusting for gender and age and Bonferroni correction (OR = 0.542, 95%CI = 0.358-0.819, p = 0.004). The rs140820592 also conferred significantly lower risk of drug-resistant epilepsy among 450 subjects using the same dominant model after adjusting for gender and age and Bonferroni correction (OR = 0.260, 95%CI = 0.103-0.653, p = 0.004). Expression quantitative trait loci analysis revealed that rs140820592 was associated with STX1B expression level in drug-resistant epileptic brain tissues (p = 0.012), and this result was further verified in the BrainCloud database (http://eqtl.brainseq.org) (p = 2.3214 × 10-5). Conclusion: The STX1B rs140820592 may influence the risks of epilepsy and drug-resistant epilepsy by regulating STX1B expression in brain tissues.
Collapse
Affiliation(s)
- Shitao Wang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liang Zhou
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chenglu He
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan Wang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuemei Cai
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanying Yu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liling Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Di Lu
- Biomedicine Engineering Research Center, Kunming Medical University, Kunming, China
| | - Ligong Bian
- Biomedicine Engineering Research Center, Kunming Medical University, Kunming, China
| | - Sunbing Du
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qian Wu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanbing Han
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
14
|
Dixit AB, Srivastava A, Sharma D, Tripathi M, Paul D, Lalwani S, Doddamani R, Sharma MC, Banerjee J, Chandra PS. Integrated Genome-Wide DNA Methylation and RNAseq Analysis of Hippocampal Specimens Identifies Potential Candidate Genes and Aberrant Signalling Pathways in Patients with Hippocampal Sclerosis. Neurol India 2021; 68:307-313. [PMID: 32189710 DOI: 10.4103/0028-3886.280649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background and Aims DNA methylation and demethylation play a crucial role in the regulation of gene expression, though their interplay during pathogenesis of hippocampal scelerosis (HS) remains elusive. The present study was designed to investigate the DNA methylation regulated changes in expression of HS patients. Methods We performed integrative analysis of genome-wide CpG-DNA methylation profiling and RNA sequencing to profile global changes in promoter methylation and gene expression in HS patients. Real time PCR was performed to validate the findings of methylation and RNA sequencing. Results A total of 16040 sites showed altered DNA methylation in all the CpG islands. Of these, 3185 sites were in the promoter regions, of which 66 genes showed an inverse correlation between methylation and expression. These genes are largely related to pathways predicted to participate in axon guidance by semaphorins, MAPK, ionotropic glutamate receptor pathway, notch signaling, regulatory activities related to TFAP2A and immune response, with the most distinct ones included TFAP2A, NRP1, SEMA3B, CACNG2, MAP3K11, and ADAM17. Conclusion We performed integrated analysis of genomic methylation signature and differential gene expression patterns of hippocampal tissues resected from patients with HS for the first time. Collectively, our findings implicate DNA methylation as a critical regulator of the pathogenic mechanisms of epileptogenesis associated with HS.
Collapse
Affiliation(s)
- Aparna Banerjee Dixit
- Dr B R Ambedkar Centre for Biomedical Sciences, University of Delhi, Delhi; Center of Excellence for Epilepsy, A Joint NBRC-AIIMS Collaboration, New Delhi, India
| | - Arpna Srivastava
- Center of Excellence for Epilepsy, A Joint NBRC-AIIMS Collaboration; Department of Neurosurgery, AIIMS, New Delhi, India
| | | | - Manjari Tripathi
- Center of Excellence for Epilepsy, A Joint NBRC-AIIMS Collaboration; Department of Neurology, AIIMS, New Delhi, India
| | | | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, AIIMS, New Delhi, India
| | | | - M C Sharma
- Department of Pathology, AIIMS, New Delhi, India
| | | | - P Sarat Chandra
- Center of Excellence for Epilepsy, A Joint NBRC-AIIMS Collaboration; Department of Neurosurgery, AIIMS, New Delhi, India
| |
Collapse
|
15
|
Dreier JW, Ellis CA, Berkovic SF, Cotsapas C, Ottman R, Christensen J. Epilepsy risk in offspring of affected parents; a cohort study of the "maternal effect" in epilepsy. Ann Clin Transl Neurol 2020; 8:153-162. [PMID: 33249752 PMCID: PMC7818075 DOI: 10.1002/acn3.51258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To assess whether the risk of epilepsy is higher in offspring of mothers with epilepsy than in offspring of fathers with epilepsy. METHODS In a prospective population-based register study, we considered all singletons born in Denmark between 1981 and 2016 (N = 1,754,742). From the Danish National Patient Register since 1977, we identified epilepsy diagnoses in all study participants and their family members. Cox regression models were used to estimate hazard ratios (HRs) and corresponding 95% confidence intervals (CI), adjusted for relevant confounders. RESULTS We included 1,754,742 individuals contributing > 30 million person-years of follow-up. The incidence rate of epilepsy in offspring of unaffected parents was 78.8 (95% CI: 77.8-79.8) per 100,000 person-years, while the corresponding rate in offspring with an affected father was 172 per 100,000 person-years (95% CI: 156-187) and in offspring with an affected mother was 260 per 100,000 person-years (95% CI: 243-277). Having an affected mother was associated with a 1.45-fold (95% CI: 1.30-1.63) higher risk of epilepsy in the offspring, compared to having an affected father. This maternal effect was found both in male (HR = 1.39, 95% CI: 1.19-1.62) and female offspring (HR = 1.53, 95% CI: 1.30-1.80), and across various ages at onset in the offspring. The maternal effect was also found in familial epilepsies (i.e. where the affected parent had an affected sibling; HR = 1.50, 95% CI: 1.04-2.16). INTERPRETATION We found a clear maternal effect on offspring risk of epilepsy in this nationwide cohort study.
Collapse
Affiliation(s)
- Julie W Dreier
- National Centre for Register-Based Research, Department of Economics and Business Economics, Aarhus BSS, Aarhus University, Aarhus, Denmark.,Centre for Integrated Register-based Research, CIRRAU, Aarhus University, Aarhus, Denmark
| | - Colin A Ellis
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Heidelberg, Victoria, Australia
| | - Chris Cotsapas
- Departments of Neurology and Genetics, Yale School of Medicine, New Haven, USA
| | - Ruth Ottman
- Departments of Epidemiology and Neurology, and the G. H. Sergievsky Center, Columbia University, New York, New York, USA.,Division of Translational Epidemiology, New York State Psychiatric Institute, New York, New York, USA
| | - Jakob Christensen
- National Centre for Register-Based Research, Department of Economics and Business Economics, Aarhus BSS, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Trevis KJ, Brown NJ, Green CC, Lockhart PJ, Desai T, Vick T, Anderson V, Pua EPK, Bahlo M, Delatycki MB, Scheffer IE, Wilson SJ. Tracing Autism Traits in Large Multiplex Families to Identify Endophenotypes of the Broader Autism Phenotype. Int J Mol Sci 2020; 21:E7965. [PMID: 33120939 PMCID: PMC7663259 DOI: 10.3390/ijms21217965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Families comprising many individuals with Autism Spectrum Disorders (ASD) may carry a dominant predisposing mutation. We implemented rigorous phenotyping of the "Broader Autism Phenotype" (BAP) in large multiplex ASD families using a novel endophenotype approach for the identification and characterisation of distinct BAP endophenotypes. We evaluated ASD/BAP features using standardised tests and a semi-structured interview to assess social, intellectual, executive and adaptive functioning in 110 individuals, including two large multiplex families (Family A: 30; Family B: 35) and an independent sample of small families (n = 45). Our protocol identified four distinct psychological endophenotypes of the BAP that were evident across these independent samples, and showed high sensitivity (97%) and specificity (82%) for individuals classified with the BAP. Patterns of inheritance of identified endophenotypes varied between the two large multiplex families, supporting their utility for identifying genes in ASD.
Collapse
Affiliation(s)
- Krysta J. Trevis
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Natasha J. Brown
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (N.J.B.); (M.B.D.)
- Barwon Health, Geelong, VIC 3220, Australia;
| | - Cherie C. Green
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Paul J. Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tarishi Desai
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Tanya Vick
- Barwon Health, Geelong, VIC 3220, Australia;
| | - Vicki Anderson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Psychological Service, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Clinical Sciences Research, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Emmanuel P. K. Pua
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Martin B. Delatycki
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (N.J.B.); (M.B.D.)
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ingrid E. Scheffer
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (N.J.B.); (M.B.D.)
