1
|
Scott SA, Fu J, Chang PV. Dopamine receptor D2 confers colonization resistance via microbial metabolites. Nature 2024; 628:180-185. [PMID: 38480886 PMCID: PMC11097147 DOI: 10.1038/s41586-024-07179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
The gut microbiome has major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea and acute renal failure4,5 (haemolytic uremic syndrome). Although gut microorganisms can provide colonization resistance by outcompeting some pathogens or modulating host defence provided by the gut barrier and intestinal immune cells6,7, this phenomenon remains poorly understood. Here, we show that activation of the neurotransmitter receptor dopamine receptor D2 (DRD2) in the intestinal epithelium by gut microbial metabolites produced upon dietary supplementation with the essential amino acid L-tryptophan protects the host against Citrobacter rodentium, a mouse AE pathogen that is widely used as a model for EHEC infection8,9. We further find that DRD2 activation by these tryptophan-derived metabolites decreases expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Our results reveal a noncanonical colonization resistance pathway against AE pathogens that features an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization in the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches targeting DRD2 with dietary or pharmacological interventions to improve gut health and treat gastrointestinal infections, which afflict millions globally.
Collapse
Affiliation(s)
- Samantha A Scott
- Department of Microbiology, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Jingjing Fu
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Pamela V Chang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA.
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
- Cornell Center for Immunology, Cornell University, Ithaca, NY, USA.
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Bouslama R, Dumont V, Lindfors S, Paavolainen L, Tienari J, Nisen H, Mirtti T, Saleem MA, Gordin D, Groop PH, Suetsugu S, Lehtonen S. Phosphorylation of PACSIN2 at S313 Regulates Podocyte Architecture in Coordination with N-WASP. Cells 2023; 12:1487. [PMID: 37296607 PMCID: PMC10252800 DOI: 10.3390/cells12111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Changes in the dynamic architecture of podocytes, the glomerular epithelial cells, lead to kidney dysfunction. Previous studies on protein kinase C and casein kinase 2 substrates in neurons 2 (PACSIN2), a known regulator of endocytosis and cytoskeletal organization, reveal a connection between PACSIN2 and kidney pathogenesis. Here, we show that the phosphorylation of PACSIN2 at serine 313 (S313) is increased in the glomeruli of rats with diabetic kidney disease. We found that phosphorylation at S313 is associated with kidney dysfunction and increased free fatty acids rather than with high glucose and diabetes alone. Phosphorylation of PACSIN2 emerged as a dynamic process that fine-tunes cell morphology and cytoskeletal arrangement, in cooperation with the regulator of the actin cytoskeleton, Neural Wiskott-Aldrich syndrome protein (N-WASP). PACSIN2 phosphorylation decreased N-WASP degradation while N-WASP inhibition triggered PACSIN2 phosphorylation at S313. Functionally, pS313-PACSIN2 regulated actin cytoskeleton rearrangement depending on the type of cell injury and the signaling pathways involved. Collectively, this study indicates that N-WASP induces phosphorylation of PACSIN2 at S313, which serves as a mechanism whereby cells regulate active actin-related processes. The dynamic phosphorylation of S313 is needed to regulate cytoskeletal reorganization.
Collapse
Affiliation(s)
- Rim Bouslama
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Vincent Dumont
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Sonja Lindfors
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Lassi Paavolainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00290 Helsinki, Finland
| | - Jukka Tienari
- Department of Pathology, University of Helsinki, Helsinki, and Helsinki University Hospital, 05850 Hyvinkää, Finland
| | - Harry Nisen
- Department of Urology, Helsinki University Hospital, 00029 HUS, Finland
| | - Tuomas Mirtti
- Department of Pathology, Helsinki University Hospital, 00290 Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Moin A. Saleem
- Children’s Renal Unit, Bristol Medical School, University of Bristol, Bristol BS8 1TS, UK
| | - Daniel Gordin
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Per-Henrik Groop
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Nephrology, University of Helsinki, Helsinki, and Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
| | - Shiro Suetsugu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Data Science Center, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Center for Digital Green-Innovation, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Sanna Lehtonen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
3
|
Scott SA, Fu J, Chang PV. Dopamine receptor D2 confers colonization resistance via gut microbial metabolites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532647. [PMID: 36993486 PMCID: PMC10055168 DOI: 10.1101/2023.03.14.532647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The gut microbiome plays major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea, and acute renal failure (hemolytic uremic syndrome)4,5. Although gut microbes can provide colonization resistance by outcompeting some pathogens or modulating host defense provided by the gut barrier and intestinal immune cells, this phenomenon remains poorly understood. Emerging evidence suggests that small-molecule metabolites produced by the gut microbiota may mediate this process6. Here, we show that tryptophan (Trp)-derived metabolites produced by the gut bacteria protect the host against Citrobacter rodentium, a murine AE pathogen widely used as a model for EHEC infection7,8, by activation of the host neurotransmitter dopamine receptor D2 (DRD2) within the intestinal epithelium. We further find that these Trp metabolites act through DRD2 to decrease expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Previously identified mechanisms of colonization resistance either directly affect the pathogen by competitive exclusion or indirectly by modulation of host defense mechanisms9,10, so our results delineate a noncanonical colonization resistance pathway against AE pathogens featuring an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization within the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches for improving gut health and treating gastrointestinal infections, which afflict millions globally.
Collapse
Affiliation(s)
- Samantha A. Scott
- Department of Microbiology, Cornell University, Ithaca, NY 14853
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Jingjing Fu
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Pamela V. Chang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853
- Cornell Institute of Host-Microbe Interactions & Disease, Cornell University, Ithaca, NY 14853
| |
Collapse
|
4
|
Campellone KG, Lebek NM, King VL. Branching out in different directions: Emerging cellular functions for the Arp2/3 complex and WASP-family actin nucleation factors. Eur J Cell Biol 2023; 102:151301. [PMID: 36907023 DOI: 10.1016/j.ejcb.2023.151301] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The actin cytoskeleton impacts practically every function of a eukaryotic cell. Historically, the best-characterized cytoskeletal activities are in cell morphogenesis, motility, and division. The structural and dynamic properties of the actin cytoskeleton are also crucial for establishing, maintaining, and changing the organization of membrane-bound organelles and other intracellular structures. Such activities are important in nearly all animal cells and tissues, although distinct anatomical regions and physiological systems rely on different regulatory factors. Recent work indicates that the Arp2/3 complex, a broadly expressed actin nucleator, drives actin assembly during several intracellular stress response pathways. These newly described Arp2/3-mediated cytoskeletal rearrangements are coordinated by members of the Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation-promoting factors. Thus, the Arp2/3 complex and WASP-family proteins are emerging as crucial players in cytoplasmic and nuclear activities including autophagy, apoptosis, chromatin dynamics, and DNA repair. Characterizations of the functions of the actin assembly machinery in such stress response mechanisms are advancing our understanding of both normal and pathogenic processes, and hold great promise for providing insights into organismal development and interventions for disease.
Collapse
Affiliation(s)
- Kenneth G Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA.
| | - Nadine M Lebek
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| | - Virginia L King
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| |
Collapse
|
5
|
Hasegawa K, Matsui TK, Kondo J, Kuwako KI. N-WASP-Arp2/3 signaling controls multiple steps of dendrite maturation in Purkinje cells in vivo. Development 2022; 149:285127. [PMID: 36469048 DOI: 10.1242/dev.201214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
During neural development, the actin filament network must be precisely regulated to form elaborate neurite structures. N-WASP tightly controls actin polymerization dynamics by activating an actin nucleator Arp2/3. However, the importance of N-WASP-Arp2/3 signaling in the assembly of neurite architecture in vivo has not been clarified. Here, we demonstrate that N-WASP-Arp2/3 signaling plays a crucial role in the maturation of cerebellar Purkinje cell (PC) dendrites in vivo in mice. N-WASP was expressed and activated in developing PCs. Inhibition of Arp2/3 and N-WASP from the beginning of dendrite formation severely disrupted the establishment of a single stem dendrite, which is a characteristic basic structure of PC dendrites. Inhibition of Arp2/3 after stem dendrite formation resulted in hypoplasia of the PC dendritic tree. Cdc42, an upstream activator of N-WASP, is required for N-WASP-Arp2/3 signaling-mediated PC dendrite maturation. In addition, overactivation of N-WASP is also detrimental to dendrite formation in PCs. These findings reveal that proper activation of N-WASP-Arp2/3 signaling is crucial for multiple steps of PC dendrite maturation in vivo.
Collapse
Affiliation(s)
- Koichi Hasegawa
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| | - Takeshi K Matsui
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| | - Junpei Kondo
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| | - Ken-Ichiro Kuwako
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| |
Collapse
|
6
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
7
|
Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The Actin Regulators Involved in the Function and Related Diseases of Lymphocytes. Front Immunol 2022; 13:799309. [PMID: 35371070 PMCID: PMC8965893 DOI: 10.3389/fimmu.2022.799309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is an important cytoskeletal protein involved in signal transduction, cell structure and motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and severing proteins. This group of proteins regulate the dynamic changes in actin assembly/disassembly, thus playing an important role in cell motility, intracellular transport, cell division and other basic cellular activities. Lymphocytes are important components of the human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive immunity and cannot function normally without various actin regulators. In this review, we first briefly introduce the structure and fundamental functions of a variety of well-known and newly discovered actin regulators, then we highlight the role of actin regulators in T cell, B cell and NK cell, and finally provide a landscape of various diseases associated with them. This review provides new directions in exploring actin regulators and promotes more precise and effective treatments for related diseases.
