1
|
da Costa Caiado MJ, Dolga AM, den Dunnen WFA. Iron(ing) out parkinsonisms: The interplay of proteinopathy and ferroptosis in Parkinson's disease and tau-related parkinsonisms. Redox Biol 2024; 79:103478. [PMID: 39721496 DOI: 10.1016/j.redox.2024.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Parkinsonian syndromes are characterised by similar motor-related symptomology resulting from dopaminergic neuron damage. While Parkinson's disease (PD) is the most prevalent parkinsonism, we also focus on two other variants, Progressive supranuclear palsy (PSP) and Corticobasal degeneration (CBD). Due to the clinical similarities of these parkinsonisms, and since definite diagnoses are only possible post-mortem, effective therapies and novel biomarkers of disease are scarce. Thus, we explore the current findings relating to the relationship of parkinsonism proteinopathy (α-synuclein in PD, and tau in PSP/CBD) paralleled to a specific form of cell death, ferroptosis. Ferroptosis is characterised by iron-induced lipid peroxidation and several markers of this pathway have been identified to control intracellular iron fluctuations. However, in parkinsonism, these mechanisms are thought to become dysfunctional. Although both proteinopathies have been linked to ferroptosis, much less is known about ferroptotic cell death and tau in the context of PSP/CBD. Interestingly, clinical trials targeting iron have recently shown conflicting results which begs to question the complexity of the ferroptotic pathway and alludes to the need for exploring other ferroptosis-related machinery as possible therapeutic targets. Overall, we address the literature gap in parkinsonism proteinopathy and ferroptosis, and its relevance to understanding disease pathophysiology and aetiology.
Collapse
Affiliation(s)
- Maria João da Costa Caiado
- Graduate School of Medical Sciences (GSMS) and Research School of Behavioural and Cognitive Neurosciences (BCN), University of Groningen, 9713 GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, the Netherlands.
| | - Amalia M Dolga
- Department of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
2
|
Zhang S, Gao Z, Feng L, Li M. Prevention and Treatment Strategies for Alzheimer's Disease: Focusing on Microglia and Astrocytes in Neuroinflammation. J Inflamm Res 2024; 17:7235-7259. [PMID: 39421566 PMCID: PMC11484773 DOI: 10.2147/jir.s483412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease characterized by its insidious onset and progressive development, making it the most common form of dementia. Despite its prevalence, the exact causes and mechanisms responsible for AD remain unclear. Recent studies have highlighted that inflammation in the central nervous system (CNS) plays a crucial role in both the initiation and progression of AD. Neuroinflammation, an immune response within the CNS triggered by glial cells in response to various stimuli, such as nerve injury, infection, toxins, or autoimmune reactions, has emerged as a significant factor alongside amyloid deposition and neurofibrillary tangles (NFTs) commonly associated with AD. This article aims to provide an overview of the most recent research regarding the involvement of neuroinflammation in AD, with a particular focus on elucidating the specific mechanisms involving microglia and astrocytes. By exploring these intricate processes, a new theoretical framework can be established to further probe the impact of neuroinflammation on the development and progression of AD. Through a deeper understanding of these underlying mechanisms, potential targets for therapeutic interventions and novel treatment strategies can be identified in the ongoing battle against AD.
Collapse
Affiliation(s)
- Shenghao Zhang
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
| | - Zhejianyi Gao
- Department of Orthopaedics, Fushun Hospital of Chinese Medicine, Fushun, Liaoning Province, 113008, People’s Republic of China
| | - Lina Feng
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
- Shandong Key Laboratory of TCM Multi-Targets Intervention and Disease Control, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, 271000, People’s Republic of China
| | - Mingquan Li
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
| |
Collapse
|
3
|
Islam MR, Rabbi MA, Hossain T, Sultana S, Uddin S. Mechanistic Approach to Immunity and Immunotherapy of Alzheimer's Disease: A Review. ACS Chem Neurosci 2024. [PMID: 39173186 DOI: 10.1021/acschemneuro.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative condition characterized by progressive cognitive decline and memory loss, affecting millions of people worldwide. Traditional treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, offer limited symptomatic relief without addressing the underlying disease mechanisms. These limitations have driven the development of more potent and effective therapies. Recent advances in immunotherapy present promising avenues for AD treatment. Immunotherapy strategies, including both active and passive approaches, harness the immune system to target and mitigate AD-related pathology. Active immunotherapy stimulates the patient's immune response to produce antibodies against AD-specific antigens, while passive immunotherapy involves administering preformed antibodies or immune cells that specifically target amyloid-β (Aβ) or tau proteins. Monoclonal antibodies, such as aducanumab and lecanemab, have shown potential in reducing Aβ plaques and slowing cognitive decline in clinical trials, despite challenges related to adverse immune responses and the need for precise targeting. This comprehensive review explores the role of the immune system in AD, evaluates the current successes and limitations of immunotherapeutic approaches, and discusses future directions for enhancing the treatment efficacy.
Collapse
Affiliation(s)
- Md Rubiath Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Afser Rabbi
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Tanbir Hossain
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Sadia Sultana
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Shihab Uddin
- Department of Bioengineering, King Fahad University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Bio Systems and Machines, King Fahad University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia
| |
Collapse
|
4
|
Dunning EE, Decourt B, Zawia NH, Shill HA, Sabbagh MN. Pharmacotherapies for the Treatment of Progressive Supranuclear Palsy: A Narrative Review. Neurol Ther 2024; 13:975-1013. [PMID: 38743312 PMCID: PMC11263316 DOI: 10.1007/s40120-024-00614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disorder resulting from the deposition of misfolded and neurotoxic forms of tau protein in specific areas of the midbrain, basal ganglia, and cortex. It is one of the most representative forms of tauopathy. PSP presents in several different phenotypic variations and is often accompanied by the development of concurrent neurodegenerative disorders. PSP is universally fatal, and effective disease-modifying therapies for PSP have not yet been identified. Several tau-targeting treatment modalities, including vaccines, monoclonal antibodies, and microtubule-stabilizing agents, have been investigated and have had no efficacy. The need to treat PSP and other tauopathies is critical, and many clinical trials investigating tau-targeted treatments are underway. In this review, the PubMed database was queried to collect information about preclinical and clinical research on PSP treatment. Additionally, the US National Library of Medicine's ClinicalTrials.gov website was queried to identify past and ongoing clinical trials relevant to PSP treatment. This narrative review summarizes our findings regarding these reports, which include potential disease-modifying drug trials, modifiable risk factor management, and symptom treatments.
Collapse
Affiliation(s)
- Elise E Dunning
- Creighton University School of Medicine - Phoenix, Phoenix, AZ, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Laboratory on Neurodegeneration and Translational Research, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, USA
| | - Nasser H Zawia
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- Department of Biomedical and Pharmaceutical Sciences, Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Holly A Shill
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA
| | - Marwan N Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
5
|
DeRosier F, Hibbs C, Alessi K, Padda I, Rodriguez J, Pradeep S, Parmar MS. Progressive supranuclear palsy: Neuropathology, clinical presentation, diagnostic challenges, management, and emerging therapies. Dis Mon 2024; 70:101753. [PMID: 38908985 DOI: 10.1016/j.disamonth.2024.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by the accumulation of 4R-tau protein aggregates in various brain regions. PSP leads to neuronal loss, gliosis, and tau-positive inclusions, such as neurofibrillary tangles, tufted astrocytes, and coiled bodies. These pathological changes mainly affect the brainstem and the basal ganglia, resulting in distinctive MRI features, such as the hummingbird and morning glory signs. PSP shows clinical heterogeneity and presents as different phenotypes, the most classical of which is Richardson's syndrome (PSP-RS). The region of involvement and the mode of atrophy spread can further distinguish subtypes of PSP. PSP patients can experience various signs and symptoms, such as postural instability, supranuclear ophthalmoplegia, low amplitude fast finger tapping, and irregular sleep patterns. The most common symptoms of PSP are postural instability, falls, vertical gaze palsy, bradykinesia, and cognitive impairment. These features often overlap with those of Parkinson's disease (PD) and other Parkinsonian syndromes, making the diagnosis challenging. PSP is an essential clinical topic to research because it is a devastating and incurable disease. However, there are still many gaps in knowledge about its pathophysiology, diagnosis, and treatment. Several clinical trials are underway to test noveltherapies that target tau in various ways, such as modulating its post-translational modifications, stabilizing its interaction with microtubules, or enhancing its clearance by immunotherapy. These approaches may offer new hope for slowing down the progression of PSP. In this review, we aim to provide an overview of the current knowledge on PSP, from its pathogenesis to its management. We also discuss the latest advances and future directions in PSP research.
Collapse
Affiliation(s)
- Frederick DeRosier
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America
| | - Cody Hibbs
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America
| | - Kaitlyn Alessi
- Department of Family Medicine, University of Florida, Gainesville, United States of America
| | - Inderbir Padda
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, New York, United States of America
| | - Jeanette Rodriguez
- Department of Family Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, Florida, United States of America
| | - Swati Pradeep
- Department of Movement Disorders, UTHealth Houston Neurosciences Neurology - Texas Medical Center, Texas, United States of America
| | - Mayur S Parmar
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America.
| |
Collapse
|
6
|
Yang J, Zhi W, Wang L. Role of Tau Protein in Neurodegenerative Diseases and Development of Its Targeted Drugs: A Literature Review. Molecules 2024; 29:2812. [PMID: 38930877 PMCID: PMC11206543 DOI: 10.3390/molecules29122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Tau protein is a microtubule-associated protein that is widely distributed in the central nervous system and maintains and regulates neuronal morphology and function. Tau protein aggregates abnormally and forms neurofibrillary tangles in neurodegenerative diseases, disrupting the structure and function of neurons and leading to neuronal death, which triggers the initiation and progression of neurological disorders. The aggregation of tau protein in neurodegenerative diseases is associated with post-translational modifications, which may affect the hydrophilicity, spatial conformation, and stability of tau protein, promoting tau protein aggregation and the formation of neurofibrillary tangles. Therefore, studying the role of tau protein in neurodegenerative diseases and the mechanism of aberrant aggregation is important for understanding the mechanism of neurodegenerative diseases and finding therapeutic approaches. This review describes the possible mechanisms by which tau protein promotes neurodegenerative diseases, the post-translational modifications of tau protein and associated influencing factors, and the current status of drug discovery and development related to tau protein, which may contribute to the development of new therapeutic approaches to alleviate or treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiakai Yang
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Weijia Zhi
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Lifeng Wang
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
7
|
Lozupone M, Dibello V, Daniele A, Solfrizzi V, Resta E, Panza F. How can we manage progressive supranuclear palsy syndrome with pharmacotherapy? Expert Opin Pharmacother 2024; 25:571-584. [PMID: 38653731 DOI: 10.1080/14656566.2024.2345734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Tauopathies are a spectrum of clinicopathological neurodegenerative disorders with increased aggregates included in glia and/or neurons of hyperphosphorylated insoluble tau protein, a microtubule-associated protein. Progressive supranuclear palsy (PSP) is an atypical dopaminergic-resistant parkinsonian syndrome, considered as a primary tauopathy with possible alteration of tau isoform ratio, and tau accumulations characterized by 4 R tau species as the main neuropathological lesions. AREAS COVERED In the present review article, we analyzed and discussed viable disease-modifying and some symptomatic pharmacological therapeutics for PSP syndrome (PSPS). EXPERT OPINION Pharmacological therapy for PSPS may interfere with the aggregation process or promote the clearance of abnormal tau aggregates. A variety of past and ongoing disease-modifying therapies targeting tau in PSPS included genetic, microtubule-stabilizing compounds, anti-phosphorylation, and acetylation agents, antiaggregant, protein removal, antioxidant neuronal and synaptic growth promotion therapies. New pharmacological gene-based approaches may open alternative prevention pathways for the deposition of abnormal tau in PSPS such as antisense oligonucleotide (ASO)-based drugs. Moreover, kinases and ubiquitin-proteasome systems could also be viable targets.
