1
|
Lovre D, Qadir MMF, Bateman K, Saltzman LY, Sherman M, Mauvais-Jarvis F. Acute estradiol and progesterone therapy in hospitalized adults to reduce COVID-19 severity: a randomized control trial. Sci Rep 2024; 14:22732. [PMID: 39349554 PMCID: PMC11442588 DOI: 10.1038/s41598-024-73263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
COVID-19 outcomes are less severe in women than men suggesting that female sex is protective. The steroids estradiol (E2) and progesterone (P4) promote anti-inflammatory immune responses and their therapeutic use for COVID-19 has been under investigation. The aim of the study was to evaluate the efficacy of a short systemic E2 and P4 combination in mitigating COVID-19 severity in hospitalized men and women. In a phase 2, single center, double blind, randomized placebo-controlled trial, ten male and female participants hospitalized for COVID-19 with scores 3-5 on the 9-point WHO ordinal scale were randomized to receive either (1) E2 cypionate (5 mg, IM) and micronized P4 (200 mg, PO), or (2) placebo-equivalent, in addition to standard of care (SOC). The primary outcome was the proportion of patients whose WHO scores improved to 1-2 on the day of discharge. Secondary outcomes included length of hospital stay (LOS), days on oxygen therapy (DOT), readmission rates (RR), adverse events (AEs), and change in circulating biomarkers using untargeted proteomics and cytokine profiling. There were no significant changes between the groups in primary outcome, LOS, DOT, RR or AEs. The E2P4 group exhibited a decrease in biomarker pathways of respiratory and gastrointestinal disease inflammation, infection by coronavirus, and immune cell trafficking and inflammatory response. A short-term E2P4 treatment in patients hospitalized for COVID-19 decreases biomarkers of inflammation. Considering the availability, low cost, and safety of E2 and P4, our results warrant additional studies to explore their effects in mitigating other viral pandemics. Clinical Trial Registration NCT04865029, ClinicalTrials.gov; (First trial registration 29/04/2021).
Collapse
Affiliation(s)
- Dragana Lovre
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Section of Endocrinology, Department of Medicine, Southeast Louisiana Veterans Health Care System, New Orleans, LA, 70119, USA.
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, 70112, USA.
| | - M M Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Section of Endocrinology, Department of Medicine, Southeast Louisiana Veterans Health Care System, New Orleans, LA, 70119, USA
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, 70112, USA
| | - Kristin Bateman
- Section of General Internal Medicine and Geriatrics, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Leia Y Saltzman
- Tulane University School of Social Work, New Orleans, LA, 70112, USA
| | - Mya Sherman
- Institutional Review Board - Health Science Research, University of Virginia, Charlottesville, VA, 22908, USA
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Section of Endocrinology, Department of Medicine, Southeast Louisiana Veterans Health Care System, New Orleans, LA, 70119, USA.
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
3
|
Cron RQ. IL-1 Family Blockade in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:553-563. [PMID: 39117838 DOI: 10.1007/978-3-031-59815-9_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Interleukin-1 is a prototypic proinflammatory cytokine that is elevated in cytokine storm syndromes (CSSs), such as secondary hemophagocytic lymphohistiocytosis (sHLH) and macrophage activation syndrome (MAS). IL-1 has many pleotropic and redundant roles in both innate and adaptive immune responses. Blockade of IL-1 with recombinant human interleukin-1 receptor antagonist has shown efficacy in treating CSS. Recently, an IL-1 family member, IL-18, has been demonstrated to be contributory to CSS in autoinflammatory conditions, such as in inflammasomopathies (e.g., NLRC4 mutations). Anecdotally, recombinant IL-18 binding protein can be of benefit in treating IL-18-driven CSS. Lastly, another IL-1 family member, IL-33, has been postulated to contribute to CSS in an animal model of disease. Targeting of IL-1 and related cytokines holds promise in treating a variety of CSS.
Collapse
|
4
|
Zhang L, Zhang X, Deng X, Wang P, Mo Y, Zhang Y, Tong X. Cytokines as drivers: Unraveling the mechanisms of epithelial-mesenchymal transition in COVID-19 lung fibrosis. Biochem Biophys Res Commun 2023; 686:149118. [PMID: 37931361 DOI: 10.1016/j.bbrc.2023.10.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), like other viruses, can induce proliferation of myofibroblasts and even lead to fibrosis in the lung. Epithelial-mesenchymal transition (EMT) is thought to play an essential role in the pathogenesis of Coronavirus disease 19 (COVID-19). EMT is originally a critical process that regulates the development of different tissues in the embryo, but in inflammatory situations, EMT tries to be activated again to control inflammation or even heal inflammatory damage. However, in pathological situations, such as chronic viral infections (e.g., COVID-19) or pulmonary fibrosis initiation, this benign healing transforms into sinister nature, pushing the lung into the fibrotic process. Notably, the cytokines released by inflammatory cells and the chronic inflammatory microenvironment shared by fibrotic cells promote each other as critical factors in the induction of pathological EMT. In the induction of SARS-CoV-2 virus, cytokines are an essential mediator of EMT transformation, and a summary of whether COVID-19 patients, during the infection phase, have many persistent inflammatory mediators (cytokines) that are a causative factor of EMT has not yet appeared. The following common signaling drivers, including Transforming growth factor beta (TGF-β), cytokines, Notch signaling pathway, Wnt and hypoxia signaling pathways, drive the regulation of EMT. In this review, we will focus on 3 key EMT signaling pathways: TGF-β, Leucine zipper transcription factor like 1 (LZTFL1) and the common interleukin family expressed in the lung. TGF-β-induced SNAIL and LZTFL1 were identified as regulatory EMT in COVID-19. For cytokines, the interleukin family is a common inducer of EMT and plays an essential role in the formation of the microenvironment of fibrosis. We sought to demonstrate that cytokines act as "communicators" and build the "microenvironment" of fibrosis together with EMT as a "bridge" to induce EMT in fibrosis. The mechanisms utilized by these two pathways could serve as templates for other mesenchymal transformations and provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Lanlan Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China; State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, China.
| | - Xin Zhang
- Department of Gastroenterology, West China (Airport) Hospital of Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaoqian Deng
- Department of Anesthesiology, West China Hospital, Sichuan university, Chengdu, China
| | - Pengbo Wang
- School of Professional Studies, Columbia University, USA
| | - Yan Mo
- Department of Neurology Medicine, The Aviation Industry Corporation of China (AVIC) 363 Hospital, Chengdu, China
| | - Yuansheng Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Tong
- Department of Gastroenterology, West China (Airport) Hospital of Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Mazzocco YL, Bergero G, Del Rosso S, Eberhardt N, Sola C, Saka HA, Villada SM, Bocco JL, Aoki MP. Differential expression patterns of purinergic ectoenzymes and the antioxidative role of IL-6 in hospitalized COVID-19 patient recovery. Front Immunol 2023; 14:1227873. [PMID: 37818368 PMCID: PMC10560791 DOI: 10.3389/fimmu.2023.1227873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction We have acquired significant knowledge regarding the pathogenesis of severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2). However, the underlying mechanisms responsible for disease recovery still need to be fully understood. Methods To gain insights into critical immune markers involved in COVID-19 etiopathogenesis, we studied the evolution of the immune profile of peripheral blood samples from patients who had recovered from COVID-19 and compared them to subjects with severe acute respiratory illness but negative for SARS-CoV-2 detection (controls). In addition, linear and clustered correlations between different parameters were determined. Results The data obtained revealed a significant reduction in the frequency of inflammatory monocytes (CD14+CD16+) at hospital discharge vs. admission. Remarkably, nitric oxide (NO) production by the monocyte compartment was significantly reduced at discharge. Furthermore, interleukin (IL)-6 plasma levels were negatively correlated with the frequency of NO+CD14+CD16+ monocytes at hospital admission. However, at the time of hospital release, circulating IL-6 directly correlated with the NO production rate by monocytes. In line with these observations, we found that concomitant with NO diminution, the level of nitrotyrosine (NT) on CD8 T-cells significantly diminished at the time of hospital release. Considering that purinergic signaling constitutes another regulatory system, we analyzed the kinetics of CD39 and CD73 ectoenzyme expression in CD8 T-cells. We found that the frequency of CD39+CD8+ T-cells significantly diminished while the percentage of CD73+ cells increased at hospital discharge. In vitro, IL-6 stimulation of PBMCs from COVID-19 patients diminished the NT levels on CD8 T-cells. A clear differential expression pattern of CD39 and CD73 was observed in the NT+ vs. NT-CD8+ T-cell populations. Discussion The results suggest that early after infection, IL-6 controls the production of NO, which regulates the levels of NT on CD8 T-cells modifying their effector functions. Intriguingly, in this cytotoxic cell population, the expression of purinergic ectoenzymes is tightly associated with the presence of nitrated surface molecules. Overall, the data obtained contribute to a better understanding of pathogenic mechanisms associated with COVID-19 outcomes.
Collapse
Affiliation(s)
- Yanina Luciana Mazzocco
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Gastón Bergero
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Sebastian Del Rosso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Natalia Eberhardt
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Claudia Sola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Héctor Alex Saka
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Sofía María Villada
- Servicio de Enfermedades Infecciosas, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - José Luis Bocco
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Maria Pilar Aoki
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| |
Collapse
|
6
|
Wilkinson T, De Soyza A, Carroll M, Chalmers JD, Crooks MG, Griffiths G, Shankar-Hari M, Ho LP, Horsley A, Kell C, Lara B, Mishra B, Moate R, Page C, Pandya H, Raw J, Reid F, Saralaya D, Scott IC, Siddiqui S, Ustianowski A, van Zuydam N, Woodcock A, Singh D. A randomised phase 2a study to investigate the effects of blocking interleukin-33 with tozorakimab in patients hospitalised with COVID-19: ACCORD-2. ERJ Open Res 2023; 9:00249-2023. [PMID: 37868151 PMCID: PMC10588785 DOI: 10.1183/23120541.00249-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/25/2023] [Indexed: 10/24/2023] Open
Abstract
Background Increased serum interleukin (IL)-33 predicts poor outcomes in patients hospitalised with coronavirus disease 2019 (COVID-19). We examined the efficacy and safety of tozorakimab, a monoclonal antibody that neutralises IL-33, in improving outcomes in ACCORD-2 (EudraCT: 2020-001736-95). Methods ACCORD-2 was an open-label, phase 2a study in adults hospitalised with COVID-19. Patients were randomised 1:1 to tozorakimab 300 mg plus standard of care (SoC) or SoC alone. The primary end-point was time to clinical response (sustained clinical improvement of ≥2 points on the World Health Organization ordinal scale, discharge from hospital or fit for discharge) by day 29. Other end-points included death or respiratory failure, mortality and intensive care unit admission by day 29, and safety. Serum IL-33/soluble stimulated-2 (sST2) complex levels were measured by high-sensitivity immunoassay. Results Efficacy analyses included 97 patients (tozorakimab+SoC, n=53; SoC, n=44). Median time to clinical response did not differ between the tozorakimab and SoC arms (8.0 and 9.5 days, respectively; HR 0.96, 80% CI 0.70-1.31; one-sided p=0.33). Tozorakimab was well tolerated and the OR for risk of death or respiratory failure with treatment versus SoC was 0.55 (80% CI 0.27-1.12; p=0.26), while the OR was 0.31 (80% CI 0.09-1.06) in patents with high baseline serum IL-33/sST2 complex levels. Conclusions Overall, ACCORD-2 results suggest that tozorakimab could be a novel therapy for patients hospitalised with COVID-19, warranting further investigation in confirmatory phase 3 studies.
Collapse
Affiliation(s)
- Tom Wilkinson
- NIHR Southampton Biomedical Research Centre and University of Southampton, Southampton, UK
| | - Anthony De Soyza
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Miles Carroll
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | | | - Gareth Griffiths
- Southampton Clinical Trials Unit, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Ling-Pei Ho
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford, UK
| | - Alex Horsley
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Chris Kell
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Beatriz Lara
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | | | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| | - Hitesh Pandya
- Clinical Development, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Fred Reid
- Clinical Development, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dinesh Saralaya
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Ian C. Scott
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Salman Siddiqui
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Andy Ustianowski
- Regional Infection Unit, North Manchester General Hospital, Manchester, UK
| | | | - Ashley Woodcock
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
7
|
Wang Y, Cheng D, Li Z, Sun W, Zhou S, Peng L, Xiong H, Jia X, Li W, Han L, Liu Y, Ni C. IL33-mediated NPM1 promotes fibroblast-to-myofibroblast transition via ERK/AP-1 signaling in silica-induced pulmonary fibrosis. Toxicol Sci 2023; 195:71-86. [PMID: 37399107 DOI: 10.1093/toxsci/kfad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023] Open
Abstract
Silicosis is a global occupational pulmonary disease due to the accumulation of silica dust in the lung. Lacking effective clinical drugs makes the treatment of this disease quite challenging in clinics largely because the pathogenic mechanisms remain obscure. Interleukin 33 (IL33), a pleiotropic cytokine, could promote wound healing and tissue repair via the receptor ST2. However, the mechanisms governing the involvement of IL33 in silicosis progression remain to be further explored. Here, we demonstrated that the IL33 levels in the lung sections were significantly overexpressed after bleomycin and silica treatment. Chromatin immunoprecipitation assay, knockdown, and reverse experiments were performed in lung fibroblasts to prove gene interaction following exogenous IL33 treatment or cocultured with silica-treated lung epithelial cells. Mechanistically, we illustrated that silica-stimulated lung epithelial cells secreted IL33 and further promoted the activation, proliferation, and migration of pulmonary fibroblasts by activating the ERK/AP-1/NPM1 signaling pathway in vitro. And more, treatment with NPM1 siRNA-loaded liposomes markedly protected mice from silica-induced pulmonary fibrosis in vivo. In conclusion, the involvement of NPM1 in the progression of silicosis is regulated by the IL33/ERK/AP-1 signaling axis, which is the potential therapeutic target candidate in developing novel antifibrotic strategies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yue Wang
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ziwei Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lan Peng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haojie Xiong
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinying Jia
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210028, China
| | - Lei Han
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210028, China
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
8
|
Guo TJF, Singhera GK, Leung JM, Dorscheid DR. Airway Epithelial-Derived Immune Mediators in COVID-19. Viruses 2023; 15:1655. [PMID: 37631998 PMCID: PMC10458661 DOI: 10.3390/v15081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The airway epithelium, which lines the conducting airways, is central to the defense of the lungs against inhaled particulate matter and pathogens such as SARS-CoV-2, the virus that causes COVID-19. Recognition of pathogens results in the activation of an innate and intermediate immune response which involves the release of cytokines and chemokines by the airway epithelium. This response can inhibit further viral invasion and influence adaptive immunity. However, severe COVID-19 is characterized by a hyper-inflammatory response which can give rise to clinical presentations including lung injury and lead to acute respiratory distress syndrome, viral pneumonia, coagulopathy, and multi-system organ failure. In response to SARS-CoV-2 infection, the airway epithelium can mount a maladaptive immune response which can delay viral clearance, perpetuate excessive inflammation, and contribute to the pathogenesis of severe COVID-19. In this article, we will review the barrier and immune functions of the airway epithelium, how SARS-CoV-2 can interact with the epithelium, and epithelial-derived cytokines and chemokines and their roles in COVID-19 and as biomarkers. Finally, we will discuss these immune mediators and their potential as therapeutic targets in COVID-19.