Collapse
Affiliation(s)
- Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Luttman JH, Colemon A, Mayro B, Pendergast AM. Role of the ABL tyrosine kinases in the epithelial-mesenchymal transition and the metastatic cascade. Cell Commun Signal 2021; 19:59. [PMID: 34022881 PMCID: PMC8140471 DOI: 10.1186/s12964-021-00739-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
The ABL kinases, ABL1 and ABL2, promote tumor progression and metastasis in various solid tumors. Recent reports have shown that ABL kinases have increased expression and/or activity in solid tumors and that ABL inactivation impairs metastasis. The therapeutic effects of ABL inactivation are due in part to ABL-dependent regulation of diverse cellular processes related to the epithelial to mesenchymal transition and subsequent steps in the metastatic cascade. ABL kinases target multiple signaling pathways required for promoting one or more steps in the metastatic cascade. These findings highlight the potential utility of specific ABL kinase inhibitors as a novel treatment paradigm for patients with advanced metastatic disease. Video abstract.
Collapse
Affiliation(s)
- Jillian Hattaway Luttman
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, C-233A LSRC Bldg., P.O. Box 3813, Durham, NC 27710 USA
| | - Ashley Colemon
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, C-233A LSRC Bldg., P.O. Box 3813, Durham, NC 27710 USA
| | - Benjamin Mayro
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, C-233A LSRC Bldg., P.O. Box 3813, Durham, NC 27710 USA
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, C-233A LSRC Bldg., P.O. Box 3813, Durham, NC 27710 USA
| |
Collapse
|
9
|
Biber G, Ben-Shmuel A, Sabag B, Barda-Saad M. Actin regulators in cancer progression and metastases: From structure and function to cytoskeletal dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:131-196. [PMID: 33066873 DOI: 10.1016/bs.ircmb.2020.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cytoskeleton is a central factor contributing to various hallmarks of cancer. In recent years, there has been increasing evidence demonstrating the involvement of actin regulatory proteins in malignancy, and their dysregulation was shown to predict poor clinical prognosis. Although enhanced cytoskeletal activity is often associated with cancer progression, the expression of several inducers of actin polymerization is remarkably reduced in certain malignancies, and it is not completely clear how these changes promote tumorigenesis and metastases. The complexities involved in cytoskeletal induction of cancer progression therefore pose considerable difficulties for therapeutic intervention; it is not always clear which cytoskeletal regulator should be targeted in order to impede cancer progression, and whether this targeting may inadvertently enhance alternative invasive pathways which can aggravate tumor growth. The entire constellation of cytoskeletal machineries in eukaryotic cells are numerous and complex; the system is comprised of and regulated by hundreds of proteins, which could not be covered in a single review. Therefore, we will focus here on the actin cytoskeleton, which encompasses the biological machinery behind most of the key cellular functions altered in cancer, with specific emphasis on actin nucleating factors and nucleation-promoting factors. Finally, we discuss current therapeutic strategies for cancer which aim to target the cytoskeleton.
Collapse
Affiliation(s)
- G Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - A Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - B Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - M Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
10
|
Kabrawala S, Zimmer MD, Campellone KG. WHIMP links the actin nucleation machinery to Src-family kinase signaling during protrusion and motility. PLoS Genet 2020; 16:e1008694. [PMID: 32196488 PMCID: PMC7112243 DOI: 10.1371/journal.pgen.1008694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 02/22/2020] [Indexed: 12/27/2022] Open
Abstract
Cell motility is governed by cooperation between the Arp2/3 complex and nucleation-promoting factors from the Wiskott-Aldrich Syndrome Protein (WASP) family, which together assemble actin filament networks to drive membrane protrusion. Here we identify WHIMP (WAVE Homology In Membrane Protrusions) as a new member of the WASP family. The Whimp gene is encoded on the X chromosome of a subset of mammals, including mice. Murine WHIMP promotes Arp2/3-dependent actin assembly, but is less potent than other nucleation factors. Nevertheless, WHIMP-mediated Arp2/3 activation enhances both plasma membrane ruffling and wound healing migration, whereas WHIMP depletion impairs protrusion and slows motility. WHIMP expression also increases Src-family kinase activity, and WHIMP-induced ruffles contain the additional nucleation-promoting factors WAVE1, WAVE2, and N-WASP, but not JMY or WASH. Perturbing the function of Src-family kinases, WAVE proteins, or Arp2/3 complex inhibits WHIMP-driven ruffling. These results suggest that WHIMP-associated actin assembly plays a direct role in membrane protrusion, but also results in feedback control of tyrosine kinase signaling to modulate the activation of multiple WASP-family members. The actin cytoskeleton is a collection of protein polymers that assemble and disassemble within cells at specific times and locations. Sophisticated cytoskeletal regulators called nucleation-promoting factors ensure that actin polymerizes when and where it is needed, and many of these factors are members of the Wiskott-Aldrich Syndrome Protein (WASP) family. Several of the 8 known WASP-family proteins function in cell motility, but how the different factors collaborate with one another is not well understood. In this study, we identified WHIMP, a new WASP-family member that is encoded on the X chromosome of a variety of mammals. In mouse cells, WHIMP enhances cell motility by assembling actin filaments that push the plasma membrane forward. Unexpectedly, WHIMP also activates tyrosine kinases, enzymes that stimulate multiple WASP-family members during motility. Our results open new avenues of research into how nucleation factors cooperate during movement and how the molecular activities that underlie motility differ in distinct cell types and organisms.
Collapse
Affiliation(s)
- Shail Kabrawala
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Margaret D. Zimmer
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Kenneth G. Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
11
|
The non-receptor tyrosine kinase ACK: regulatory mechanisms, signalling pathways and opportunities for attACKing cancer. Biochem Soc Trans 2020; 47:1715-1731. [PMID: 31845724 DOI: 10.1042/bst20190176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Activated Cdc42-associated kinase or ACK, is a non-receptor tyrosine kinase and an effector protein for the small G protein Cdc42. A substantial body of evidence has accumulated in the past few years heavily implicating ACK as a driver of oncogenic processes. Concomitantly, more is also being revealed regarding the signalling pathways involving ACK and molecular details of its modes of action. Some details are also available regarding the regulatory mechanisms of this kinase, including activation and regulation of its catalytic activity, however, a full understanding of these aspects remains elusive. This review considers the current knowledge base concerning ACK and summarizes efforts and future prospects to target ACK therapeutically in cancer.
Collapse
|
12
|
Che P, Wagener BM, Zhao X, Brandon AP, Evans CA, Cai GQ, Zhao R, Xu ZX, Han X, Pittet JF, Ding Q. Neuronal Wiskott-Aldrich syndrome protein regulates Pseudomonas aeruginosa-induced lung vascular permeability through the modulation of actin cytoskeletal dynamics. FASEB J 2020; 34:3305-3317. [PMID: 31916311 DOI: 10.1096/fj.201902915r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023]
Abstract
Pulmonary edema associated with increased vascular permeability is a severe complication of Pseudomonas (P.) aeruginosa-induced acute lung injury. The mechanisms underlying P aeruginosa-induced vascular permeability are not well understood. In the present study, we investigated the role of neuronal Wiskott Aldrich syndrome protein (N-WASP) in modulating P aeruginosa-induced vascular permeability. Using lung microvascular endothelial and alveolar epithelial cells, we demonstrated that N-WASP downregulation attenuated P aeruginosa-induced actin stress fiber formation and prevented paracellular permeability. P aeruginosa-induced dissociation between VE-cadherin and β-catenin, but increased association between N-WASP and VE-cadherin, suggesting a role for N-WASP in promoting P aeruginosa-induced adherens junction rupture. P aeruginosa increased N-WASP-Y256 phosphorylation, which required the activation of Rho GTPase and focal adhesion kinase. Increased N-WASP-Y256 phosphorylation promotes N-WASP and integrin αVβ6 association as well as TGF-β-mediated permeability across alveolar epithelial cells. Inhibition of N-WASP-Y256 phosphorylation by N-WASP-Y256F overexpression blocked N-WASP effects in P aeruginosa-induced actin stress fiber formation and increased paracellular permeability. In vivo, N-WASP knockdown attenuated the development of pulmonary edema and improved survival in a mouse model of P aeruginosa pneumonia. Together, our data demonstrate that N-WASP plays an essential role in P aeruginosa-induced vascular permeability and pulmonary edema through the modulation of actin cytoskeleton dynamics.
Collapse
Affiliation(s)
- Pulin Che
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Divisions of Critical Care, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xueke Zhao
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Angela P Brandon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cilina A Evans
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guo-Qiang Cai
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhi-Xiang Xu
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaosi Han
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Divisions of Critical Care, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qiang Ding
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
He L, Lin Y, Ge ZH, He SY, Zhao BB, Shen D, He JG, Lu YJ. The Legionella pneumophila effector WipA disrupts host F-actin polymerisation by hijacking phosphotyrosine signalling. Cell Microbiol 2019; 21:e13014. [PMID: 30702192 DOI: 10.1111/cmi.13014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/15/2019] [Accepted: 01/28/2019] [Indexed: 11/29/2022]
Abstract
The major virulence determinant of Legionella pneumophila is the type IVB secretion system (T4BSS), which delivers approximately 330 effector proteins into the host cell to modulate various cellular processes. However, the functions of most effector proteins remain unclear. WipA, an effector, was the first phosphotyrosine phosphatase of Legionella with unknown function. In this study, we found that WipA induced relatively strong growth defects in yeast in a phosphatase activity-dependent manner. Phosphoproteomics data showed that WipA was likely involved into endocytosis, FcγR-mediated phagocytosis, tight junction, and regulation of actin cytoskeleton pathways. Western blotting further confirmed WipA dephosphorylates several proteins associated with actin polymerisation, such as p-N-WASP, p-ARP3, p-ACK1, and p-NCK1. Thus, we hypothesised that WipA targets N-WASP/ARP2/3 complex signalling pathway, leading to disturbance of actin polymerisation. Indeed, we demonstrated that WipA inhibits host F-actin polymerisation by reducing the G-actin to F-actin transition during L. penumophila infection. Furthermore, the intracellular proliferation of wipA/legK2 double mutant was significantly impaired at the late stage of infection, although the absence of WipA does not confer any further effect on actin polymerisation to the legK2 mutant. Collectively, this study provides unique insights into the WipA-mediated regulation of host actin polymerisation and assists us to elucidate the pathogenic mechanisms of L. pnuemophila infection.