Collapse
Affiliation(s)
- Madia Lozupone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari Aldo Moro, Bari, Italy
| | - Vittorio Dibello
- Department of Interdisciplinary Medicine, "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Vincenzo Solfrizzi
- Department of Interdisciplinary Medicine, "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | - Emanuela Resta
- Translational Medicine and Health System Management, Department of Economy, University of Foggia, Foggia, Italy
| | - Francesco Panza
- Department of Interdisciplinary Medicine, "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
8
|
Parmera JB, de Godoi Carneiro C, de Almeida IJ, de Oliveira MCB, Barbosa PM, Studart‐Neto A, Ono CR, Nitrini R, Buchpiguel CA, Barbosa ER, Brucki SMD, Coutinho AM. Probable 4-Repeat Tauopathy Criteria Predict Brain Amyloid Negativity, Distinct Clinical Features, and FDG-PET/MRI Neurodegeneneration Patterns in Corticobasal Syndrome. Mov Disord Clin Pract 2024; 11:238-247. [PMID: 38155526 PMCID: PMC10928325 DOI: 10.1002/mdc3.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/29/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Corticobasal syndrome (CBS) is associated with diverse underlying pathologies, including the four-repeat (4R)-tauopathies. The Movement Disorders Society (MDS) criteria for progressive supranuclear palsy (PSP) proposed the novel category "probable 4R-tauopathy" to address the phenotypic overlap between PSP and corticobasal degeneration (CBD). OBJECTIVES To investigate the clinical ability of the MDS-PSP criteria for probable 4R-tauopathy in predicting a negative amyloid-PET in CBS. Additionally, this study aims to explore CBS patients classified as 4R-tauopathy concerning their clinical features and neuroimaging degeneration patterns. METHODS Thirty-two patients with probable CBS were prospectively evaluated and split into those who fulfilled or did not fulfill the 4R-tauopathy criteria (CBS-4RT+ vs. CBS-4RT-). All patients underwent positron emission tomographies (PET) with [18 F]fluorodeoxyglucose and [11 C]Pittsburgh Compound-B (PIB) on a hybrid PET-MRI scanner to perform multimodal quantitative comparisons with a control group. RESULTS Eleven patients were clinically classified as CBS-4RT+, and only one had a positive PIB-PET. The CBS-4RT+ classification had 92% specificity, 52% sensitivity, and 69% accuracy in predicting a negative PIB-PET. The CBS-4RT+ group presented with dysarthria and perseveration more often than the CBS-4RT- group. Moreover, the CBS-4RT+ group showed a prominent frontal hypometabolism extending to the supplementary motor area and striatum, and brain atrophy at the anterior cingulate and bilateral striata. CONCLUSIONS The 4R-tauopathy criteria were highly specific in predicting a negative amyloid-PET in CBS. Patients classified as 4R-tauopathy presented distinct clinical aspects, as well as brain metabolism and atrophy patterns previously associated with tauopathies.
Collapse
Affiliation(s)
- Jacy Bezerra Parmera
- Department of Neurology, Hospital das ClínicasFaculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Camila de Godoi Carneiro
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of RadiologyHospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Isabel Junqueira de Almeida
- Department of Physical Therapy, Speech, and Occupational Therapy, Hospital das ClínicasFaculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | | | - Pedro Melo Barbosa
- Department of Neurology, Hospital das ClínicasFaculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Adalberto Studart‐Neto
- Department of Neurology, Hospital das ClínicasFaculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Carla Rachel Ono
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of RadiologyHospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Ricardo Nitrini
- Department of Neurology, Hospital das ClínicasFaculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of RadiologyHospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Egberto Reis Barbosa
- Department of Neurology, Hospital das ClínicasFaculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Sonia Maria Dozzi Brucki
- Department of Neurology, Hospital das ClínicasFaculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| | - Artur Martins Coutinho
- Laboratory of Nuclear Medicine (LIM 43), Nuclear Medicine Division and Institute of RadiologyHospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC‐FMUSP)São PauloBrazil
| |
Collapse
|
9
|
Gharat R, Dixit G, Khambete M, Prabhu A. Targets, trials and tribulations in Alzheimer therapeutics. Eur J Pharmacol 2024; 962:176230. [PMID: 38042464 DOI: 10.1016/j.ejphar.2023.176230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by abnormal accumulation of extracellular amyloid beta senile plaques and intracellular neurofibrillary tangles in the parts of the brain responsible for cognition. The therapeutic burden for the management of AD relies solely on cholinesterase inhibitors that provide only symptomatic relief. The urgent need for disease-modifying drugs has resulted in intensive research in this domain, which has led to better understanding of the disease pathology and identification of a plethora of new pathological targets. Currently, there are over a hundred and seventy clinical trials exploring disease modification, cognitive enhancement, and reduction of neuro-psychiatric complications. However, the path to developing safe and efficacious AD therapeutics has not been without challenges. Several clinical trials have been terminated in advanced stages due to lack of therapeutic translation or increased incidence of adverse events. This review presents an in-depth look at the various therapeutic targets of AD and the lessons learnt during their clinical assessment. Comprehensive understanding of the implication of modulating various aspects of Alzheimer brain pathology is crucial for development of drugs with potential to halt disease progression in Alzheimer therapeutics.
Collapse
Affiliation(s)
- Ruchita Gharat
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VM Road, Vile Parle (West), Mumbai, 400056, Maharashtra, India
| | - Gargi Dixit
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VM Road, Vile Parle (West), Mumbai, 400056, Maharashtra, India
| | - Mihir Khambete
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VM Road, Vile Parle (West), Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
10
|
Aljassabi A, Zieneldien T, Kim J, Regmi D, Cao C. Alzheimer's Disease Immunotherapy: Current Strategies and Future Prospects. J Alzheimers Dis 2024; 98:755-772. [PMID: 38489183 DOI: 10.3233/jad-231163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Alzheimer's disease (AD) is an extremely complex and heterogeneous pathology influenced by many factors contributing to its onset and progression, including aging, amyloid-beta (Aβ) plaques, tau fibril accumulation, inflammation, etc. Despite promising advances in drug development, there is no cure for AD. Although there have been substantial advancements in understanding the pathogenesis of AD, there have been over 200 unsuccessful clinical trials in the past decade. In recent years, immunotherapies have been at the forefront of these efforts. Immunotherapy alludes to the immunological field that strives to identify disease treatments via the enhancement, suppression, or induction of immune responses. Interestingly, immunotherapy in AD is a relatively new approach for non-infectious disease. At present, antibody therapy (passive immunotherapy) that targets anti-Aβ aimed to prevent the fibrillization of Aβ peptides and disrupt pre-existing fibrils is a predominant AD immunotherapy due to the continuous failure of active immunotherapy for AD. The most rational and safe strategies will be those targeting the toxic molecule without triggering an abnormal immune response, offering therapeutic advantages, thus making clinical trial design more efficient. This review offers a concise overview of immunotherapeutic strategies, including active and passive immunotherapy for AD. Our review encompasses approved methods and those presently under investigation in clinical trials, while elucidating the recent challenges, complications, successes, and potential treatments. Thus, immunotherapies targeting Aβ throughout the disease progression using a mutant oligomer-Aβ stimulated dendritic cell vaccine may offer a promising therapy in AD.
Collapse
Affiliation(s)
- Ali Aljassabi
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Tarek Zieneldien
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Janice Kim
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Deepika Regmi
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
11
|
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023; 19:715-736. [PMID: 37875627 PMCID: PMC10965012 DOI: 10.1038/s41582-023-00883-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Shulman M, Kong J, O'Gorman J, Ratti E, Rajagovindan R, Viollet L, Huang E, Sharma S, Racine AM, Czerkowicz J, Graham D, Li Y, Hering H, Haeberlein SB. TANGO: a placebo-controlled randomized phase 2 study of efficacy and safety of the anti-tau monoclonal antibody gosuranemab in early Alzheimer's disease. NATURE AGING 2023; 3:1591-1601. [PMID: 38012285 PMCID: PMC10724064 DOI: 10.1038/s43587-023-00523-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023]
Abstract
In Alzheimer's disease, the spread of aberrantly phosphorylated tau is an important criterion in the Braak staging of disease severity and correlates with disease symptomatology. Here, we report the results of TANGO ( NCT03352557 ), a randomized, double-blind, placebo-controlled, parallel-group and multiple-dose long-term trial of gosuranemab-a monoclonal antibody to N-terminal tau-in patients with early Alzheimer's disease. The primary objective was to assess the safety and tolerability of gosuranemab compared to placebo. The secondary objectives were to assess the efficacy of multiple doses of gosuranemab in slowing cognitive and functional impairment (using the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) scores at week 78) and evaluate the immunogenicity of gosuranemab (using the incidence of anti-gosuranemab antibody responses). Participants were randomized (n = 654); received (n = 650) low-dose (125 mg once every 4 weeks (q4w), n = 58; 375 mg q12w, n = 58), intermediate-dose (600 mg q4w, n = 106) or high-dose (2,000 mg q4w, n = 214) gosuranemab or placebo (q4w, n = 214) intravenously for 78 weeks; and assigned to cerebrospinal fluid (n = 327) and/or tau positron emission tomography (n = 357) biomarker substudies. Gosuranemab had an acceptable safety profile and was generally well tolerated (incidence of serious adverse events: placebo, 12.1%; low dose, 10.3%; intermediate dose, 12.3%; high dose, 11.7%). The incidence of treatment-emergent gosuranemab antibody responses was low at all time points. No significant effects were identified in cognitive and functional tests as no dose resulted in a favorable change from the baseline CDR-SB score at week 78 compared to placebo control (adjusted mean change: placebo, 1.85; low dose, 2.20; intermediate dose, 2.24; high dose, 1.85). At week 76, all doses caused significant (P < 0.0001) reductions in the cerebrospinal fluid levels of unbound N-terminal tau compared to placebo.
Collapse
Affiliation(s)
| | | | | | - Elena Ratti
- Biogen, Cambridge, MA, USA
- Takeda Pharmaceuticals, Cambridge, MA, USA
| | | | - Louis Viollet
- Biogen, Cambridge, MA, USA
- Moderna, Cambridge, MA, USA
| | | | | | - Annie M Racine
- Biogen, Cambridge, MA, USA
- Alexion, AstraZeneca Rare Disease, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
13
|
Hitt BD, Gupta A, Singh R, Yang T, Beaver JD, Shang P, White CL, Joachimiak LA, Diamond MI. Anti-tau antibodies targeting a conformation-dependent epitope selectively bind seeds. J Biol Chem 2023; 299:105252. [PMID: 37714465 PMCID: PMC10582770 DOI: 10.1016/j.jbc.2023.105252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/17/2023] Open
Abstract
Neurodegenerative tauopathies are caused by the transition of tau protein from a monomer to a toxic aggregate. They include Alzheimer disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick disease (PiD). We have previously proposed that tau monomer exists in two conformational ensembles: an inert form (Mi), which does not self-assemble, and seed-competent form (Ms), which self-assembles and templates ordered assembly growth. We proposed that cis/trans isomerization of tau at P301, the site of dominant disease-associated S/L missense mutations, might underlie the transition of wild-type tau to a seed-competent state. Consequently, we created monoclonal antibodies using non-natural antigens consisting of fluorinated proline (P∗) at the analogous P270 in repeat 1 (R1), biased toward the trans-configuration at either the R1/R2 (TENLKHQP∗GGGKVQIINKK) or the R1/R3 (TENLKHQP∗GGGKVQIVYK) interfaces. Two antibodies, MD2.2 and MD3.1, efficiently immunoprecipitated soluble seeds from AD and PSP but not CBD or PiD brain samples. The antibodies efficiently stained brain samples of AD, PSP, and PiD, but not CBD. They did not immunoprecipitate or immunostain tau from the control brain. Creation of potent anti-seed antibodies based on the trans-proline epitope implicates local unfolding around P301 in pathogenesis. MD2.2 and MD3.1 may also be useful for therapy and diagnosis.