- Clinical Sciences Research, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Sarah J. Wilson
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| |
Collapse
|
17
|
Chow CY, Absalom N, Biggs K, King GF, Ma L. Venom-derived modulators of epilepsy-related ion channels. Biochem Pharmacol 2020; 181:114043. [PMID: 32445870 DOI: 10.1016/j.bcp.2020.114043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Epilepsy is characterised by spontaneous recurrent seizures that are caused by an imbalance between neuronal excitability and inhibition. Since ion channels play fundamental roles in the generation and propagation of action potentials as well as neurotransmitter release at a subset of excitatory and inhibitory synapses, their dysfunction has been linked to a wide variety of epilepsies. Indeed, these unique proteins are the major biological targets for antiepileptic drugs. Selective targeting of a specific ion channel subtype remains challenging for small molecules, due to the high level of homology among members of the same channel family. As a consequence, there is a growing trend to target ion channels with biologics. Venoms are the best known natural source of ion channel modulators, and venom peptides are increasingly recognised as potential therapeutics due to their high selectivity and potency gained through millions of years of evolutionary selection pressure. Here we describe the major ion channel families involved in the pathogenesis of various types of epilepsy, including voltage-gated Na+, K+, Ca2+ channels, Cys-loop receptors, ionotropic glutamate receptors and P2X receptors, and currently available venom-derived peptides that target these channel proteins. Although only a small number of venom peptides have successfully progressed to the clinic, there is reason to be optimistic about their development as antiepileptic drugs, notwithstanding the challenges associated with development of any class of peptide drug.
Collapse
Affiliation(s)
- Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nathan Absalom
- Brain and Mind Centre, School of Pharmacy, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kimberley Biggs
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
18
|
Kwan Cheung KA, Peiris H, Wallace G, Holland OJ, Mitchell MD. The Interplay between the Endocannabinoid System, Epilepsy and Cannabinoids. Int J Mol Sci 2019; 20:E6079. [PMID: 31810321 PMCID: PMC6929011 DOI: 10.3390/ijms20236079] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/25/2022] Open
Abstract
Epilepsy is a neurological disorder that affects approximately 50 million people worldwide. There is currently no definitive epilepsy cure. However, in recent years, medicinal cannabis has been successfully trialed as an effective treatment for managing epileptic symptoms, but whose mechanisms of action are largely unknown. Lately, there has been a focus on neuroinflammation as an important factor in the pathology of many epileptic disorders. In this literature review, we consider the links that have been identified between epilepsy, neuroinflammation, the endocannabinoid system (ECS), and how cannabinoids may be potent alternatives to more conventional pharmacological therapies. We review the research that demonstrates how the ECS can contribute to neuroinflammation, and could therefore be modulated by cannabinoids to potentially reduce the incidence and severity of seizures. In particular, the cannabinoid cannabidiol has been reported to have anti-convulsant and anti-inflammatory properties, and it shows promise for epilepsy treatment. There are a multitude of signaling pathways that involve endocannabinoids, eicosanoids, and associated receptors by which cannabinoids could potentially exert their therapeutic effects. Further research is needed to better characterize these pathways, and consequently improve the application and regulation of medicinal cannabis.
Collapse
Affiliation(s)
- Keith A. Kwan Cheung
- Institute of Health and Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology (QUT), Centre for Children’s Health Research (CCHR), 62 Graham Street, South Brisbane, Queensland 4101, Australia; (K.A.K.C.); (H.P.); (O.J.H.)
| | - Hassendrini Peiris
- Institute of Health and Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology (QUT), Centre for Children’s Health Research (CCHR), 62 Graham Street, South Brisbane, Queensland 4101, Australia; (K.A.K.C.); (H.P.); (O.J.H.)
| | - Geoffrey Wallace
- Children’s Health Queensland (CHQ) and University of Queensland (UQ), Centre for Children’s Health Research, 62 Graham Street, South Brisbane, Queensland 4101, Australia;
| | - Olivia J. Holland
- Institute of Health and Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology (QUT), Centre for Children’s Health Research (CCHR), 62 Graham Street, South Brisbane, Queensland 4101, Australia; (K.A.K.C.); (H.P.); (O.J.H.)
- School of Medical Science, Griffith University, 1 Parklands Dr, Southport, Queensland 4215, Australia
| | - Murray D. Mitchell
- Institute of Health and Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology (QUT), Centre for Children’s Health Research (CCHR), 62 Graham Street, South Brisbane, Queensland 4101, Australia; (K.A.K.C.); (H.P.); (O.J.H.)
| |
Collapse
|
19
|
Dawson A, Trumper P, de Souza JO, Parker H, Jones MJ, Hales TG, Hunter WN. Engineering a surrogate human heteromeric α/β glycine receptor orthosteric site exploiting the structural homology and stability of acetylcholine-binding protein. IUCRJ 2019; 6:1014-1023. [PMID: 31709057 PMCID: PMC6830221 DOI: 10.1107/s205225251901114x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Protein-engineering methods have been exploited to produce a surrogate system for the extracellular neurotransmitter-binding site of a heteromeric human ligand-gated ion channel, the glycine receptor. This approach circumvents two major issues: the inherent experimental difficulties in working with a membrane-bound ion channel and the complication that a heteromeric assembly is necessary to create a key, physiologically relevant binding site. Residues that form the orthosteric site in a highly stable ortholog, acetylcholine-binding protein, were selected for substitution. Recombinant proteins were prepared and characterized in stepwise fashion exploiting a range of biophysical techniques, including X-ray crystallography, married to the use of selected chemical probes. The decision making and development of the surrogate, which is termed a glycine-binding protein, are described, and comparisons are provided with wild-type and homomeric systems that establish features of molecular recognition in the binding site and the confidence that the system is suited for use in early-stage drug discovery targeting a heteromeric α/β glycine receptor.
Collapse
Affiliation(s)
- Alice Dawson
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paul Trumper
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Juliana Oliveira de Souza
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Holly Parker
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Mathew J. Jones
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Tim G. Hales
- Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
20
|
Kearney H, Byrne S, Cavalleri GL, Delanty N. Tackling Epilepsy With High-definition Precision Medicine. JAMA Neurol 2019; 76:1109-1116. [DOI: 10.1001/jamaneurol.2019.2384] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hugh Kearney
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Susan Byrne
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Gianpiero L. Cavalleri
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Norman Delanty
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
21
|
Gan J, Cai Q, Galer P, Ma D, Chen X, Huang J, Bao S, Luo R. Mapping the knowledge structure and trends of epilepsy genetics over the past decade: A co-word analysis based on medical subject headings terms. Medicine (Baltimore) 2019; 98:e16782. [PMID: 31393404 PMCID: PMC6709143 DOI: 10.1097/md.0000000000016782] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/21/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Over the past 10 years, epilepsy genetics has made dramatic progress. This study aimed to analyze the knowledge structure and the advancement of epilepsy genetics over the past decade based on co-word analysis of medical subject headings (MeSH) terms. METHODS Scientific publications focusing on epilepsy genetics from the PubMed database (January 2009-December 2018) were retrieved. Bibliometric information was analyzed quantitatively using Bibliographic Item Co-Occurrence Matrix Builder (BICOMB) software. A knowledge social network analysis and publication trend based on the high-frequency MeSH terms was built using VOSviewer. RESULTS According to the search strategy, a total of 5185 papers were included. Among all the extracted MeSH terms, 86 high-frequency MeSH terms were identified. Hot spots were clustered into 5 categories including: "ion channel diseases," "beyond ion channel diseases," "experimental research & epigenetics," "single nucleotide polymorphism & pharmacogenetics," and "genetic techniques". "Epilepsy," "mutation," and "seizures," were located at the center of the knowledge network. "Ion channel diseases" are typically in the most prominent position of epilepsy genetics research. "Beyond ion channel diseases" and "genetic techniques," however, have gradually grown into research cores and trends, such as "intellectual disability," "infantile spasms," "phenotype," "exome," " deoxyribonucleic acid (DNA) copy number variations," and "application of next-generation sequencing." While ion channel genes such as "SCN1A," "KCNQ2," "SCN2A," "SCN8A" accounted for nearly half of epilepsy genes in MeSH terms, a number of additional beyond ion channel genes like "CDKL5," "STXBP1," "PCDH19," "PRRT2," "LGI1," "ALDH7A1," "MECP2," "EPM2A," "ARX," "SLC2A1," and more were becoming increasingly popular. In contrast, gene therapies, treatment outcome, and genotype-phenotype correlations were still in their early stages of research. CONCLUSION This co-word analysis provides an overview of epilepsy genetics research over the past decade. The 5 research categories display publication hot spots and trends in epilepsy genetics research which could consequently supply some direction for geneticists and epileptologists when launching new projects.