Collapse
Affiliation(s)
- Tony J. F. Guo
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
| | - Gurpreet K. Singhera
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Janice M. Leung
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Delbert R. Dorscheid
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
9
|
Macchia I, La Sorsa V, Urbani F, Moretti S, Antonucci C, Afferni C, Schiavoni G. Eosinophils as potential biomarkers in respiratory viral infections. Front Immunol 2023; 14:1170035. [PMID: 37483591 PMCID: PMC10358847 DOI: 10.3389/fimmu.2023.1170035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Eosinophils are bone marrow-derived granulocytes that, under homeostatic conditions, account for as much as 1-3% of peripheral blood leukocytes. During inflammation, eosinophils can rapidly expand and infiltrate inflamed tissues, guided by cytokines and alarmins (such as IL-33), adhesion molecules and chemokines. Eosinophils play a prominent role in allergic asthma and parasitic infections. Nonetheless, they participate in the immune response against respiratory viruses such as respiratory syncytial virus and influenza. Notably, respiratory viruses are associated with asthma exacerbation. Eosinophils release several molecules endowed with antiviral activity, including cationic proteins, RNases and reactive oxygen and nitrogen species. On the other hand, eosinophils release several cytokines involved in homeostasis maintenance and Th2-related inflammation. In the context of SARS-CoV-2 infection, emerging evidence indicates that eosinophils can represent possible blood-based biomarkers for diagnosis, prognosis, and severity prediction of disease. In particular, eosinopenia seems to be an indicator of severity among patients with COVID-19, whereas an increased eosinophil count is associated with a better prognosis, including a lower incidence of complications and mortality. In the present review, we provide an overview of the role and plasticity of eosinophils focusing on various respiratory viral infections and in the context of viral and allergic disease comorbidities. We will discuss the potential utility of eosinophils as prognostic/predictive immune biomarkers in emerging respiratory viral diseases, particularly COVID-19. Finally, we will revisit some of the relevant methods and tools that have contributed to the advances in the dissection of various eosinophil subsets in different pathological settings for future biomarker definition.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina La Sorsa
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Caterina Antonucci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
10
|
Loinjak D, Mihić D, Smolić R, Maričić L, Šahinović I, Smolić M, Sikora R, Loinjak S, Dinjar K, Včev A. The Correlation of Serum Calpain 1 Activity and Concentrations of Interleukin 33 in COVID-19 Acute Respiratory Distress Syndrome. Biomedicines 2023; 11:1847. [PMID: 37509486 PMCID: PMC10376760 DOI: 10.3390/biomedicines11071847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is one of the most severe complications of the COVID-19 disease. The role of IL-33 and calpain 1 was previously described in lung infections and lung tissue damage. Our study examined the association between serum calpain 1 activity and IL-33 concentration in patients with COVID-19 ARDS. In the research, we included 80 subjects who had COVID-19 pneumonia and divided them into 2 groups: 40 subjects with ARDS and 40 subjects without ARDS. The basis of the research was the collection of subjects' data and the sampling of peripheral venous blood. The concentration of IL-33 was determined by the ELISA method and the activity of calpain 1 by the fluorometry method. Our research showed elevated calpain 1 activity and IL-33 concentration in the serum of COVID-19 patients who developed ARDS compared to those who did not develop ARDS and a positive correlation between them was established. Further, a positive correlation was established between the examined parameters and the severity of the disease, proinflammatory markers, and the use of mechanical ventilation. These results indicate a possible association and role of calpain 1 and IL-33 with the development of ARDS in COVID-19 patients.
Collapse
Affiliation(s)
- Domagoj Loinjak
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Pulmology and Intensive Care Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Damir Mihić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Pulmology and Intensive Care Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Robert Smolić
- Faculty of Dental Medicine and Health Osijek, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
| | - Lana Maričić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Heart and Vascular Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Ines Šahinović
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Clinical Laboratory Diagnostics, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Martina Smolić
- Faculty of Dental Medicine and Health Osijek, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
| | - Renata Sikora
- Faculty of Dental Medicine and Health Osijek, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
| | - Sanja Loinjak
- Faculty of Dental Medicine and Health Osijek, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Maxillofacial and Oral Surgery, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Kristijan Dinjar
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Maxillofacial and Oral Surgery, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Aleksandar Včev
- Faculty of Dental Medicine and Health Osijek, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
| |
Collapse
|
11
|
England E, Rees DG, Scott IC, Carmen S, Chan DTY, Chaillan Huntington CE, Houslay KF, Erngren T, Penney M, Majithiya JB, Rapley L, Sims DA, Hollins C, Hinchy EC, Strain MD, Kemp BP, Corkill DJ, May RD, Vousden KA, Butler RJ, Mustelin T, Vaughan TJ, Lowe DC, Colley C, Cohen ES. Tozorakimab (MEDI3506): an anti-IL-33 antibody that inhibits IL-33 signalling via ST2 and RAGE/EGFR to reduce inflammation and epithelial dysfunction. Sci Rep 2023; 13:9825. [PMID: 37330528 PMCID: PMC10276851 DOI: 10.1038/s41598-023-36642-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023] Open
Abstract
Interleukin (IL)-33 is a broad-acting alarmin cytokine that can drive inflammatory responses following tissue damage or infection and is a promising target for treatment of inflammatory disease. Here, we describe the identification of tozorakimab (MEDI3506), a potent, human anti-IL-33 monoclonal antibody, which can inhibit reduced IL-33 (IL-33red) and oxidized IL-33 (IL-33ox) activities through distinct serum-stimulated 2 (ST2) and receptor for advanced glycation end products/epidermal growth factor receptor (RAGE/EGFR complex) signalling pathways. We hypothesized that a therapeutic antibody would require an affinity higher than that of ST2 for IL-33, with an association rate greater than 107 M-1 s-1, to effectively neutralize IL-33 following rapid release from damaged tissue. An innovative antibody generation campaign identified tozorakimab, an antibody with a femtomolar affinity for IL-33red and a fast association rate (8.5 × 107 M-1 s-1), which was comparable to soluble ST2. Tozorakimab potently inhibited ST2-dependent inflammatory responses driven by IL-33 in primary human cells and in a murine model of lung epithelial injury. Additionally, tozorakimab prevented the oxidation of IL-33 and its activity via the RAGE/EGFR signalling pathway, thus increasing in vitro epithelial cell migration and repair. Tozorakimab is a novel therapeutic agent with a dual mechanism of action that blocks IL-33red and IL-33ox signalling, offering potential to reduce inflammation and epithelial dysfunction in human disease.
Collapse
Affiliation(s)
| | - D Gareth Rees
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Ian Christopher Scott
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sara Carmen
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Kirsty F Houslay
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Teodor Erngren
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mark Penney
- Early Oncology DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jayesh B Majithiya
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Laura Rapley
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dorothy A Sims
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Claire Hollins
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Elizabeth C Hinchy
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Dominic J Corkill
- Bioscience In Vivo, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Richard D May
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - David C Lowe
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | - E Suzanne Cohen
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
12
|
Zou L, Dang W, Tao Y, Zhao H, Yang B, Xu X, Li Y. THE IL-33/ST2 AXIS PROMOTES ACUTE RESPIRATORY DISTRESS SYNDROME BY NATURAL KILLER T CELLS. Shock 2023; 59:902-911. [PMID: 36870074 PMCID: PMC10227934 DOI: 10.1097/shk.0000000000002114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
ABSTRACT Acute respiratory distress syndrome (ARDS) is characterized by uncontrolled inflammation, which manifests as leukocyte infiltration and lung injury. However, the molecules that initiate this infiltration remain incompletely understood. We evaluated the effect of the nuclear alarmin IL-33 on lung damage and the immune response in LPS-induced lung injury. We established a LPS-induced lung injury mouse model. We used genetically engineered mice to investigate the relationship among the IL-33/ST2 axis, NKT cells, and ARDS. We found that IL-33 was localized to the nucleus in alveolar epithelial cells, from which it was released 1 h after ARDS induction in wild-type (WT) mice. Mice lacking IL-33 (IL-33 - / - ) or ST2 (ST2 - / - ) exhibited reduced neutrophil infiltration, alveolar capillary leakage, and lung injury in ARDS compared with WT mice. This protection was associated with decreased lung recruitment and activation of invariant nature killer (iNKT) cells and activation of traditional T cells. Then, we validated that iNKT cells were deleterious in ARDS in CD1d - / - and Vα14Τg mice. Compared with WT mice, Vα14Τg mice exhibited increased lung injury in ARDS, and the CD1d - / - mice showed outcomes opposite those of the Vα14Τg mice. Furthermore, we administered a neutralizing anti-ST2 antibody to LPS-treated WT and Vα14Τg mice 1 h before LPS administration. We found that IL-33 promoted inflammation through NKT cells in ARDS. In summary, our results demonstrated that the IL-33/ST2 axis promotes the early uncontrolled inflammatory response in ARDS by activating and recruiting iNKT cells. Therefore, IL-33 and NKT cells may be therapeutic target molecules and immune cells, respectively, in early ARDS cytokine storms.
Collapse
Affiliation(s)
- Lijuan Zou
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Emergency Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenpei Dang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Emergency Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Emergency Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Zhao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Emergency Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Emergency Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Xu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Emergency Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Emergency Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Tsilioni I, Theoharides TC. Recombinant SARS-CoV-2 Spike Protein Stimulates Secretion of Chymase, Tryptase, and IL-1β from Human Mast Cells, Augmented by IL-33. Int J Mol Sci 2023; 24:ijms24119487. [PMID: 37298438 DOI: 10.3390/ijms24119487] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
SARS-CoV-2 infects cells via its spike (S) protein binding to its surface receptor angiotensin-converting enzyme 2 (ACE2) and results in the production of multiple proinflammatory cytokines, especially in the lungs, leading to what is known as COVID-19. However, the cell source and the mechanism of secretion of such cytokines have not been adequately characterized. In this study, we used human cultured mast cells that are plentiful in the lungs and showed that recombinant SARS-CoV-2 full-length S protein (1-10 ng/mL), but not its receptor-binding domain (RBD), stimulates the secretion of the proinflammatory cytokine interleukin-1β (IL-1β) as well as the proteolytic enzymes chymase and tryptase. The secretion of IL-1β, chymase, and tryptase is augmented by the co-administration of interleukin-33 (IL-33) (30 ng/mL). This effect is mediated via toll-like receptor 4 (TLR4) for IL-1β and via ACE2 for chymase and tryptase. These results provide evidence that the SARS-CoV-2 S protein contributes to inflammation by stimulating mast cells through different receptors and could lead to new targeted treatment approaches.
Collapse
Affiliation(s)
- Irene Tsilioni
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Theoharis C Theoharides
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL 33759, USA
| |
Collapse
|
14
|
Gatti A, Zizzo G, De Paschale M, Tamburello A, Castelnovo L, Faggioli PM, Clerici P, Brando B, Mazzone A. Assessing SARS-CoV-2-specific T-cell reactivity in late convalescents and vaccinees: Comparison and combination of QuantiFERON and activation-induced marker assays, and relation with antibody status. PLoS One 2023; 18:e0285728. [PMID: 37220145 DOI: 10.1371/journal.pone.0285728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
OBJECTIVES Monitoring of SARS-CoV-2 spread and vaccination strategies have relied on antibody (Ab) status as a correlate of protection. We used QuantiFERON™ (QFN) and Activation-Induced Marker (AIM) assays to measure memory T-cell reactivity in unvaccinated individuals with prior documented symptomatic infection (late convalescents) and fully vaccinated asymptomatic donors (vaccinees). METHODS Twenty-two convalescents and 13 vaccinees were enrolled. Serum anti-SARS-CoV-2 S1 and N Abs were measured using chemiluminescent immunoassays. QFN was performed following instructions and interferon-gamma (IFN-γ) measured by ELISA. AIM was performed on aliquots of antigen-stimulated samples from QFN tubes. SARS-CoV-2-specific memory CD4+CD25+CD134+, CD4+CD69+CD137+ and CD8+CD69+CD137+ T-cell frequencies were measured by flow cytometry. RESULTS In convalescents, substantial agreement was observed between QFN and AIM assays. IFN-γ concentrations and AIM+ (CD69+CD137+) CD4+ T-cell frequencies correlated with each other, with Ab levels and AIM+ CD8+ T-cell frequencies, whereas AIM+ (CD25+CD134+) CD4+ T-cell frequencies correlated with age. AIM+ CD4+ T-cell frequencies increased with time since infection, whereas AIM+ CD8+ T-cell expansion was greater after recent reinfection. QFN-reactivity and anti-S1 titers were lower, whereas anti-N titers were higher, and no statistical difference in AIM-reactivity and Ab positivity emerged compared to vaccinees. CONCLUSIONS Albeit on a limited sample size, we confirm that coordinated, cellular and humoral responses are detectable in convalescents up to 2 years after prior infection. Combining QFN with AIM may enhance detection of naturally acquired memory responses and help stratify virus-exposed individuals in T helper 1-type (TH1)-reactive (QFNpos AIMpos Abshigh), non-TH1-reactive (QFNneg AIMpos Abshigh/low), and pauci-reactive (QFNneg AIMneg Abslow).
Collapse
Affiliation(s)
- Arianna Gatti
- Laboratory of Haematology, Transfusion Center, Legnano Hospital, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Gaetano Zizzo
- Department of Internal Medicine, Legnano and Cuggiono Hospitals, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Massimo De Paschale
- Unit of Microbiology, Legnano Hospital, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Antonio Tamburello
- Department of Internal Medicine, Legnano and Cuggiono Hospitals, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Laura Castelnovo
- Department of Internal Medicine, Legnano and Cuggiono Hospitals, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Paola Maria Faggioli
- Department of Internal Medicine, Legnano and Cuggiono Hospitals, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Pierangelo Clerici
- Unit of Microbiology, Legnano Hospital, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Bruno Brando
- Laboratory of Haematology, Transfusion Center, Legnano Hospital, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Antonino Mazzone
- Department of Internal Medicine, Legnano and Cuggiono Hospitals, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| |
Collapse
|
15
|
Islam MS, Wang Z, Abdel-Mohsen M, Chen X, Montaner LJ. Tissue injury and leukocyte changes in post-acute sequelae of SARS-CoV-2: review of 2833 post-acute patient outcomes per immune dysregulation and microbial translocation in long COVID. J Leukoc Biol 2023; 113:236-254. [PMID: 36807444 DOI: 10.1093/jleuko/qiac001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 01/18/2023] Open
Abstract
A significant number of persons with coronavirus disease 2019 (COVID-19) experience persistent, recurrent, or new symptoms several months after the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This phenomenon, termed post-acute sequelae of SARS-CoV-2 (PASC) or long COVID, is associated with high viral titers during acute infection, a persistently hyperactivated immune system, tissue injury by NETosis-induced micro-thrombofibrosis (NETinjury), microbial translocation, complement deposition, fibrotic macrophages, the presence of autoantibodies, and lymphopenic immune environments. Here, we review the current literature on the immunological imbalances that occur during PASC. Specifically, we focus on data supporting common immunopathogenesis and tissue injury mechanisms shared across this highly heterogenous disorder, including NETosis, coagulopathy, and fibrosis. Mechanisms include changes in leukocyte subsets/functions, fibroblast activation, cytokine imbalances, lower cortisol, autoantibodies, co-pathogen reactivation, and residual immune activation driven by persistent viral antigens and/or microbial translocation. Taken together, we develop the premise that SARS-CoV-2 infection results in PASC as a consequence of acute and/or persistent single or multiple organ injury mediated by PASC determinants to include the degree of host responses (inflammation, NETinjury), residual viral antigen (persistent antigen), and exogenous factors (microbial translocation). Determinants of PASC may be amplified by comorbidities, age, and sex.