Collapse
Affiliation(s)
- Brian D Hitt
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Neurology, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Neurology, University of California, Irvine, California, USA
| | - Ankit Gupta
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ruhar Singh
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ting Yang
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Joshua D Beaver
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ping Shang
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA; Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Charles L White
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA; Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, Texas, USA; Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Neurology, UT Southwestern Medical Center, Dallas, Texas, USA; Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
14
|
Peng Y, Jin H, Xue YH, Chen Q, Yao SY, Du MQ, Liu S. Current and future therapeutic strategies for Alzheimer's disease: an overview of drug development bottlenecks. Front Aging Neurosci 2023; 15:1206572. [PMID: 37600514 PMCID: PMC10438465 DOI: 10.3389/fnagi.2023.1206572] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Alzheimer's disease (AD) is the most common chronic neurodegenerative disease worldwide. It causes cognitive dysfunction, such as aphasia and agnosia, and mental symptoms, such as behavioral abnormalities; all of which place a significant psychological and economic burden on the patients' families. No specific drugs are currently available for the treatment of AD, and the current drugs for AD only delay disease onset and progression. The pathophysiological basis of AD involves abnormal deposition of beta-amyloid protein (Aβ), abnormal tau protein phosphorylation, decreased activity of acetylcholine content, glutamate toxicity, autophagy, inflammatory reactions, mitochondria-targeting, and multi-targets. The US Food and Drug Administration (FDA) has approved five drugs for clinical use: tacrine, donepezil, carbalatine, galantamine, memantine, and lecanemab. We have focused on the newer drugs that have undergone clinical trials, most of which have not been successful as a result of excessive clinical side effects or poor efficacy. Although aducanumab received rapid approval from the FDA on 7 June 2021, its long-term safety and tolerability require further monitoring and confirmation. In this literature review, we aimed to explore the possible pathophysiological mechanisms underlying the occurrence and development of AD. We focused on anti-Aβ and anti-tau drugs, mitochondria-targeting and multi-targets, commercially available drugs, bottlenecks encountered in drug development, and the possible targets and therapeutic strategies for future drug development. We hope to present new concepts and methods for future drug therapies for AD.
Collapse
Affiliation(s)
- Yong Peng
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-hui Xue
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shun-yu Yao
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-qiao Du
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
15
|
Street D, Jabbari E, Costantini A, Jones PS, Holland N, Rittman T, Jensen MT, Chelban V, Goh YY, Guo T, Heslegrave AJ, Roncaroli F, Klein JC, Ansorge O, Allinson KSJ, Jaunmuktane Z, Revesz T, Warner TT, Lees AJ, Zetterberg H, Russell LL, Bocchetta M, Rohrer JD, Burn DJ, Pavese N, Gerhard A, Kobylecki C, Leigh PN, Church A, Hu MTM, Houlden H, Morris H, Rowe JB. Progression of atypical parkinsonian syndromes: PROSPECT-M-UK study implications for clinical trials. Brain 2023; 146:3232-3242. [PMID: 36975168 PMCID: PMC10393398 DOI: 10.1093/brain/awad105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based end point selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), multiple system atrophy (MSA) and related disorders, to compare candidate clinical trial end points. In this multicentre UK study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and MRI assessments at baseline, 6 and 12 months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, PSP-subcortical (PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (PSP-frontal, PSP-speech and language and PSP-CBS subtypes), MSA-parkinsonism, MSA-cerebellar, CBS with and without evidence of Alzheimer's disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling and sample sizes for clinical trials of disease-modifying agents, according to group and assessment type. Two hundred forty-three people were recruited [117 PSP, 68 CBS, 42 MSA and 16 indeterminate; 138 (56.8%) male; age at recruitment 68.7 ± 8.61 years]. One hundred and fifty-nine completed the 6-month assessment (82 PSP, 27 CBS, 40 MSA and 10 indeterminate) and 153 completed the 12-month assessment (80 PSP, 29 CBS, 35 MSA and nine indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for 1-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease-specific. In conclusion, phenotypic variance within PSP, CBS and MSA is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial end points, from potential functional, cognitive, clinical or neuroimaging measures of disease progression.
Collapse
Affiliation(s)
- Duncan Street
- University of Cambridge Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Cambridge, CB2 OQQ, UK
| | - Edwin Jabbari
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Movement Disorders Centre, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alyssa Costantini
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Movement Disorders Centre, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - P Simon Jones
- University of Cambridge Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Cambridge, CB2 OQQ, UK
| | - Negin Holland
- University of Cambridge Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Cambridge, CB2 OQQ, UK
| | - Timothy Rittman
- University of Cambridge Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Cambridge, CB2 OQQ, UK
| | - Marte T Jensen
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Movement Disorders Centre, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Viorica Chelban
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Neurobiology and Medical Genetics Laboratory, ‘Nicolae Testemitanu’ State University of Medicine and Pharmacy, Chisinau 2004, Republic of Moldova
| | - Yen Y Goh
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Tong Guo
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Amanda J Heslegrave
- Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M6 8HD, UK
| | - Johannes C Klein
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Kieren S J Allinson
- University of Cambridge Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Cambridge, CB2 OQQ, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Queen Square Brain Bank for Neurological Disorders, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Reta Lila Weston Institute, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Reta Lila Weston Institute, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Reta Lila Weston Institute, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Andrew J Lees
- Queen Square Brain Bank for Neurological Disorders, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Reta Lila Weston Institute, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 30 Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Salhgrenska Academy at the University of Gothenburg, 413 45 Goteborg, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Shatin, N.T., Hong Kong, China
| | - Lucy L Russell
- Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Martina Bocchetta
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, UB8 3PH, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - David J Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle, NE2 4HH, UK
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle, NE4 5PL, UK
| | - Alexander Gerhard
- Division of Neuroscience, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, N20 3LJ, UK
- Departments of Geriatric Medicine and Nuclear Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, 45356 Essen, Germany
| | - Christopher Kobylecki
- Division of Neuroscience, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, N20 3LJ, UK
- Department of Neurology, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Salford, M13 9NQ, UK
| | - P Nigel Leigh
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, BN1 9PX, UK
| | - Alistair Church
- Department of Neurology, Royal Gwent Hospital, Newport, NP20 2UB, UK
| | - Michele T M Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, OX1 3QU, UK
| | - Henry Houlden
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Movement Disorders Centre, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Huw Morris
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Movement Disorders Centre, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - James B Rowe
- University of Cambridge Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Cambridge, CB2 OQQ, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| |
Collapse
|
16
|
Neylan KD, Miller BL. New Approaches to the Treatment of Frontotemporal Dementia. Neurotherapeutics 2023; 20:1055-1065. [PMID: 37157041 PMCID: PMC10457270 DOI: 10.1007/s13311-023-01380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Frontotemporal dementia (FTD) comprises a diverse group of clinical neurodegenerative syndromes characterized by progressive changes in behavior, personality, executive function, language, and motor function. Approximately 20% of FTD cases have a known genetic cause. The three most common genetic mutations causing FTD are discussed. Frontotemporal lobar degeneration refers to the heterogeneous group of neuropathology underlying FTD clinical syndromes. While there are no current disease-modifying treatments for FTD, management includes off-label pharmacotherapy and non-pharmacological approaches to target symptoms. The utility of several different drug classes is discussed. Medications used in the treatment of Alzheimer's disease have no benefit in FTD and can worsen neuropsychiatric symptoms. Non-pharmacological approaches to management include lifestyle modifications, speech-, occupational-, and physical therapy, peer and caregiver support, and safety considerations. Recent developments in the understanding of the genetics, pathophysiology, neuropathology, and neuroimmunology underlying FTD clinical syndromes have expanded possibilities for disease-modifying and symptom-targeted treatments. Different pathogenetic mechanisms are targeted in several active clinical trials, opening up exciting possibilities for breakthrough advances in treatment and management of FTD spectrum disorders.
Collapse
Affiliation(s)
- Kyra D Neylan
- University of California San Francisco Memory and Aging Center, San Francisco, USA.
| | - Bruce L Miller
- University of California San Francisco Memory and Aging Center, San Francisco, USA
| |
Collapse
|
17
|
Panza F, Dibello V, Sardone R, Castellana F, Zupo R, Lampignano L, Bortone I, Stallone R, Cirillo N, Damiani C, Altamura M, Bellomo A, Daniele A, Solfrizzi V, Lozupone M. Clinical development of passive tau-based immunotherapeutics for treating primary and secondary tauopathies. Expert Opin Investig Drugs 2023; 32:625-634. [PMID: 37405389 DOI: 10.1080/13543784.2023.2233892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Tauopathies are clinicopathological entities with increased and pathological deposition in glia and/or neurons of hyperphosphorylated aggregates of the microtubule-binding protein tau. In secondary tauopathies, i.e. Alzheimer's disease (AD), tau deposition can be observed, but tau coexists with another protein (amyloid-β). In the last 20 years, little progress has been made in developing disease-modifying drugs for primary and secondary tauopathies and available symptomatic drugs have limited efficacy. AREAS COVERED The present review summarized recent advances about the development and challenges in treatments for primary and secondary tauopathies, with a focus on passive tau-based immunotherapy. EXPERT OPINION Several tau-targeted passive immunotherapeutics are in development for treating tauopathies. At present, 14 anti-tau antibodies have entered clinical trials, and 9 of them are still in clinical testing for progressive supranuclear palsy syndrome and AD (semorinemab, bepranemab, E2814, JNJ-63733657, Lu AF87908, APNmAb005, MK-2214, PNT00, and PRX005). However, none of these nine agents have reached Phase III. The most advanced anti-tau monoclonal antibody for treating AD is semorinemab, while bepranemab is the only anti-tau monoclonal antibody still in clinical testing for treating progressive supranuclear palsy syndrome. Further evidence on passive immunotherapeutics for treating primary and secondary tauopathies will come from ongoing Phase I/II trials.
Collapse
Affiliation(s)
- Francesco Panza
- Dipartimento Interdisciplinare di Medicina, Clinica Medica E Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis" Research Hospital, Bari, Italy
| | - Vittorio Dibello
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis" Research Hospital, Bari, Italy
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rodolfo Sardone
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis" Research Hospital, Bari, Italy
- Local Healthcare Authority of Taranto, Taranto, Italy
| | - Fabio Castellana
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis" Research Hospital, Bari, Italy
| | - Roberta Zupo
- Dipartimento Interdisciplinare di Medicina, Clinica Medica E Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Luisa Lampignano
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis" Research Hospital, Bari, Italy
| | - Ilaria Bortone
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis" Research Hospital, Bari, Italy
| | - Roberta Stallone
- Neuroscience and Education, Human Resources Excellence in Research, University of Foggia, Foggia, Italy
| | - Nicoletta Cirillo
- Dipartimento Interdisciplinare di Medicina, Clinica Medica E Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Christian Damiani
- Dipartimento Interdisciplinare di Medicina, Clinica Medica E Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Mario Altamura
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Vincenzo Solfrizzi
- Dipartimento Interdisciplinare di Medicina, Clinica Medica E Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Madia Lozupone
- Department of Translational Biomedicine and Neuroscience "DiBrain", University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
18
|
Hu WT. Lessons Learned in Time-Is Neurodegeneration Still Something Unpredictable? Neurotherapeutics 2023; 20:911-913. [PMID: 37567934 PMCID: PMC10457255 DOI: 10.1007/s13311-023-01412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Affiliation(s)
- William T Hu
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, 125 Paterson Street, Suite 6200, New Brunswick, NJ, 08901, USA.