Collapse
Affiliation(s)
- Lei He
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Yun Lin
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Zhen-Huang Ge
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Shi-Yu He
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Bei-Bei Zhao
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Dong Shen
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Jian-Guo He
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Yong-Jun Lu
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry. PLoS Pathog 2018; 14:e1007051. [PMID: 29727463 PMCID: PMC5955597 DOI: 10.1371/journal.ppat.1007051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 05/16/2018] [Accepted: 04/21/2018] [Indexed: 01/08/2023] Open
Abstract
Pathogens hijack host endocytic pathways to force their own entry into eukaryotic target cells. Many bacteria either exploit receptor-mediated zippering or inject virulence proteins directly to trigger membrane reorganisation and cytoskeletal rearrangements. By contrast, extracellular C. trachomatis elementary bodies (EBs) apparently employ facets of both the zipper and trigger mechanisms and are only ~400 nm in diameter. Our cryo-electron tomography of C. trachomatis entry revealed an unexpectedly diverse array of host structures in association with invading EBs, suggesting internalisation may progress by multiple, potentially redundant routes or several sequential events within a single pathway. Here we performed quantitative analysis of actin organisation at chlamydial entry foci, highlighting filopodial capture and phagocytic cups as dominant and conserved morphological structures early during internalisation. We applied inhibitor-based screening and employed reporters to systematically assay and visualise the spatio-temporal contribution of diverse endocytic signalling mediators to C. trachomatis entry. In addition to the recognised roles of the Rac1 GTPase and its associated nucleation-promoting factor (NPF) WAVE, our data revealed an additional unrecognised pathway sharing key hallmarks of macropinocytosis: i) amiloride sensitivity, ii) fluid-phase uptake, iii) recruitment and activity of the NPF N-WASP, and iv) the localised generation of phosphoinositide-3-phosphate (PI3P) species. Given their central role in macropinocytosis and affinity for PI3P, we assessed the role of SNX-PX-BAR family proteins. Strikingly, SNX9 was specifically and transiently enriched at C. trachomatis entry foci. SNX9-/- cells exhibited a 20% defect in EB entry, which was enhanced to 60% when the cells were infected without sedimentation-induced EB adhesion, consistent with a defect in initial EB-host interaction. Correspondingly, filopodial capture of C. trachomatis EBs was specifically attenuated in SNX9-/- cells, implicating SNX9 as a central host mediator of filopodial capture early during chlamydial entry. Our findings identify an unanticipated complexity of signalling underpinning cell entry by this major human pathogen, and suggest intriguing parallels with viral entry mechanisms. Chlamydia trachomatis remains the leading bacterial agent of sexually transmitted disease worldwide and causes a form of blindness called trachoma in Developing nations, which is recognised by the World Health Organisation as a neglected tropical disease. Despite this burden, we know comparatively little about how it causes disease at a molecular level. Chlamydia must live inside human cells to survive, and here we study the mechanism of how it enters cells, which is critical to the lifecycle. We study how the bacterium exploits signalling pathways inside the cell to its own advantage to deform the cell membrane by reorganising the underlying cell skeleton, and identify new factors involved in this process. Our findings suggest intriguing similarities with how some viruses enter cells. A better understanding of these processes may help to develop future vaccines and new treatments.
Collapse
|
15
|
HRG/HER2/HER3 signaling promotes AhR-mediated Memo-1 expression and migration in colorectal cancer. Oncogene 2016; 36:2394-2404. [DOI: 10.1038/onc.2016.390] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/23/2022]
|
16
|
Palazzo A, Bluteau O, Messaoudi K, Marangoni F, Chang Y, Souquere S, Pierron G, Lapierre V, Zheng Y, Vainchenker W, Raslova H, Debili N. The cell division control protein 42-Src family kinase-neural Wiskott-Aldrich syndrome protein pathway regulates human proplatelet formation. J Thromb Haemost 2016; 14:2524-2535. [PMID: 27685868 DOI: 10.1111/jth.13519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 12/31/2022]
Abstract
Essentials The role of the cytoskeleton during megakaryocyte differentiation was examined. Human megakaryocytes are derived from in vitro cultured CD34+ cells. Cell division control protein 42 (CDC42) positively regulates proplatelet formation (PPF). Neural Wiskott-Aldrich syndrome protein, the main effector of CDC42 with Src positively regulates PPF. SUMMARY Background Cytoskeletal rearrangements are essential for platelet release. The RHO small GTPase family, as regulators of the actin cytoskeleton, play an important role in proplatelet formation (PPF). In the neuronal system, CDC42 is involved in axon formation, a process that combines elongation and branching as for PPF. Objective To analyze the role of CDC42 and its effectors of the Wiskott-Aldrich syndrome protein (WASP) family in PPF. Methods Human megakaryocytes (MKs) were obtained from CD34+ cells. Inhibition of CDC42 in MKs was performed with the chemical inhibitor CASIN or with an active or a dominant-negative form of CDC42. The knock-down of N-WASP was obtained with a small hairpin RNA strategy Results Herein, we show that CDC42 activity increased during MK differentiation. The use of the chemical inhibitor CASIN or of an active or a dominant-negative form of CDC42 demonstrated that CDC42 positively regulated PPF in vitro. We determined that N-WASP, but not WASP, regulated PPF. We found that N-WASP knockdown led to a marked decrease in PPF, owing to a defect in the demarcation membrane system (DMS). This was associated with RHOA activation, and a concomitant augmentation in the phosphorylation of mysosin light chain 2. Phosphorylation of N-WASP, creating a primed form of N-WASP, increased during MK differentiation. Phosphorylation inhibition by two Src family kinase inhibitors decreased PPF. Conclusions We conclude that N-WASP positively regulates DMS development and PPF, and that the Src family kinases in association with CDC42 regulate PPF through N-WASP.
Collapse
Affiliation(s)
- A Palazzo
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée Ligue Contre le Cancer, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Saclay, UMR 1170, Villejuif, France
- Gustave Roussy, UMR 1170, Villejuif, France
| | - O Bluteau
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée Ligue Contre le Cancer, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Saclay, UMR 1170, Villejuif, France
- Gustave Roussy, UMR 1170, Villejuif, France
| | - K Messaoudi
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée Ligue Contre le Cancer, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Saclay, UMR 1170, Villejuif, France
- Gustave Roussy, UMR 1170, Villejuif, France
| | - F Marangoni
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée Ligue Contre le Cancer, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Saclay, UMR 1170, Villejuif, France
- Gustave Roussy, UMR 1170, Villejuif, France
| | - Y Chang
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée Ligue Contre le Cancer, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Saclay, UMR 1170, Villejuif, France
- Gustave Roussy, UMR 1170, Villejuif, France
| | - S Souquere
- Gustave Roussy, Centre Nationale de la Recherche Scientifique, UMR 8122, Gustave Roussy, Villejuif, France
| | - G Pierron
- Gustave Roussy, Centre Nationale de la Recherche Scientifique, UMR 8122, Gustave Roussy, Villejuif, France
| | - V Lapierre
- Gustave Roussy, Unité de Thérapie Cellulaire, Villejuif, France
| | - Y Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - W Vainchenker
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée Ligue Contre le Cancer, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Saclay, UMR 1170, Villejuif, France
- Gustave Roussy, UMR 1170, Villejuif, France
| | - H Raslova
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée Ligue Contre le Cancer, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Saclay, UMR 1170, Villejuif, France
- Gustave Roussy, UMR 1170, Villejuif, France
| | - N Debili
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée Ligue Contre le Cancer, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Saclay, UMR 1170, Villejuif, France
- Gustave Roussy, UMR 1170, Villejuif, France
| |
Collapse
|
17
|
WASH has a critical role in NK cell cytotoxicity through Lck-mediated phosphorylation. Cell Death Dis 2016; 7:e2301. [PMID: 27441653 PMCID: PMC4973352 DOI: 10.1038/cddis.2016.212] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) cells are important effector cells of the innate immune system to kill certain virus-infected and transformed cells. Wiskott–Aldrich Syndrome protein (WASP) and SCAR homolog (WASH) has been identified as a member of WASP family proteins implicated in regulating the cytoskeletal reorganization, yet little is known about its function in lymphocytes. Here we demonstrate that WASH is crucial for NK cell cytotoxicity. WASH was found to colocalize with lytic granules upon NK cell activation. Knockdown of WASH expression substantially inhibited polarization and release of lytic granules to the immune synapse, resulting in the impairment of NK cell cytotoxicity. More importantly, our data also define a previously unappreciated mechanism for WASH function, in which Src family kinase Lck can interact with WASH and induce WASH phosphorylation. Mutation of tyrosine residue Y141, identified here as the major site of WASH phosphorylation, partially blocked WASH tyrosine phosphorylation and NK cell cytotoxicity. Taken together, these observations suggest that WASH has a pivotal role for regulation of NK cell cytotoxicity through Lck-mediated Y141 tyrosine phosphorylation.