Collapse
Affiliation(s)
- Md Sahidul Islam
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China
| | - Zhaoxiong Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| | - Xin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Research Building N22, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China
| | - Luis J Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| |
Collapse
|
16
|
Ferrarini A, Vacca A, Solimando AG, Tavio M, Acquaviva R, Rocchi M, Nitti C, Salvi A, Menditto V, Luchetti Gentiloni MM, Russo A, Moretti M, Pavani M, Giacometti A, Bonifazi M, Zuccatosta L, Romani L, Racanelli V, Moroncini G, Gabrielli A, Pomponio G. Early administration of tofacitinib in COVID-19 pneumonitis: An open randomised controlled trial. Eur J Clin Invest 2023; 53:e13898. [PMID: 36380693 DOI: 10.1111/eci.13898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Controversies on sub-populations most sensitive to therapy and the best timing of starting the treatment still surround the use of immunomodulatory drugs in COVID-19. OBJECTIVES We designed a multicentre open-label randomised controlled trial to test the effect of prompt adding of tofacitinib to standard therapy for hospitalised patients affected by mild/moderate COVID-19 pneumonitis. METHODS Patients admitted to three Italian hospitals affected by COVID-19 pneumonitis not requiring mechanical ventilation were randomised to receive standard treatment alone or tofacitinib (10 mg/bid) for 2 weeks, starting within the first 24 h from admission. RESULTS A total of 116 patients were randomised; 49 in the experimental arm completed the 14-day treatment period, 9 discontinued tofacitinib as the disease worsened and were included in the analysis, and 1 died of respiratory failure. All 58 control patients completed the study. Clinical and demographic characteristics were similar between the study groups. In the tofacitinib group, 9/58 (15.5%) patients progressed to noninvasive ventilation (CPAP) to maintain SO2 > 93%, invasive mechanical ventilation or death by day 14 was 15.5%, significantly less than in the control group (20/58, 34.4%, RR 0,45, RRR -55%, NNT 5; p = .018). No differences in severe adverse effect incidence had been observed across the groups. CONCLUSION High-dose tofacitinib therapy in patients with COVID pneumonitis is safe and may prevent deterioration to respiratory failure.
Collapse
Affiliation(s)
- Alessia Ferrarini
- Clinica Medica, Ospedali Riuniti di Ancona, Ancona, Italy.,Gastroenterologia ed Endoscopia Digestiva, Ospedali Riuniti Marche Nord, Fano, Italy
| | - Angelo Vacca
- Dipartimento di Scienze Biomediche e Oncologia Umana U.O.C, Medicina Interna Universitaria "G. Baccelli" A.O.U.C, Policlinico di Bari, Bari, Italy
| | - Antonio Giovanni Solimando
- Dipartimento di Scienze Biomediche e Oncologia Umana U.O.C, Medicina Interna Universitaria "G. Baccelli" A.O.U.C, Policlinico di Bari, Bari, Italy.,IRCCS Istituto Tumori "Giovanni Paolo II" Bari, Bari, Italy
| | - Marcello Tavio
- Malattie Infettive, Ospedali Riuniti di Ancona, Ancona, Italy
| | - Rossella Acquaviva
- Dipartimento di Scienze Biomediche e Oncologia Umana U.O.C, Medicina Interna Universitaria "G. Baccelli" A.O.U.C, Policlinico di Bari, Bari, Italy
| | - Marco Rocchi
- Statistica Medica, Dipartimento di Scienze Biomolecolari, Università di Urbino, Urbino, Italy
| | - Cinzia Nitti
- Medicina Interna e Sub Intensiva, Ospedali Riuniti di Ancona, Ancona, Italy
| | - Aldo Salvi
- Medicina Interna e Sub Intensiva, Ospedali Riuniti di Ancona, Ancona, Italy
| | - Vincenzo Menditto
- Medicina Interna e Sub Intensiva, Ospedali Riuniti di Ancona, Ancona, Italy
| | | | - Alessandro Russo
- Clinica di Malattie Infettive e Tropicali Dipartimento di Scienze Mediche e Chirurgiche Università "Magna Graecia" di Catanzaro, Catanzaro, Italy
| | - Marco Moretti
- SOD Medicina di Laboratorio Ospedali Riuniti di Ancona, Ancona, Italy
| | - Marianna Pavani
- SOD Medicina di Laboratorio Ospedali Riuniti di Ancona, Ancona, Italy
| | - Andrea Giacometti
- Clinica di Malattie Infettive, Ospedali Riuniti di Ancona, Ancona, Italy
| | | | | | - Laura Romani
- Clinica Medica, Ospedali Riuniti di Ancona, Ancona, Italy
| | - Vito Racanelli
- Dipartimento di Scienze Biomediche e Oncologia Umana U.O.C, Medicina Interna Universitaria "G. Baccelli" A.O.U.C, Policlinico di Bari, Bari, Italy
| | - Gianluca Moroncini
- Clinica Medica, Ospedali Riuniti di Ancona, Ancona, Italy.,Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy
| | - Armando Gabrielli
- Clinica Medica, Ospedali Riuniti di Ancona, Ancona, Italy.,Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
17
|
Kalita E, Panda M, Rao A, Prajapati VK. Exploring the role of secretory proteins in the human infectious diseases diagnosis and therapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:231-269. [PMID: 36707203 DOI: 10.1016/bs.apcsb.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secretory proteins are playing important role during the host-pathogen interaction to develop the infection or protection into the cell. Pathogens developing infectious disease to human being are taken up by host macrophages or number of immune cells, play an important role in physiological, developmental and immunological function. At the same time, infectious agents are also secreting various proteins to neutralize the resistance caused by host cells and also helping the pathogens to develop the infection. Secretory proteins (secretome) are only developed at the time of host-pathogen interaction, therefore they become very important to develop the targeted and potential therapeutic strategies. Pathogen specific secretory proteins released during interaction with host cell provide opportunity to develop point of care and rapid diagnostic kits. Proteins secreted by pathogens at the time of interaction with host cell have also been found as immunogenic in nature and numbers of vaccines have been developed to control the spread of human infectious diseases. This chapter highlights the importance of secretory proteins in the development of diagnostic and therapeutic strategies to fight against human infectious diseases.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
18
|
Park M, Hur M, Kim H, Lee CH, Lee JH, Kim HW, Nam M, Lee S. Soluble ST2 as a Useful Biomarker for Predicting Clinical Outcomes in Hospitalized COVID-19 Patients. Diagnostics (Basel) 2023; 13:diagnostics13020259. [PMID: 36673069 PMCID: PMC9857572 DOI: 10.3390/diagnostics13020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Soluble suppression of tumorigenesis-2 (sST2) is an emerging biomarker for sepsis as well as for heart failure. We investigated the prognostic utility of sST2 for predicting clinical outcomes in hospitalized coronavirus disease 2019 (COVID-19) patients. In a total of 52 hospitalized COVID-19 patients, sST2 levels were measured using the ichroma ST2 assay (Boditech Med Inc., Chuncheon-si, Gang-won-do, Republic of Korea). Clinical outcomes included intensive care unit (ICU) admission, ventilator use, extracorporeal membrane oxygenation (ECMO) use, and 30-day mortality. sST2 was analyzed according to clinical outcomes. sST2, sequential organ failure assessment (SOFA) score, critical disease, and 4C mortality score were compared using the receiver operating characteristic (ROC) curve and Kaplan−Meier methods for clinical outcomes. The sST2 level differed significantly according to ICU admission, ventilator use, ECMO use, and 30-day mortality (all p < 0.05). On ROC curve analysis, sST2 predicted ICU admission, ventilator use, ECMO use, and 30-day mortality comparable to SOFA score but significantly better than critical disease. sST2 predicted ICU admission, ventilator use, and ECMO use significantly better than the 4C mortality score. On Kaplan−Meier survival analysis, hazard ratios (95% confidence interval) were 8.4 (2.7−26.8) for sST2, 14.8 (3.0−71.7) for SOFA score, 1.8 (0.5−6.5) for critical disease, and 11.7 (3.4−40.1) for 4C mortality score. This study demonstrated that sST2 could be a useful biomarker to predict ICU admission, ventilator use, ECMO use, and 30-day mortality in hospitalized COVID-19 patients. sST2 may be implemented as a prognostic COVID-19 biomarker in clinical practice.
Collapse
Affiliation(s)
- Mikyoung Park
- Department of Laboratory Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Mina Hur
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul 05030, Republic of Korea
- Correspondence: ; Tel.: +82-2-2030-5581
| | - Hanah Kim
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul 05030, Republic of Korea
| | - Chae Hoon Lee
- Department of Laboratory Medicine, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Jong Ho Lee
- Department of Laboratory Medicine, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Hyung Woo Kim
- Department of Laboratory Medicine, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Minjeong Nam
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Seungho Lee
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan 49201, Republic of Korea
| |
Collapse
|
19
|
Schultheiß C, Willscher E, Paschold L, Gottschick C, Klee B, Bosurgi L, Dutzmann J, Sedding D, Frese T, Girndt M, Höll JI, Gekle M, Mikolajczyk R, Binder M. Liquid biomarkers of macrophage dysregulation and circulating spike protein illustrate the biological heterogeneity in patients with post-acute sequelae of COVID-19. J Med Virol 2023; 95:e28364. [PMID: 36458566 PMCID: PMC9878213 DOI: 10.1002/jmv.28364] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/24/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
Post-acute sequelae of COVID-19 (PASC) are long-term consequences of SARS-CoV-2 infection that can substantially impair the quality of life. Underlying mechanisms ranging from persistent viruses to innate and adaptive immune dysregulation have been discussed. Here, we profiled the plasma of 181 individuals from the cohort study for digital health research in Germany (DigiHero), including individuals after mild to moderate COVID-19 with or without PASC and uninfected controls. We focused on soluble factors related to monocyte/macrophage biology and on circulating SARS-CoV-2 spike (S1) protein as a potential biomarker for persistent viral reservoirs. At a median time of 8 months after infection, we found pronounced dysregulation in almost all tested soluble factors, including both pro-inflammatory and pro-fibrotic cytokines. These immunological perturbations were remarkably independent of ongoing PASC symptoms per se, but further correlation and regression analyses suggested PASC-specific patterns involving CCL2/MCP-1 and IL-8 that either correlated with sCD162, sCD206/MMR, IFN-α2, IL-17A and IL-33, or IL-18 and IL-23. None of the analyzed factors correlated with the detectability or levels of circulating S1, indicating that this represents an independent subset of patients with PASC. These data confirm prior evidence of immune dysregulation and persistence of viral protein in PASC and illustrate its biological heterogeneity that still awaits correlation with clinically defined PASC subtypes.
Collapse
Affiliation(s)
- Christoph Schultheiß
- Department of Internal Medicine IV, Oncology/HematologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Edith Willscher
- Department of Internal Medicine IV, Oncology/HematologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Lisa Paschold
- Department of Internal Medicine IV, Oncology/HematologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Cornelia Gottschick
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health SciencesMedical School of the Martin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Bianca Klee
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health SciencesMedical School of the Martin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Lidia Bosurgi
- I. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Jochen Dutzmann
- Department of Cardiology and Intensive Care Medicine, Mid‐German Heart Center, University HospitalMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Daniel Sedding
- Department of Cardiology and Intensive Care Medicine, Mid‐German Heart Center, University HospitalMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Thomas Frese
- Institute of General Practice and Family MedicineMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Matthias Girndt
- Department of Internal Medicine IIMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Jessica I. Höll
- Pediatric Hematology and OncologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Michael Gekle
- Julius Bernstein‐Institute of Physiology, Faculty of MedicineMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health SciencesMedical School of the Martin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/HematologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
20
|
Astegolimab or Efmarodocokin Alfa in Patients With Severe COVID-19 Pneumonia: A Randomized, Phase 2 Trial. Crit Care Med 2023; 51:103-116. [PMID: 36519984 PMCID: PMC9749945 DOI: 10.1097/ccm.0000000000005716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Severe cases of COVID-19 pneumonia can lead to acute respiratory distress syndrome (ARDS). Release of interleukin (IL)-33, an epithelial-derived alarmin, and IL-33/ST2 pathway activation are linked with ARDS development in other viral infections. IL-22, a cytokine that modulates innate immunity through multiple regenerative and protective mechanisms in lung epithelial cells, is reduced in patients with ARDS. This study aimed to evaluate safety and efficacy of astegolimab, a human immunoglobulin G2 monoclonal antibody that selectively inhibits the IL-33 receptor, ST2, or efmarodocokin alfa, a human IL-22 fusion protein that activates IL-22 signaling, for treatment of severe COVID-19 pneumonia. DESIGN Phase 2, double-blind, placebo-controlled study (COVID-astegolimab-IL). SETTING Hospitals. PATIENTS Hospitalized adults with severe COVID-19 pneumonia. INTERVENTIONS Patients were randomized to receive IV astegolimab, efmarodocokin alfa, or placebo, plus standard of care. The primary endpoint was time to recovery, defined as time to a score of 1 or 2 on a 7-category ordinal scale by day 28. MEASUREMENTS AND MAIN RESULTS The study randomized 396 patients. Median time to recovery was 11 days (hazard ratio [HR], 1.01 d; p = 0.93) and 10 days (HR, 1.15 d; p = 0.38) for astegolimab and efmarodocokin alfa, respectively, versus 10 days for placebo. Key secondary endpoints (improved recovery, mortality, or prevention of worsening) showed no treatment benefits. No new safety signals were observed and adverse events were similar across treatment arms. Biomarkers demonstrated that both drugs were pharmacologically active. CONCLUSIONS Treatment with astegolimab or efmarodocokin alfa did not improve time to recovery in patients with severe COVID-19 pneumonia.