- Institute for Health, Health Care Policy, and Aging Research, Rutgers Biomedical and Health Sciences, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
19
|
VandeVrede L, La Joie R, Thijssen EH, Asken BM, Vento SA, Tsuei T, Baker SL, Cobigo Y, Fonseca C, Heuer HW, Kramer JH, Ljubenkov PA, Rabinovici GD, Rojas JC, Rosen HJ, Staffaroni AM, Boeve BF, Dickerson BC, Grossman M, Huey ED, Irwin DJ, Litvan I, Pantelyat AY, Tartaglia MC, Dage JL, Boxer AL. Evaluation of Plasma Phosphorylated Tau217 for Differentiation Between Alzheimer Disease and Frontotemporal Lobar Degeneration Subtypes Among Patients With Corticobasal Syndrome. JAMA Neurol 2023; 80:495-505. [PMID: 37010841 PMCID: PMC10071401 DOI: 10.1001/jamaneurol.2023.0488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/26/2023] [Indexed: 04/04/2023]
Abstract
Importance Plasma phosphorylated tau217 (p-tau217), a biomarker of Alzheimer disease (AD), is of special interest in corticobasal syndrome (CBS) because autopsy studies have revealed AD is the driving neuropathology in up to 40% of cases. This differentiates CBS from other 4-repeat tauopathy (4RT)-associated syndromes, such as progressive supranuclear palsy Richardson syndrome (PSP-RS) and nonfluent primary progressive aphasia (nfvPPA), where underlying frontotemporal lobar degeneration (FTLD) is typically the primary neuropathology. Objective To validate plasma p-tau217 against positron emission tomography (PET) in 4RT-associated syndromes, especially CBS. Design, Setting, and Participants This multicohort study with 6, 12, and 24-month follow-up recruited adult participants between January 2011 and September 2020 from 8 tertiary care centers in the 4RT Neuroimaging Initiative (4RTNI). All participants with CBS (n = 113), PSP-RS (n = 121), and nfvPPA (n = 39) were included; other diagnoses were excluded due to rarity (n = 29). Individuals with PET-confirmed AD (n = 54) and PET-negative cognitively normal control individuals (n = 59) were evaluated at University of California San Francisco. Operators were blinded to the cohort. Main Outcome and Measures Plasma p-tau217, measured by Meso Scale Discovery electrochemiluminescence, was validated against amyloid-β (Aβ) and flortaucipir (FTP) PET. Imaging analyses used voxel-based morphometry and bayesian linear mixed-effects modeling. Clinical biomarker associations were evaluated using longitudinal mixed-effect modeling. Results Of 386 participants, 199 (52%) were female, and the mean (SD) age was 68 (8) years. Plasma p-tau217 was elevated in patients with CBS with positive Aβ PET results (mean [SD], 0.57 [0.43] pg/mL) or FTP PET (mean [SD], 0.75 [0.30] pg/mL) to concentrations comparable to control individuals with AD (mean [SD], 0.72 [0.37]), whereas PSP-RS and nfvPPA showed no increase relative to control. Within CBS, p-tau217 had excellent diagnostic performance with area under the receiver operating characteristic curve (AUC) for Aβ PET of 0.87 (95% CI, 0.76-0.98; P < .001) and FTP PET of 0.93 (95% CI, 0.83-1.00; P < .001). At baseline, individuals with CBS-AD (n = 12), defined by a PET-validated plasma p-tau217 cutoff 0.25 pg/mL or greater, had increased temporoparietal atrophy at baseline compared to individuals with CBS-FTLD (n = 39), whereas longitudinally, individuals with CBS-FTLD had faster brainstem atrophy rates. Individuals with CBS-FTLD also progressed more rapidly on a modified version of the PSP Rating Scale than those with CBS-AD (mean [SD], 3.5 [0.5] vs 0.8 [0.8] points/year; P = .005). Conclusions and Relevance In this cohort study, plasma p-tau217 had excellent diagnostic performance for identifying Aβ or FTP PET positivity within CBS with likely underlying AD pathology. Plasma P-tau217 may be a useful and inexpensive biomarker to select patients for CBS clinical trials.
Collapse
Affiliation(s)
- Lawren VandeVrede
- Department of Neurology, Memory and Aging Center, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco
| | - Renaud La Joie
- Department of Neurology, Memory and Aging Center, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco
- Lawrence Berkeley National Laboratory, Berkeley, California
| | - Elisabeth H. Thijssen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Breton M. Asken
- Fixel Institute for Neurological Disease, Department of Clinical and Healthy Psychology, University of Florida, Gainesville
| | - Stephanie A. Vento
- Department of Neurology, Memory and Aging Center, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco
| | - Torie Tsuei
- Department of Neurology, Memory and Aging Center, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco
| | | | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco
| | - Corrina Fonseca
- Department of Neurology, Memory and Aging Center, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco
| | - Hilary W. Heuer
- Department of Neurology, Memory and Aging Center, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging Center, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco
| | - Peter A. Ljubenkov
- Department of Neurology, Memory and Aging Center, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco
| | - Gil D. Rabinovici
- Department of Neurology, Memory and Aging Center, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco
- Associate Editor, JAMA Neurology
| | - Julio C. Rojas
- Department of Neurology, Memory and Aging Center, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco
| | - Howie J. Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco
| | - Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco
| | - Brad F. Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Brad C. Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital, Boston
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Edward D. Huey
- Department of Psychiatry, Columbia University, New York, New York
- Department of Neurology, Columbia University, New York, New York
| | - David J. Irwin
- Frontotemporal Disorders Unit, Massachusetts General Hospital, Boston
| | - Irene Litvan
- Department of Neurology, University of California, San Diego
| | - Alexander Y. Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey L. Dage
- Department of Neurology, Indiana University School of Medicine, Indianapolis
| | - Adam L. Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|
20
|
Mees I, Nisbet R, Hannan A, Renoir T. Implications of Tau Dysregulation in Huntington's Disease and Potential for New Therapeutics. J Huntingtons Dis 2023; 12:1-13. [PMID: 37092231 DOI: 10.3233/jhd-230569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The disease, characterized by motor, cognitive, and psychiatric impairments, is caused by the expansion of a CAG repeat in the huntingtin gene. Despite the discovery of the mutation in 1993, no disease-modifying treatments are yet available. Understanding the molecular and cellular mechanisms involved in HD is therefore crucial for the development of novel treatments. Emerging research has found that HD might be classified as a secondary tauopathy, with the presence of tau insoluble aggregates in late HD. Increased total tau protein levels have been observed in both HD patients and animal models of HD. Tau hyperphosphorylation, the main feature of tau pathology, has also been investigated and our own published results suggest that the protein phosphorylation machinery is dysregulated in the early stages of HD in R6/1 transgenic mice, primarily in the cortex and striatum. Protein phosphorylation, catalysed by kinases, regulates numerous cellular mechanisms and has been shown to be dysregulated in other neurodegenerative disorders, including Alzheimer's disease. While it is still unclear how the mutation in the huntingtin gene leads to tau dysregulation in HD, several hypotheses have been explored. Evidence suggests that the mutant huntingtin does not directly interact with tau, but instead interacts with tau kinases, phosphatases, and proteins involved in tau alternative splicing, which could result in tau dysregulation as observed in HD. Altogether, there is increasing evidence that tau is undergoing pathological changes in HD and may be a good therapeutic target.
Collapse
Affiliation(s)
- Isaline Mees
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Rebecca Nisbet
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
21
|
Qian L, Bian W, Wang D, Ming Z, Zhang Y, Zhang L, Fu L. Adeno-Associated Virus-Mediated Immunotherapy Based on Bispecific Tandem scFv for Alzheimer’s Disease. J Alzheimers Dis 2023; 93:435-448. [PMID: 37038816 DOI: 10.3233/jad-221088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Background: Patients with Alzheimer’s disease (AD) have considerably increased globally as a result of population aging, placing a significant burden on the global economy and the medical system. The outcome of clinical trials for AD immunotherapy that solely targeted amyloid-β (Aβ) or phosphorylated tau protein (p-Tau) was unsatisfactory. Therefore, blocking both Aβ and p-Tau’s pathological processes simultaneously while also preventing their interaction may be the key to developing an effective AD therapy. Objective: To develop a novel immunotherapy based on bispecific tandem scFv (TaFv) against AD. Methods: Bispecific single-chain antibody that targets both Aβ and p-Tau were obtained using E. coli expression system. Biological ability of TaFvs were determined by ELISA, SDS-PAGE, and immunohistochemical assay. Recombinant adeno-associated virus 9 (rAAV9) were packaged to create TaFv. The in vivo activity of rAAV9 were detected in mouse, using biophotonic imaging and frozen section methods. Results: The outcomes demonstrated that both Aβ and p-Tau had a high affinity for the bispecific TaFv. Additionally, it can bind to the amyloid plaques and neuronal tangles in the brain slices of an AD mouse model. Moreover, the rAAV9 could infect neuronal cells, transverse the blood-brain barrier, and express TaFv in the mouse brain. Conclusion: This novel immunotherapy offers a fresh concept for the immunotherapy of AD and successfully delivers the double target antibody into the brain, acting on both pathogenic substances Aβ and p-Tau.