Collapse
Affiliation(s)
- Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, China
| | - Qianyun Cai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, China
| | - Peter Galer
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, PA
| | - Dan Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu
| | - Xiaolu Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu
| | - Jichong Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, China
| | - Shan Bao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, China
| | - Rong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu
| |
Collapse
|
22
|
Feng YCA, Howrigan DP, Abbott LE, Tashman K, Cerrato F, Singh T, Heyne H, Byrnes A, Churchhouse C, Watts N, Solomonson M, Lal D, Heinzen EL, Dhindsa RS, Stanley KE, Cavalleri GL, Hakonarson H, Helbig I, Krause R, May P, Weckhuysen S, Petrovski S, Kamalakaran S, Sisodiya SM, Cossette P, Cotsapas C, De Jonghe P, Dixon-Salazar T, Guerrini R, Kwan P, Marson AG, Stewart R, Depondt C, Dlugos DJ, Scheffer IE, Striano P, Freyer C, McKenna K, Regan BM, Bellows ST, Leu C, Bennett CA, Johns EM, Macdonald A, Shilling H, Burgess R, Weckhuysen D, Bahlo M, O’Brien TJ, Todaro M, Stamberger H, Andrade DM, Sadoway TR, Mo K, Krestel H, Gallati S, Papacostas SS, Kousiappa I, Tanteles GA, Štěrbová K, Vlčková M, Sedláčková L, Laššuthová P, Klein KM, Rosenow F, Reif PS, Knake S, Kunz WS, Zsurka G, Elger CE, Bauer J, Rademacher M, Pendziwiat M, Muhle H, Rademacher A, van Baalen A, von Spiczak S, Stephani U, Afawi Z, Korczyn AD, Kanaan M, Canavati C, Kurlemann G, Müller-Schlüter K, Kluger G, Häusler M, Blatt I, Lemke JR, Krey I, Weber YG, Wolking S, Becker F, Hengsbach C, Rau S, Maisch AF, Steinhoff BJ, Schulze-Bonhage A, Schubert-Bast S, Schreiber H, Borggräfe I, Schankin CJ, Mayer T, Korinthenberg R, Brockmann K, Kurlemann G, Dennig D, Madeleyn R, Kälviäinen R, Auvinen P, Saarela A, Linnankivi T, Lehesjoki AE, Rees MI, Chung SK, Pickrell WO, Powell R, Schneider N, Balestrini S, Zagaglia S, Braatz V, Johnson MR, Auce P, Sills GJ, Baum LW, Sham PC, Cherny SS, Lui CH, Barišić N, Delanty N, Doherty CP, Shukralla A, McCormack M, El-Naggar H, Canafoglia L, Franceschetti S, Castellotti B, Granata T, Zara F, Iacomino M, Madia F, Vari MS, Mancardi MM, Salpietro V, Bisulli F, Tinuper P, Licchetta L, Pippucci T, Stipa C, Minardi R, Gambardella A, Labate A, Annesi G, Manna L, Gagliardi M, Parrini E, Mei D, Vetro A, Bianchini C, Montomoli M, Doccini V, Marini C, Suzuki T, Inoue Y, Yamakawa K, Tumiene B, Sadleir LG, King C, Mountier E, Caglayan SH, Arslan M, Yapıcı Z, Yis U, Topaloglu P, Kara B, Turkdogan D, Gundogdu-Eken A, Bebek N, Uğur-İşeri S, Baykan B, Salman B, Haryanyan G, Yücesan E, Kesim Y, Özkara Ç, Poduri A, Shiedley BR, Shain C, Buono RJ, Ferraro TN, Sperling MR, Lo W, Privitera M, French JA, Schachter S, Kuzniecky RI, Devinsky O, Hegde M, Khankhanian P, Helbig KL, Ellis CA, Spalletta G, Piras F, Piras F, Gili T, Ciullo V, Reif A, McQuillin A, Bass N, McIntosh A, Blackwood D, Johnstone M, Palotie A, Pato MT, Pato CN, Bromet EJ, Carvalho CB, Achtyes ED, Azevedo MH, Kotov R, Lehrer DS, Malaspina D, Marder SR, Medeiros H, Morley CP, Perkins DO, Sobell JL, Buckley PF, Macciardi F, Rapaport MH, Knowles JA, Fanous AH, McCarroll SA, Gupta N, Gabriel SB, Daly MJ, Lander ES, Lowenstein DH, Goldstein DB, Lerche H, Berkovic SF, Neale BM. Ultra-Rare Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of 17,606 Individuals. Am J Hum Genet 2019; 105:267-282. [PMID: 31327507 PMCID: PMC6698801 DOI: 10.1016/j.ajhg.2019.05.020] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared and distinct ultra-rare genetic risk factors for different types of epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,436 controls of European ancestry. We focused on three phenotypic groups: severe developmental and epileptic encephalopathies (DEEs), genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy; we saw the strongest enrichment in individuals with DEEs and the least strong in individuals with NAFE. Moreover, we found that inhibitory GABAA receptor genes were enriched for missense variants across all three classes of epilepsy, whereas no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEEs and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the lead associations; such genes included CACNA1G, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study, the largest epilepsy WES study to date, confirms a convergence in the genetics of severe and less-severe epilepsies associated with ultra-rare coding variation, and it highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology.
Collapse
|
23
|
DiFrancesco JC, Castellotti B, Milanesi R, Ragona F, Freri E, Canafoglia L, Franceschetti S, Ferrarese C, Magri S, Taroni F, Costa C, Labate A, Gambardella A, Solazzi R, Binda A, Rivolta I, Di Gennaro G, Casciato S, D’Incerti L, Barbuti A, DiFrancesco D, Granata T, Gellera C. HCN ion channels and accessory proteins in epilepsy: genetic analysis of a large cohort of patients and review of the literature. Epilepsy Res 2019; 153:49-58. [DOI: 10.1016/j.eplepsyres.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 11/28/2022]
|
24
|
Jagadish S, Payne ET, Wong-Kisiel L, Nickels KC, Eckert S, Wirrell EC. The Ketogenic and Modified Atkins Diet Therapy for Children With Refractory Epilepsy of Genetic Etiology. Pediatr Neurol 2019; 94:32-37. [PMID: 30803845 DOI: 10.1016/j.pediatrneurol.2018.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The ketogenic diet is an accepted treatment modality in refractory childhood epilepsy. In this study, we analyzed the efficacy and tolerability of the ketogenic and modified Atkins diets in children with refractory epilepsy of genetic etiology and studied the effect of the diet on seizure frequency. METHODS The records of children with a genetic etiology for refractory epilepsy treated with ketogenic and modified Atkins diet between September 2005 and July 2016 were reviewed. We documented age of seizure and diet onset, seizure characteristics, and specific genetic etiology. The proportion of children remaining on the diet and responder rates (greater than 50% seizure reduction) were noted at one, three, six, 12, and 24 months after diet initiation. Tolerability and safety profile were also recorded. RESULTS Fifty-nine children with a genetic etiology (63% females, median age at diet onset 2.2 years) were initiated on the diet at our center. Fifty-three (90%) were started on a traditional ketogenic diet, whereas six started a modified Atkins diet. The adverse events at the initiation of diet were vomiting (24%), hypoglycemia (15%), and refusal to feed (11%). Three children stopped the diet before discharge because of poor compliance, severe reflux, and ketoacidosis (n = 1 each). The proportion of children remaining on the diet at one, three, six, 12, and 24 months was 95%, 86%, 69%, 64%, and 47%. The responder rates were 63%, 61%, 54%, 53%, and 41% at one, three, six, 12, and 24 months, respectively. CONCLUSIONS The ketogenic diet is an effective treatment modality in children with refractory epilepsy of genetic etiology.
Collapse
|
25
|
Thijs RD, Surges R, O'Brien TJ, Sander JW. Epilepsy in adults. Lancet 2019; 393:689-701. [PMID: 30686584 DOI: 10.1016/s0140-6736(18)32596-0] [Citation(s) in RCA: 1089] [Impact Index Per Article: 181.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/08/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
Epilepsy is one of the most common serious brain conditions, affecting over 70 million people worldwide. Its incidence has a bimodal distribution with the highest risk in infants and older age groups. Progress in genomic technology is exposing the complex genetic architecture of the common types of epilepsy, and is driving a paradigm shift. Epilepsy is a symptom complex with multiple risk factors and a strong genetic predisposition rather than a condition with a single expression and cause. These advances have resulted in the new classification of epileptic seizures and epilepsies. A detailed clinical history and a reliable eyewitness account of a seizure are the cornerstones of the diagnosis. Ancillary investigations can help to determine cause and prognosis. Advances in brain imaging are helping to identify the structural and functional causes and consequences of the epilepsies. Comorbidities are increasingly recognised as important aetiological and prognostic markers. Antiseizure medication might suppress seizures in up to two-thirds of all individuals but do not alter long-term prognosis. Epilepsy surgery is the most effective way to achieve long-term seizure freedom in selected individuals with drug-resistant focal epilepsy, but it is probably not used enough. With improved understanding of the gradual development of epilepsy, epigenetic determinants, and pharmacogenomics comes the hope for better, disease-modifying, or even curative, pharmacological and non-pharmacological treatment strategies. Other developments are clinical implementation of seizure detection devices and new neuromodulation techniques, including responsive neural stimulation.