Collapse
|
21
|
Sullivan KM, Matthay MA. Lessons From a Negative Clinical Trial: Novel Immunological Targets for COVID-19 and Beyond. Crit Care Med 2023; 51:153-156. [PMID: 36519993 PMCID: PMC9749943 DOI: 10.1097/ccm.0000000000005719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kathryn M Sullivan
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Michael A Matthay
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA
| |
Collapse
|
22
|
Cabrera-Garcia D, Miltiades A, Yim P, Parsons S, Elisman K, Mansouri MT, Wagener G, Harrison NL. Plasma biomarkers associated with survival and thrombosis in hospitalized COVID-19 patients. Int J Hematol 2022; 116:937-946. [PMID: 35994163 PMCID: PMC9395834 DOI: 10.1007/s12185-022-03437-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 10/26/2022]
Abstract
Severe coronavirus disease-19 (COVID-19) has been associated with fibrin-mediated hypercoagulability and thromboembolic complications. To evaluate potential biomarkers of coagulopathy and disease severity in COVID-19, we measured plasma levels of eight biomarkers potentially associated with coagulation, fibrinolysis, and platelet function in 43 controls and 63 COVID-19 patients, including 47 patients admitted to the intensive care unit (ICU) and 16 non-ICU patients. COVID-19 patients showed significantly elevated levels of fibrinogen, tissue plasminogen activator (t-PA), and its inhibitor plasminogen activation inhibitor 1 (PAI-1), as well as ST2 (the receptor for interleukin-33) and von Willebrand factor (vWF) compared to the control group. We found that higher levels of t-PA, ST2, and vWF at the time of admission were associated with lower survival rates, and that thrombotic events were more frequent in patients with initial higher levels of vWF. These results support a predictive role of specific biomarkers such as t-PA and vWF in the pathophysiology of COVID-19. The data provide support for the case that hypercoagulability in COVID-19 is fibrin-mediated, but also highlights the important role that vWF may play in the genesis of thromboses in the pathophysiology of COVID-19. Interventions designed to enhance fibrinolysis might prove to be useful adjuncts in the treatment of coagulopathy in a subset of COVID-19 patients.
Collapse
Affiliation(s)
- David Cabrera-Garcia
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Andrea Miltiades
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
| | - Peter Yim
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Samantha Parsons
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Katerina Elisman
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Mohammad Taghi Mansouri
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Gebhard Wagener
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
| | - Neil L Harrison
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
23
|
Furci F, Murdaca G, Allegra A, Gammeri L, Senna G, Gangemi S. IL-33 and the Cytokine Storm in COVID-19: From a Potential Immunological Relationship towards Precision Medicine. Int J Mol Sci 2022; 23:14532. [PMID: 36498859 PMCID: PMC9740753 DOI: 10.3390/ijms232314532] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus SARS-CoV-2 has represented, and still represents, a real challenge from a clinical, diagnostic and therapeutic point of view. During acute infection, the increased levels of pro-inflammatory cytokines, which are involved in the pathology of disease and the development of SARS-CoV-2-induced acute respiratory disease syndrome, the life-threatening form of this infection, are correlated with patient survival and disease severity. IL-33, a key cytokine involved in both innate and adaptive immune responses in mucosal organs, can increase airway inflammation, mucus secretion and Th2 cytokine synthesis in the lungs, following respiratory infections. Similar to cases of exposure to known respiratory virus infections, exposure to SARS-CoV-2 induces the expression of IL-33, correlating with T-cell activation and lung disease severity. In this work, we analyse current evidence regarding the immunological role of IL-33 in patients affected by COVID-19, to evaluate not only the clinical impact correlated to its production but also to identify possible future immunological therapies that can block the most expressed inflammatory molecules, preventing worsening of the disease and saving patient lives.
Collapse
Affiliation(s)
- Fabiana Furci
- Asthma Centre and Allergy Unit, University of Verona and Verona University Hospital, 37124 Verona, Italy
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, Policlinico G. Martino, University of Messina, 98100 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, 16126 Genoa, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98122 Messina, Italy
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, Policlinico G. Martino, University of Messina, 98100 Messina, Italy
| | - Gianenrico Senna
- Asthma Centre and Allergy Unit, University of Verona and Verona University Hospital, 37124 Verona, Italy
- Department of Medicine, University of Verona and Verona University Hospital, 37124 Verona, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, Policlinico G. Martino, University of Messina, 98100 Messina, Italy
| |
Collapse
|
24
|
Fiedler L, Motloch LJ, Jirak P, Gumerov R, Davtyan P, Gareeva D, Lakman I, Tataurov A, Lasinova G, Pavlov V, Hauptmann L, Kopp K, Hoppe UC, Lichtenauer M, Pistulli R, Dieplinger AM, Zagidullin N. Investigation of hs-TnI and sST-2 as Potential Predictors of Long-Term Cardiovascular Risk in Patients with Survived Hospitalization for COVID-19 Pneumonia. Biomedicines 2022; 10:2889. [PMID: 36359409 PMCID: PMC9687975 DOI: 10.3390/biomedicines10112889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Introduction: COVID-19 survivors reveal an increased long-term risk for cardiovascular disease. Biomarkers like troponins and sST-2 improve stratification of cardiovascular risk. Nevertheless, their prognostic value for identifying long-term cardiovascular risk after having survived COVID-19 has yet to be evaluated. Methods: In this single-center study, admission serum biomarkers of sST-2 and hs-TnI in a single cohort of 251 hospitalized COVID-19 survivors were evaluated. Concentrations were correlated with major cardiovascular events (MACE) defined as cardiovascular death and/or need for cardiovascular hospitalization during follow-up after hospital discharge [FU: 415 days (403; 422)]. Results: MACE was a frequent finding during FU with an incidence of 8.4% (cardiovascular death: 2.8% and/or need for cardiovascular hospitalization: 7.2%). Both biomarkers were reliable indicators of MACE (hs-TnI: sensitivity = 66.7% & specificity = 65.7%; sST-2: sensitivity = 33.3% & specificity = 97.4%). This was confirmed in a multivariate proportional-hazards analysis: besides age (HR = 1.047, 95% CI = 1.012−1.084, p = 0.009), hs-TnI (HR = 4.940, 95% CI = 1.904−12.816, p = 0.001) and sST-2 (HR = 10.901, 95% CI = 4.509−29.271, p < 0.001) were strong predictors of MACE. The predictive value of the model was further improved by combining both biomarkers with the factor age (concordance index hs-TnI + sST2 + age = 0.812). Conclusion: During long-term FU, hospitalized COVID-19 survivors, hs-TnI and sST-2 at admission, were strong predictors of MACE, indicating both proteins to be involved in post-acute sequelae of COVID-19.
Collapse
Affiliation(s)
- Lukas Fiedler
- University Clinic for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Internal Medicine, Cardiology, Nephrology and Intensive Care Medicine, Hospital Wiener Neustadt, 2700 Wiener Neustadt, Austria
| | - Lukas J. Motloch
- University Clinic for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Peter Jirak
- University Clinic for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Ruslan Gumerov
- Department of Internal Diseases, Bashkir State Medical University, Lenin Str. 3, 450008 Ufa, Russia
| | - Paruir Davtyan
- Department of Internal Diseases, Bashkir State Medical University, Lenin Str. 3, 450008 Ufa, Russia
| | - Diana Gareeva
- Department of Internal Diseases, Bashkir State Medical University, Lenin Str. 3, 450008 Ufa, Russia
| | - Irina Lakman
- Department of Internal Diseases, Bashkir State Medical University, Lenin Str. 3, 450008 Ufa, Russia
- Scientific Laboratory for the Socio-Economic Region Problems Investigation, Ufa University of Science and Technology, Zaki Validi Str. 32, 450076 Ufa, Russia
| | - Alexandr Tataurov
- Department of Biomedical Engineering, Ufa University of Science and Technology, Zaki Validi Str. 32, 450076 Ufa, Russia
| | - Gulnaz Lasinova
- Department of Internal Diseases, Bashkir State Medical University, Lenin Str. 3, 450008 Ufa, Russia
| | - Valentin Pavlov
- Department of Urology, Bashkir State Medical University, Lenin Str. 3, 450008 Ufa, Russia
| | - Laurenz Hauptmann
- University Clinic for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Kristen Kopp
- University Clinic for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Uta C. Hoppe
- University Clinic for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Michael Lichtenauer
- University Clinic for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Rudin Pistulli
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, 48149 Muenster, Germany
| | - Anna-Maria Dieplinger
- Nursing Science Program, Institute for Nursing Science and Practice, Paracelsus Medical University, 5020 Salzburg, Austria
- Medical Faculty, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Naufal Zagidullin
- Department of Internal Diseases, Bashkir State Medical University, Lenin Str. 3, 450008 Ufa, Russia
| |
Collapse
|
25
|
Jou E, Zhou AK, Ho JSY, Thahir A. Perioperative use of intra-articular steroids during the COVID-19 pandemic. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2022; 32:1225-1235. [PMID: 34468841 PMCID: PMC8408365 DOI: 10.1007/s00590-021-03105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE There are growing concerns with the widely used glucocorticoids during the Coronavirus disease-19 (COVID-19) pandemic due to the associated immunosuppressive effects, which may increase the risk of COVID-19 infection and worsen COVID-19 patient outcome. Heavily affecting orthopaedics, the pandemic led to delay and cancellation of almost all surgical cases, and procedures including perioperative intra-articular corticosteroid injections (ICIs) saw similar decreases. However, the benefits of ICI treatments during the pandemic may outweigh these potential risks, and their continued use may be warranted. METHODS A literature search was conducted, and all relevant articles including original articles and reviews were identified and considered in full for inclusion, and analysed with expert opinion. Epidemiological statistics and medical guidelines were consulted from relevant authorities. RESULTS ICIs allow a targeted approach on the affected joint and are effective in reducing pain while improving functional outcome and patient quality-of-life. ICIs delay the requirement for surgery, accommodating for the increased healthcare burden during the pandemic, while reducing postoperative hospital stay, bringing significant financial benefits. However, ICIs can exert systemic effects and suppress the immune system. ICIs may increase the risk of COVID-19 infection and reduce the efficacy of COVID-19 vaccinations, leading to important public health implications. CONCLUSION Perioperative ICI treatments may bring significant, multifaceted benefits during the pandemic. However, ICIs increase the risk of infection, and perioperative COVID-19 is associated with mortality. The use of ICIs during the COVID-19 pandemic should therefore be considered carefully on an individual patient basis, weighing the associated risks and benefits.
Collapse
Affiliation(s)
- Eric Jou
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | | | | | - Azeem Thahir
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Trauma and Orthopaedic Surgery, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
26
|
Prognostic Role of sST2 in Acute Heart Failure and COVID-19 Infection-A Narrative Review on Pathophysiology and Clinical Prospective. Int J Mol Sci 2022; 23:ijms23158230. [PMID: 35897800 PMCID: PMC9331735 DOI: 10.3390/ijms23158230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 12/04/2022] Open
Abstract
The importance of cardiovascular biomarkers in clinical practice increased dramatically in the last years, and the interest extends from the diagnosis purpose to prognostic applications and response to specific treatment. Acute heart failure, ischemic heart failure, and COVID-19 infection represent different clinical settings that are challenging in terms of the proper prognostic establishment. The aim of the present review is to establish the useful role of sST2, the soluble form of the interleukin-1 receptor superfamily (ST2), physiologically involved in the signaling of interleukin-33 (IL-33)-ST2 axis, in the clinical setting of acute heart failure (HF), ischemic heart disease, and SARS-CoV-2 acute infection. Molecular mechanisms associated with the IL33/ST2 signaling pathways are discussed in view of the clinical usefulness of biomarkers to early diagnosis, evaluation therapy to response, and prediction of adverse outcomes in cardiovascular diseases.
Collapse
|
27
|
Feyaerts D, Hédou J, Gillard J, Chen H, Tsai ES, Peterson LS, Ando K, Manohar M, Do E, Dhondalay GKR, Fitzpatrick J, Artandi M, Chang I, Snow TT, Chinthrajah RS, Warren CM, Wittman R, Meyerowitz JG, Ganio EA, Stelzer IA, Han X, Verdonk F, Gaudillière DK, Mukherjee N, Tsai AS, Rumer KK, Jacobsen DR, Bjornson-Hooper ZB, Jiang S, Saavedra SF, Valdés Ferrer SI, Kelly JD, Furman D, Aghaeepour N, Angst MS, Boyd SD, Pinsky BA, Nolan GP, Nadeau KC, Gaudillière B, McIlwain DR. Integrated plasma proteomic and single-cell immune signaling network signatures demarcate mild, moderate, and severe COVID-19. Cell Rep Med 2022; 3:100680. [PMID: 35839768 PMCID: PMC9238057 DOI: 10.1016/j.xcrm.2022.100680] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/25/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023]
Abstract
The biological determinants underlying the range of coronavirus 2019 (COVID-19) clinical manifestations are not fully understood. Here, over 1,400 plasma proteins and 2,600 single-cell immune features comprising cell phenotype, endogenous signaling activity, and signaling responses to inflammatory ligands are cross-sectionally assessed in peripheral blood from 97 patients with mild, moderate, and severe COVID-19 and 40 uninfected patients. Using an integrated computational approach to analyze the combined plasma and single-cell proteomic data, we identify and independently validate a multi-variate model classifying COVID-19 severity (multi-class area under the curve [AUC]training = 0.799, p = 4.2e-6; multi-class AUCvalidation = 0.773, p = 7.7e-6). Examination of informative model features reveals biological signatures of COVID-19 severity, including the dysregulation of JAK/STAT, MAPK/mTOR, and nuclear factor κB (NF-κB) immune signaling networks in addition to recapitulating known hallmarks of COVID-19. These results provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for prevention and/or treatment of COVID-19 progression.