Collapse
Affiliation(s)
- Lin Qian
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Wenjuan Bian
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Diqi Wang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Zhuoqun Ming
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yu Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Linbo Zhang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Lu Fu
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine,School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
22
|
Xie T, Wills AM, Liao C, Dale ML, Ramsden DB, Padmanaban M, Abou Chaar W, Pantelyat A, Golbe LI. Using Downgaze Palsy Progression Rate to Model Survival in Progressive Supranuclear Palsy-Richardson Syndrome. Mov Disord 2023; 38:304-312. [PMID: 36573662 DOI: 10.1002/mds.29299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Rapid development of downgaze palsy, the most specific symptom of progressive supranuclear palsy (PSP), has been associated with shorter survival in small studies. OBJECTIVE We hypothesized that the progression rate of downgaze palsy and other disease features could predict survival if assessed soon after the onset of downgaze palsy in a large data set. METHODS We used a longitudinal database of 414 patients with probable PSP-Richardson syndrome from 1994 to 2020. The data set comprised demographics and, for each visit, 28 PSP Rating Scale (PSPRS) items and PSP stage scores. We calculated the rate of progression of each PSPRS item as its item score when the downgaze item first reached 1 or more (on a 0-4 scale) divided by disease duration at that point. Multivariate Cox regression was applied to identify variables independently associated with survival. We also explored the progression pattern of total PSPRS and downgaze palsy scores with disease course. RESULTS Independently associated with shorter survival were older onset age and faster progression of downgaze palsy, dysphagia for liquids, difficulty in returning to seat, and PSP stage. Patients with survival duration within 1 year of the median survival (6.58 years) showed approximately linear progression of the PSPRS score and downgaze palsy score during years 2 through 6 of the disease course. CONCLUSIONS Older onset age and faster progression of downgaze palsy and several axial features are associated with shorter survival. The disease typically progresses in approximately linear fashion during years 2 through 6. These results may aid study design and patient counseling. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Anne-Marie Wills
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chuanhong Liao
- Biostatistics Laboratory, Department of Public Health Sciences, University of Chicago Medicine, Chicago, Illinois, USA
| | - Marian L Dale
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - David B Ramsden
- Institute of Metabolism and Systems Research of Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Mahesh Padmanaban
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Widad Abou Chaar
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lawrence I Golbe
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
23
|
Panza F, Solfrizzi V, Daniele A, Lozupone M. Passive tau-based immunotherapy for tauopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:611-619. [PMID: 37620094 DOI: 10.1016/b978-0-323-98817-9.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Tauopathies are heterogeneous clinicopathological entities characterized by abnormal neuronal and/or glial inclusions of the microtubule-binding protein tau. In secondary tauopathies, i.e., Alzheimer's disease (AD), tau deposition can be observed, but tau may coexist with another protein, i.e., amyloid-β. In the last 20 years, little progress has been made in developing disease-modifying drugs for primary and secondary tauopathies and available symptomatic drugs have limited efficacy. Treatments are being developed to interfere with the aggregation process or to promote the clearance of tau protein. Several tau-targeted passive immunotherapy approaches are in development for treating tauopathies. At present, 12 anti-tau antibodies have entered clinical trials, and 7 of them are still in clinical testing for primary tauopathies and AD (semorinemab, bepranemab, E2814, JNJ-63733657, Lu AF87908, PNT00, and APNmAb005). However, none of these seven agents have reached Phase III. The most advanced anti-tau monoclonal antibody for treating AD is semorinemab, while bepranemab is the only anti-tau monoclonal antibody still in clinical testing for treating progressive supranuclear palsy syndrome. Two other anti-tau monoclonal antibodies have been discontinued for the treatment of primary tauopathies, i.e., gosuranemab and tilavonemab. Further evidence will come from ongoing Phase I/II trials on passive immunotherapeutics for treating primary and secondary tauopathies.
Collapse
Affiliation(s)
- Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy.
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy; Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Madia Lozupone
- Department of Translational Biomedicine and Neuroscience (DiBrain), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
24
|
Karimi N, Bayram Çatak F, Arslan E, Saghazadeh A, Rezaei N. Tau immunotherapy in Alzheimer’s disease and progressive supranuclear palsy. Int Immunopharmacol 2022; 113:109445. [DOI: 10.1016/j.intimp.2022.109445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
|
25
|
Ramesh M, Govindaraju T. Multipronged diagnostic and therapeutic strategies for Alzheimer's disease. Chem Sci 2022; 13:13657-13689. [PMID: 36544728 PMCID: PMC9710308 DOI: 10.1039/d2sc03932j] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and a major contributor to dementia cases worldwide. AD is clinically characterized by learning, memory, and cognitive deficits. The accumulation of extracellular amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs) of tau are the pathological hallmarks of AD and are explored as targets for clinical diagnosis and therapy. AD pathology is poorly understood and there are no fully approved diagnosis and treatments. Notwithstanding the gap, decades of research in understanding disease mechanisms have revealed the multifactorial nature of AD. As a result, multipronged and holistic approaches are pertinent to targeting multiple biomarkers and targets for developing effective diagnosis and therapeutics. In this perspective, recent developments in Aβ and tau targeted diagnostic and therapeutic tools are discussed. Novel indirect, combination, and circulating biomarkers as potential diagnostic targets are highlighted. We underline the importance of multiplexing and multimodal detection of multiple biomarkers to generate biomarker fingerprints as a reliable diagnostic strategy. The classical therapeutics targeting Aβ and tau aggregation pathways are described with bottlenecks in the strategy. Drug discovery efforts targeting multifaceted toxicity involving protein aggregation, metal toxicity, oxidative stress, mitochondrial damage, and neuroinflammation are highlighted. Recent efforts focused on multipronged strategies to rationally design multifunctional modulators targeting multiple pathological factors are presented as future drug development strategies to discover potential therapeutics for AD.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| |
Collapse
|
26
|
Bespalov A, Courade JP, Khiroug L, Terstappen GC, Wang Y. A call for better understanding of target engagement in Tau antibody development. Drug Discov Today 2022; 27:103338. [PMID: 35973661 DOI: 10.1016/j.drudis.2022.103338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Significant efforts have been channeled into developing antibodies for the treatment of CNS indications. Disappointment with the first generation of clinical Tau antibodies in Alzheimer's disease has highlighted the challenges in understanding whether an antibody can reach or affect the target in the compartment where it is involved in pathological processes. Here, we highlight different aspects essential for improving translatability of Tau-based immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Yipeng Wang
- Shanghai Qiangrui Biotech, Shanghai, PR China
| |
Collapse
|
27
|
Bloomingdale P, Bumbaca-Yadav D, Sugam J, Grauer S, Smith B, Antonenko S, Judo M, Azadi G, Yee KL. PBPK-PD modeling for the preclinical development and clinical translation of tau antibodies for Alzheimer's disease. Front Pharmacol 2022; 13:867457. [PMID: 36120380 PMCID: PMC9478891 DOI: 10.3389/fphar.2022.867457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Disrupted tau proteostasis and transneuronal spread is a pathological hallmark of Alzheimer's disease. Neurodegenerative diseases remain an unmet medical need and novel disease modifying therapeutics are paramount. Our objective was to develop a mechanistic mathematical model to enhance our understanding of tau antibody pharmacokinetics and pharmacodynamics in animals and humans. A physiologically-based pharmacokinetic-pharmacodynamic (PBPK-PD) modeling approach was employed to support the preclinical development and clinical translation of therapeutic antibodies targeting tau for the treatment of Alzheimer's disease. The pharmacokinetics of a tau antibody was evaluated in rat and non-human primate microdialysis studies. Model validation for humans was performed using publicly available clinical data for gosuranemab. In-silico analyses were performed to predict tau engagement in human brain for a range of tau antibody affinities and various dosing regimens. PBPK-PD modeling enabled a quantitative understanding for the relationship between dose, affinity, and target engagement, which supported lead candidate optimization and predictions of clinically efficacious dosing regimens.
Collapse
Affiliation(s)
- Peter Bloomingdale
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Boston, MA, United States
| | | | - Jonathan Sugam
- Discovery Neuroscience, Merck & Co., Inc., West Point, PA, United States
| | - Steve Grauer
- Discovery Neuroscience, Merck & Co., Inc., West Point, PA, United States
| | - Brad Smith
- Safety Assessment—Laboratory Animal Resources, Merck & Co., Inc., West Point, PA, United States
| | - Svetlana Antonenko
- Laboratory Animal Resources, Merck & Co., Inc., South San Francisco, CA, United States
| | - Michael Judo
- ADME, Merck & Co., Inc., South San Francisco, CA, United States
| | - Glareh Azadi
- ADME, Merck & Co., Inc., South San Francisco, CA, United States
| | - Ka Lai Yee
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Boston, MA, United States
| |
Collapse
|
28
|
Teng E, Manser PT, Pickthorn K, Brunstein F, Blendstrup M, Sanabria Bohorquez S, Wildsmith KR, Toth B, Dolton M, Ramakrishnan V, Bobbala A, Sikkes SAM, Ward M, Fuji RN, Kerchner GA. Safety and Efficacy of Semorinemab in Individuals With Prodromal to Mild Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol 2022; 79:758-767. [PMID: 35696185 PMCID: PMC9194753 DOI: 10.1001/jamaneurol.2022.1375] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/17/2022] [Indexed: 12/23/2022]
Abstract
Importance Neurofibrillary tangles composed of aggregated tau protein are one of the neuropathological hallmarks of Alzheimer disease (AD) and correlate with clinical disease severity. Monoclonal antibodies targeting tau may have the potential to ameliorate AD progression by slowing or stopping the spread and/or accumulation of pathological tau. Objective To evaluate the safety and efficacy of the monoclonal anti-tau antibody semorinemab in prodromal to mild AD. Design, Setting, and Participants This phase 2 randomized, double-blind, placebo-controlled, parallel-group clinical trial was conducted between October 18, 2017, and July 16, 2020, at 97 sites in North America, Europe, and Australia. Individuals aged 50 to 80 years (inclusive) with prodromal to mild AD, Mini-Mental State Examination scores between 20 and 30 (inclusive), and confirmed β-amyloid pathology (by positron emission tomography or cerebrospinal fluid) were included. Interventions During the 73-week blinded study period, participants received intravenous infusions of placebo or semorinemab (1500 mg, 4500 mg, or 8100 mg) every 2 weeks for the first 3 infusions and every 4 weeks thereafter. Main Outcomes and Measures The primary outcomes were change from baseline on the Clinical Dementia Rating-Sum of Boxes score from baseline to week 73 and assessments of the safety and tolerability for semorinemab compared with placebo. Results In the modified intent-to-treat cohort (n = 422; mean [SD] age, 69.6 [7.0] years; 235 women [55.7%]), similar increases were seen on the Clinical Dementia Rating-Sum of Boxes score in the placebo (n = 126; Δ = 2.19 [95% CI, 1.74-2.63]) and semorinemab (1500 mg: n = 86; Δ = 2.36 [95% CI, 1.83-2.89]; 4500 mg: n = 126; Δ = 2.36 [95% CI, 1.92-2.79]; 8100 mg: n = 84; Δ = 2.41 [95% CI, 1.88-2.94]) arms. In the safety-evaluable cohort (n = 441), similar proportions of participants experienced adverse events in the placebo (130 [93.1%]) and semorinemab (1500 mg: 89 [88.8%]; 4500 mg: 132 [94.7%]; 8100 mg: 90 [92.2%]) arms. Conclusions and Relevance In participants with prodromal to mild AD in this randomized clinical trial, semorinemab did not slow clinical AD progression compared with placebo throughout the 73-week study period but did demonstrate an acceptable and well-tolerated safety profile. Additional studies of anti-tau antibodies may be needed to determine the clinical utility of this therapeutic approach. Trial Registration ClinicalTrials.gov Identifier: NCT03289143.
Collapse
Affiliation(s)
- Edmond Teng
- Early Clinical Development, Genentech Inc, South San Francisco, California
| | - Paul T. Manser
- Biostatistics, Genentech Inc, South San Francisco, California
| | - Karen Pickthorn
- Early Clinical Development, Genentech Inc, South San Francisco, California
| | - Flavia Brunstein
- Product Development Safety, Genentech Inc, South San Francisco, California
| | - Mira Blendstrup
- Clinical Operations, Genentech Inc, South San Francisco, California
| | | | - Kristin R. Wildsmith
- Biomarker Development, Genentech Inc, South San Francisco, California
- Now with Eisai Inc, Woodcliff Lake, New Jersey
| | - Bali Toth
- Biostatistics, Genentech Inc, South San Francisco, California
| | | | | | - Ashwini Bobbala
- Product Development Safety, Genentech Inc, South San Francisco, California
| | - Sietske A. M. Sikkes
- Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Center, VU University Amsterdam, Amsterdam, the Netherlands
- Department of Clinical, Neuro- and Developmental Psychology, VU University, Amsterdam, the Netherlands
| | - Michael Ward
- Early Clinical Development, Genentech Inc, South San Francisco, California
- Now with Alector Inc, South San Francisco, California
| | - Reina N. Fuji
- Safety Assessment, Genentech Inc, South San Francisco, California
| | | |
Collapse
|
29
|
Coughlin DG, Litvan I. Investigational therapeutics for the treatment of progressive supranuclear palsy. Expert Opin Investig Drugs 2022; 31:813-823. [DOI: 10.1080/13543784.2022.2087179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- David G Coughlin
- Department of Neurosciences, University of California San Diego, San Diego, 92093, CA
| | - Irene Litvan
- Department of Neurosciences, University of California San Diego, San Diego, 92093, CA
| |
Collapse
|
30
|
Self W, Awwad K, Savaryn JP, Schulz M. An immuno-enrichment free, validated quantification of tau protein in human CSF by LC-MS/MS. PLoS One 2022; 17:e0269157. [PMID: 35653415 PMCID: PMC9162344 DOI: 10.1371/journal.pone.0269157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Tau protein is a key target of interest in developing therapeutics for neurodegenerative diseases. Here, we sought to develop a method that quantifies extracellular tau protein concentrations in human cerebrospinal fluid (CSF) without antibody-based enrichment strategies. We demonstrate that the fit-for-purpose validated method in Alzheimer's Disease CSF is limited to quasi quantitative measures of tau surrogate peptides. We also provide evidence that CSF total Tau measures by LC-MS are feasible in the presence of monoclonal therapeutic antibodies in human CSF. Our Tau LC-MS/MS method is a translational bioanalytical tool for assaying target engagement and pharmacodynamics for anti-tau antibody drug development campaigns.