Collapse
|
18
|
Wagener BM, Hu M, Zheng A, Zhao X, Che P, Brandon A, Anjum N, Snapper S, Creighton J, Guan JL, Han Q, Cai GQ, Han X, Pittet JF, Ding Q. Neuronal Wiskott-Aldrich syndrome protein regulates TGF-β1-mediated lung vascular permeability. FASEB J 2016; 30:2557-69. [PMID: 27025963 DOI: 10.1096/fj.201600102r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/21/2016] [Indexed: 01/08/2023]
Abstract
TGF-β1 induces an increase in paracellular permeability and actin stress fiber formation in lung microvascular endothelial and alveolar epithelial cells via small Rho GTPase. The molecular mechanism involved is not fully understood. Neuronal Wiskott-Aldrich syndrome protein (N-WASP) has an essential role in actin structure dynamics. We hypothesized that N-WASP plays a critical role in these TGF-β1-induced responses. In these cell monolayers, we demonstrated that N-WASP down-regulation by short hairpin RNA prevented TGF-β1-mediated disruption of the cortical actin structure, actin stress filament formation, and increased permeability. Furthermore, N-WASP down-regulation blocked TGF-β1 activation mediated by IL-1β in alveolar epithelial cells, which requires actin stress fiber formation. Control short hairpin RNA had no effect on these TGF-β1-induced responses. TGF-β1-induced phosphorylation of Y256 of N-WASP via activation of small Rho GTPase and focal adhesion kinase mediates TGF-β1-induced paracellular permeability and actin cytoskeleton dynamics. In vivo, compared with controls, N-WASP down-regulation increases survival and prevents lung edema in mice induced by bleomycin exposure-a lung injury model in which TGF-β1 plays a critical role. Our data indicate that N-WASP plays a crucial role in the development of TGF-β1-mediated acute lung injury by promoting pulmonary edema via regulation of actin cytoskeleton dynamics.-Wagener, B. M., Hu, M., Zheng, A., Zhao, X., Che, P., Brandon, A., Anjum, N., Snapper, S., Creighton, J., Guan, J.-L., Han, Q., Cai, G.-Q., Han, X., Pittet, J.-F., Ding, Q. Neuronal Wiskott-Aldrich syndrome protein regulates TGF-β1-mediated lung vascular permeability.
Collapse
Affiliation(s)
- Brant M Wagener
- Division of Critical Care, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meng Hu
- Division of Pulmonary, Allergy, and Critical Care Medicine Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anni Zheng
- Division of Pulmonary, Allergy, and Critical Care Medicine Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xueke Zhao
- Division of Pulmonary, Allergy, and Critical Care Medicine Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Pulin Che
- Division of Neurology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Angela Brandon
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Naseem Anjum
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Scott Snapper
- Department of Pathology, Harvard University, Boston, Massachusetts, USA
| | - Judy Creighton
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Qimei Han
- Division of Pulmonary, Allergy, and Critical Care Medicine Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guo-Qiang Cai
- Division of Pulmonary, Allergy, and Critical Care Medicine Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiaosi Han
- Division of Neurology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jean-Francois Pittet
- Division of Critical Care, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qiang Ding
- Division of Pulmonary, Allergy, and Critical Care Medicine Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
19
|
Menon S, Gupton SL. Building Blocks of Functioning Brain: Cytoskeletal Dynamics in Neuronal Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:183-245. [PMID: 26940519 PMCID: PMC4809367 DOI: 10.1016/bs.ircmb.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural connectivity requires proper polarization of neurons, guidance to appropriate target locations, and establishment of synaptic connections. From when neurons are born to when they finally reach their synaptic partners, neurons undergo constant rearrangment of the cytoskeleton to achieve appropriate shape and polarity. Of particular importance to neuronal guidance to target locations is the growth cone at the tip of the axon. Growth-cone steering is also dictated by the underlying cytoskeleton. All these changes require spatiotemporal control of the cytoskeletal machinery. This review summarizes the proteins that are involved in modulating the actin and microtubule cytoskeleton during the various stages of neuronal development.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America; Neuroscience Center and Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.
| |
Collapse
|
20
|
Brüser L, Bogdan S. Molecular Control of Actin Dynamics In Vivo: Insights from Drosophila. Handb Exp Pharmacol 2016; 235:285-310. [PMID: 27757759 DOI: 10.1007/164_2016_33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The actin cytoskeleton provides mechanical support for cells and generates forces to drive cell shape changes and cell migration in morphogenesis. Molecular understanding of actin dynamics requires a genetically traceable model system that allows interdisciplinary experimental approaches to elucidate the regulatory network of cytoskeletal proteins in vivo. Here, we will discuss some examples of how advances in Drosophila genetics and high-resolution imaging techniques contribute to the discovery of new actin functions, signaling pathways, and mechanisms of actin regulation in vivo.
Collapse
Affiliation(s)
- Lena Brüser
- Institute for Neurobiology, University of Muenster, Badestrasse 9, 48149, Muenster, Germany
| | - Sven Bogdan
- Institute for Neurobiology, University of Muenster, Badestrasse 9, 48149, Muenster, Germany.
| |
Collapse
|
21
|
EtpE Binding to DNase X Induces Ehrlichial Entry via CD147 and hnRNP-K Recruitment, Followed by Mobilization of N-WASP and Actin. mBio 2015; 6:e01541-15. [PMID: 26530384 PMCID: PMC4631803 DOI: 10.1128/mbio.01541-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Obligate intracellular bacteria, such as Ehrlichia chaffeensis, perish unless they can enter eukaryotic cells. E. chaffeensis is the etiological agent of human monocytic ehrlichiosis, an emerging infectious disease. To infect cells, Ehrlichia uses the C terminus of the outer membrane invasin entry-triggering protein (EtpE) of Ehrlichia (EtpE-C), which directly binds the mammalian cell surface glycosylphosphatidyl inositol-anchored protein, DNase X. How this binding drives Ehrlichia entry is unknown. Here, using affinity pulldown of host cell lysates with recombinant EtpE-C (rEtpE-C), we identified two new human proteins that interact with EtpE-C: CD147 and heterogeneous nuclear ribonucleoprotein K (hnRNP-K). The interaction of CD147 with rEtpE-C was validated by far-Western blotting and coimmunoprecipitation of native EtpE with endogenous CD147. CD147 was ubiquitous on the cell surface and also present around foci of rEtpE-C-coated-bead entry. Functional neutralization of surface-exposed CD147 with a specific antibody inhibited Ehrlichia internalization and infection but not binding. Downregulation of CD147 by short hairpin RNA (shRNA) impaired E. chaffeensis infection. Functional ablation of cytoplasmic hnRNP-K by a nanoscale intracellular antibody markedly attenuated bacterial entry and infection but not binding. EtpE-C also interacted with neuronal Wiskott-Aldrich syndrome protein (N-WASP), which is activated by hnRNP-K. Wiskostatin, which inhibits N-WASP activation, and cytochalasin D, which inhibits actin polymerization, inhibited Ehrlichia entry. Upon incubation with host cell lysate, EtpE-C but not an EtpE N-terminal fragment stimulated in vitro actin polymerization in an N-WASP- and DNase X-dependent manner. Time-lapse video images revealed N-WASP recruitment at EtpE-C-coated bead entry foci. Thus, EtpE-C binding to DNase X drives Ehrlichia entry by engaging CD147 and hnRNP-K and activating N-WASP-dependent actin polymerization. Ehrlichia chaffeensis, an obligate intracellular bacterium, causes a blood-borne disease called human monocytic ehrlichiosis, one of the most prevalent life-threatening emerging tick-transmitted infectious diseases in the United States. The survival of Ehrlichia bacteria, and hence, their ability to cause disease, depends on their specific mode of entry into eukaryotic host cells. Understanding the mechanism by which E. chaffeensis enters cells will create new opportunities for developing effective therapies to prevent bacterial entry and disease in humans. Our findings reveal a novel cellular signaling pathway triggered by an ehrlichial surface protein called EtpE to induce its infectious entry. The results are also important from the viewpoint of human cell physiology because three EtpE-interacting human proteins, DNase X, CD147, and hnRNP-K, are hitherto unknown partners that drive the uptake of small particles, including bacteria, into human cells.