Collapse
Affiliation(s)
- Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Hédou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Gillard
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eileen S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura S Peterson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kazuo Ando
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Monali Manohar
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Evan Do
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Gopal K R Dhondalay
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jessica Fitzpatrick
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Maja Artandi
- Department of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Iris Chang
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Theo T Snow
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - R Sharon Chinthrajah
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA; Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University, Stanford, CA, USA; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M Warren
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Richard Wittman
- Department of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin G Meyerowitz
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ina A Stelzer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoyuan Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA
| | - Franck Verdonk
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dyani K Gaudillière
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nilanjan Mukherjee
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristen K Rumer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Danielle R Jacobsen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Zachary B Bjornson-Hooper
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sizun Jiang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sergio Fragoso Saavedra
- Departamento de Neurología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Plan de Estudios Combinados en Medicina (MD/PhD Program), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Iván Valdés Ferrer
- Departamento de Neurología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - J Daniel Kelly
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA; Institute for Global Health Sciences, UCSF, San Francisco, CA, USA; F.I. Proctor Foundation, UCSF, San Francisco, CA, USA
| | - David Furman
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Austral Institute for Applied Artificial Intelligence, Institute for Research in Translational Medicine (IIMT), Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott D Boyd
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Kari C Nadeau
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA; Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University, Stanford, CA, USA.
| | - David R McIlwain
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
28
|
Motloch LJ, Jirak P, Gareeva D, Davtyan P, Gumerov R, Lakman I, Tataurov A, Zulkarneev R, Kabirov I, Cai B, Valeev B, Pavlov V, Kopp K, Hoppe UC, Lichtenauer M, Fiedler L, Pistulli R, Zagidullin N. Cardiovascular Biomarkers for Prediction of in-hospital and 1-Year Post-discharge Mortality in Patients With COVID-19 Pneumonia. Front Med (Lausanne) 2022; 9:906665. [PMID: 35836945 PMCID: PMC9273888 DOI: 10.3389/fmed.2022.906665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/30/2022] [Indexed: 01/08/2023] Open
Abstract
Aims While COVID-19 affects the cardiovascular system, the potential clinical impact of cardiovascular biomarkers on predicting outcomes in COVID-19 patients is still unknown. Therefore, to investigate this issue we analyzed the prognostic potential of cardiac biomarkers on in-hospital and long-term post-discharge mortality of patients with COVID-19 pneumonia. Methods Serum soluble ST2, VCAM-1, and hs-TnI were evaluated upon admission in 280 consecutive patients hospitalized with COVID-19-associated pneumonia in a single, tertiary care center. Patient clinical and laboratory characteristics and the concentration of biomarkers were correlated with in-hospital [Hospital stay: 11 days (10; 14)] and post-discharge all-cause mortality at 1 year follow-up [FU: 354 days (342; 361)]. Results 11 patients died while hospitalized for COVID-19 (3.9%), and 11 patients died during the 1-year post-discharge follow-up period (n = 11, 4.1%). Using multivariate analysis, VCAM-1 was shown to predict mortality during the hospital period (HR 1.081, CI 95% 1.035;1.129, p = 0.017), but not ST2 or hs-TnI. In contrast, during one-year FU post hospital discharge, ST2 (HR 1.006, 95% CI 1.002;1.009, p < 0.001) and hs-TnI (HR 1.362, 95% CI 1.050;1.766, p = 0.024) predicted mortality, although not VCAM-1. Conclusion In patients hospitalized with Covid-19 pneumonia, elevated levels of VCAM-1 at admission were associated with in-hospital mortality, while ST2 and hs-TnI might predict post-discharge mortality in long term follow-up.
Collapse
Affiliation(s)
- Lukas J. Motloch
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- *Correspondence: Lukas J. Motloch
| | - Peter Jirak
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Diana Gareeva
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Paruir Davtyan
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Ruslan Gumerov
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Irina Lakman
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
- Department of Biomedical Engineering, Ufa State Aviation Technical University, Ufa, Russia
- Scientific Laboratory for the Socio-Economic Region Problems Investigation, Bashkir State University, Ufa, Russia
| | - Aleksandr Tataurov
- Scientific Laboratory for the Socio-Economic Region Problems Investigation, Bashkir State University, Ufa, Russia
| | - Rustem Zulkarneev
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Ildar Kabirov
- Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Benzhi Cai
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bairas Valeev
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Valentin Pavlov
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Kristen Kopp
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Uta C. Hoppe
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Lukas Fiedler
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine, Cardiology, Nephrology and Intensive Care Medicine, Hospital Wiener Neustadt, Wiener Neustadt, Austria
| | - Rudin Pistulli
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Munster, Munster, Germany
| | - Naufal Zagidullin
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
- Department of Biomedical Engineering, Ufa State Aviation Technical University, Ufa, Russia
| |
Collapse
|
29
|
Makaremi S, Asgarzadeh A, Kianfar H, Mohammadnia A, Asghariazar V, Safarzadeh E. The role of IL-1 family of cytokines and receptors in pathogenesis of COVID-19. Inflamm Res 2022; 71:923-947. [PMID: 35751653 PMCID: PMC9243884 DOI: 10.1007/s00011-022-01596-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022] Open
Abstract
A global pandemic has erupted as a result of the new brand coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic has been consociated with widespread mortality worldwide. The antiviral immune response is an imperative factor in confronting the recent coronavirus disease 2019 (COVID-19) infections. Meantime, cytokines recognize as crucial components in guiding the appropriate immune pathways in the restraining and eradication of the virus. Moreover, SARS-CoV-2 can induce uncontrolled inflammatory responses characterized by hyper-inflammatory cytokine production, which causes cytokine storm and acute respiratory distress syndrome (ARDS). As excessive inflammatory responses are contributed to the severe stage of the COVID-19 disease, therefore, the pro-inflammatory cytokines are regarded as the Achilles heel during COVID-19 infection. Among these cytokines, interleukin (IL-) 1 family cytokines (IL-1, IL-18, IL-33, IL-36, IL-37, and IL-38) appear to have a strong inflammatory role in severe COVID-19. Hence, understanding the underlying inflammatory mechanism of these cytokines during infection is critical for reducing the symptoms and severity of the disease. Here, the possible mechanisms and pathways involved in inflammatory immune responses are discussed.
Collapse
Affiliation(s)
- Shima Makaremi
- School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamed Kianfar
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Mohammadnia
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran. .,Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
30
|
Lo Tartaro D, Neroni A, Paolini A, Borella R, Mattioli M, Fidanza L, Quong A, Petes C, Awong G, Douglas S, Lin D, Nieto J, Gozzi L, Franceschini E, Busani S, Nasi M, Mattioli AV, Trenti T, Meschiari M, Guaraldi G, Girardis M, Mussini C, Gibellini L, Cossarizza A, De Biasi S. Molecular and cellular immune features of aged patients with severe COVID-19 pneumonia. Commun Biol 2022; 5:590. [PMID: 35710943 PMCID: PMC9203559 DOI: 10.1038/s42003-022-03537-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Aging is a major risk factor for developing severe COVID-19, but few detailed data are available concerning immunological changes after infection in aged individuals. Here we describe main immune characteristics in 31 patients with severe SARS-CoV-2 infection who were >70 years old, compared to 33 subjects <60 years of age. Differences in plasma levels of 62 cytokines, landscape of peripheral blood mononuclear cells, T cell repertoire, transcriptome of central memory CD4+ T cells, specific antibodies are reported along with features of lung macrophages. Elderly subjects have higher levels of pro-inflammatory cytokines, more circulating plasmablasts, reduced plasmatic level of anti-S and anti-RBD IgG3 antibodies, lower proportions of central memory CD4+ T cells, more immature monocytes and CD56+ pro-inflammatory monocytes, lower percentages of circulating follicular helper T cells (cTfh), antigen-specific cTfh cells with a less activated transcriptomic profile, lung resident activated macrophages that promote collagen deposition and fibrosis. Our study underlines the importance of inflammation in the response to SARS-CoV-2 and suggests that inflammaging, coupled with the inability to mount a proper anti-viral response, could exacerbate disease severity and the worst clinical outcome in old patients. Patients over the age of 70 show inflammaging and a weaker anti-viral response to SARS-CoV-2, pointing at the immunological changes associated with COVID-19 severity and outcome for aged patients.
Collapse
Affiliation(s)
- Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125, Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125, Modena, Italy
| | - Marco Mattioli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125, Modena, Italy
| | - Lucia Fidanza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125, Modena, Italy
| | - Andrew Quong
- Fluidigm Corporation, 2 Tower Place, Suite 2000, South San Francisco, 94080, CA, USA
| | - Carlene Petes
- Fluidigm Corporation, 2 Tower Place, Suite 2000, South San Francisco, 94080, CA, USA
| | - Geneve Awong
- Fluidigm Corporation, 2 Tower Place, Suite 2000, South San Francisco, 94080, CA, USA
| | - Samuel Douglas
- Fluidigm Corporation, 2 Tower Place, Suite 2000, South San Francisco, 94080, CA, USA
| | - Dongxia Lin
- Fluidigm Corporation, 2 Tower Place, Suite 2000, South San Francisco, 94080, CA, USA
| | - Jordan Nieto
- Fluidigm Corporation, 2 Tower Place, Suite 2000, South San Francisco, 94080, CA, USA
| | - Licia Gozzi
- Infectious Diseases Clinics, AOU Policlinico di Modena, via del Pozzo 71, 41124, Modena, Italy
| | - Erica Franceschini
- Infectious Diseases Clinics, AOU Policlinico di Modena, via del Pozzo 71, 41124, Modena, Italy
| | - Stefano Busani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.,Department of Anesthesia and Intensive Care, AOU Policlinico and University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| | - Anna Vittoria Mattioli
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.,National Institute for Cardiovascular Research, via Irnerio 48, 40126, Bologna, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124, Modena, Italy
| | - Marianna Meschiari
- Infectious Diseases Clinics, AOU Policlinico di Modena, via del Pozzo 71, 41124, Modena, Italy
| | - Giovanni Guaraldi
- Infectious Diseases Clinics, AOU Policlinico di Modena, via del Pozzo 71, 41124, Modena, Italy.,Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| | - Massimo Girardis
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.,Department of Anesthesia and Intensive Care, AOU Policlinico and University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| | - Cristina Mussini
- Infectious Diseases Clinics, AOU Policlinico di Modena, via del Pozzo 71, 41124, Modena, Italy.,Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125, Modena, Italy. .,National Institute for Cardiovascular Research, via Irnerio 48, 40126, Bologna, Italy.
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125, Modena, Italy.
| |
Collapse
|
31
|
Marino A, Munafò A, Augello E, Bellanca CM, Bonomo C, Ceccarelli M, Musso N, Cantarella G, Cacopardo B, Bernardini R. Sarilumab Administration in COVID-19 Patients: Literature Review and Considerations. Infect Dis Rep 2022; 14:360-371. [PMID: 35645219 PMCID: PMC9149900 DOI: 10.3390/idr14030040] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Two years have passed since WHO declared a pandemic state for SARS-CoV-2 infection. COVID-19 pathogenesis consists of a first viral phase responsible for early symptoms followed by an inflammatory phase, cytokine-mediated, responsible for late-onset manifestations up to ARDS. The dysregulated immune response has an outstanding role in the progression of pulmonary damage in COVID-19. IL-6, through the induction of pro-inflammatory chemokines and cytokines, plays a key role in the development and maintenance of inflammation, acting as a pioneer of the hyperinflammatory condition and cytokine storm in severe COVID-19. Therefore, drugs targeting both IL-6 and IL-6 receptors have been evaluated in order to blunt the abnormal SARS-CoV-2-induced cytokine release. Sarilumab, a high-affinity anti-IL-6 receptor antibody, may represent a promising weapon to treat the fearsome hyperinflammatory phase by improving the outcome of patients with moderate-to-severe COVID-19 pneumonia. Further prospective and well-designed clinical studies with larger sample sizes and long-term follow-up are needed to assess the efficacy and the safety of this therapeutic approach to achieve improved outcomes in COVID-19.
Collapse
Affiliation(s)
- Andrea Marino
- Department of Biomedical and Biotechnological Science (BIOMETEC), University of Catania, 95123 Catania, Italy; (A.M.); (C.B.); (N.M.)
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS Garibaldi Hospital, University of Catania, 95123 Catania, Italy; (M.C.); (B.C.)
| | - Antonio Munafò
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (E.A.); (C.M.B.); (G.C.); (R.B.)
| | - Egle Augello
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (E.A.); (C.M.B.); (G.C.); (R.B.)
| | - Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (E.A.); (C.M.B.); (G.C.); (R.B.)
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Science (BIOMETEC), University of Catania, 95123 Catania, Italy; (A.M.); (C.B.); (N.M.)
| | - Manuela Ceccarelli
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS Garibaldi Hospital, University of Catania, 95123 Catania, Italy; (M.C.); (B.C.)
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Science (BIOMETEC), University of Catania, 95123 Catania, Italy; (A.M.); (C.B.); (N.M.)
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (E.A.); (C.M.B.); (G.C.); (R.B.)
| | - Bruno Cacopardo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS Garibaldi Hospital, University of Catania, 95123 Catania, Italy; (M.C.); (B.C.)
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (E.A.); (C.M.B.); (G.C.); (R.B.)
- Unit of Clinical Toxicology, Policlinico G. Rodolico, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
32
|
Mortezaee K, Majidpoor J. CD8 + T Cells in SARS-CoV-2 Induced Disease and Cancer-Clinical Perspectives. Front Immunol 2022; 13:864298. [PMID: 35432340 PMCID: PMC9010719 DOI: 10.3389/fimmu.2022.864298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Dysregulated innate and adaptive immunity is a sign of SARS-CoV-2-induced disease and cancer. CD8+ T cells are important cells of the immune system. The cells belong to the adaptive immunity and take a front-line defense against viral infections and cancer. Extreme CD8+ T-cell activities in the lung of patients with a SARS-CoV-2-induced disease and within the tumor microenvironment (TME) will change their functionality into exhausted state and undergo apoptosis. Such diminished immunity will put cancer cases at a high-risk group for SARS-CoV-2-induced disease, rendering viral sepsis and a more severe condition which will finally cause a higher rate of mortality. Recovering responses from CD8+ T cells is a purpose of vaccination against SARS-CoV-2. The aim of this review is to discuss the CD8+ T cellular state in SARS-CoV-2-induced disease and in cancer and to present some strategies for recovering the functionality of these critical cells.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
33
|
Murdaca G, Paladin F, Tonacci A, Borro M, Greco M, Gerosa A, Isola S, Allegra A, Gangemi S. Involvement of IL-33 in the Pathogenesis and Prognosis of Major Respiratory Viral Infections: Future Perspectives for Personalized Therapy. Biomedicines 2022; 10:biomedicines10030715. [PMID: 35327516 PMCID: PMC8944994 DOI: 10.3390/biomedicines10030715] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Interleukin (IL)-33 is a key cytokine involved in type-2 immunity and allergic airway disease. At the level of lung epithelial cells, where it is clearly expressed, IL-33 plays an important role in both innate and adaptive immune responses in mucosal organs. It has been widely demonstrated that in the course of respiratory virus infections, the release of IL-33 increases, with consequent pro-inflammatory effects and consequent exacerbation of the clinical symptoms of chronic respiratory diseases. In our work, we analyzed the pathogenetic and prognostic involvement of IL-33 during the main respiratory viral infections, with particular interest in the recent SARS-CoV-2 virus pandemic and the aim of determining a possible connection point on which to act with a targeted therapy that is able to improve the clinical outcome of patients.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.P.); (A.G.)
- Correspondence:
| | - Francesca Paladin
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.P.); (A.G.)