Collapse
Affiliation(s)
- Wade Self
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Khader Awwad
- DMPK-BA, Abbvie Germany GmbH Co KG, Ludwigshafen, Germany
| | - John Paul Savaryn
- DMPK-BA, Abbvie Inc, North Chicago, Illinois, United States of America
| | - Michael Schulz
- DMPK-BA, Abbvie Germany GmbH Co KG, Ludwigshafen, Germany
| |
Collapse
|
31
|
Vagenknecht P, Luzgin A, Ono M, Ji B, Higuchi M, Noain D, Maschio CA, Sobek J, Chen Z, Konietzko U, Gerez JA, Riek R, Razansky D, Klohs J, Nitsch RM, Dean-Ben XL, Ni R. Non-invasive imaging of tau-targeted probe uptake by whole brain multi-spectral optoacoustic tomography. Eur J Nucl Med Mol Imaging 2022; 49:2137-2152. [PMID: 35128565 PMCID: PMC9165274 DOI: 10.1007/s00259-022-05708-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Abnormal tau accumulation within the brain plays an important role in tauopathies such as Alzheimer's disease and frontotemporal dementia. High-resolution imaging of tau deposits at the whole-brain scale in animal disease models is highly desired. METHODS We approached this challenge by non-invasively imaging the brains of P301L mice of 4-repeat tau with concurrent volumetric multi-spectral optoacoustic tomography (vMSOT) at ~ 115 μm spatial resolution using the tau-targeted pyridinyl-butadienyl-benzothiazole derivative PBB5 (i.v.). In vitro probe characterization, concurrent vMSOT and epi-fluorescence imaging of in vivo PBB5 targeting (i.v.) was performed in P301L and wild-type mice, followed by ex vivo validation using AT-8 antibody for phosphorylated tau. RESULTS PBB5 showed specific binding to recombinant K18 tau fibrils by fluorescence assay, to post-mortem Alzheimer's disease brain tissue homogenate by competitive binding against [11C]PBB3 and to tau deposits (AT-8 positive) in post-mortem corticobasal degeneration and progressive supranuclear palsy brains. Dose-dependent optoacoustic and fluorescence signal intensities were observed in the mouse brains following i.v. administration of different concentrations of PBB5. In vivo vMSOT brain imaging of P301L mice showed higher retention of PBB5 in the tau-laden cortex and hippocampus compared to wild-type mice, as confirmed by ex vivo vMSOT, epi-fluorescence, multiphoton microscopy, and immunofluorescence staining. CONCLUSIONS We demonstrated non-invasive whole-brain imaging of tau in P301L mice with vMSOT system using PBB5 at a previously unachieved ~ 115 μm spatial resolution. This platform provides a new tool to study tau spreading and clearance in a tauopathy mouse model, foreseeable in monitoring tau targeting putative therapeutics.
Collapse
Affiliation(s)
- Patrick Vagenknecht
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Artur Luzgin
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Maiko Ono
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Bin Ji
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Makoto Higuchi
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daniela Noain
- Neurology Department, University Hospital Zurich, Zurich, Switzerland
| | - Cinzia A Maschio
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
| | - Jens Sobek
- Functional Genomics Center, University of Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Juan A Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
| | - Xose Luis Dean-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland.
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland.
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Lopez-Cuina M, Meissner WG. Targeting alpha-synuclein or tau for treating neurodegenerative movement disorders. Rev Neurol (Paris) 2022; 178:460-471. [PMID: 35562199 DOI: 10.1016/j.neurol.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/31/2022]
Abstract
The two commonest groups of neurodegenerative disorders causing movement disorders are synucleinopathies and tauopathies. These disorders are characterised by the accumulation of abnormally misfolded forms of α-synuclein and tau proteins. Our current understanding of their pathogenesis suggests that extracellular forms of these proteins are of major relevance to the mechanism of pathology propagation throughout the brain and disease progression. The most novel approaches to find disease-modifying therapies aim to reduce or block these forms of tau and α-synuclein. This article reviews therapeutic strategies targeting α-synuclein and tau protein which have entered clinical development.
Collapse
Affiliation(s)
- M Lopez-Cuina
- Department of Neurology, Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | - W G Meissner
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France; CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, 33000 Bordeaux, France; Department of Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, Christchurch, New Zealand.
| |
Collapse
|
33
|
Parmera JB, de Oliveira MCB, Rodrigues RD, Coutinho AM. Progressive supranuclear palsy and corticobasal degeneration: novel clinical concepts and advances in biomarkers. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:126-136. [PMID: 35976324 PMCID: PMC9491415 DOI: 10.1590/0004-282x-anp-2022-s134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are sporadic adult-onset primary tauopathies clinically classified among the atypical parkinsonian syndromes. They are intrinsically related with regard to their clinical features, pathology, biochemistry, and genetic risk factors. OBJECTIVES This review highlights the current knowledge on PSP and CBD, focusing on evolving clinical concepts, new diagnostic criteria, and advances in biomarkers. METHODS We performed a non-systematic literature review through the PubMed database. The search was restricted to articles written in English, published from 1964 to date. RESULTS Clinicopathologic and in vivo biomarkers studies have broadened PSP and CBD clinical phenotypes. They are now recognized as a range of motor and behavioral syndromes associated with underlying 4R-tauopathy neuropathology. The Movement Disorders Society PSP diagnostic criteria included clinical variants apart from the classical description, increasing diagnostic sensitivity. Meanwhile, imaging biomarkers have explored the complexity of symptoms and pathological processes related to corticobasal syndrome and CBD. CONCLUSIONS In recent years, several prospective or clinicopathologic studies have assessed clinical, radiological, and fluid biomarkers that have helped us gain a better understanding of the complexity of the 4R-tauopathies, mainly PSP and CBD.
Collapse
Affiliation(s)
- Jacy Bezerra Parmera
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
| | | | - Roberta Diehl Rodrigues
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Radiologia, Laboratório de Medicina Nuclear (LIM 44), São Paulo, SP, Brazil
| | - Artur Martins Coutinho
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Radiologia, Centro de Medicina Nuclear, Laboratório de Medicina Nuclear (LIM 43), São Paulo, SP, Brazil
| |
Collapse
|
34
|
Islam M, Shen F, Regmi D, Du D. Therapeutic strategies for tauopathies and drug repurposing as a potential approach. Biochem Pharmacol 2022; 198:114979. [PMID: 35219701 PMCID: PMC9159505 DOI: 10.1016/j.bcp.2022.114979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
Tauopathies are neurodegenerative diseases characterized by the deposition of abnormal tau in the brain. To date, there are no disease-modifying therapies approved by the U.S. Food and Drug Administration (US FDA) for the treatment of tauopathies. In the past decades, extensive efforts have been provided to develop disease-modifying therapies to treat tauopathies. Specifically, exploring existing drugs with the intent of repurposing for the treatment of tauopathies affords a reasonable alternative to discover potent drugs for treating these formidable diseases. Drug repurposing will not only reduce formulation and development stage effort and cost but will also take a key advantage of the established toxicological studies, which is one of the main causes of clinical trial failure of new molecules. In this review, we provide an overview of the current treatment strategies for tauopathies and the recent progress in drug repurposing as an alternative approach to treat tauopathies.
Collapse
Affiliation(s)
- Majedul Islam
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States.
| | - Fengyun Shen
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Deepika Regmi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States.
| |
Collapse
|
35
|
The Role of Tau beyond Alzheimer’s Disease: A Narrative Review. Biomedicines 2022; 10:biomedicines10040760. [PMID: 35453510 PMCID: PMC9026415 DOI: 10.3390/biomedicines10040760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays, there is a need for reliable fluid biomarkers to improve differential diagnosis, prognosis, and the prediction of treatment response, particularly in the management of neurogenerative diseases that display an extreme variability in clinical phenotypes. In recent years, Tau protein has been progressively recognized as a valuable neuronal biomarker in several neurological conditions, not only Alzheimer’s disease (AD). Cerebrospinal fluid and serum Tau have been extensively investigated in several neurodegenerative disorders, from classically defined proteinopathy, e.g., amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Parkinson’s disease (PD), but also in inflammatory conditions such as multiple sclerosis (MS), as a marker of axonal damage. In MS, total Tau (t-Tau) may represent, along with other proteins, a marker with diagnostic and prognostic value. In ALS, t-Tau and, mainly, the phosphorylated-Tau/t-Tau ratio alone or integrated with transactive DNA binding protein of ~43 kDa (TDP-43), may represent a tool for both diagnosis and differential diagnosis of other motoneuron diseases or tauopathies. Evidence indicated the crucial role of the Tau protein in the pathogenesis of PD and other parkinsonian disorders. This narrative review summarizes current knowledge regarding non-AD neurodegenerative diseases and the Tau protein.