Collapse
Affiliation(s)
- Roland D Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Rainer Surges
- Section of Epileptology, Department of Neurology, University Hospital RWTH Aachen, Germany
| | - Terence J O'Brien
- Melbourne Brain Centre, Departments of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, VIC, Australia; Departments of Neuroscience and Neurology, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, Australia
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London, UK; Chalfont Centre for Epilepsy, Chalfont St Peter, UK.
| |
Collapse
|
26
|
Abstract
Idiopathic generalized epilepsies (IGE) are characterized by normal background EEG activity and generalized interictal spike-and-wave discharges in the absence of any evidence of brain lesion. Absence epilepsies are the prototypes of IGEs. In childhood and juvenile absence epilepsies, by definition, all patients manifest absence seizures associated with an EEG pattern of generalized spike-wave (GSW) discharges. In juvenile myoclonic epilepsy, myoclonic jerks, usually affecting shoulders and arms bilaterally and appearing upon awakening, are the most characteristic clinical feature. Myoclonic jerks are accompanied on the EEG by generalized spike/polyspike-and-wave (GSW, GPWS) complexes at 3.5-6Hz. Idiopathic generalized epilepsy with generalized tonic-clonic seizures only is a broad and nonspecific category including all patients with generalized tonic-clonic seizures and an interictal EEG pattern of GSW discharges. Despite the strong heritability and the recent advances in genetic technology, the genetic basis of IGEs remains largely elusive and only in a small minority of patients with classic IGE phenotypes is a monogenic cause identified. Early myoclonic encephalopathy (EME), early infantile encephalopathy with suppression bursts, West syndrome, and Lennox-Gastaut syndrome, once classified among the generalized epilepsies, are now considered to be epileptic encephalopathies. Among them, only Lennox-Gastaut syndrome is characterized by prominent generalized clinical and EEG features.
Collapse
Affiliation(s)
- Renzo Guerrini
- Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy.
| | - Carla Marini
- Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Carmen Barba
- Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| |
Collapse
|
27
|
Campostrini G, DiFrancesco JC, Castellotti B, Milanesi R, Gnecchi-Ruscone T, Bonzanni M, Bucchi A, Baruscotti M, Ferrarese C, Franceschetti S, Canafoglia L, Ragona F, Freri E, Labate A, Gambardella A, Costa C, Gellera C, Granata T, Barbuti A, DiFrancesco D. A Loss-of-Function HCN4 Mutation Associated With Familial Benign Myoclonic Epilepsy in Infancy Causes Increased Neuronal Excitability. Front Mol Neurosci 2018; 11:269. [PMID: 30127718 PMCID: PMC6089338 DOI: 10.3389/fnmol.2018.00269] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/16/2018] [Indexed: 01/03/2023] Open
Abstract
HCN channels are highly expressed and functionally relevant in neurons and increasing evidence demonstrates their involvement in the etiology of human epilepsies. Among HCN isoforms, HCN4 is important in cardiac tissue, where it underlies pacemaker activity. Despite being expressed also in deep structures of the brain, mutations of this channel functionally shown to be associated with epilepsy have not been reported yet. Using Next Generation Sequencing for the screening of patients with idiopathic epilepsy, we identified the p.Arg550Cys (c.1648C>T) heterozygous mutation on HCN4 in two brothers affected by benign myoclonic epilepsy of infancy. Functional characterization in heterologous expression system and in neurons showed that the mutation determines a loss of function of HCN4 contribution to activity and an increase of neuronal discharge, potentially predisposing to epilepsy. Expressed in cardiomyocytes, mutant channels activate at slightly more negative voltages than wild-type (WT), in accordance with borderline bradycardia. While HCN4 variants have been frequently associated with cardiac arrhythmias, these data represent the first experimental evidence that functional alteration of HCN4 can also be involved in human epilepsy through a loss-of-function effect and associated increased neuronal excitability. Since HCN4 appears to be highly expressed in deep brain structures only early during development, our data provide a potential explanation for a link between dysfunctional HCN4 and infantile epilepsy. These findings suggest that it may be useful to include HCN4 screening to extend the knowledge of the genetic causes of infantile epilepsies, potentially paving the way for the identification of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Campostrini
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Jacopo C DiFrancesco
- Clinical Neurophysiology and Epilepsy Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Laboratory of Neurobiology, Department of Neurology, Milan Center for Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Barbara Castellotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaella Milanesi
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | - Mattia Bonzanni
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Bucchi
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Mirko Baruscotti
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Carlo Ferrarese
- Laboratory of Neurobiology, Department of Neurology, Milan Center for Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Silvana Franceschetti
- Clinical Neurophysiology and Epilepsy Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Canafoglia
- Clinical Neurophysiology and Epilepsy Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Angelo Labate
- Institute of Neurology, Università degli Studi Magna Græcia di Catanzaro, Catanzaro, Italy
| | - Antonio Gambardella
- Institute of Neurology, Università degli Studi Magna Græcia di Catanzaro, Catanzaro, Italy
| | - Cinzia Costa
- Neurology Unit, Ospedale S. Maria della Misericordia, Department of Medicine, University of Perugia, Perugia, Italy
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Barbuti
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Dario DiFrancesco
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
28
|
Pawlak-Osiñska K, Linkowska K, Grzybowski T. Genes important for otoneurological diagnostic purposes - current status and future prospects. ACTA ACUST UNITED AC 2018; 38:242-250. [PMID: 29984802 DOI: 10.14639/0392-100x-1692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/12/2017] [Indexed: 11/23/2022]
Abstract
SUMMARY This review focuses on the current knowledge of the genes responsible for non-syndromic hearing loss that can be useful for otoneurological diagnostic purposes. From among a large number of genes that have been associated with non-syndromic hearing impairment, we selected several best-known genes, including the COCH gene, GJB2, GJB6 and SLC26A4, and we describe their role and effects of mutations and prevalence of mutations in various populations. Next, we focus on genes associated with tinnitus. Important areas for further research include assessment of genes potentially involved in pathophysiology of tinnitus and vertigo, which have traditionally been considered as being of otological aetiology, while advances in neuroimaging techniques have increasingly shifted studies toward neurological correlations.
Collapse
Affiliation(s)
- K Pawlak-Osiñska
- Department of Otolaryngology and Oncology Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Skłodowskiej-Curie 9, Bydgoszcz, Poland
| | - K Linkowska
- Department of Forensic Medicine Division of Molecular and Forensic Genetics Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Skłodowskiej-Curie 9, Bydgoszcz, Poland
| | - T Grzybowski
- Department of Forensic Medicine Division of Molecular and Forensic Genetics Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Skłodowskiej-Curie 9, Bydgoszcz, Poland
| |
Collapse
|
29
|
Kinay D, Oliver KL, Tüzün E, Damiano JA, Ulusoy C, Andermann E, Hildebrand MS, Bahlo M, Berkovic SF. Evidence of linkage to chromosome 5p13.2-q11.1 in a large inbred family with genetic generalized epilepsy. Epilepsia 2018; 59:e125-e129. [DOI: 10.1111/epi.14506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Demet Kinay
- Okmeydani Education and Research Hospital; Istanbul Turkey
| | - Karen L. Oliver
- Epilepsy Research Centre; Austin Health; University of Melbourne; Heidelberg Victoria Australia
- Population Health and Immunity Division; Walter and Eliza Hall Institute of Medical Research; Parkville Victoria Australia
| | - Erdem Tüzün
- Department of Neuroscience; Aziz Sancar Institute of Experimental Medicine; Istanbul University; Istanbul Turkey
| | - John A. Damiano
- Epilepsy Research Centre; Austin Health; University of Melbourne; Heidelberg Victoria Australia
| | - Canan Ulusoy
- Department of Neuroscience; Aziz Sancar Institute of Experimental Medicine; Istanbul University; Istanbul Turkey
| | - Eva Andermann
- Neurogenetics Unit; Montreal Neurological Hospital and Institute; Montreal Quebec Canada
| | - Michael S. Hildebrand
- Epilepsy Research Centre; Austin Health; University of Melbourne; Heidelberg Victoria Australia
| | - Melanie Bahlo
- Population Health and Immunity Division; Walter and Eliza Hall Institute of Medical Research; Parkville Victoria Australia
- Department of Medical Biology; University of Melbourne; Parkville Victoria Australia
| | - Samuel F. Berkovic
- Epilepsy Research Centre; Austin Health; University of Melbourne; Heidelberg Victoria Australia
| |
Collapse
|
30
|
Shulskaya MV, Alieva AK, Vlasov IN, Zyrin VV, Fedotova EY, Abramycheva NY, Usenko TS, Yakimovsky AF, Emelyanov AK, Pchelina SN, Illarioshkin SN, Slominsky PA, Shadrina MI. Whole-Exome Sequencing in Searching for New Variants Associated With the Development of Parkinson's Disease. Front Aging Neurosci 2018; 10:136. [PMID: 29867446 PMCID: PMC5963122 DOI: 10.3389/fnagi.2018.00136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/24/2018] [Indexed: 01/08/2023] Open
Abstract
Background: Parkinson’s disease (PD) is a complex disease with its monogenic forms accounting for less than 10% of all cases. Whole-exome sequencing (WES) technology has been used successfully to find mutations in large families. However, because of the late onset of the disease, only small families and unrelated patients are usually available. WES conducted in such cases yields in a large number of candidate variants. There are currently a number of imperfect software tools that allow the pathogenicity of variants to be evaluated. Objectives: We analyzed 48 unrelated patients with an alleged autosomal dominant familial form of PD using WES and developed a strategy for selecting potential pathogenetically significant variants using almost all available bioinformatics resources for the analysis of exonic areas. Methods: DNA sequencing of 48 patients with excluded frequent mutations was performed using an Illumina HiSeq 2500 platform. The possible pathogenetic significance of identified variants and their involvement in the pathogenesis of PD was assessed using SNP and Variation Suite (SVS), Combined Annotation Dependent Depletion (CADD) and Rare Exome Variant Ensemble Learner (REVEL) software. Functional evaluation was performed using the Pathway Studio database. Results: A significant reduction in the search range from 7082 to 25 variants in 23 genes associated with PD or neuronal function was achieved. Eight (FXN, MFN2, MYOC, NPC1, PSEN1, RET, SCN3A and SPG7) were the most significant. Conclusions: The multistep approach developed made it possible to conduct an effective search for potential pathogenetically significant variants, presumably involved in the pathogenesis of PD. The data obtained need to be further verified experimentally.