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Matteo Borro
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy; (M.B.); (M.G.)
| | - Monica Greco
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy; (M.B.); (M.G.)
| | - Alessandra Gerosa
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.P.); (A.G.)
| | - Stefania Isola
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| |
Collapse
|
34
|
SARS-CoV-2 infects and replicates in photoreceptor and retinal ganglion cells of human retinal organoids. Stem Cell Reports 2022; 17:789-803. [PMID: 35334213 PMCID: PMC8943915 DOI: 10.1016/j.stemcr.2022.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Several studies have pointed to retinal involvement in COVID-19, yet many questions remain regarding the ability of SARS-CoV-2 to infect and replicate in retinal cells and its effects on the retina. Here, we have used human pluripotent stem cell-derived retinal organoids to study retinal infection by SARS-CoV-2. Indeed, SARS-CoV-2 can infect and replicate in retinal organoids, as it is shown to infect different retinal lineages, such as retinal ganglion cells and photoreceptors. SARS-CoV-2 infection of retinal organoids also induces the expression of several inflammatory genes, such as interleukin 33, a gene associated with acute COVID-19 and retinal degeneration. Finally, we show that the use of antibodies to block ACE2 significantly reduces SARS-CoV-2 infection of retinal organoids, indicating that SARS-CoV-2 infects retinal cells in an ACE2-dependent manner. These results suggest a retinal involvement in COVID-19 and emphasize the need to monitor retinal pathologies as potential sequelae of “long COVID.” SARS-CoV-2 can infect and replicate in retinal organoids Retinal ganglion cells are particularly open to SARS-CoV-2 infection SARS-CoV-2 infection of retinal organoids induces expression of inflammatory genes SARS-CoV-2 infection of retinal organoids is dependent on functional ACE2 receptors
Collapse
|
35
|
Zizzo G, Tamburello A, Castelnovo L, Laria A, Mumoli N, Faggioli PM, Stefani I, Mazzone A. Immunotherapy of COVID-19: Inside and Beyond IL-6 Signalling. Front Immunol 2022; 13:795315. [PMID: 35340805 PMCID: PMC8948465 DOI: 10.3389/fimmu.2022.795315] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/25/2022] [Indexed: 01/08/2023] Open
Abstract
Acting on the cytokine cascade is key to preventing disease progression and death in hospitalised patients with COVID-19. Among anti-cytokine therapies, interleukin (IL)-6 inhibitors have been the most used and studied since the beginning of the pandemic. Going through previous observational studies, subsequent randomised controlled trials, and meta-analyses, we focused on the baseline characteristics of the patients recruited, identifying the most favourable features in the light of positive or negative study outcomes; taking into account the biological significance and predictivity of IL-6 and other biomarkers according to specific thresholds, we ultimately attempted to delineate precise windows for therapeutic intervention. By stimulating scavenger macrophages and T-cell responsivity, IL-6 seems protective against viral replication during asymptomatic infection; still protective on early tissue damage by modulating the release of granzymes and lymphokines in mild-moderate disease; importantly pathogenic in severe disease by inducing the proinflammatory activation of immune and endothelial cells (through trans-signalling and trans-presentation); and again protective in critical disease by exerting homeostatic roles for tissue repair (through cis-signalling), while IL-1 still drives hyperinflammation. IL-6 inhibitors, particularly anti-IL-6R monoclonal antibodies (e.g., tocilizumab, sarilumab), are effective in severe disease, characterised by baseline IL-6 concentrations ranging from 35 to 90 ng/mL (reached in the circulation within 6 days of hospital admission), a ratio of partial pressure arterial oxygen (PaO2) and fraction of inspired oxygen (FiO2) between 100 and 200 mmHg, requirement of high-flow oxygen or non-invasive ventilation, C-reactive protein levels between 120 and 160 mg/L, ferritin levels between 800 and 1600 ng/mL, D-dimer levels between 750 and 3000 ng/mL, and lactate dehydrogenase levels between 350 and 500 U/L. Granulocyte-macrophage colony-stimulating factor inhibitors might have similar windows of opportunity but different age preferences compared to IL-6 inhibitors (over or under 70 years old, respectively). Janus kinase inhibitors (e.g., baricitinib) may also be effective in moderate disease, whereas IL-1 inhibitors (e.g., anakinra) may also be effective in critical disease. Correct use of biologics based on therapeutic windows is essential for successful outcomes and could inform future new trials with more appropriate recruiting criteria.
Collapse
Affiliation(s)
- Gaetano Zizzo
- Department of Internal Medicine, Azienda Socio Sanitaria Territoriale (ASST) Ovest Milanese, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Manzanares-Meza LD, Valle-Rios R, Medina-Contreras O. Interleukin-1 Receptor-Like 2: One Receptor, Three Agonists, and Many Implications. J Interferon Cytokine Res 2022; 42:49-61. [PMID: 35171706 DOI: 10.1089/jir.2021.0173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interleukin (IL)-1 superfamily of cytokines comprises 11 pro- and anti-inflammatory cytokines, which play essential roles during the immune response. Several pathogenic pathways are initiated by IL-1RL2 (interleukin 1 receptor-like 2) signaling, also known as IL-36R, in the skin, lungs, and gut. IL-36 cytokines promote the secretion of proinflammatory cytokines and chemokines, upregulation of antimicrobial peptides, proliferation mediators, and adhesion molecules on endothelial cells. In addition, the IL-36-IL-1RL2 axis has an essential role against viral infections, including a potential role in COVID-19 pathology. The evidence presented in this review highlights the importance of the axis IL-36-IL-1RL2 in the development of several inflammation-related diseases and the healing process. It suggests that IL-1RL2 ligands have specific roles depending on the tissue or cell source. However, there is still much to discover about this cytokine family, their functions in other organs, and how they accomplish a dual effect in inflammation and healing.
Collapse
Affiliation(s)
- Laura D Manzanares-Meza
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children's Hospital (HIMFG), Mexico City, Mexico.,Molecular Biomedicine Department, CINVESTAV, Mexico City, Mexico
| | - Ricardo Valle-Rios
- Research Division, School of Medicine, UNAM, Mexico City, Mexico.,Immunology and Proteomics Research Unit, Mexico Children's Hospital, Mexico City, Mexico
| | - Oscar Medina-Contreras
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children's Hospital (HIMFG), Mexico City, Mexico
| |
Collapse
|
37
|
Geronikolou SA, Takan I, Pavlopoulou A, Mantzourani M, Chrousos GP. Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia. Int J Mol Med 2022; 49:35. [PMID: 35059730 PMCID: PMC8815408 DOI: 10.3892/ijmm.2022.5090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
The highly heterogeneous symptomatology and unpredictable progress of COVID-19 triggered unprecedented intensive biomedical research and a number of clinical research projects. Although the pathophysiology of the disease is being progressively clarified, its complexity remains vast. Moreover, some extremely infrequent cases of thrombotic thrombocytopenia following vaccination against SARS-CoV-2 infection have been observed. The present study aimed to map the signaling pathways of thrombocytopenia implicated in COVID-19, as well as in vaccine-induced thrombotic thrombocytopenia (VITT). The biomedical literature database, MEDLINE/PubMed, was thoroughly searched using artificial intelligence techniques for the semantic relations among the top 50 similar words (>0.9) implicated in COVID-19-mediated human infection or VITT. Additionally, STRING, a database of primary and predicted associations among genes and proteins (collected from diverse resources, such as documented pathway knowledge, high-throughput experimental studies, cross-species extrapolated information, automated text mining results, computationally predicted interactions, etc.), was employed, with the confidence threshold set at 0.7. In addition, two interactomes were constructed: i) A network including 119 and 56 nodes relevant to COVID-19 and thrombocytopenia, respectively; and ii) a second network containing 60 nodes relevant to VITT. Although thrombocytopenia is a dominant morbidity in both entities, three nodes were observed that corresponded to genes (AURKA, CD46 and CD19) expressed only in VITT, whilst ADAM10, CDC20, SHC1 and STXBP2 are silenced in VITT, but are commonly expressed in both COVID-19 and thrombocytopenia. The calculated average node degree was immense (11.9 in COVID-19 and 6.43 in VITT), illustrating the complexity of COVID-19 and VITT pathologies and confirming the importance of cytokines, as well as of pathways activated following hypoxic events. In addition, PYCARD, NLP3 and P2RX7 are key potential therapeutic targets for all three morbid entities, meriting further research. This interactome was based on wild-type genes, revealing the predisposition of the body to hypoxia-induced thrombosis, leading to the acute COVID-19 phenotype, the 'long-COVID syndrome', and/or VITT. Thus, common nodes appear to be key players in illness prevention, progression and treatment.
Collapse
Affiliation(s)
- Styliani A Geronikolou
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Işil Takan
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey
| | | | - Marina Mantzourani
- First Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | - George P Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
38
|
Mai TT, Nguyen PG, Le MT, Tran TD, Huynh PNH, Trinh DTT, Nguyen QT, Thai KM. Discovery of small molecular inhibitors for interleukin-33/ST2 protein-protein interaction: a virtual screening, molecular dynamics simulations and binding free energy calculations. Mol Divers 2022; 26:2659-2678. [PMID: 35031934 PMCID: PMC8760117 DOI: 10.1007/s11030-021-10359-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/26/2021] [Indexed: 01/13/2023]
Abstract
The interleukin-1 receptor like ST2 has emerged as a potential drug discovery target since it was identified as the receptor of the novel cytokine IL-33, which is involved in many inflammatory and autoimmune diseases. For the treatment of such IL-33-related disorders, efforts have been made to discover molecules that can inhibit the protein–protein interactions (PPIs) between IL-33 and ST2, but to date no drug has been approved. Although several anti-ST2 antibodies have entered clinical trials, the exploration of small molecular inhibitors is highly sought-after because of its advantages in terms of oral bioavailability and manufacturing cost. The aim of this study was to discover ST2 receptor inhibitors based on its PPIs with IL-33 in crystal structure (PDB ID: 4KC3) using virtual screening tools with pharmacophore modeling and molecular docking. From an enormous chemical space ZINC, a potential series of compounds has been discovered with stronger binding affinities than the control compound from a previous study. Among them, four compounds strongly interacted with the key residues of the receptor and had a binding free energy < − 20 kcal/mol. By intensive calculations using data from molecular dynamics simulations, ZINC59514725 was identified as the most potential candidate for ST2 receptor inhibitor in this study.
Collapse
Affiliation(s)
- Tan Thanh Mai
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Phuc Gia Nguyen
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Minh-Tri Le
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.,School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Thanh-Dao Tran
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Phuong Nguyen Hoai Huynh
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Dieu-Thuong Thi Trinh
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Quoc-Thai Nguyen
- Department of Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.
| | - Khac-Minh Thai
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
39
|
Gurlevik SL, Ozsurekci Y, Sağ E, Derin Oygar P, Kesici S, Akca ÜK, Cuceoglu MK, Basaran O, Göncü S, Karakaya J, Cengiz AB, Özen S. The difference of the inflammatory milieu in MIS-C and severe COVID-19. Pediatr Res 2022; 92:1805-1814. [PMID: 35352005 PMCID: PMC8963396 DOI: 10.1038/s41390-022-02029-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Coronavirus disease 19 (COVID-19) may have a severe course in children. Multisystem inflammatory syndrome in children (MIS-C) is the post-COVID complication characterized by an exaggerated inflammation, observed in children. However, data on the underlying pathophysiology are sparse. We therefore aimed to assess the cytokine and chemokine profiles of children with MIS-C and compare these to life-threatening severe SARS-CoV-2 and healthy controls (HCs) to shed light on disease pathophysiology. METHODS Samples of 31 children with MIS-C, 10 with severe/critical COVID-19 and 11 HCs were included. Cytokine and chemokine profiles were studied and compared in between groups. RESULTS Most cytokines and chemokines related to IL-1 family and IFN-γ pathway (including IL-18 and MIG/CXCL9) and IL-17A were significantly higher in the MIS-C group when compared to the severe/critical COVID-19 group and HCs. IP-10/CXCL10 and IL-10 were higher in both MIS-C patients and severe/critical COVID-19 compared to HCs. CONCLUSION Our results suggest that IL-1 and IFN-γ pathways play an important role in the pathophysiology of MIS-C. IMPACT This study defines a pattern of distinctive immune responses in children with MIS-C and in patients with severe/critical COVID-19. As the COVID-19 pandemic continues, biomarkers to identify MIS-C risk are needed to guide our management that study results may shed light on it.
Collapse
Affiliation(s)
- Sibel Lacinel Gurlevik
- grid.14442.370000 0001 2342 7339Department of Pediatric Infectious Diseases, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yasemin Ozsurekci
- grid.14442.370000 0001 2342 7339Department of Pediatric Infectious Diseases, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Erdal Sağ
- grid.413783.a0000 0004 0642 6432Pediatric Rheumatology Unit, Ankara Training and Research Hospital, Ankara, Turkey ,grid.14442.370000 0001 2342 7339Pediatric Rheumatology Unit, Translational Medicine Laboratories, Hacettepe University, Ankara, Turkey
| | - P. Derin Oygar
- grid.14442.370000 0001 2342 7339Department of Pediatric Infectious Diseases, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Selman Kesici
- grid.14442.370000 0001 2342 7339Department of Pediatric Intensive Care Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ümmüşen Kaya Akca
- grid.14442.370000 0001 2342 7339Department of Pediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Muserref Kasap Cuceoglu
- grid.14442.370000 0001 2342 7339Department of Pediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ozge Basaran
- grid.14442.370000 0001 2342 7339Department of Pediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sultan Göncü
- grid.14442.370000 0001 2342 7339Department of Pediatric Intensive Care Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Jale Karakaya
- grid.14442.370000 0001 2342 7339Department of Biostatistics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ali Bülent Cengiz
- grid.14442.370000 0001 2342 7339Department of Pediatric Infectious Diseases, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Seza Özen
- Pediatric Rheumatology Unit, Translational Medicine Laboratories, Hacettepe University, Ankara, Turkey. .,Department of Pediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
40
|
Nieto-Fontarigo JJ, Tillgren S, Cerps S, Sverrild A, Hvidtfeldt M, Ramu S, Menzel M, Sander AF, Porsbjerg C, Uller L. Imiquimod Boosts Interferon Response, and Decreases ACE2 and Pro-Inflammatory Response of Human Bronchial Epithelium in Asthma. Front Immunol 2021; 12:743890. [PMID: 34950134 PMCID: PMC8688760 DOI: 10.3389/fimmu.2021.743890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Background Both anti-viral and anti-inflammatory bronchial effects are warranted to treat viral infections in asthma. We sought to investigate if imiquimod, a TLR7 agonist, exhibits such dual actions in ex vivo cultured human bronchial epithelial cells (HBECs), targets for SARS-CoV-2 infectivity. Objective To investigate bronchial epithelial effects of imiquimod of potential importance for anti-viral treatment in asthmatic patients. Methods Effects of imiquimod alone were examined in HBECs from healthy (N=4) and asthmatic (N=18) donors. Mimicking SARS-CoV-2 infection, HBECs were stimulated with poly(I:C), a dsRNA analogue, or SARS-CoV-2 spike-protein 1 (SP1; receptor binding) with and without imiquimod treatment. Expression of SARS-CoV-2 receptor (ACE2), pro-inflammatory and anti-viral cytokines were analyzed by RT-qPCR, multiplex ELISA, western blot, and Nanostring and proteomic analyses. Results Imiquimod reduced ACE2 expression at baseline and after poly(I:C) stimulation. Imiquimod also reduced poly(I:C)-induced pro-inflammatory cytokines including IL-1β, IL-6, IL-8, and IL-33. Furthermore, imiquimod increased IFN-β expression, an effect potentiated in presence of poly(I:C) or SP1. Multiplex mRNA analysis verified enrichment in type-I IFN signaling concomitant with suppression of cytokine signaling pathways induced by imiquimod in presence of poly(I:C). Exploratory proteomic analyses revealed potentially protective effects of imiquimod on infections. Conclusion Imiquimod triggers viral resistance mechanisms in HBECs by decreasing ACE2 and increasing IFN-β expression. Additionally, imiquimod improves viral infection tolerance by reducing viral stimulus-induced epithelial cytokines involved in severe COVID-19 infection. Our imiquimod data highlight feasibility of producing pluripotent drugs potentially suited for anti-viral treatment in asthmatic subjects.