Collapse
|
22
|
Kang J, Park H, Kim E. IRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders. Neuropharmacology 2015; 100:27-39. [PMID: 26275848 DOI: 10.1016/j.neuropharm.2015.06.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/26/2015] [Accepted: 06/28/2015] [Indexed: 01/08/2023]
Abstract
IRSp53 (also known as BAIAP2) is a multi-domain scaffolding and adaptor protein that has been implicated in the regulation of membrane and actin dynamics at subcellular structures, including filopodia and lamellipodia. Accumulating evidence indicates that IRSp53 is an abundant component of the postsynaptic density at excitatory synapses and an important regulator of actin-rich dendritic spines. In addition, IRSp53 has been implicated in diverse psychiatric disorders, including autism spectrum disorders, schizophrenia, and attention deficit/hyperactivity disorder. Mice lacking IRSp53 display enhanced NMDA (N-methyl-d-aspartate) receptor function accompanied by social and cognitive deficits, which are reversed by pharmacological suppression of NMDA receptor function. These results suggest the hypothesis that defective actin/membrane modulation in IRSp53-deficient dendritic spines may lead to social and cognitive deficits through NMDA receptor dysfunction. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Jaeseung Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Haram Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, South Korea.
| |
Collapse
|
23
|
He Y, Ren Y, Wu B, Decourt B, Lee AC, Taylor A, Suter DM. Src and cortactin promote lamellipodia protrusion and filopodia formation and stability in growth cones. Mol Biol Cell 2015. [PMID: 26224308 PMCID: PMC4569314 DOI: 10.1091/mbc.e15-03-0142] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
How Src tyrosine kinase and cortactin control actin organization and dynamics in neuronal growth cones is not well understood. Using multiple high-resolution imaging techniques, this study shows that Src and cortactin control the persistence of lamellipodial protrusion as well as the formation, stability, and elongation of filopodia in growth cones. Src tyrosine kinases have been implicated in axonal growth and guidance; however, the underlying cellular mechanisms are not well understood. Specifically, it is unclear which aspects of actin organization and dynamics are regulated by Src in neuronal growth cones. Here, we investigated the function of Src2 and one of its substrates, cortactin, in lamellipodia and filopodia of Aplysia growth cones. We found that up-regulation of Src2 activation state or cortactin increased lamellipodial length, protrusion time, and actin network density, whereas down-regulation had opposite effects. Furthermore, Src2 or cortactin up-regulation increased filopodial density, length, and protrusion time, whereas down-regulation promoted lateral movements of filopodia. Fluorescent speckle microscopy revealed that rates of actin assembly and retrograde flow were not affected in either case. In summary, our results support a model in which Src and cortactin regulate growth cone motility by increasing actin network density and protrusion persistence of lamellipodia by controlling the state of actin-driven protrusion versus retraction. In addition, both proteins promote the formation and stability of actin bundles in filopodia.
Collapse
Affiliation(s)
- Yingpei He
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Yuan Ren
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Bingbing Wu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Boris Decourt
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Aih Cheun Lee
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Aaron Taylor
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907 )
| |
Collapse
|
24
|
Abu Taha A, Schnittler HJ. Dynamics between actin and the VE-cadherin/catenin complex: novel aspects of the ARP2/3 complex in regulation of endothelial junctions. Cell Adh Migr 2015; 8:125-35. [PMID: 24621569 DOI: 10.4161/cam.28243] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Endothelial adherens junctions are critical for physiological and pathological processes such as differentiation, maintenance of entire monolayer integrity, and the remodeling. The endothelial-specific VE-cadherin/catenin complex provides the backbone of adherens junctions and acts in close interaction with actin filaments and actin/myosin-mediated contractility to fulfill the junction demands. The functional connection between the cadherin/catenin complex and actin filaments might be either directly through ?-catenins, or indirectly e.g., via linker proteins such as vinculin, p120ctn, ?-actinin, or EPLIN. However, both junction integrity and dynamic remodeling have to be contemporarily coordinated. The actin-related protein complex ARP2/3 and its activating molecules, such as N-WASP and WAVE, have been shown to regulate the lammellipodia-mediated formation of cell junctions in both epithelium and endothelium. Recent reports now demonstrate a novel aspect of the ARP2/3 complex and the nucleating-promoting factors in the maintenance of endothelial barrier function and junction remodeling of established endothelial cell junctions. Those mechanisms open novel possibilities; not only in fulfilling physiological demands but obtained information may be of critical importance in pathologies such as wound healing, angiogenesis, inflammation, and cell diapedesis.
Collapse
Affiliation(s)
- Abdallah Abu Taha
- Institute of Anatomy & Vascular Biology; WWU-Münster, Vesaliusweg 2-4; Münster, Germany
| | - Hans-J Schnittler
- Institute of Anatomy & Vascular Biology; WWU-Münster, Vesaliusweg 2-4; Münster, Germany
| |
Collapse
|
25
|
Knox R, Jiang X. Fyn in Neurodevelopment and Ischemic Brain Injury. Dev Neurosci 2015; 37:311-20. [PMID: 25720756 DOI: 10.1159/000369995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/18/2014] [Indexed: 12/11/2022] Open
Abstract
The Src family kinases (SFKs) are nonreceptor protein tyrosine kinases that are implicated in many normal and pathological processes in the nervous system. The SFKs Fyn, Src, Yes, Lyn, and Lck are expressed in the brain. This review will focus on Fyn, as Fyn mutant mice have striking phenotypes in the brain and Fyn has been shown to be involved in ischemic brain injury in adult rodents and, with our work, in neonatal animals. An understanding of Fyn's role in neurodevelopment and disease will allow researchers to target pathological pathways while preserving protective ones.
Collapse
Affiliation(s)
- Renatta Knox
- Department of Pediatrics, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
26
|
Hansberg-Pastor V, González-Arenas A, Piña-Medina AG, Camacho-Arroyo I. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity. Front Psychiatry 2015; 6:165. [PMID: 26635640 PMCID: PMC4653291 DOI: 10.3389/fpsyt.2015.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/02/2015] [Indexed: 01/22/2023] Open
Abstract
In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone.
Collapse
Affiliation(s)
- Valeria Hansberg-Pastor
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Ana Gabriela Piña-Medina
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México , Mexico City , Mexico
| |
Collapse
|
27
|
Abstract
WIP plays an important role in the remodeling of the actin cytoskeleton, which controls cellular activation, proliferation, and function. WIP regulates actin polymerization by linking the actin machinery to signaling cascades. WIP binding to WASp and to its homolog, N-WASp, which are central activators of the actin-nucleating complex Arp2/3, regulates their cellular distribution, function, and stability. By binding to WASp, WIP protects it from degradation and thus, is crucial for WASp retention. Indeed, most mutations that result in WAS, an X-linked immunodeficiency caused by defective/absent WASp activity, are located in the WIP-binding region of WASp. In addition, by binding directly to actin, WIP promotes the formation and stabilization of actin filaments. WASp-independent activities of WIP constitute a new research frontier and are discussed extensively in this article. Here, we review the current information on WIP in human and mouse systems, focusing on its associated proteins, its molecular-regulatory mechanisms, and its role as a key regulator of actin-based processes in the immune system.
Collapse
Affiliation(s)
- Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Elad Noy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
28
|
Troegeler A, Lastrucci C, Duval C, Tanne A, Cougoule C, Maridonneau-Parini I, Neyrolles O, Lugo-Villarino G. An efficient siRNA-mediated gene silencing in primary human monocytes, dendritic cells and macrophages. Immunol Cell Biol 2014; 92:699-708. [PMID: 24890643 DOI: 10.1038/icb.2014.39] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/01/2014] [Accepted: 05/03/2014] [Indexed: 01/08/2023]
Abstract
Mononuclear phagocytes (MP) comprise monocytes, macrophages (MΦ) and dendritic cells (DC), including their lineage-committed progenitors, which together have an eminent role in health and disease. Lipid-based siRNA-mediated gene inactivation is an established approach to investigate gene function in MP cells. However, although there are few protocols dedicated for siRNA-mediated gene inactivation in primary human DC and MΦ, there are none available for primary human monocytes. Moreover, there is no available method to perform comparative studies of a siRNA-mediated gene silencing in primary monocytes and other MP cells. Here, we describe a protocol optimized for the lipid-based delivery of siRNA to perform gene silencing in primary human blood monocytes, which is applicable to DCs, and differs from the classical route of siRNA delivery into MΦs. Along with this protocol, we provide a comparative analysis of how monocytes, DC and MΦ are efficiently transfected with the target siRNA without affecting cell viability, resulting in strong gene knockdown efficiency, including the simultaneous inactivation of two genes. Moreover, siRNA delivery does not affect classical functions in MP such as differentiation, phagocytosis and migration, demonstrating that this protocol does not induce non-specific major alterations in these cells. As a proof-of-principle, a functional analysis of hematopoietic cell kinase (Hck) shows for the first time that this kinase regulates the protease-dependent migration mode in human monocytes. Collectively, this protocol enables efficient gene inactivation in primary MP, suggesting a wide spectrum of applications such as siRNA-based high-throughput screening, which could ultimately improve our knowledge about MP biology.
Collapse
Affiliation(s)
- Anthony Troegeler
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Claire Lastrucci
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Carine Duval
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Antoine Tanne
- Division of Hematology & Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mt Sinai, New York, NY, USA
| | - Céline Cougoule
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Isabelle Maridonneau-Parini
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Olivier Neyrolles
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
29
|
Zhang X, Moore SW, Iskratsch T, Sheetz MP. N-WASP-directed actin polymerization activates Cas phosphorylation and lamellipodium spreading. J Cell Sci 2014; 127:1394-405. [PMID: 24481817 DOI: 10.1242/jcs.134692] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Tyrosine phosphorylation of the substrate domain of Cas (CasSD) correlates with increased cell migration in healthy and diseased cells. Here, we address the mechanism leading to the phosphorylation of CasSD in the context of fibronectin-induced early spreading of fibroblasts. We have previously demonstrated that mechanical stretching of CasSD exposes phosphorylation sites for Src family kinases (SFKs). Surprisingly, phosphorylation of CasSD was independent of myosin contractile activity but dependent on actin polymerization. Furthermore, we found that CasSD phosphorylation in the early stages of cell spreading required: (1) integrin anchorage and integrin-mediated activation of SFKs, (2) association of Cas with focal adhesion kinase (FAK), and (3) N-WASP-driven actin-assembly activity. These findings, and analyses of the interactions of the Cas domains, indicate that the N-terminus of Cas associates with the FAK-N-WASP complex at the protrusive edge of the cell and that the C-terminus of Cas associates with the immobilized integrin-SFK cluster. Thus, extension of the leading edge mediated by actin polymerization could stretch Cas during early cell spreading, priming it for phosphorylation.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Shigella flexneri is an enteropathogenic bacterium responsible for approximately 100 million cases of severe dysentery each year. S. flexneri colonization of the human colonic epithelium is supported by direct spread from cell to cell, which relies on actin-based motility. We have recently uncovered that, in intestinal epithelial cells, S. flexneri actin-based motility is regulated by the Bruton's tyrosine kinase (Btk). Consequently, treatment with Ibrutinib, a specific Btk inhibitor currently used in the treatment of B-cell malignancies, effectively impaired S. flexneri spread from cell to cell. Thus, therapeutic intervention capitalizing on drugs interfering with host factors supporting the infection process may represent an effective alternative to treatments with antimicrobial compounds.