Collapse
Affiliation(s)
- Marina V Shulskaya
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Anelya Kh Alieva
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Ivan N Vlasov
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Vladimir V Zyrin
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Ekaterina Yu Fedotova
- Federal State Scientific Institution, Scientific Center of Neurology, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Natalia Yu Abramycheva
- Federal State Scientific Institution, Scientific Center of Neurology, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Tatiana S Usenko
- The Petersburg Nuclear Physics Institute of the National Research Center, Kurchatov Institute, Russian Academy of Sciences (RAS), Gatchina, Russia.,Federal State Budgetary Educational Institution of Higher Education, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Andrei F Yakimovsky
- Federal State Budgetary Educational Institution of Higher Education, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Anton K Emelyanov
- The Petersburg Nuclear Physics Institute of the National Research Center, Kurchatov Institute, Russian Academy of Sciences (RAS), Gatchina, Russia.,Federal State Budgetary Educational Institution of Higher Education, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Sofya N Pchelina
- The Petersburg Nuclear Physics Institute of the National Research Center, Kurchatov Institute, Russian Academy of Sciences (RAS), Gatchina, Russia.,Federal State Budgetary Educational Institution of Higher Education, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Sergei N Illarioshkin
- Federal State Scientific Institution, Scientific Center of Neurology, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Petr A Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Maria I Shadrina
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| |
Collapse
|
31
|
Li M, Maljevic S, Phillips AM, Petrovski S, Hildebrand MS, Burgess R, Mount T, Zara F, Striano P, Schubert J, Thiele H, Nürnberg P, Wong M, Weisenberg JL, Thio LL, Lerche H, Scheffer IE, Berkovic SF, Petrou S, Reid CA. Gain-of-functionHCN2variants in genetic epilepsy. Hum Mutat 2017; 39:202-209. [DOI: 10.1002/humu.23357] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 09/06/2017] [Accepted: 10/10/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Melody Li
- Florey Institute of Neuroscience and Mental Health; The University of Melbourne; Parkville Victoria Australia
| | - Snezana Maljevic
- Florey Institute of Neuroscience and Mental Health; The University of Melbourne; Parkville Victoria Australia
| | - A. Marie Phillips
- Florey Institute of Neuroscience and Mental Health; The University of Melbourne; Parkville Victoria Australia
- School of Biosciences; The University of Melbourne; Parkville Victoria Australia
| | - Slave Petrovski
- Epilepsy Research Centre; Department of Medicine; The University of Melbourne; Austin Health Heidelberg Victoria Australia
| | - Michael S. Hildebrand
- Epilepsy Research Centre; Department of Medicine; The University of Melbourne; Austin Health Heidelberg Victoria Australia
| | - Rosemary Burgess
- Epilepsy Research Centre; Department of Medicine; The University of Melbourne; Austin Health Heidelberg Victoria Australia
| | - Therese Mount
- Florey Institute of Neuroscience and Mental Health; The University of Melbourne; Parkville Victoria Australia
| | - Federico Zara
- Laboratory of Neurogenetics; Department of Neuroscience; Institute “G. Gaslini”; Genoa Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit; Department of Neurosciences; Institute “G. Gaslini”; Genoa Italy
| | - Julian Schubert
- University of Tübingen, Department of Neurology and Epileptology; Hertie Institute for Clinical Brain Research; Tübingen Germany
| | - Holger Thiele
- Cologne Centre for Genomics; University of Cologne; Cologne Germany
| | - Peter Nürnberg
- Cologne Centre for Genomics; University of Cologne; Cologne Germany
| | - Michael Wong
- Department of Neurology; Washington University School of Medicine and St. Louis Children's Hospital; St Louis Missouri
| | - Judith L. Weisenberg
- Department of Neurology; Washington University School of Medicine and St. Louis Children's Hospital; St Louis Missouri
| | - Liu Lin Thio
- Department of Neurology; Washington University School of Medicine and St. Louis Children's Hospital; St Louis Missouri
| | - Holger Lerche
- University of Tübingen, Department of Neurology and Epileptology; Hertie Institute for Clinical Brain Research; Tübingen Germany
| | - Ingrid E. Scheffer
- Epilepsy Research Centre; Department of Medicine; The University of Melbourne; Austin Health Heidelberg Victoria Australia
| | - Samuel F. Berkovic
- Epilepsy Research Centre; Department of Medicine; The University of Melbourne; Austin Health Heidelberg Victoria Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health; The University of Melbourne; Parkville Victoria Australia
| | - Christopher A. Reid
- Florey Institute of Neuroscience and Mental Health; The University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
32
|
Azimi T, Ghafouri-Fard S, Davood Omrani M, Mazdeh M, Arsang-Jang S, Sayad A, Taheri M. Vaccinia Related Kinase 2 (VRK2) expression in neurological disorders: schizophrenia, epilepsy and multiple sclerosis. Mult Scler Relat Disord 2017; 19:15-19. [PMID: 29100046 DOI: 10.1016/j.msard.2017.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/19/2017] [Accepted: 10/23/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Schizophrenia (SCZ), epilepsy and Multiple Sclerosis (MS) are neurological disorders with increasing prevalence disturb the patients' lives and are regarded as burdens to the society. As multifactorial disorders, genetic susceptibility factors are involved in their pathogenesis. The Vaccinia-Related Kinase 2 (VRK2) gene codes for a serine threonine kinase recently reported to be contributed in the pathogenesis of some neurological disorders. In the present case-control study we compared the VRK2 gene expression in peripheral blood samples from SCZ, epilepsy and MS patients with normal subjects. METHOD A total of 300 subjects comprising 50 patients in each disease category (SCZ, epilepsy and MS) as well as 150 healthy individuals (50 matched controls for each disorder) participated in the current study. RESULT The VRK2 blood mRNA expression level was measured using the TaqMan real time PCR. The results demonstrated significant down-regulation of VRK2 gene in SCZ (P<0.0001), epilepsy (P=0.008) and MS (P=0.029) compared with the healthy subjects. CONCLUSION Consequently, VRK2 is suggested as a candidate gene for neurological disorders through its role in signaling pathway, the neuronal loss and stress response.
Collapse
Affiliation(s)
- Tahereh Azimi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Labbafi Nejad Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdokht Mazdeh
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahram Arsang-Jang
- Department of Epidemiology and Biostatistics, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran.
| | - Mohammad Taheri
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Labbafi Nejad Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Li P, Fu X, Smith NA, Ziobro J, Curiel J, Tenga MJ, Martin B, Freedman S, Cea-Del Rio CA, Oboti L, Tsuchida TN, Oluigbo C, Yaun A, Magge SN, O'Neill B, Kao A, Zelleke TG, Depositario-Cabacar DT, Ghimbovschi S, Knoblach S, Ho CY, Corbin JG, Goodkin HP, Vicini S, Huntsman MM, Gaillard WD, Valdez G, Liu JS. Loss of CLOCK Results in Dysfunction of Brain Circuits Underlying Focal Epilepsy. Neuron 2017; 96:387-401.e6. [PMID: 29024662 PMCID: PMC6233318 DOI: 10.1016/j.neuron.2017.09.044] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 06/20/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
Abstract
Because molecular mechanisms underlying refractory focal epilepsy are poorly defined, we performed transcriptome analysis on human epileptogenic tissue. Compared with controls, expression of Circadian Locomotor Output Cycles Kaput (CLOCK) is decreased in epileptogenic tissue. To define the function of CLOCK, we generated and tested the Emx-Cre; Clockflox/flox and PV-Cre; Clockflox/flox mouse lines with targeted deletions of the Clock gene in excitatory and parvalbumin (PV)-expressing inhibitory neurons, respectively. The Emx-Cre; Clockflox/flox mouse line alone has decreased seizure thresholds, but no laminar or dendritic defects in the cortex. However, excitatory neurons from the Emx-Cre; Clockflox/flox mouse have spontaneous epileptiform discharges. Both neurons from Emx-Cre; Clockflox/flox mouse and human epileptogenic tissue exhibit decreased spontaneous inhibitory postsynaptic currents. Finally, video-EEG of Emx-Cre; Clockflox/flox mice reveals epileptiform discharges during sleep and also seizures arising from sleep. Altogether, these data show that disruption of CLOCK alters cortical circuits and may lead to generation of focal epilepsy.