Collapse
Affiliation(s)
| | - Sofia Tillgren
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Samuel Cerps
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Asger Sverrild
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Morten Hvidtfeldt
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Sangeetha Ramu
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mandy Menzel
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Adam Frederik Sander
- Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark
| | - Celeste Porsbjerg
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Lena Uller
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
41
|
Stanevich OV, Fomina DS, Bakulin IG, Galeev SI, Bakin EA, Belash VA, Kulikov AN, Lebedeva AA, Lioznov DA, Polushin YS, Shlyk IV, Vorobyev EA, Vorobyeva SV, Surovceva TV, Bakulina NV, Lysenko MA, Moiseev IS. Ruxolitinib versus dexamethasone in hospitalized adults with COVID-19: multicenter matched cohort study. BMC Infect Dis 2021; 21:1277. [PMID: 34937556 PMCID: PMC8693127 DOI: 10.1186/s12879-021-06982-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Several anti-cytokine therapies were tested in the randomized trials in hospitalized patients with severe acute respiratory syndrome coronavirus 2 infection (COVID-19). Previously, dexamethasone demonstrated a reduction of case-fatality rate in hospitalized patients with respiratory failure. In this matched control study we compared dexamethasone to a Janus kinase inhibitor, ruxolitinib. METHODS The matched cohort study included 146 hospitalized patients with COVID-19 and oxygen support requirement. The control group was selected 1:1 from 1355 dexamethasone-treated patients and was matched by main clinical and laboratory parameters predicting survival. Recruitment period was April 7, 2020 through September 9, 2020. RESULTS Ruxolitinib treatment in the general cohort of patients was associated with case-fatality rate similar to dexamethasone treatment: 9.6% (95% CI [4.6-14.6%]) vs 13.0% (95% CI [7.5-18.5%]) respectively (p = 0.35, OR = 0.71, 95% CI [0.31-1.57]). Median time to discharge without oxygen support requirement was also not different between these groups: 13 vs. 11 days (p = 0.13). Subgroup analysis without adjustment for multiple comparisons demonstrated a reduced case-fatality rate in ruxolitnib-treated patients with a high fever (≥ 38.5 °C) (OR 0.33, 95% CI [0.11-1.00]). Except higher incidence of grade 1 thrombocytopenia (37% vs 23%, p = 0.042), ruxolitinib therapy was associated with a better safety profile due to a reduced rate of severe cardiovascular adverse events (6.8% vs 15%, p = 0.025). For 32 patients from ruxolitinib group (21.9%) with ongoing progression of respiratory failure after 72 h of treatment, additional anti-cytokine therapy was prescribed (8-16 mg dexamethasone). CONCLUSIONS Ruxolitinib may be an alternative initial anti-cytokine therapy with comparable effectiveness in patients with potential risks of steroid administration. Patients with a high fever (≥ 38.5 °C) at admission may potentially benefit from ruxolitinib administration. Trial registration The Ruxolitinib Managed Access Program (MAP) for Patients Diagnosed With Severe/Very Severe COVID-19 Illness NCT04337359, CINC424A2001M, registered April, 7, 2020. First participant was recruited after registration date.
Collapse
Affiliation(s)
- O V Stanevich
- Pavlov University, Saint-Petersburg, Russian Federation.
| | - D S Fomina
- State City Hospital №52, Moscow, Russian Federation
- First Sechenov Moscow State Medical University of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - I G Bakulin
- North-Western State Medical University Named After I.I. Mechnikov, Saint-Petersburg, Russian Federation
| | - S I Galeev
- State City Hospital №20, Saint-Petersburg, Russian Federation
| | - E A Bakin
- Pavlov University, Saint-Petersburg, Russian Federation
| | - V A Belash
- Pavlov University, Saint-Petersburg, Russian Federation
| | - A N Kulikov
- Pavlov University, Saint-Petersburg, Russian Federation
| | - A A Lebedeva
- Pavlov University, Saint-Petersburg, Russian Federation
| | - D A Lioznov
- Pavlov University, Saint-Petersburg, Russian Federation
| | - Yu S Polushin
- Pavlov University, Saint-Petersburg, Russian Federation
| | - I V Shlyk
- Pavlov University, Saint-Petersburg, Russian Federation
| | - E A Vorobyev
- Pavlov University, Saint-Petersburg, Russian Federation
| | - S V Vorobyeva
- Pavlov University, Saint-Petersburg, Russian Federation
| | - T V Surovceva
- State City Hospital №20, Saint-Petersburg, Russian Federation
| | - N V Bakulina
- North-Western State Medical University Named After I.I. Mechnikov, Saint-Petersburg, Russian Federation
| | - M A Lysenko
- State City Hospital №52, Moscow, Russian Federation
- Pirogov Russian National Research Medical University (RNRMU) of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - I S Moiseev
- Pavlov University, Saint-Petersburg, Russian Federation
| |
Collapse
|
42
|
Chernyak BV, Lyamzaev KG, Mulkidjanian AY. Innate Immunity as an Executor of the Programmed Death of Individual Organisms for the Benefit of the Entire Population. Int J Mol Sci 2021; 22:ijms222413480. [PMID: 34948277 PMCID: PMC8704876 DOI: 10.3390/ijms222413480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
In humans, over-activation of innate immunity in response to viral or bacterial infections often causes severe illness and death. Furthermore, similar mechanisms related to innate immunity can cause pathogenesis and death in sepsis, massive trauma (including surgery and burns), ischemia/reperfusion, some toxic lesions, and viral infections including COVID-19. Based on the reviewed observations, we suggest that such severe outcomes may be manifestations of a controlled suicidal strategy protecting the entire population from the spread of pathogens and from dangerous pathologies rather than an aberrant hyperstimulation of defense responses. We argue that innate immunity may be involved in the implementation of an altruistic programmed death of an organism aimed at increasing the well-being of the whole community. We discuss possible ways to suppress this atavistic program by interfering with innate immunity and suggest that combating this program should be a major goal of future medicine.
Collapse
Affiliation(s)
- Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Correspondence: (B.V.C.); (A.Y.M.)
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Armen Y. Mulkidjanian
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Correspondence: (B.V.C.); (A.Y.M.)
| |
Collapse
|
43
|
Markovic SS, Jovanovic M, Gajovic N, Jurisevic M, Arsenijevic N, Jovanovic M, Jovanovic M, Mijailovic Z, Lukic S, Zornic N, Vukicevic V, Stojanovic J, Maric V, Jocic M, Jovanovic I. IL 33 Correlates With COVID-19 Severity, Radiographic and Clinical Finding. Front Med (Lausanne) 2021; 8:749569. [PMID: 34917631 PMCID: PMC8669591 DOI: 10.3389/fmed.2021.749569] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Objective: The increased level of interleukin (IL)-33 is considered as a predictor of severe coronavirus disease 2019 (COVID-19) infection, but its role at different stages of the disease is still unclear. Our goal was to analyze the correlation of IL-33 and other innate immunity cytokines with disease severity. Methods: In this study, 220 patients with COVID-19 were included and divided into two groups, mild/moderate and severe/critical. The value of the cytokines, clinical, biochemical, radiographic data was collected and their correlation with disease severity was analyzed. Results: Most patients in the severe/critical group were male (81.8%) and older (over 64.5 years). We found a statistically significant difference (p < 0.05) in these two groups between clinical features (dyspnea, dry cough, fatigue, and auscultatory findings); laboratory [(neutrophil count, lymphocyte count, monocyte count, hemoglobin, plasma glucose, urea, creatinine, total bilirubin (TBIL), direct bilirubin (DBIL), aspartate aminotransferase (AST), albumin (ALB), lactate dehydrogenase (LDH), creatinine kinase (CK), D-dimer, C-reactive protein (CRP), procalcitonin (PCT), Fe, and Ferritin)], arterial blood gases (oxygen saturation-Sa02, partial pressure of oxygen -p02), and chest X-rays (CXR) lung findings (p = 0.000). We found a significantly higher serum concentration (p < 0.05) of TNF-α, IL-1β, IL-6, IL-12, IL-23, and IL-33 in patients with COVID-19 with severe disease. In the milder stage of COVID-19, a positive correlation was detected between IL-33 and IL-1β, IL-12 and IL-23, while a stronger positive correlation between the serum values of IL-33 and TNF-α, IL-1β, IL-6, and IL-12 and IL-23 was detected in patients with COVID-19 with severe disease. A weak negative correlation (p < 0.05) between pO2 and serum IL-1β, IL-12, and IL-33 and between SaO2 and serum IL-33 was noted. The positive relation (p < 0.05) between the serum values of IL-33 and IL-12, IL-33 and IL-6, and IL-6 and IL-12 is proven. Conclusion: In a more progressive stage of COVID-19, increased IL-33 facilitates lung inflammation by inducing the production of various innate proinflammatory cytokines (IL-1β, IL-6, TNF-α, IL-12, and IL-23) in several target cells leading to the most severe forms of the disease. IL-33 correlates with clinical parameters of COVID-19 and might represent a promising marker as well as a therapeutic target in COVID-19.
Collapse
Affiliation(s)
- Sofija Sekulic Markovic
- Department of Infectious Disease, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Jovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Gajovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Milena Jurisevic
- Department of Clinical Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Virusology and Immunology, Institute for Public Health Kragujevac, Kragujevac, Serbia
| | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milan Jovanovic
- Department of Abdominal Surgery, Military Medical Academy, Belgrade, Serbia
| | - Zeljko Mijailovic
- Department of Infectious Disease, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Snezana Lukic
- Department of Radiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nenad Zornic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Jasmina Stojanovic
- Department of Otorhinolaringology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Veljko Maric
- Department of Surgery, Faculty of Medicine Foca, University of East Sarajevo, Foca, Bosnia and Herzegovina
| | - Miodrag Jocic
- Institute for Transfusiology and Haemobiology, Military Medical Academy, Belgrade, Serbia
| | - Ivan Jovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
44
|
Jorge RG, Marta SM, Vanesa GH, Luis ML, Fernando RL, Silvia CA, Natacha PF, Borja GT, Alberto C, Patricia CL, Ignacio PCJ, Ignacio GL. Multiple Approaches at Admission Based on Lung Ultrasound and Biomarkers Improves Risk Identification in COVID-19 Patients. J Clin Med 2021; 10:5478. [PMID: 34884180 PMCID: PMC8658110 DOI: 10.3390/jcm10235478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Risk stratification of COVID-19 patients is fundamental to improving prognosis and selecting the right treatment. We hypothesized that a combination of lung ultrasound (LUZ-score), biomarkers (sST2), and clinical models (PANDEMYC score) could be useful to improve risk stratification. METHODS This was a prospective cohort study designed to analyze the prognostic value of lung ultrasound, sST2, and PANDEMYC score in COVID-19 patients. The primary endpoint was in-hospital death and/or admission to the intensive care unit. The total length of hospital stay, increase of oxygen flow, or escalated medical treatment during the first 72 h were secondary endpoints. RESULTS a total of 144 patients were included; the mean age was 57.5 ± 12.78 years. The median PANDEMYC score was 243 (52), the median LUZ-score was 21 (10), and the median sST2 was 53.1 ng/mL (30.9). Soluble ST2 showed the best predictive capacity for the primary endpoint (AUC = 0.764 (0.658-0.871); p = 0.001), towards the PANDEMYC score (AUC = 0.762 (0.655-0.870); p = 0.001) and LUZ-score (AUC = 0.749 (0.596-0.901); p = 0.002). Taken together, these three tools significantly improved the risk capacity (AUC = 0.840 (0.727-0.953); p ≤ 0.001). CONCLUSIONS The PANDEMYC score, lung ultrasound, and sST2 concentrations upon admission for COVID-19 are independent predictors of intra-hospital death and/or the need for admission to the ICU for mechanical ventilation. The combination of these predictive tools improves the predictive power compared to each one separately. The use of decision trees, based on multivariate models, could be useful in clinical practice.
Collapse
Affiliation(s)
- Rubio-Gracia Jorge
- Internal Medicine Department, Clinical Hospital “Lozano Blesa”, 50009 Zaragoza, Spain; (S.-M.M.); (G.-H.V.); (R.-L.F.); (C.-A.S.); (G.-T.B.); (P.-C.J.I.)
- Aragon Health Research Institute, 50009 Zaragoza, Spain; (M.-L.L.); (P.-F.N.); (C.A.); (C.-L.P.); (G.-L.I.)
| | - Sánchez-Marteles Marta
- Internal Medicine Department, Clinical Hospital “Lozano Blesa”, 50009 Zaragoza, Spain; (S.-M.M.); (G.-H.V.); (R.-L.F.); (C.-A.S.); (G.-T.B.); (P.-C.J.I.)
- Aragon Health Research Institute, 50009 Zaragoza, Spain; (M.-L.L.); (P.-F.N.); (C.A.); (C.-L.P.); (G.-L.I.)
| | - Garcés-Horna Vanesa
- Internal Medicine Department, Clinical Hospital “Lozano Blesa”, 50009 Zaragoza, Spain; (S.-M.M.); (G.-H.V.); (R.-L.F.); (C.-A.S.); (G.-T.B.); (P.-C.J.I.)
- Aragon Health Research Institute, 50009 Zaragoza, Spain; (M.-L.L.); (P.-F.N.); (C.A.); (C.-L.P.); (G.-L.I.)
| | - Martínez-Lostao Luis
- Aragon Health Research Institute, 50009 Zaragoza, Spain; (M.-L.L.); (P.-F.N.); (C.A.); (C.-L.P.); (G.-L.I.)
- Immunology Department, Clinical Hospital “Lozano Blesa”, 50009 Zaragoza, Spain
- Center for Biomedical Research of Aragon, 50009 Zaragoza, Spain
| | - Ruiz-Laiglesia Fernando
- Internal Medicine Department, Clinical Hospital “Lozano Blesa”, 50009 Zaragoza, Spain; (S.-M.M.); (G.-H.V.); (R.-L.F.); (C.-A.S.); (G.-T.B.); (P.-C.J.I.)
- Aragon Health Research Institute, 50009 Zaragoza, Spain; (M.-L.L.); (P.-F.N.); (C.A.); (C.-L.P.); (G.-L.I.)
| | - Crespo-Aznarez Silvia
- Internal Medicine Department, Clinical Hospital “Lozano Blesa”, 50009 Zaragoza, Spain; (S.-M.M.); (G.-H.V.); (R.-L.F.); (C.-A.S.); (G.-T.B.); (P.-C.J.I.)
| | - Peña-Fresneda Natacha
- Aragon Health Research Institute, 50009 Zaragoza, Spain; (M.-L.L.); (P.-F.N.); (C.A.); (C.-L.P.); (G.-L.I.)