Collapse
|
36
|
Ni R. Magnetic Resonance Imaging in Tauopathy Animal Models. Front Aging Neurosci 2022; 13:791679. [PMID: 35145392 PMCID: PMC8821905 DOI: 10.3389/fnagi.2021.791679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
The microtubule-associated protein tau plays an important role in tauopathic diseases such as Alzheimer's disease and primary tauopathies such as progressive supranuclear palsy and corticobasal degeneration. Tauopathy animal models, such as transgenic, knock-in mouse and rat models, recapitulating tauopathy have facilitated the understanding of disease mechanisms. Aberrant accumulation of hyperphosphorylated tau contributes to synaptic deficits, neuroinflammation, and neurodegeneration, leading to cognitive impairment in animal models. Recent advances in molecular imaging using positron emission tomography (PET) and magnetic resonance imaging (MRI) have provided valuable insights into the time course of disease pathophysiology in tauopathy animal models. High-field MRI has been applied for in vivo imaging in animal models of tauopathy, including diffusion tensor imaging for white matter integrity, arterial spin labeling for cerebral blood flow, resting-state functional MRI for functional connectivity, volumetric MRI for neurodegeneration, and MR spectroscopy. In addition, MR contrast agents for non-invasive imaging of tau have been developed recently. Many preclinical MRI indicators offer excellent translational value and provide a blueprint for clinical MRI in the brains of patients with tauopathies. In this review, we summarized the recent advances in using MRI to visualize the pathophysiology of tauopathy in small animals. We discussed the outstanding challenges in brain imaging using MRI in small animals and propose a future outlook for visualizing tau-related alterations in the brains of animal models.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Cao L, Kong Y, Ji B, Ren Y, Guan Y, Ni R. Positron Emission Tomography in Animal Models of Tauopathies. Front Aging Neurosci 2022; 13:761913. [PMID: 35082657 PMCID: PMC8784812 DOI: 10.3389/fnagi.2021.761913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
The microtubule-associated protein tau (MAPT) plays an important role in Alzheimer's disease and primary tauopathy diseases. The abnormal accumulation of tau contributes to the development of neurotoxicity, inflammation, neurodegeneration, and cognitive deficits in tauopathy diseases. Tau synergically interacts with amyloid-beta in Alzheimer's disease leading to detrimental consequence. Thus, tau has been an important target for therapeutics development for Alzheimer's disease and primary tauopathy diseases. Tauopathy animal models recapitulating the tauopathy such as transgenic, knock-in mouse and rat models have been developed and greatly facilitated the understanding of disease mechanisms. The advance in PET and imaging tracers have enabled non-invasive detection of the accumulation and spread of tau, the associated microglia activation, metabolic, and neurotransmitter receptor alterations in disease animal models. In vivo microPET studies on mouse or rat models of tauopathy have provided significant insights into the phenotypes and time course of pathophysiology of these models and allowed the monitoring of treatment targeting at tau. In this study, we discuss the utilities of PET and recently developed tracers for evaluating the pathophysiology in tauopathy animal models. We point out the outstanding challenges and propose future outlook in visualizing tau-related pathophysiological changes in brain of tauopathy disease animal models.
Collapse
Affiliation(s)
- Lei Cao
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Changes Technology Corporation Ltd., Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yutong Ren
- Guangdong Robotics Association, Guangzhou, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Ni R, Nitsch RM. Recent Developments in Positron Emission Tomography Tracers for Proteinopathies Imaging in Dementia. Front Aging Neurosci 2022; 13:751897. [PMID: 35046791 PMCID: PMC8761855 DOI: 10.3389/fnagi.2021.751897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
An early detection and intervention for dementia represent tremendous unmet clinical needs and priorities in society. A shared feature of neurodegenerative diseases causing dementia is the abnormal accumulation and spreading of pathological protein aggregates, which affect the selective vulnerable circuit in a disease-specific pattern. The advancement in positron emission tomography (PET) biomarkers has accelerated the understanding of the disease mechanism and development of therapeutics for Alzheimer's disease and Parkinson's disease. The clinical utility of amyloid-β PET and the clinical validity of tau PET as diagnostic biomarker for Alzheimer's disease continuum have been demonstrated. The inclusion of biomarkers in the diagnostic criteria has introduced a paradigm shift that facilitated the early and differential disease diagnosis and impacted on the clinical management. Application of disease-modifying therapy likely requires screening of patients with molecular evidence of pathological accumulation and monitoring of treatment effect assisted with biomarkers. There is currently still a gap in specific 4-repeat tau imaging probes for 4-repeat tauopathies and α-synuclein imaging probes for Parkinson's disease and dementia with Lewy body. In this review, we focused on recent development in molecular imaging biomarkers for assisting the early diagnosis of proteinopathies (i.e., amyloid-β, tau, and α-synuclein) in dementia and discussed future perspectives.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Joshi C, Sivaprakasam K, Christley S, Ireland S, Rivas J, Zhang W, Sader D, Logan R, Lambracht-Washington D, Rosenberg R, Cullum M, Hitt B, Li QZ, Barber R, Greenberg B, Cowell L, Zhang R, Stowe A, Huebinger R, Kelley B, Monson N. CSF-Derived CD4 + T-Cell Diversity Is Reduced in Patients With Alzheimer Clinical Syndrome. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:e1106. [PMID: 34848502 PMCID: PMC8631792 DOI: 10.1212/nxi.0000000000001106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Patients with Alzheimer dementia display evidence of amyloid-related neurodegeneration. Our focus was to determine whether such patients also display evidence of a disease-targeting adaptive immune response mediated by CD4+ T cells. To test this hypothesis, we evaluated the CSF immune profiles of patients with Alzheimer clinical syndrome (ACS), who display clinically defined dementia. METHODS Innate and adaptive immune profiles of patients with ACS were measured using multicolor flow cytometry. CSF-derived CD4+ and CD8+ T-cell receptor repertoire genetics were measured using next-generation sequencing. Brain-specific autoantibody signatures of CSF-derived antibody pools were measured using array technology or ELISA. CSF from similar-age healthy controls (HCs) was used as a comparator cohort. RESULTS Innate cells were expanded in the CSF of patients with ACS in comparison to HCs, and innate cell expansion increased with age in the patients with ACS, but not HCs. Despite innate cell expansion in the CSF, the frequency of total CD4+ T cells reduced with age in the patients with ACS. T-cell receptor repertoire genetics indicated that T-cell clonal expansion is enhanced, and diversity is reduced in the patients with ACS compared with similar-age HCs. DISCUSSION Examination of CSF indicates that CD4+ T cell-mediated adaptive immune responses are altered in patients with ACS. Understanding the underlying mechanisms affecting adaptive immunity will help move us toward the goal of slowing cognitive decline.
Collapse
Affiliation(s)
- Chaitanya Joshi
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Karthigayini Sivaprakasam
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Scott Christley
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Sara Ireland
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Jacqueline Rivas
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Wei Zhang
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Danielle Sader
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Rebecca Logan
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Doris Lambracht-Washington
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Roger Rosenberg
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Munro Cullum
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Brian Hitt
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Quan-Zhen Li
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Robert Barber
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Benjamin Greenberg
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Lindsay Cowell
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Rong Zhang
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Ann Stowe
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Ryan Huebinger
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Brendan Kelley
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| | - Nancy Monson
- From the Department of Neurology (C.J., S.I., J.R., W.Z., D.S., R.L., D.L.-W., R.R., M.C., B.H., B.G., R.Z., B.K., N.M.), Department of Neuroscience (K.S.), Department of Population and Data Sciences, (S.C., L.C.), Department of Psychiatry (M.C.), Department of Immunology (Q-Z.L, N.M.) and Department of Surgery (R.H.), UT Southwestern Medical Center UNT Health Science Center (R.B.), Department of Pharmacology and Neuroscience, Department of Neurology (A.S.), University of Kentucky, Lexington, KY
| |
Collapse
|
40
|
Xie T, Yuen CA, Kang W, Padmanaban M, Hain TC, Nichols J. Severity of Downgaze Palsy in the Context of Disease Duration Could Estimate Survival Duration in Patients With Progressive Supranuclear Palsy. Front Neurol 2021; 12:736784. [PMID: 34650511 PMCID: PMC8505535 DOI: 10.3389/fneur.2021.736784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
It is an unmet need to estimate survival duration for patients with progressive supranuclear palsy (PSP). The objective of this study was to identify factors associated with the survival duration in patients with PSP. We followed up 23 patients with probable PSP-RS (Richardson syndrome) or PSP-P (parkinsonism) in our PSP center until death from 2011 to 2019. We prospectively and quantitatively rated their downgaze palsy whenever first noticed in our clinic. This was utilized along with the disease duration, motor function, medication use for parkinsonism, sex, age at onset of PSP, comorbid pulmonary and cardiovascular diseases, and the total survival duration from the onset of PSP to death for prediction analysis. A well-fitted linear regression model and a multivariant Cox model were applied to identify predicting factors for total survival duration. All patients had the specific hummingbird sign on brain MRI for PSP when downgaze palsy was documented. We found that the severity of downgaze palsy and the disease duration at the assessment were consistently correlated with the total survival duration in both models. The total survival duration could be further estimated by a formed regression equation. We conclude that severity and time to develop downgaze palsy could help to estimate the total survival duration in patients with probable PSP-RS and PSP-P, the major forms of PSP, which has significant clinical applications in clinical counseling and trial enrollment.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States
| | - Carlen A Yuen
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States.,Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Wenjun Kang
- Center of Research Informatics, University of Chicago, Chicago, IL, United States
| | - Mahesh Padmanaban
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States
| | - Timothy C Hain
- Chicago Dizziness and Hearing, Northwestern University, Chicago, IL, United States
| | - Jeffrey Nichols
- Department of Ophthalmology, University of Chicago Medicine, Chicago, IL, United States
| |
Collapse
|
41
|
Höglinger GU. Does the Anti-Tau Strategy in Progressive Supranuclear Palsy Need to Be Reconsidered? No. Mov Disord Clin Pract 2021; 8:1038-1040. [PMID: 34631939 PMCID: PMC8485628 DOI: 10.1002/mdc3.13326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Günter U. Höglinger
- German Center for Neurodegenerative DiseasesMunichGermany
- Department of NeurologyHannover Medical SchoolHanoverGermany
- Center for Systems NeuroscienceHanoverGermany
| |
Collapse
|
42
|
Stamelou M, Respondek G, Giagkou N, Whitwell JL, Kovacs GG, Höglinger GU. Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat Rev Neurol 2021; 17:601-620. [PMID: 34426686 DOI: 10.1038/s41582-021-00541-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Tauopathies are classified according to whether tau deposits predominantly contain tau isoforms with three or four repeats of the microtubule-binding domain. Those in which four-repeat (4R) tau predominates are known as 4R-tauopathies, and include progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, globular glial tauopathies and conditions associated with specific MAPT mutations. In these diseases, 4R-tau deposits are found in various cell types and anatomical regions of the brain and the conditions share pathological, pathophysiological and clinical characteristics. Despite being considered 'prototype' tauopathies and, therefore, ideal for studying neuroprotective agents, 4R-tauopathies are still severe and untreatable diseases for which no validated biomarkers exist. However, advances in research have addressed the issues of phenotypic overlap, early clinical diagnosis, pathophysiology and identification of biomarkers, setting a road map towards development of treatments. New clinical criteria have been developed and large cohorts with early disease are being followed up in prospective studies. New clinical trial readouts are emerging and biomarker research is focused on molecular pathways that have been identified. Lessons learned from failed trials of neuroprotective drugs are being used to design new trials. In this Review, we present an overview of the latest research in 4R-tauopathies, with a focus on progressive supranuclear palsy, and discuss how current evidence dictates ongoing and future research goals.