Collapse
Affiliation(s)
- Peijun Li
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | - Xiaoqin Fu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Nathan A Smith
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Julie Ziobro
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Julian Curiel
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Milagros J Tenga
- Virginia Tech Carillion Research Institute; Roanoke, VA 24014, USA
| | - Brandon Martin
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Samuel Freedman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christian A Cea-Del Rio
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Livio Oboti
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Tammy N Tsuchida
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Chima Oluigbo
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA; Division of Neurosurgery, Children's National Medical Center, Washington, DC 20010, USA
| | - Amanda Yaun
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA; Division of Neurosurgery, Children's National Medical Center, Washington, DC 20010, USA
| | - Suresh N Magge
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA; Division of Neurosurgery, Children's National Medical Center, Washington, DC 20010, USA
| | - Brent O'Neill
- Division of Pediatric Neurosurgery, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amy Kao
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Tesfaye G Zelleke
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Dewi T Depositario-Cabacar
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Svetlana Ghimbovschi
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Susan Knoblach
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Chen-Ying Ho
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; Division of Pathology, Children's National Medical Center; Washington, DC 20010, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Howard P Goodkin
- Departments of Neurology and Pediatrics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | - Molly M Huntsman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - William D Gaillard
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Gregorio Valdez
- Virginia Tech Carillion Research Institute; Roanoke, VA 24014, USA; Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061, USA
| | - Judy S Liu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
34
|
Becker F, Reid CA, Hallmann K, Tae HS, Phillips AM, Teodorescu G, Weber YG, Kleefuss-Lie A, Elger C, Perez-Reyes E, Petrou S, Kunz WS, Lerche H, Maljevic S. Functional variants in HCN4 and CACNA1H may contribute to genetic generalized epilepsy. Epilepsia Open 2017; 2:334-342. [PMID: 29588962 PMCID: PMC5862120 DOI: 10.1002/epi4.12068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2017] [Indexed: 01/11/2023] Open
Abstract
Objective Genetic generalized epilepsy (GGE) encompasses seizure disorders characterized by spike‐and‐wave discharges (SWD) originating within thalamo‐cortical circuits. Hyperpolarization‐activated (HCN) and T‐type Ca2+ channels are key modulators of rhythmic activity in these brain regions. Here, we screened HCN4 and CACNA1H genes for potentially contributory variants and provide their functional analysis. Methods Targeted gene sequencing was performed in 20 unrelated familial cases with different subtypes of GGE, and the results confirmed in 230 ethnically matching controls. Selected variants in CACNA1H and HCN4 were functionally assessed in tsA201 cells and Xenopus laevis oocytes, respectively. Results We discovered a novel CACNA1H (p.G1158S) variant in two affected members of a single family. One of them also carried an HCN4 (p.P1117L) variant inherited from the unaffected mother. In a separate family, an HCN4 variant (p.E153G) was identified in one of several affected members. Voltage‐clamp analysis of CACNA1H (p.G1158S) revealed a small but significant gain‐of‐function, including increased current density and a depolarizing shift of steady‐state inactivation. HCN4 p.P1117L and p.G153E both caused a hyperpolarizing shift in activation and reduced current amplitudes, resulting in a loss‐of‐function. Significance Our results are consistent with a model suggesting cumulative contributions of subtle functional variations in ion channels to seizure susceptibility and GGE.
Collapse
Affiliation(s)
- Felicitas Becker
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain-Research University of Tübingen Tübingen Germany.,RKU-University Neurology Clinic of Ulm Ulm Germany
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health Melbourne Victoria Australia
| | - Kerstin Hallmann
- Department of Neurology and Epileptology University of Bonn Medical Center Bonn Germany
| | - Han-Shen Tae
- The Florey Institute of Neuroscience and Mental Health Melbourne Victoria Australia.,Present address: Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong Wollongong New South Wales Australia
| | - A Marie Phillips
- The Florey Institute of Neuroscience and Mental Health Melbourne Victoria Australia.,School of Biosciences The University of Melbourne Melbourne Victoria Australia
| | - Georgeta Teodorescu
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain-Research University of Tübingen Tübingen Germany
| | - Yvonne G Weber
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain-Research University of Tübingen Tübingen Germany
| | - Ailing Kleefuss-Lie
- Department of Neurology and Epileptology University of Bonn Medical Center Bonn Germany
| | - Christian Elger
- Department of Neurology and Epileptology University of Bonn Medical Center Bonn Germany
| | - Edward Perez-Reyes
- Department of Pharmacology University of Virginia Charlottesville Virginia U.S.A
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health Melbourne Victoria Australia
| | - Wolfram S Kunz
- Department of Neurology and Epileptology University of Bonn Medical Center Bonn Germany
| | - Holger Lerche
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain-Research University of Tübingen Tübingen Germany
| | - Snezana Maljevic
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain-Research University of Tübingen Tübingen Germany.,The Florey Institute of Neuroscience and Mental Health Melbourne Victoria Australia
| |
Collapse
|
35
|
Phenotypic analysis of 303 multiplex families with common epilepsies. Brain 2017; 140:2144-2156. [PMID: 28899008 PMCID: PMC6059182 DOI: 10.1093/brain/awx129] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/07/2017] [Accepted: 04/24/2017] [Indexed: 12/24/2022] Open
Abstract
Gene identification in epilepsy has mainly been limited to large families segregating genes of major effect and de novo mutations in epileptic encephalopathies. Many families that present with common non-acquired focal epilepsies and genetic generalized epilepsies remain unexplained. We assembled a cohort of 'genetically enriched' common epilepsies by collecting and phenotyping families containing multiple individuals with unprovoked seizures. We aimed to determine if specific clinical epilepsy features aggregate within families, and whether this segregation of phenotypes may constitute distinct 'familial syndromes' that could inform genomic analyses. Families with three or more individuals with unprovoked seizures were studied across multiple international centres. Affected individuals were phenotyped and classified according to specific electroclinical syndromes. Families were categorized based on syndromic groupings of affected family members, examined for pedigree structure and phenotypic patterns and, where possible, assigned specific familial epilepsy syndromes. A total of 303 families were assembled and analysed, comprising 1120 affected phenotyped individuals. Of the 303 families, 117 exclusively segregated generalized epilepsy, 62 focal epilepsy, and 22 were classified as genetic epilepsy with febrile seizures plus. Over one-third (102 families) were observed to have mixed epilepsy phenotypes: 78 had both generalized and focal epilepsy features within the same individual (n = 39), or within first or second degree relatives (n = 39). Among the genetic generalized epilepsy families, absence epilepsies were found to cluster within families independently of juvenile myoclonic epilepsy, and significantly more females were affected than males. Of the 62 familial focal epilepsy families, two previously undescribed familial focal syndrome patterns were evident: 15 families had posterior quadrant epilepsies, including seven with occipito-temporal localization and seven with temporo-parietal foci, and four families displayed familial focal epilepsy of childhood with multiple affected siblings that was suggestive of recessive inheritance. The findings suggest (i) specific patterns of syndromic familial aggregation occur, including newly recognized forms of familial focal epilepsy; (ii) although syndrome-specificity usually occurs in multiplex families, the one-third of families with features of both focal and generalized epilepsy is suggestive of shared genetic determinants; and (iii) patterns of features observed across families including pedigree structure, sex, and age of onset may hold clues for future gene identification. Such detailed phenotypic information will be invaluable in the conditioning and interpretation of forthcoming sequencing data to understand the genetic architecture and inter-relationships of the common epilepsy syndromes.