Collapse
|
31
|
An L, Liu S, Zhang W, Zhang Y, Huang Y, Hu X, Chen S, Zhao S. Mouse Fyn induces pseudopodium formation in Chinese hamster ovary cells. J Vet Sci 2013; 15:111-5. [PMID: 24378585 PMCID: PMC3973753 DOI: 10.4142/jvs.2014.15.1.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/23/2013] [Indexed: 11/20/2022] Open
Abstract
Molecular mechanisms underlying the effects of Fyn on cell morphology, pseudopodium movement, and cell migration were investigated. The Fyn gene was subcloned into pEGFP-N1 to produce pEGFP-N1-Fyn. Chinese hamster ovary (CHO) cells were transfected with pEGFP-N1-Fyn. The expression of Fyn mRNA and proteins was monitored by reverse transcription-PCR and Western blotting. Additionally, transfected cells were stained with 4',6-diamidino-2-phenylindole and a series of time-lapse images was taken. Sequences of the recombinant plasmids pMD18-T-Fyn and pEGFP-N1-Fyn were confirmed by sequence identification using National Center for Biotechnology Information in USA, and Fyn expression was detected by RT-PCR and Western blotting. The morphology of CHO cells transfected with the recombinant vector was significantly altered. Fyn expression induced filopodia and lamellipodia formation. Based on these results, we concluded that overexpression of mouse Fyn induces the formation of filopodia and lamellipodia in CHO cells, and promotes cell movement.
Collapse
Affiliation(s)
- Lei An
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Matalon O, Reicher B, Barda-Saad M. Wiskott-Aldrich syndrome protein - dynamic regulation of actin homeostasis: from activation through function and signal termination in T lymphocytes. Immunol Rev 2013; 256:10-29. [DOI: 10.1111/imr.12112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| |
Collapse
|
33
|
Uenishi E, Shibasaki T, Takahashi H, Seki C, Hamaguchi H, Yasuda T, Tatebe M, Oiso Y, Takenawa T, Seino S. Actin dynamics regulated by the balance of neuronal Wiskott-Aldrich syndrome protein (N-WASP) and cofilin activities determines the biphasic response of glucose-induced insulin secretion. J Biol Chem 2013; 288:25851-25864. [PMID: 23867458 DOI: 10.1074/jbc.m113.464420] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin dynamics in pancreatic β-cells is involved in insulin secretion. However, the molecular mechanisms of the regulation of actin dynamics by intracellular signals in pancreatic β-cells and its role in phasic insulin secretion are largely unknown. In this study, we elucidate the regulation of actin dynamics by neuronal Wiskott-Aldrich syndrome protein (N-WASP) and cofilin in pancreatic β-cells and demonstrate its role in glucose-induced insulin secretion (GIIS). N-WASP, which promotes actin polymerization through activation of the actin nucleation factor Arp2/3 complex, was found to be activated by glucose stimulation in insulin-secreting clonal pancreatic β-cells (MIN6-K8 β-cells). Introduction of a dominant-negative mutant of N-WASP, which lacks G-actin and Arp2/3 complex-binding region VCA, into MIN6-K8 β-cells or knockdown of N-WASP suppressed GIIS, especially the second phase. We also found that cofilin, which severs F-actin in its dephosphorylated (active) form, is converted to the phosphorylated (inactive) form by glucose stimulation in MIN6-K8 β-cells, thereby promoting F-actin remodeling. In addition, the dominant-negative mutant of cofilin, which inhibits activation of endogenous cofilin, or knockdown of cofilin reduced the second phase of GIIS. However, the first phase of GIIS occurs in the G-actin predominant state, in which cofilin activity predominates over N-WASP activity. Thus, actin dynamics regulated by the balance of N-WASP and cofilin activities determines the biphasic response of GIIS.
Collapse
Affiliation(s)
- Eita Uenishi
- From the Division of Cellular and Molecular Medicine,; the Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, and
| | | | | | - Chihiro Seki
- From the Division of Cellular and Molecular Medicine
| | | | - Takao Yasuda
- From the Division of Cellular and Molecular Medicine
| | - Masao Tatebe
- From the Division of Cellular and Molecular Medicine
| | - Yutaka Oiso
- the Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, and
| | - Tadaomi Takenawa
- Division of Lipid Biochemistry, and; the Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe 650-0017
| | - Susumu Seino
- From the Division of Cellular and Molecular Medicine,; the Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe 650-0017,; Division of Molecular and Metabolic Medicine,; the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corp., Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
34
|
Bosanquet DC, Ye L, Harding KG, Jiang WG. Expressed in high metastatic cells (Ehm2) is a positive regulator of keratinocyte adhesion and motility: The implication for wound healing. J Dermatol Sci 2013; 71:115-21. [PMID: 23664528 DOI: 10.1016/j.jdermsci.2013.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/17/2013] [Accepted: 04/04/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Multiple factors have been shown to delay dermal wound healing. These resultant wounds pose a significant problem in terms of morbidity and healthcare spend. Recently, an increasing volume of research has focused on the molecular perturbations underlying non-healing wounds. OBJECTIVES This study investigates the effect of a novel cancer promoter, Ehm2, in wound healing. Ehm2 belongs to the FERM family of proteins, known to be involved in membrane-cytoskeletal interactions, and has been shown to promote cancer metastasis in melanoma, prostate cancer and breast cancer. METHODS Ehm2 mRNA levels were analysed using qRT-PCR, standardised to GAPDH, from either acute or chronic wounds, and normal skin. IHC analysis was also undertaken from wound edge biopsies. An anti-Ehm2 transgene was created and transfected into the HaCaT cell line. The effect of Ehm2 knockdown on migration, adhesion, growth, cell cycle progression and apoptosis was analysed using standard laboratory methods. Western Blot analysis was used to investigate potential downstream protein interactions. RESULTS Ehm2 is expressed nearly three times higher in acute wound tissues, compared to chronic wound tissues. Increased Ehm2 expression is found in wounds undergoing healing, especially at the leading wound edge. In vitro, Ehm2 knockdown reduces cellular adhesion, migration and motility, without affecting growth, cell cycle and apoptosis. Finally, Ehm2 knockdown results in reduced NWasp protein expression. CONCLUSION These results suggest Ehm2 may be an important player in the wound healing process, and show that Ehm2 knockdown downregulates the expression of NWasp, through which it may have its effect on cellular migration.
Collapse
Affiliation(s)
- David C Bosanquet
- Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK.
| | | | | | | |
Collapse
|
35
|
Sossey-Alaoui K. Surfing the big WAVE: Insights into the role of WAVE3 as a driving force in cancer progression and metastasis. Semin Cell Dev Biol 2013; 24:287-97. [PMID: 23116924 PMCID: PMC4207066 DOI: 10.1016/j.semcdb.2012.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 02/06/2023]
Abstract
WAVE3 belongs to the WASP/WAVE family of actin cytoskeleton remodeling proteins. These proteins are known to be involved in several biological functions ranging from controlling cell shape and movement, to being closely associated with pathological conditions such as cancer progression and metastasis. Last decade has seen an explosion in the literature reporting significant scientific advances on the molecular mechanisms whereby the WASP/WAVE proteins are regulated both in normal physiological as well as pathological conditions. The purpose of this review is to present the major findings pertaining to how WAVE3 has become a critical player in the regulation of signaling pathways involved in cancer progression and metastasis. The review will conclude with suggesting options for the potential use of WAVE3 as a therapeutic target to prevent the progression of cancer to the lethal stage that is the metastatic disease.
Collapse
Affiliation(s)
- Khalid Sossey-Alaoui
- Department of Molecular Cardiology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., NB-50, Cleveland, OH 44195, USA.
| |
Collapse
|
36
|
Massaad MJ, Ramesh N, Geha RS. Wiskott-Aldrich syndrome: a comprehensive review. Ann N Y Acad Sci 2013; 1285:26-43. [DOI: 10.1111/nyas.12049] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michel J. Massaad
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics; Harvard Medical School; Boston; Massachusetts
| | - Narayanaswamy Ramesh
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics; Harvard Medical School; Boston; Massachusetts
| | - Raif S. Geha
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics; Harvard Medical School; Boston; Massachusetts
| |
Collapse
|
37
|
Oda A, Eto K. WASPs and WAVEs: from molecular function to physiology in hematopoietic cells. Semin Cell Dev Biol 2013; 24:308-13. [PMID: 23499790 DOI: 10.1016/j.semcdb.2013.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 12/29/2022]
Abstract
The actin cytoskeleton is critically involved in a variety of cell functions. The Arp2/3 complex mediates branching of filamentous actin. The members of the Wiskott-Aldrich syndrome protein (WASP) family are major regulators of the complex. As such, the family proteins are also involved in numerous aspects of cell biology. In this short review, we first define the expanding WASP family. Next, we compare the domain structure of the members, and explain the known or proposed functions of each domain or region. Finally, we demonstrate the well-characterized roles of the proteins in specific cellular functions.