Collapse
Affiliation(s)
- Maria Stamelou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece. .,European University of Cyprus, Nicosia, Cyprus. .,Philipps University, Marburg, Germany.
| | - Gesine Respondek
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Nikolaos Giagkou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece
| | | | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Günter U Höglinger
- Department of Neurology, Hanover Medical School, Hanover, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
43
|
Imbimbo BP, Ippati S, Watling M, Balducci C. A critical appraisal of tau-targeting therapies for primary and secondary tauopathies. Alzheimers Dement 2021; 18:1008-1037. [PMID: 34533272 DOI: 10.1002/alz.12453] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Primary tauopathies are neurological disorders in which tau protein deposition is the predominant pathological feature. Alzheimer's disease is a secondary tauopathy with tau forming hyperphosphorylated insoluble aggregates. Tau pathology can propagate from region to region in the brain, while alterations in tau processing may impair tau physiological functions. METHODS We reviewed literature on tau biology and anti-tau drugs using PubMed, meeting abstracts, and ClnicalTrials.gov. RESULTS The past 15 years have seen >30 drugs interfering with tau aggregation, processing, and accumulation reaching the clinic. Initial results with tau aggregation inhibitors and anti-tau monoclonal antibodies have not shown clinical efficacy. DISCUSSION The reasons for these clinical failures are unclear but could be linked to the clearing of physiological forms of tau by non-specific drugs. Research is now concentrating efforts on developing reliable translational animal models and selective compounds targeting specific tau epitopes, neurotoxic tau aggregates, and post-translational tau modifications.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Department of Research & Development, Chiesi Farmaceutici, Parma, Italy
| | - Stefania Ippati
- San Raffaele Scientific Institute, San Raffaele Hospital, Milan, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milan, Italy
| |
Collapse
|
44
|
Van Kolen K, Malia TJ, Theunis C, Nanjunda R, Teplyakov A, Ernst R, Wu SJ, Luo J, Borgers M, Vandermeeren M, Bottelbergs A, Wintmolders C, Lacy E, Maurin H, Larsen P, Willems R, Van De Casteele T, Triana-Baltzer G, Slemmon R, Galpern W, Trojanowski JQ, Sun H, Mercken MH. Discovery and Functional Characterization of hPT3, a Humanized Anti-Phospho Tau Selective Monoclonal Antibody. J Alzheimers Dis 2021; 77:1397-1416. [PMID: 32894244 DOI: 10.3233/jad-200544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND As a consequence of the discovery of an extracellular component responsible for the progression of tau pathology, tau immunotherapy is being extensively explored in both preclinical and clinical studies as a disease modifying strategy for the treatment of Alzheimer's disease. OBJECTIVE Describe the characteristics of the anti-phospho (T212/T217) tau selective antibody PT3 and its humanized variant hPT3. METHODS By performing different immunization campaigns, a large collection of antibodies has been generated and prioritized. In depth, in vitro characterization using surface plasmon resonance, phospho-epitope mapping, and X-ray crystallography experiments were performed. Further characterization involved immunohistochemical staining on mouse- and human postmortem tissue and neutralization of tau seeding by immunodepletion assays. RESULTS AND CONCLUSION Various in vitro experiments demonstrated a high intrinsic affinity for PT3 and hPT3 for AD brain-derived paired helical filaments but also to non-aggregated phospho (T212/T217) tau. Further functional analyses in cellular and in vivo models of tau seeding demonstrated almost complete depletion of tau seeds in an AD brain homogenate. Ongoing trials will provide the clinical evaluation of the tau spreading hypothesis in Alzheimer's disease.
Collapse
Affiliation(s)
- Kristof Van Kolen
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Thomas J Malia
- Biologics Research, Janssen Research and Development, Spring House, PA, USA
| | - Clara Theunis
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Rupesh Nanjunda
- Biologics Research, Janssen Research and Development, Spring House, PA, USA
| | - Alexey Teplyakov
- Biologics Research, Janssen Research and Development, Spring House, PA, USA
| | - Robin Ernst
- Biologics Research, Janssen Research and Development, Spring House, PA, USA
| | - Sheng-Jiun Wu
- Biologics Research, Janssen Research and Development, Spring House, PA, USA
| | - Jinquan Luo
- Biologics Research, Janssen Research and Development, Spring House, PA, USA
| | - Marianne Borgers
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Marc Vandermeeren
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Astrid Bottelbergs
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Cindy Wintmolders
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Eilyn Lacy
- Biologics Research, Janssen Research and Development, Spring House, PA, USA
| | - Hervé Maurin
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Peter Larsen
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Roland Willems
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Tom Van De Casteele
- Translational Medicine and Early Development Statistics Janssen Research & Development, Beerse, Belgium
| | | | - Randy Slemmon
- Neuroscience biomarkers, Janssen Research & Development, La Jolla, CA, USA
| | - Wendy Galpern
- Neuroscience Experimental medicine, Janssen Research & Development, Titusville, NJ, USA
| | | | - Hong Sun
- Neuroscience Clinical Development, Janssen Research & Development, Titusville, NJ, USA
| | - Marc H Mercken
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
45
|
Mahdiabadi S, Momtazmanesh S, Perry G, Rezaei N. Immune modulations and immunotherapies for Alzheimer's disease: a comprehensive review. Rev Neurosci 2021; 33:365-381. [PMID: 34506700 DOI: 10.1515/revneuro-2021-0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is characterized by progressive cognitive and memory impairment ensued from neuronal dysfunction and eventual death. Intraneuronal deposition of tau proteins and extracellular senile amyloid-β plaques have ruled as the supreme postulations of AD for a relatively long time, and accordingly, a wide range of therapeutics, especially immunotherapies have been implemented. However, none of them resulted in significant positive cognitive outcomes. Especially, the repetitive failure of anti-amyloid therapies proves the inefficiency of the amyloid cascade hypothesis, suggesting that it is time to reconsider this hypothesis. Thus, for the time being, the focus is being shifted to neuroinflammation as a third core pathology in AD. Neuroinflammation was previously considered a result of the two aforementioned phenomena, but new studies suggest that it might play a causal role in the pathogenesis of AD. Neuroinflammation can act as a double-edged sword in the pathogenesis of AD, and the activation of glial cells is indispensable for mediating such attenuating or detrimental effects. The association of immune-related genes polymorphisms with the clinical phenotype of AD as well as the protective effect of anti-inflammatory drugs like nonsteroidal anti-inflammatory drugs supports the possible causal role of neuroinflammation in AD. Here, we comprehensively review immune-based therapeutic approaches toward AD, including monoclonal antibodies and vaccines. We also discuss their efficacy and underlying reasons for shortcomings. Lastly, we highlight the capacity of modulating the neuroimmune interactions and targeting neuroinflammation as a promising opportunity for finding optimal treatments for AD.
Collapse
Affiliation(s)
- Sara Mahdiabadi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| |
Collapse
|
46
|
Fields E, Vaughan E, Tripu D, Lim I, Shrout K, Conway J, Salib N, Lee Y, Dhamsania A, Jacobsen M, Woo A, Xue H, Cao K. Gene targeting techniques for Huntington's disease. Ageing Res Rev 2021; 70:101385. [PMID: 34098113 PMCID: PMC8373677 DOI: 10.1016/j.arr.2021.101385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 02/08/2023]
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disorder caused by extended trinucleotide CAG repetition in the HTT gene. Wild-type huntingtin protein (HTT) is essential, involved in a variety of crucial cellular functions such as vesicle transportation, cell division, transcription regulation, autophagy, and tissue maintenance. The mutant HTT (mHTT) proteins in the body interfere with HTT's normal cellular functions and cause additional detrimental effects. In this review, we discuss multiple approaches targeting DNA and RNA to reduce mHTT expression. These approaches are categorized into non-allele-specific silencing and allele-specific-silencing using Single Nucleotide Polymorphisms (SNPs) and haplogroup analysis. Additionally, this review discusses a potential application of recent CRISPR prime editing technology in targeting HD.
Collapse
Affiliation(s)
- Eric Fields
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Erik Vaughan
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Deepika Tripu
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Isabelle Lim
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Katherine Shrout
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Jessica Conway
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Nicole Salib
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Yubin Lee
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Akash Dhamsania
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Michael Jacobsen
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Ashley Woo
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Huijing Xue
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Kan Cao
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
47
|
New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer's disease. Acta Pharmacol Sin 2021; 42:1382-1389. [PMID: 33268824 PMCID: PMC8379190 DOI: 10.1038/s41401-020-00565-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023] Open
Abstract
As the population ages, Alzheimer's disease (AD), the most common neurodegenerative disease in elderly people, will impose social and economic burdens to the world. Currently approved drugs for the treatment of AD including cholinesterase inhibitors (donepezil, rivastigmine, and galantamine) and an N-methyl-D-aspartic acid receptor antagonist (memantine) are symptomatic but poorly affect the progression of the disease. In recent decades, the concept of amyloid-β (Aβ) cascade and tau hyperphosphorylation leading to AD has dominated AD drug development. However, pharmacotherapies targeting Aβ and tau have limited success. It is generally believed that AD is caused by multiple pathological processes resulting from Aβ abnormality, tau phosphorylation, neuroinflammation, neurotransmitter dysregulation, and oxidative stress. In this review we updated the recent development of new therapeutics that regulate neurotransmitters, inflammation, lipid metabolism, autophagy, microbiota, circadian rhythm, and disease-modified genes for AD in preclinical research and clinical trials. It is to emphasize the importance of early diagnosis and multiple-target intervention, which may provide a promising outcome for AD treatment.
Collapse
|
48
|
Bomasang-Layno E, Bronsther R. Diagnosis and Treatment of Alzheimer's Disease:: An Update. Dela J Public Health 2021; 7:74-85. [PMID: 34604768 PMCID: PMC8482985 DOI: 10.32481/djph.2021.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
49
|
Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial. Nat Med 2021; 27:1451-1457. [PMID: 34385707 DOI: 10.1038/s41591-021-01455-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
A randomized, double-blind, placebo-controlled, 52-week study (no. NCT03068468) evaluated gosuranemab, an anti-tau monoclonal antibody, in the treatment of progressive supranuclear palsy (PSP). In total, 486 participants dosed were assigned to either gosuranemab (n = 321) or placebo (n = 165). Efficacy was not demonstrated on adjusted mean change of PSP Rating Scale score at week 52 between gosuranemab and placebo (10.4 versus 10.6, P = 0.85, primary endpoint), or at secondary endpoints, resulting in discontinuation of the open-label, long-term extension. Unbound N-terminal tau in cerebrospinal fluid decreased by 98% with gosuranemab and increased by 11% with placebo (P < 0.0001). Incidences of adverse events and deaths were similar between groups. This well-powered study suggests that N-terminal tau neutralization does not translate into clinical efficacy.
Collapse
|
50
|
Kim B, Mikytuck B, Suh E, Gibbons GS, Van Deerlin VM, Vaishnavi SN, Spindler MA, Massimo L, Grossman M, Trojanowski JQ, Irwin DJ, Lee EB. Tau immunotherapy is associated with glial responses in FTLD-tau. Acta Neuropathol 2021; 142:243-257. [PMID: 33950293 PMCID: PMC8270872 DOI: 10.1007/s00401-021-02318-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/22/2022]
Abstract
Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are neuropathologic subtypes of frontotemporal lobar degeneration with tau inclusions (FTLD-tau), primary tauopathies in which intracellular tau aggregation contributes to neurodegeneration. Gosuranemab (BIIB092) is a humanized monoclonal antibody that binds to N-terminal tau. While Gosuranemab passive immunotherapy trials for PSP failed to demonstrate clinical benefit, Gosuranemab reduced N-terminal tau in the cerebrospinal fluid of transgenic mouse models and PSP patients. However, the neuropathologic sequelae of Gosuranemab have not been described. In this present study, we examined the brain tissue of three individuals who received Gosuranemab. Post-mortem human brain tissues were studied using immunohistochemistry to identify astrocytic and microglial differences between immunized cases and a cohort of unimmunized PSP, CBD and aging controls. Gosuranemab immunotherapy was not associated with clearance of neuropathologic FTLD-tau inclusions. However, treatment-associated changes were observed including the presence of perivascular vesicular astrocytes (PVA) with tau accumulation within lysosomes. PVAs were morphologically and immunophenotypically distinct from the tufted astrocytes seen in PSP, granular fuzzy astrocytes (GFA) seen in aging, and astrocytic plaques seen in CBD. Additional glial responses included increased reactive gliosis consisting of bushy astrocytosis and accumulation of rod microglia. Together, these neuropathologic findings suggest that Gosuranemab may be associated with a glial response including accumulation of tau within astrocytic lysosomes.
Collapse
Affiliation(s)
- Boram Kim
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Bailey Mikytuck
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Eunran Suh
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Garrett S Gibbons
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjeev N Vaishnavi
- Penn Memory Center, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Meredith A Spindler
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren Massimo
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|