Collapse
Affiliation(s)
- The Epi4K Consortium
- Correspondence to: Samuel Berkovic, Epilepsy Research Centre, L2 Melbourne Brain Centre, 245 Burgundy Street, Austin Health, Heidelberg Victoria Australia 3084 E-mail:
| |
Collapse
|
36
|
Gene expression analysis in untreated absence epilepsy demonstrates an inconsistent pattern. Epilepsy Res 2017; 132:84-90. [DOI: 10.1016/j.eplepsyres.2017.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/15/2017] [Accepted: 02/23/2017] [Indexed: 01/08/2023]
|
37
|
Zhang D, Liu X, Deng X. Genetic basis of pediatric epilepsy syndromes. Exp Ther Med 2017; 13:2129-2133. [PMID: 28565819 PMCID: PMC5443213 DOI: 10.3892/etm.2017.4267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/21/2017] [Indexed: 01/26/2023] Open
Abstract
Childhood epilepsy affects ~0.5-1% in the general population worldwide. Early-onset epileptic encephalopathies are considered to be severe neurological disorders, which lead to impaired motor, cognitive, and sensory development due to recurrence of seizures. Many of the observed epilepsy phenotypes are associated with specific chromosomal imbalances and thus display gene dosage effects, and also specific mutations of a variety of genes ranging from ion channels to transcription factors. High throughput sequencing technologies and whole exome sequencing have led to the recognition of several new candidate genes with a possible role in the pathogenesis of epileptic encephalopathies. The mutations causing channelopathies can be either a gain or a loss of ion channel function and contribute to the pathogenesis of epilepsy syndrome. Nearly 300 mutations of SCN1A gene coding for the Nav1.1 channel protein have been identified that contribute to the pathology of epilepsy. Besides Na, potassium and calcium channels are also implicated in epileptic encephalopathies. Therapeutic management of epileptic encephalopathies has been challenging as the majority of the medications are not efficient and often have many undesirable side effects. A better understanding of the molecular nature of epilepsy in an individual is important to design a personalized medication, considering the number of possible genetic mutations that can contribute to epileptic encephalopathies.
Collapse
Affiliation(s)
- Dongli Zhang
- Department of Neurology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaoming Liu
- Department of Neurology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Xingqiang Deng
- Department of Neurology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
38
|
Wang S, Li L, Tao R, Gao Y. Ion channelopathies associated genetic variants as the culprit for sudden unexplained death. Forensic Sci Int 2017; 275:128-137. [PMID: 28363160 DOI: 10.1016/j.forsciint.2017.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/23/2017] [Accepted: 03/13/2017] [Indexed: 11/29/2022]
Abstract
Forensic identification of sudden unexplained death (SUD) has always been a ticklish issue because it used to be defined as sudden death without a conclusive diagnosis after autopsy. However, benefiting from the developments in genome research, a growing body of evidence points to the importance of ion channelopathies associated genetic variants in the pathogenesis of SUD. Genetic diagnosis of the deceased is also a new trend in epidemiological studies, for it enables the undertaking for preventive approach in individuals with high risks. In this review, we briefly discuss the molecular structure of ion channels and the role of genetic variants in regulating their functions as well as the diverse mechanisms underlying the ion channelopathies at gene level.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Lijuan Li
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Ruiyang Tao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
39
|
Long HY, Feng L, Kang J, Luo ZH, Xiao WB, Long LL, Yan XX, Zhou L, Xiao B. Blood DNA methylation pattern is altered in mesial temporal lobe epilepsy. Sci Rep 2017; 7:43810. [PMID: 28276448 PMCID: PMC5343463 DOI: 10.1038/srep43810] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/31/2017] [Indexed: 12/28/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is a common epileptic disorder; little is known whether it is associated with peripheral epigenetic changes. Here we compared blood whole genomic DNA methylation pattern in MTLE patients (n = 30) relative to controls (n = 30) with the Human Methylation 450 K BeadChip assay, and explored genes and pathways that were differentially methylated using bioinformatics profiling. The MTLE and control groups showed significantly different (P < 1.03e-07) DNA methylation at 216 sites, with 164 sites involved hyper- and 52 sites hypo- methylation. Two hyper- and 32 hypo-methylated sites were associated with promoters, while 87 hyper- and 43 hypo-methylated sites corresponded to coding regions. The differentially methylated genes were largely related to pathways predicted to participate in anion binding, oxidoreductant activity, growth regulation, skeletal development and drug metabolism, with the most distinct ones included SLC34A2, CLCN6, CLCA4, CYP3A43, CYP3A4 and CYP2C9. Among the MTLE patients, panels of genes also appeared to be differentially methylated relative to disease duration, resistance to anti-epileptics and MRI alterations of hippocampal sclerosis. The peripheral epigenetic changes observed in MTLE could be involved in certain disease-related modulations and warrant further translational investigations.
Collapse
Affiliation(s)
- Hong-Yu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Kang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wen-Biao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Li-Li Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine, Changsha, Hunan 410013, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan 410008, China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
40
|
Parrini E, Marini C, Mei D, Galuppi A, Cellini E, Pucatti D, Chiti L, Rutigliano D, Bianchini C, Virdò S, De Vita D, Bigoni S, Barba C, Mari F, Montomoli M, Pisano T, Rosati A, Guerrini R. Diagnostic Targeted Resequencing in 349 Patients with Drug-Resistant Pediatric Epilepsies Identifies Causative Mutations in 30 Different Genes. Hum Mutat 2016; 38:216-225. [DOI: 10.1002/humu.23149] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/13/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Carla Marini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Anna Galuppi
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Elena Cellini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Daniela Pucatti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Laura Chiti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Domenico Rutigliano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Claudia Bianchini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Simona Virdò
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Dalila De Vita
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Stefania Bigoni
- UOL of Medical Genetics; Ferrara University Hospital; Ferrara Italy
| | - Carmen Barba
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Francesco Mari
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Martino Montomoli
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Anna Rosati
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department; A Meyer Children's Hospital; University of Florence; Florence Italy
| | | |
Collapse
|
41
|
Alhusaini S, Whelan CD, Sisodiya SM, Thompson PM. Quantitative magnetic resonance imaging traits as endophenotypes for genetic mapping in epilepsy. NEUROIMAGE-CLINICAL 2016; 12:526-534. [PMID: 27672556 PMCID: PMC5030372 DOI: 10.1016/j.nicl.2016.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/21/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022]
Abstract
Over the last decade, the field of imaging genomics has combined high-throughput genotype data with quantitative magnetic resonance imaging (QMRI) measures to identify genes associated with brain structure, cognition, and several brain-related disorders. Despite its successful application in different psychiatric and neurological disorders, the field has yet to be advanced in epilepsy. In this article we examine the relevance of imaging genomics for future genetic studies in epilepsy from three perspectives. First, we discuss prior genome-wide genetic mapping efforts in epilepsy, considering the possibility that some studies may have been constrained by inherent theoretical and methodological limitations of the genome-wide association study (GWAS) method. Second, we offer a brief overview of the imaging genomics paradigm, from its original inception, to its role in the discovery of important risk genes in a number of brain-related disorders, and its successful application in large-scale multinational research networks. Third, we provide a comprehensive review of past studies that have explored the eligibility of brain QMRI traits as endophenotypes for epilepsy. While the breadth of studies exploring QMRI-derived endophenotypes in epilepsy remains narrow, robust syndrome-specific neuroanatomical QMRI traits have the potential to serve as accessible and relevant intermediate phenotypes for future genetic mapping efforts in epilepsy. QMRI traits have the potential to serve as robust intermediate phenotypes for brain-related disorders. Hippocampal volume is the most promising neuroimaging endophenotype for MTLE + HS. Imaging genomics holds great promise in advancing epilepsy genetic research. Studies are encouraged to explore the validity of QMRI traits as endophenotypes for epilepsy.
Collapse
Affiliation(s)
- Saud Alhusaini
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christopher D Whelan
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, UK
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
42
|
Kullmann D, Houlden H, Lunn M. Mechanisms of Neurological Disease. Neurology 2016. [DOI: 10.1002/9781118486160.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
43
|
Helbig I, Heinzen EL, Mefford HC. Primer Part 1-The building blocks of epilepsy genetics. Epilepsia 2016; 57:861-8. [PMID: 27226047 DOI: 10.1111/epi.13381] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 12/15/2022]
Abstract
This is the first of a two-part primer on the genetics of the epilepsies within the Genetic Literacy Series of the Genetics Commission of the International League Against Epilepsy. In Part 1, we cover the foundations of epilepsy genetics including genetic epidemiology and the range of genetic variants that can affect the risk for developing epilepsy. We discuss various epidemiologic study designs that have been applied to the genetics of the epilepsies including population studies, which provide compelling evidence for a strong genetic contribution in many epilepsies. We discuss genetic risk factors varying in size, frequency, inheritance pattern, effect size, and phenotypic specificity, and provide examples of how genetic risk factors within the various categories increase the risk for epilepsy. We end by highlighting trends in epilepsy genetics including the increasing use of massive parallel sequencing technologies.
Collapse
Affiliation(s)
- Ingo Helbig
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A.,Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Erin L Heinzen
- Institute for Genomic Medicine and Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, U.S.A
| | | |
Collapse
|
44
|
Dhindsa RS, Goldstein DB. Genetic Discoveries Drive Molecular Analyses and Targeted Therapeutic Options in the Epilepsies. Curr Neurol Neurosci Rep 2016; 15:70. [PMID: 26319171 DOI: 10.1007/s11910-015-0587-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Epilepsy is a serious neurological disease with substantial genetic contribution. We have recently made major advances in understanding the genetics and etiology of the epilepsies. However, current antiepileptic drugs are ineffective in nearly one third of patients. Most of these drugs were developed without knowledge of the underlying causes of the epilepsy to be treated; thus, it seems reasonable to assume that further improvements require a deeper understanding of epilepsy pathophysiology. Although once the rate-limiting step, gene discovery is now occurring at an unprecedented rapid rate, especially in the epileptic encephalopathies. However, to place these genetic findings in a biological context and discover treatment options for patients, we must focus on developing an efficient framework for functional evaluation of the mutations that cause epilepsy. In this review, we discuss guidelines for gene discovery, emerging functional assays and models, and novel therapeutics to highlight the developing framework of precision medicine in the epilepsies.