Collapse
Affiliation(s)
- Atsushi Oda
- Department of Internal Medicine, Noguchi Hospital, Ashibetsu 075-0002, Japan.
| | | |
Collapse
|
38
|
Suetsugu S. Activation of nucleation promoting factors for directional actin filament elongation: allosteric regulation and multimerization on the membrane. Semin Cell Dev Biol 2013; 24:267-71. [PMID: 23380397 DOI: 10.1016/j.semcdb.2013.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 01/02/2023]
Abstract
Nucleation promoting factors (NPFs) activate the Arp2/3 complex to produce branched actin filaments. Branched actin filaments are observed in most organelles, and specific NPFs, such as WASP, N-WASP, WAVEs, WASH, and WHAMM, exist for each organelle. Interestingly, Arp2/3 and NPFs are both inactive by themselves, and thus require activation. The exposure of the Arp2/3 activating region, the VCA fragment, is recognized to be a key event in the activation of the NPFs. Together, small GTPase binding, phosphorylation, SH3 binding, and membrane binding promote VCA exposure synergistically. The increase in the local concentration of NPF by multimerization is thought to occur with the combination of such activators, to maximally activate the NPF and confine the region of actin polymerization. The mechanism of uni-directional filament extension beneath the membrane also is discussed.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Laboratory of Membrane and Cytoskeleton Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
39
|
Terada N, Saitoh Y, Ohno N, Komada M, Yamauchi J, Ohno S. Involvement of Src in the membrane skeletal complex, MPP6-4.1G, in Schmidt-Lanterman incisures of mouse myelinated nerve fibers in PNS. Histochem Cell Biol 2013; 140:213-22. [PMID: 23306908 DOI: 10.1007/s00418-012-1073-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2012] [Indexed: 11/26/2022]
Abstract
Schmidt-Lanterman incisures (SLIs) are a specific feature of myelinated nerve fibers in the peripheral nervous system (PNS). In this study, we report localization of a signal transduction protein, Src, in the SLIs of mouse sciatic nerves, and its phosphorylation states in Y527 and Y418 (P527 and P418, respectively) under normal conditions or deletion of a membrane skeletal protein, 4.1G. In adult mouse sciatic nerves, Src was immunolocalized in SLIs as a cone-shape, as well as in paranodes and some areas of structures reminiscent of Cajal bands. By immunostaining in normal nerves, P527-Src was strongly detected in SLIs, whereas P418-Src was much weaker. Developmentally, P418-Src was detected in SLIs of early postnatal mouse sciatic nerves. The staining patterns for P527 and P418 in normal adult nerve fibers were opposite to those in primary culture Schwann cells and a Schwannoma cell line, RT4-D6P2T. In 4.1G-deficient nerve fibers, which had neither 4.1G nor the membrane protein palmitoylated 6 (MPP6) in SLIs, the P418-Src immunoreactivity in SLIs was clearly detected at a stronger level than that in the wild type. An immunoprecipitation study revealed Src interaction with MPP6. These findings indicate that the Src-MPP6-4.1G protein complex in SLIs has a role in signal transduction in the PNS.
Collapse
Affiliation(s)
- Nobuo Terada
- Department of Occupational Therapy, School of Health Sciences, Shinshu University School of Medicine, Matsumoto City, Nagano, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Burianek LE, Soderling SH. Under lock and key: spatiotemporal regulation of WASP family proteins coordinates separate dynamic cellular processes. Semin Cell Dev Biol 2013; 24:258-66. [PMID: 23291261 DOI: 10.1016/j.semcdb.2012.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/21/2012] [Accepted: 12/14/2012] [Indexed: 02/03/2023]
Abstract
WASP family proteins are nucleation promoting factors that bind to and activate the Arp2/3 complex in order to stimulate nucleation of branched actin filaments. The WASP family consists of WASP, N-WASP, WAVE1-3, WASH, and the novel family members WHAMM and JMY. Each of the family members contains a C-terminus responsible for their nucleation promoting activity and unique N-termini that allow for them to be regulated in a spatiotemporal manner. Upon activation they reorganize the cytoskeleton for different cellular functions depending on their subcellular localization and regulatory protein interactions. Emerging evidence indicates that WASH, WHAMM, and JMY have functions that require the coordination of both actin polymerization and microtubule dynamics. Here, we review the mechanisms of regulation for each family member and their associated in vivo functions including cell migration, vesicle trafficking, and neuronal development.
Collapse
|
41
|
Bruton's tyrosine kinase regulates Shigella flexneri dissemination in HT-29 intestinal cells. Infect Immun 2012; 81:598-607. [PMID: 23230296 DOI: 10.1128/iai.00853-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Shigella flexneri is a Gram-negative intracellular pathogen that infects the intestinal epithelium and utilizes actin-based motility to spread from cell to cell. S. flexneri actin-based motility has been characterized in various cell lines, but studies in intestinal cells are limited. Here we characterized S. flexneri actin-based motility in HT-29 intestinal cells. In agreement with studies conducted in various cell lines, we showed that S. flexneri relies on neural Wiskott-Aldrich Syndrome protein (N-WASP) in HT-29 cells. We tested the potential role of various tyrosine kinases involved in N-WASP activation and uncovered a previously unappreciated role for Bruton's tyrosine kinase (Btk) in actin tail formation in intestinal cells. We showed that Btk depletion led to a decrease in N-WASP phosphorylation which affected N-WASP recruitment to the bacterial surface, decreased the number of bacteria displaying actin-based motility, and ultimately affected the efficiency of spread from cell to cell. Finally, we showed that the levels of N-WASP phosphorylation and Btk expression were increased in response to infection, which suggests that S. flexneri infection not only triggers the production of proinflammatory factors as previously described but also manipulates cellular processes required for dissemination in intestinal cells.
Collapse
|
42
|
Rajput C, Kini V, Smith M, Yazbeck P, Chavez A, Schmidt T, Zhang W, Knezevic N, Komarova Y, Mehta D. Neural Wiskott-Aldrich syndrome protein (N-WASP)-mediated p120-catenin interaction with Arp2-Actin complex stabilizes endothelial adherens junctions. J Biol Chem 2012; 288:4241-50. [PMID: 23212915 DOI: 10.1074/jbc.m112.440396] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Stable adherens junctions (AJs) are required for formation of restrictive endothelial barrier. Vascular endothelial cadherin from contiguous endothelial cells forms AJs, which are stabilized intracellularly by binding of p120-catenin and cortical actin. Mechanisms inducing cortical actin formation and enabling its linkage with p120-catenin remain enigmatic. We altered the function of neural Wiskott-Aldrich syndrome protein (N-WASP), which induces actin polymerization through actin-related protein 2/3 complex (Arp2/3), to address the role of N-WASP in regulating AJ stability and thereby endothelial permeability. We show that depletion of N-WASP in endothelial cells impaired AJ adhesion and favored the organization of actin from cortical actin to stress fibers, resulting thereby in formation of leaky endothelial barrier. Exposure of the N-WASP-depleted endothelial cell monolayer to the permeability-increasing mediator, thrombin, exaggerated AJ disruption and stress fiber formation, leading to an irreversible increase in endothelial permeability. We show that N-WASP binds p120-catenin through its verprolin cofilin acid (VCA) domain, induces cortical actin formation through Arp2, and links p120-catenin with cortical actin. The interaction of N-WASP with p120-catenin, actin, and Arp2 requires phosphorylation of N-WASP at the Tyr-256 residue by focal adhesion kinase. Expression of the VCA domain of N-WASP or phosphomimicking (Y256D)-N-WASP mutant in endothelial cells stabilizes AJs and facilitates barrier recovery after thrombin stimulation. Our study demonstrates that N-WASP, by mediating p120-catenin interaction with actin-polymerizing machinery, maintains AJs and mitigates disruption of endothelial barrier function by edemagenic agents, therefore representing a novel target for preventing leaky endothelial barrier syndrome.
Collapse
Affiliation(s)
- Charu Rajput
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chacón MR, Navarro AI, Cuesto G, del Pino I, Scott R, Morales M, Rico B. Focal adhesion kinase regulates actin nucleation and neuronal filopodia formation during axonal growth. Development 2012; 139:3200-10. [DOI: 10.1242/dev.080564] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The establishment of neural circuits depends on the ability of axonal growth cones to sense their surrounding environment en route to their target. To achieve this, a coordinated rearrangement of cytoskeleton in response to extracellular cues is essential. Although previous studies have identified different chemotropic and adhesion molecules that influence axonal development, the molecular mechanism by which these signals control the cytoskeleton remains poorly understood. Here, we show that in vivo conditional ablation of the focal adhesion kinase gene (Fak) from mouse hippocampal pyramidal cells impairs axon outgrowth and growth cone morphology during development, which leads to functional defects in neuronal connectivity. Time-lapse recordings and in vitro FRAP analysis indicate that filopodia motility is altered in growth cones lacking FAK, probably owing to deficient actin turnover. We reveal the intracellular pathway that underlies this process and describe how phosphorylation of the actin nucleation-promoting factor N-WASP is required for FAK-dependent filopodia formation. Our study reveals a novel mechanism through which FAK controls filopodia formation and actin nucleation during axonal development.