Collapse
Affiliation(s)
- Ryan S Dhindsa
- Institute for Genomic Medicine, Columbia University, Hammer Building, 701 West 168th Street, Box 149, New York, NY, 10032, USA,
| | | |
Collapse
|
45
|
Deep Blue “Seq”: Fishing for Epilepsy Genes. Epilepsy Curr 2016; 16:110-1. [DOI: 10.5698/1535-7511-16.2.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Pappalardo LW, Black JA, Waxman SG. Sodium channels in astroglia and microglia. Glia 2016; 64:1628-45. [PMID: 26919466 DOI: 10.1002/glia.22967] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels are required for electrogenesis in excitable cells. Their activation, triggered by membrane depolarization, generates transient sodium currents that initiate action potentials in neurons, cardiac, and skeletal muscle cells. Cells that have not traditionally been considered to be excitable (nonexcitable cells), including glial cells, also express sodium channels in physiological conditions as well as in pathological conditions. These channels contribute to multiple functional roles that are seemingly unrelated to the generation of action potentials. Here, we discuss the dynamics of sodium channel expression in astrocytes and microglia, and review evidence for noncanonical roles in effector functions of these cells including phagocytosis, migration, proliferation, ionic homeostasis, and secretion of chemokines/cytokines. We also examine possible mechanisms by which sodium channels contribute to the activity of glial cells, with an eye toward therapeutic implications for central nervous system disease. GLIA 2016;64:1628-1645.
Collapse
Affiliation(s)
- Laura W Pappalardo
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT
| | - Joel A Black
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
47
|
Attitudes Toward Epilepsy Genetics Testing Among Adult and Pediatric Epileptologists-Results of a Q-PULSE Survey. Epilepsy Curr 2016; 16:46-7. [PMID: 26900381 DOI: 10.5698/1535-7597-16.1.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
48
|
Dixit A, Suri M. When the face says it all: dysmorphology in identifying syndromic causes of epilepsy. Pract Neurol 2016; 16:111-21. [PMID: 26864574 DOI: 10.1136/practneurol-2015-001247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 11/04/2022]
Abstract
Identifying the underlying cause of epilepsy often helps in choosing the appropriate management, suggests the long-term prognosis and clarifies the risk of the same condition in relatives. Epilepsy has many causes and a small but significant proportion of affected people have an identifiable genetic cause. Here, we discuss the role of genetic testing in adults with epilepsy, focusing on dysmorphic features noticeable on physical examination that might provide a strong clue to a specific genetic syndrome. We give illustrative examples of recognisable facial 'gestalt'. An astute clinician can recognise such clues and significantly shorten the process of making the underlying diagnosis in their patient.
Collapse
Affiliation(s)
- Abhijit Dixit
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Mohnish Suri
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
49
|
Afawi Z, Oliver KL, Kivity S, Mazarib A, Blatt I, Neufeld MY, Helbig KL, Goldberg-Stern H, Misk AJ, Straussberg R, Walid S, Mahajnah M, Lerman-Sagie T, Ben-Zeev B, Kahana E, Masalha R, Kramer U, Ekstein D, Shorer Z, Wallace RH, Mangelsdorf M, MacPherson JN, Carvill GL, Mefford HC, Jackson GD, Scheffer IE, Bahlo M, Gecz J, Heron SE, Corbett M, Mulley JC, Dibbens LM, Korczyn AD, Berkovic SF. Multiplex families with epilepsy: Success of clinical and molecular genetic characterization. Neurology 2016; 86:713-22. [PMID: 26802095 DOI: 10.1212/wnl.0000000000002404] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To analyze the clinical syndromes and inheritance patterns of multiplex families with epilepsy toward the ultimate aim of uncovering the underlying molecular genetic basis. METHODS Following the referral of families with 2 or more relatives with epilepsy, individuals were classified into epilepsy syndromes. Families were classified into syndromes where at least 2 family members had a specific diagnosis. Pedigrees were analyzed and molecular genetic studies were performed as appropriate. RESULTS A total of 211 families were ascertained over an 11-year period in Israel. A total of 169 were classified into broad familial epilepsy syndrome groups: 61 generalized, 22 focal, 24 febrile seizure syndromes, 33 special syndromes, and 29 mixed. A total of 42 families remained unclassified. Pathogenic variants were identified in 49/211 families (23%). The majority were found in established epilepsy genes (e.g., SCN1A, KCNQ2, CSTB), but in 11 families, this cohort contributed to the initial discovery (e.g., KCNT1, PCDH19, TBC1D24). We expand the phenotypic spectrum of established epilepsy genes by reporting a familial LAMC3 homozygous variant, where the predominant phenotype was epilepsy with myoclonic-atonic seizures, and a pathogenic SCN1A variant in a family where in 5 siblings the phenotype was broadly consistent with Dravet syndrome, a disorder that usually occurs sporadically. CONCLUSION A total of 80% of families were successfully classified, with pathogenic variants identified in 23%. The successful characterization of familial electroclinical and inheritance patterns has highlighted the value of studying multiplex families and their contribution towards uncovering the genetic basis of the epilepsies.
Collapse
Affiliation(s)
- Zaid Afawi
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Karen L Oliver
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Sara Kivity
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Aziz Mazarib
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Ilan Blatt
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Miriam Y Neufeld
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Katherine L Helbig
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Hadassa Goldberg-Stern
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Adel J Misk
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Rachel Straussberg
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Simri Walid
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Muhammad Mahajnah
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Tally Lerman-Sagie
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Bruria Ben-Zeev
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Esther Kahana
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Rafik Masalha
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Uri Kramer
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Dana Ekstein
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Zamir Shorer
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Robyn H Wallace
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Marie Mangelsdorf
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - James N MacPherson
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Gemma L Carvill
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Heather C Mefford
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Graeme D Jackson
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Ingrid E Scheffer
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Melanie Bahlo
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Jozef Gecz
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Sarah E Heron
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Mark Corbett
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - John C Mulley
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Leanne M Dibbens
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Amos D Korczyn
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| | - Samuel F Berkovic
- From the Sackler School of Medicine (Z.A., I.B., M.Y.N., T.L.-S., A.D.K.), Tel Aviv University, Ramat Aviv, Israel; Epilepsy Research Centre (K.L.O., K.L.H., I.E.S., S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; Epilepsy Unit (S.K., H.G.-S., R.S.), Schneider Children's Medical Center of Israel, Petach Tikvah; Department of Neurology (A.M., M.Y.N.), Tel Aviv Sourasky Medical Center; Department of Neurology (I.B.), The Chaim Sheba Medical Center, Tel Hashomer; Shaare Zedek Medical Center (A.J.M.), Jerusalem; Department of Neurology (S.W.), Western Galilee Hospital, Nahariya; Pediatric Neurology and Child Development Center (M. Mahajnah), Hillel Yaffe Medical Center, Hadera; Ruth and Bruce Rappaport Faculty of Medicine (M. Mahajnah), Technion, Haifa; Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon; The Edmond and Lily Safra Children's Hospital (B.B.-Z.), Sheba Medical Center, Ramat Gan; Department of Neurology (E.K.), Barzilai Medical Center, Ashkelon; Faculty of Health Sciences (E.K., R.M., Z.S.), Ben-Gurion University of the Negev, Beer-Sheva; Department of Neurology (R.M.) and Pediatric Neurology Unit (Z.S.), Soroka University Medical Center, Beer-Sheva; Pediatric Neurology Unit (U.K.), Dana Children's Hospital, Tel Aviv; Department of Neurology (D.E.), Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; School of Biomedical Sciences (R.H.W.), Charles Sturt University, NSW; Queensland Brain Institute (M. Mangelsdorf), University of Queensland, Brisbane, Australia; Wessex Regional Genetics Laboratory (J.N.M.), Salisbury NHS Foundation Trust, Salisbury, UK; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Pediatrics, University of Washington, Seattle; Florey Institute (G.D.J., I.E.S.), Melbourne; Department of Pediatrics (I.E.S.), University of Melbourne, Royal Children's Hospital; Population Health and Immunity Division (M.B.), The Walter and Eliza Hall Institute o
| |
Collapse
|
50
|
Myers C, Mefford H. Genetic investigations of the epileptic encephalopathies. PROGRESS IN BRAIN RESEARCH 2016; 226:35-60. [DOI: 10.1016/bs.pbr.2016.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|