Collapse
Affiliation(s)
- Mariola R. Chacón
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, 03550 Sant Joan d’Alacant, Alicante, Spain
| | - Ana I. Navarro
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, 03550 Sant Joan d’Alacant, Alicante, Spain
| | - German Cuesto
- Structural Synaptic Plasticity Laboratory, Center for Biomedical Research of La Rioja, CIBIR, 26006 Logroño, Spain
| | - Isabel del Pino
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, 03550 Sant Joan d’Alacant, Alicante, Spain
| | - Ricardo Scott
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, 03550 Sant Joan d’Alacant, Alicante, Spain
| | - Miguel Morales
- Structural Synaptic Plasticity Laboratory, Center for Biomedical Research of La Rioja, CIBIR, 26006 Logroño, Spain
| | - Beatriz Rico
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, 03550 Sant Joan d’Alacant, Alicante, Spain
| |
Collapse
|
44
|
WIP remodeling actin behind the scenes: how WIP reshapes immune and other functions. Int J Mol Sci 2012; 13:7629-7647. [PMID: 22837718 PMCID: PMC3397550 DOI: 10.3390/ijms13067629] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 01/09/2023] Open
Abstract
Actin polymerization is a fundamental cellular process regulating immune cell functions and the immune response. The Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor, which is exclusively expressed in hematopoietic cells, where it plays a key regulatory role in cytoskeletal dynamics. WASp interacting protein (WIP) was first discovered as the binding partner of WASp, through the use of the yeast two hybrid system. WIP was later identified as a chaperone of WASp, necessary for its stability. Mutations occurring at the WASp homology 1 domain (WH1), which serves as the WIP binding site, were found to cause the Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT). WAS manifests as an immune deficiency characterized by eczema, thrombocytopenia, recurrent infections, and hematopoietic malignancies, demonstrating the importance of WIP for WASp complex formation and for a proper immune response. WIP deficiency was found to lead to different abnormalities in the activity of various lymphocytes, suggesting differential cell-dependent roles for WIP. Additionally, WIP deficiency causes cellular abnormalities not found in WASp-deficient cells, indicating that WIP fulfills roles beyond stabilizing WASp. Indeed, WIP was shown to interact with various binding partners, including the signaling proteins Nck, CrkL and cortactin. Recent studies have demonstrated that WIP also takes part in non immune cellular processes such as cancer invasion and metastasis, in addition to cell subversion by intracellular pathogens. Understanding of numerous functions of WIP can enhance our current understanding of activation and function of immune and other cell types.
Collapse
|
45
|
Park J, Sung JY, Park J, Song WJ, Chang S, Chung KC. Dyrk1A negatively regulates the actin cytoskeleton through threonine phosphorylation of N-WASP. J Cell Sci 2012; 125:67-80. [PMID: 22250195 DOI: 10.1242/jcs.086124] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neural Wiskott-Aldrich syndrome protein (N-WASP) is involved in tight regulation of actin polymerization and dynamics. N-WASP activity is regulated by intramolecular interaction, binding to small GTPases and tyrosine phosphorylation. Here, we report on a novel regulatory mechanism; we demonstrate that N-WASP interacts with dual-specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A). In vitro kinase assays indicate that Dyrk1A directly phosphorylates the GTPase-binding domain (GBD) of N-WASP at three sites (Thr196, Thr202 and Thr259). Phosphorylation of the GBD by Dyrk1A promotes the intramolecular interaction of the GBD and verprolin, cofilin and acidic (VCA) domains of N-WASP, and subsequently inhibits Arp2/3-complex-mediated actin polymerization. Overexpression of either Dyrk1A or a phospho-mimetic N-WASP mutant inhibits filopodia formation in COS-7 cells. By contrast, the knockdown of Dyrk1A expression or overexpression of a phospho-deficient N-WASP mutant promotes filopodia formation. Furthermore, the overexpression of a phospho-mimetic N-WASP mutant significantly inhibits dendritic spine formation in primary hippocampal neurons. These findings suggest that Dyrk1A negatively regulates actin filament assembly by phosphorylating N-WASP, which ultimately promotes the intramolecular interaction of its GBD and VCA domains. These results provide insight on the mechanisms contributing to diverse actin-based cellular processes such as cell migration, endocytosis and neuronal differentiation.
Collapse
Affiliation(s)
- Joongkyu Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
46
|
Kaminska J, Spiess M, Stawiecka-Mirota M, Monkaityte R, Haguenauer-Tsapis R, Urban-Grimal D, Winsor B, Zoladek T. Yeast Rsp5 ubiquitin ligase affects the actin cytoskeleton in vivo and in vitro. Eur J Cell Biol 2011; 90:1016-28. [DOI: 10.1016/j.ejcb.2011.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 08/11/2011] [Accepted: 08/17/2011] [Indexed: 10/16/2022] Open
|
47
|
Dyachok J, Zhu L, Liao F, He J, Huq E, Blancaflor EB. SCAR mediates light-induced root elongation in Arabidopsis through photoreceptors and proteasomes. THE PLANT CELL 2011; 23:3610-26. [PMID: 21972261 PMCID: PMC3229138 DOI: 10.1105/tpc.111.088823] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/09/2011] [Accepted: 09/17/2011] [Indexed: 05/18/2023]
Abstract
The ARP2/3 complex, a highly conserved nucleator of F-actin, and its activator, the SCAR complex, are essential for growth in plants and animals. In this article, we present a pathway through which roots of Arabidopsis thaliana directly perceive light to promote their elongation. The ARP2/3-SCAR complex and the maintenance of longitudinally aligned F-actin arrays are crucial components of this pathway. The involvement of the ARP2/3-SCAR complex in light-regulated root growth is supported by our finding that mutants of the SCAR complex subunit BRK1/HSPC300, or other individual subunits of the ARP2/3-SCAR complex, showed a dramatic inhibition of root elongation in the light, which mirrored reduced growth of wild-type roots in the dark. SCAR1 degradation in dark-grown wild-type roots by constitutive photomorphogenic 1 (COP1) E3 ligase and 26S proteasome accompanied the loss of longitudinal F-actin and reduced root growth. Light perceived by the root photoreceptors, cryptochrome and phytochrome, suppressed COP1-mediated SCAR1 degradation. Taken together, our data provide a biochemical explanation for light-induced promotion of root elongation by the ARP2/3-SCAR complex.
Collapse
Affiliation(s)
- Julia Dyachok
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Ling Zhu
- Section of Molecular Cell and Developmental Biology and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Fuqi Liao
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Ji He
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Enamul Huq
- Section of Molecular Cell and Developmental Biology and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Elison B. Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- Address correspondence to
| |
Collapse
|
48
|
Franco A, Knafo S, Banon-Rodriguez I, Merino-Serrais P, Fernaud-Espinosa I, Nieto M, Garrido JJ, Esteban JA, Wandosell F, Anton IM. WIP is a negative regulator of neuronal maturation and synaptic activity. ACTA ACUST UNITED AC 2011; 22:1191-202. [PMID: 21810783 DOI: 10.1093/cercor/bhr199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Wiskott-Aldrich syndrome protein (WASP) -interacting protein (WIP) is an actin-binding protein involved in the regulation of actin polymerization in cells, such as fibroblasts and lymphocytes. Despite its recognized function in non-neuronal cells, the role of WIP in the central nervous system has not been examined previously. We used WIP-deficient mice to examine WIP function both in vivo and in vitro. We report here that WIP(-)(/-) hippocampal neurons exhibit enlargement of somas as well as overgrowth of neuritic and dendritic branches that are more evident in early developmental stages. Dendritic arborization and synaptogenesis, which includes generation of postsynaptic dendritic spines, are actin-dependent processes that occur in parallel at later stages. WIP deficiency also increases the amplitude and frequency of miniature excitatory postsynaptic currents, suggesting that WIP(-)(/-) neurons have more mature synapses than wild-type neurons. These findings reveal WIP as a previously unreported regulator of neuronal maturation and synaptic activity.
Collapse
Affiliation(s)
- A Franco
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Round JE, Sun H. The adaptor protein Nck2 mediates Slit1-induced changes in cortical neuron morphology. Mol Cell Neurosci 2011; 47:265-73. [PMID: 21600986 DOI: 10.1016/j.mcn.2011.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/18/2011] [Accepted: 04/28/2011] [Indexed: 01/24/2023] Open
Abstract
Slits are multifunctional guidance cues, capable of triggering neurite repulsion, extension, or branching, depending on cell type and developmental context. While the Robo family of Slit receptors is a well-established mediator of axon repulsion, a role for Robos in Slit-mediated neurite growth and branching is not well defined, and the signaling molecules that link Robo to the cytoskeletal changes that drive neurite outgrowth are not well characterized in vertebrates. We show that Slit stimulates cortical dendrite branching, and we report that Slit also triggers a robust increase in the length of cortical axons in vitro. Moreover, neurons derived from Robo1; Robo2 deficient mice do not display an increase in neurite length, indicating that endogenous Robos mediate Slit's growth-promoting effects on both axons and dendrites. We also demonstrate that the SH2/SH3 adaptor proteins Nck1 and Nck2 bind to Robo via an atypical SH3-mediated mechanism. Furthermore, we show that only Nck2 is required for the Slit-induced changes in cortical neuron morphology in vitro. These findings indicate a specific role for Nck2 in linking Robo activation to the cytoskeleton rearrangements that shape cortical neuron morphology.
Collapse
Affiliation(s)
- Jennifer E Round
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, United States.
| | | |
Collapse
|
50
|
Dovas A, Cox D. Regulation of WASp by phosphorylation: Activation or other functions? Commun Integr Biol 2011; 3:101-5. [PMID: 20585499 DOI: 10.4161/cib.3.2.10759] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 11/28/2009] [Indexed: 11/19/2022] Open
Abstract
Wiskott-Aldrich Syndrome protein (WASp) is an actin nucleation-promoting factor that regulates actin polymerisation via the Arp2/3 complex. Its mutation in human syndromes has led to extensive studies on the regulation and activities of this molecule. Several mechanisms for the regulation of WASp activity have been proposed, however, the role of tyrosine phosphorylation remains controversial, particularly due to inconsistencies between results obtained through biochemical and cell biological approaches. In this mini-review, we are addressing the major aspects of WASp regulation with an emphasis on the role of tyrosine phosphorylation on WASp activities.
Collapse
|