- Center for Biomedical Research of Aragon, 50009 Zaragoza, Spain
| | - Gracia-Tello Borja
- Internal Medicine Department, Clinical Hospital “Lozano Blesa”, 50009 Zaragoza, Spain; (S.-M.M.); (G.-H.V.); (R.-L.F.); (C.-A.S.); (G.-T.B.); (P.-C.J.I.)
- Aragon Health Research Institute, 50009 Zaragoza, Spain; (M.-L.L.); (P.-F.N.); (C.A.); (C.-L.P.); (G.-L.I.)
- Immunology Department, Clinical Hospital “Lozano Blesa”, 50009 Zaragoza, Spain
| | - Cebollada Alberto
- Aragon Health Research Institute, 50009 Zaragoza, Spain; (M.-L.L.); (P.-F.N.); (C.A.); (C.-L.P.); (G.-L.I.)
- Biocomputation Unit, Center for Biomedical Research of Aragon, 50009 Zaragoza, Spain
| | - Carrera-Lasfuentes Patricia
- Aragon Health Research Institute, 50009 Zaragoza, Spain; (M.-L.L.); (P.-F.N.); (C.A.); (C.-L.P.); (G.-L.I.)
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), 28005 Madrid, Spain
| | - Pérez-Calvo Juan Ignacio
- Internal Medicine Department, Clinical Hospital “Lozano Blesa”, 50009 Zaragoza, Spain; (S.-M.M.); (G.-H.V.); (R.-L.F.); (C.-A.S.); (G.-T.B.); (P.-C.J.I.)
- Aragon Health Research Institute, 50009 Zaragoza, Spain; (M.-L.L.); (P.-F.N.); (C.A.); (C.-L.P.); (G.-L.I.)
- Center for Biomedical Research of Aragon, 50009 Zaragoza, Spain
- School Medicine, Zaragoza University, 50009 Zaragoza, Spain
| | - Giménez-López Ignacio
- Aragon Health Research Institute, 50009 Zaragoza, Spain; (M.-L.L.); (P.-F.N.); (C.A.); (C.-L.P.); (G.-L.I.)
- Center for Biomedical Research of Aragon, 50009 Zaragoza, Spain
- School Medicine, Zaragoza University, 50009 Zaragoza, Spain
| |
Collapse
|
45
|
Georgakis S, Gkirtzimanaki K, Papadaki G, Gakiopoulou H, Drakos E, Eloranta ML, Makridakis M, Kontostathi G, Zoidakis J, Baira E, Rönnblom L, Boumpas DT, Sidiropoulos P, Verginis P, Bertsias G. NETs decorated with bioactive IL-33 infiltrate inflamed tissues and induce IFN-α production in patients with SLE. JCI Insight 2021; 6:147671. [PMID: 34554930 PMCID: PMC8663547 DOI: 10.1172/jci.insight.147671] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
IL-33, a nuclear alarmin released during cell death, exerts context-specific effects on adaptive and innate immune cells, eliciting potent inflammatory responses. We screened blood, skin, and kidney tissues from patients with systemic lupus erythematosus (SLE), a systemic autoimmune disease driven by unabated type I IFN production, and found increased amounts of extracellular IL-33 complexed with neutrophil extracellular traps (NETs), correlating with severe, active disease. Using a combination of molecular, imaging, and proteomic approaches, we show that SLE neutrophils, activated by disease immunocomplexes, release IL-33–decorated NETs that stimulate robust IFN-α synthesis by plasmacytoid DCs in a manner dependent on the IL-33 receptor ST2L. IL33-silenced neutrophil-like cells cultured under lupus-inducing conditions generated NETs with diminished interferogenic effect. Importantly, NETs derived from patients with SLE are enriched in mature bioactive isoforms of IL-33 processed by the neutrophil proteases elastase and cathepsin G. Pharmacological inhibition of these proteases neutralized IL-33–dependent IFN-α production elicited by NETs. We believe these data demonstrate a novel role for cleaved IL-33 alarmin decorating NETs in human SLE, linking neutrophil activation, type I IFN production, and end-organ inflammation, with skin pathology mirroring that observed in the kidneys.
Collapse
Affiliation(s)
- Spiros Georgakis
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Katerina Gkirtzimanaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Garyfalia Papadaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Hariklia Gakiopoulou
- 1st Department of Pathology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Elias Drakos
- Department of Pathology, University of Crete, Medical School, Iraklio, Greece
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Georgia Kontostathi
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jerome Zoidakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eirini Baira
- Laboratory of Toxicological Assessment of Pesticides, Scientific Directorate of Pesticides Assessment and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dimitrios T Boumpas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,Joint Rheumatology Program and 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Prodromos Sidiropoulos
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Panayotis Verginis
- Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece.,Laboratory of Immune Regulation and Tolerance, University of Crete, Medical School, Iraklio, Greece
| | - George Bertsias
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| |
Collapse
|
46
|
IL-33 Enhances IFNγ and TNFα Production by Human MAIT Cells: A New Pro-Th1 Effect of IL-33. Int J Mol Sci 2021; 22:ijms221910602. [PMID: 34638950 PMCID: PMC8508606 DOI: 10.3390/ijms221910602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells represent a distinct T cell population restricted by the MHC-class-I-related molecule, MR1, which recognizes microbial-derived vitamin B2 (riboflavin) metabolites. Their abundance in humans, together with their ability to promptly produce distinct cytokines including interferon γ (IFNγ) and tumor necrosis factor α (TNFα), are consistent with regulatory functions in innate as well as adaptive immunity. Here, we tested whether the alarmin interleukin 33 (IL-33), which is secreted following inflammation or cell damage, could activate human MAIT cells. We found that MAIT cells stimulated with IL-33 produced high levels of IFNγ, TNFα and Granzyme B (GrzB). The action of IL-33 required IL-12 but was independent of T cell receptor (TCR) cross-linking. MAIT cells expressed the IL-33 receptor ST2 (suppression of tumorigenicity 2) and upregulated Tbet (T-box expressed in T cells) in response to IL-12 or IL-33. Electronically sorted MAIT cells also upregulated the expression of CCL3 (Chemokine C-C motif ligand 3), CD40L (CD40 Ligand), CSF-1 (Colony Stimulating Factor 1), LTA (Lymphotoxin-alpha) and IL-2RA (IL-2 receptor alpha chain) mRNAs in response to IL-33 plus IL-12. In conclusion, IL-33 combined with IL-12 can directly target MAIT cells to induce their activation and cytokine production. This novel mechanism of IL-33 activation provides insight into the mode of action by which human MAIT cells can promote inflammatory responses in a TCR-independent manner.
Collapse
|
47
|
Kovarik JJ, Kämpf AK, Gasser F, Herdina AN, Breuer M, Kaltenecker CC, Wahrmann M, Haindl S, Mayer F, Traby L, Touzeau-Roemer V, Grabmeier-Pfistershammer K, Kussmann M, Robak O, Willschke H, Ay C, Säemann MD, Schmetterer KG, Strassl R. Identification of Immune Activation Markers in the Early Onset of COVID-19 Infection. Front Cell Infect Microbiol 2021; 11:651484. [PMID: 34540715 PMCID: PMC8446609 DOI: 10.3389/fcimb.2021.651484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
This study aimed to determine the specific cytokine profile in peripheral blood during the early onset of COVID-19 infection. This was a cross-sectional exploratory, single center study. A total of 55 plasma samples were studied. Serum samples of adults showing symptoms of COVID-19 infection who were tested positive for SARS-CoV-2 infection (CoV+, n=18) at the COVID-19 outpatient clinic of the Medical University of Vienna were screened for immune activation markers by Luminex technology. Additionally, age and gender-matched serum samples of patients displaying COVID-19 associated symptoms, but tested negative for SARS-CoV-2 (CoV-, n=16) as well as healthy controls (HC, n=21) were analyzed. COVID-19 positive (CoV+) patients showed a specific upregulation of BLC (141; 74-189 pg/mL), SCD30 (273; 207-576 pg/mL), MCP-2 (18; 12-30 pg/mL) and IP-10 (37; 23-96 pg/mL), compared to patients with COVID19-like symptoms but negative PCR test (CoV-), BLC (61; 22-100 pg/mL), sCD30L (161; 120-210 pg/mL), MCP-2 (8; 5-12 pg/mL) and IP-10 (9; 6-12 pg/mL) and healthy controls (HC) (BLC 22; 11-36 pg/mL, sCD30 74; 39-108 pg/mL, MCP-2 6; 3-9. pg/mL, IP-10 = 8; 5-13). The markers APRIL, sIL-2R, IL7, MIF, MIP-1b, SCF, SDF-1a, sTNF-RII were elevated in both CoV+ and CoV- patient groups compared to healthy controls. HGF, MDC and VEGF-A were elevated in CoV- but not CoV+ compared to healthy controls. BLC, sCD30, MCP-2 and IP-10 are specifically induced during early stages of COVID-19 infection and might constitute attractive targets for early diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Johannes J Kovarik
- Department of Internal Medicine III, Division of Nephrology and Dialysis Medical University Vienna, Vienna, Austria
| | - Anna K Kämpf
- Department of Internal Medicine III, Division of Nephrology and Dialysis Medical University Vienna, Vienna, Austria
| | - Fabian Gasser
- Department of Internal Medicine III, Division of Nephrology and Dialysis Medical University Vienna, Vienna, Austria
| | - Anna N Herdina
- Department of Laboratory Medicine, Institute of Clinical Virology, Medical University of Vienna, Vienna, Austria
| | - Monika Breuer
- Department of Laboratory Medicine, Institute of Clinical Virology, Medical University of Vienna, Vienna, Austria
| | | | - Markus Wahrmann
- Department of Internal Medicine III, Division of Nephrology and Dialysis Medical University Vienna, Vienna, Austria
| | - Susanne Haindl
- Department of Internal Medicine III, Division of Nephrology and Dialysis Medical University Vienna, Vienna, Austria
| | - Florian Mayer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ludwig Traby
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Katharina Grabmeier-Pfistershammer
- Department of Dermatology, Medical University Vienna, Vienna, Austria.,Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Manuel Kussmann
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Oliver Robak
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Harald Willschke
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Care Ay
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus D Säemann
- 6th Medical Department With Nephrology and Dialysis, Wilhelminen Hospital, Vienna, Austria.,Sigmund Freud University, Vienna, Austria
| | - Klaus G Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Robert Strassl
- Department of Laboratory Medicine, Institute of Clinical Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Jeican II, Gheban D, Barbu-Tudoran L, Inișca P, Albu C, Ilieș M, Albu S, Vică ML, Matei HV, Tripon S, Lazăr M, Aluaș M, Siserman CV, Muntean M, Trombitas V, Iuga CA, Opincariu I, Junie LM. Respiratory Nasal Mucosa in Chronic Rhinosinusitis with Nasal Polyps versus COVID-19: Histopathology, Electron Microscopy Analysis and Assessing of Tissue Interleukin-33. J Clin Med 2021; 10:4110. [PMID: 34575221 PMCID: PMC8468618 DOI: 10.3390/jcm10184110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022] Open
Abstract
(1) Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is one of the most studied rhinological disorders. Modifications of the respiratory nasal mucosa in COVID-19 patients are so far unknown. This paper presents a comparative morphological characterization of the respiratory nasal mucosa in CRSwNP versus COVID-19 and tissue interleukin (IL)-33 concentration. (2) Methods: We analyzed CRSwNP and COVID-19 samples through histopathology, scanning and transmission electron microscopy and performed proteomic determination of IL-33. (3) Results: Histopathologically, stromal edema (p < 0.0001) and basal membrane thickening (p = 0.0768) were found more frequently in CRSwNP than in COVID-19. Inflammatory infiltrate was mainly eosinophil-dominant in CRSwNP and lymphocyte-dominant in COVID-19 (p = 0.3666). A viral cytopathic effect was identified in COVID-19. Scanning electron microscopy detected biofilms only in CRSwNP, while most COVID-19 samples showed microbial aggregates (p = 0.0148) and immune cells (p = 0.1452). Transmission electron microscopy of CRSwNP samples identified biofilms, mucous cell hyperplasia (p = 0.0011), eosinophils, fibrocytes, mastocytes, and collagen fibers. Extracellular suggestive structures for SARS-CoV-2 and multiple Golgi apparatus in epithelial cells were detected in COVID-19 samples. The tissue IL-33 concentration in CRSwNP (210.0 pg/7 μg total protein) was higher than in COVID-19 (52.77 pg/7 μg total protein) (p < 0.0001), also suggesting a different inflammatory pattern. (4) Conclusions: The inflammatory pattern is different in each of these disorders. Results suggested the presence of nasal dysbiosis in both conditions, which could be a determining factor in CRSwNP and a secondary factor in COVID-19.
Collapse
Affiliation(s)
- Ionuț Isaia Jeican
- Department of Head and Neck Surgery and Otorhinolaryngology, University Clinical Hospital of Railway Company, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (I.I.J.); (V.T.)
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Dan Gheban
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
| | - Lucian Barbu-Tudoran
- Electron Microscopy Laboratory, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania; (L.B.-T.); (S.T.)
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Patricia Inișca
- Department of Pathology, County Emergency Hospital, 330084 Deva, Romania;
| | - Camelia Albu
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Imogen Medical Research Institute, County Clinical Emergency Hospital, 400014 Cluj-Napoca, Romania
| | - Maria Ilieș
- Department of Proteomics and Metabolomics, MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.I.); (C.A.I.)
| | - Silviu Albu
- Department of Head and Neck Surgery and Otorhinolaryngology, University Clinical Hospital of Railway Company, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (I.I.J.); (V.T.)
| | - Mihaela Laura Vică
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (H.V.M.)
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania;
| | - Horea Vladi Matei
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (H.V.M.)
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania;
| | - Septimiu Tripon
- Electron Microscopy Laboratory, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania; (L.B.-T.); (S.T.)
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Mihaela Lazăr
- Cantacuzino National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania;
| | - Maria Aluaș
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Costel Vasile Siserman
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania;
- Department of Legal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania
| | - Monica Muntean
- Department of Infectious Disease, Clinical Hospital of Infectious Disease, Iuliu Hatieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania;
| | - Veronica Trombitas
- Department of Head and Neck Surgery and Otorhinolaryngology, University Clinical Hospital of Railway Company, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (I.I.J.); (V.T.)
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.I.); (C.A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Iulian Opincariu
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Lia Monica Junie
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
49
|
Kifle ZD. Bruton tyrosine kinase inhibitors as potential therapeutic agents for COVID-19: A review. Metabol Open 2021; 11:100116. [PMID: 34345815 PMCID: PMC8318668 DOI: 10.1016/j.metop.2021.100116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is first detected in December 2019 in Wuhan, China which is a new pandemic caused by SARS-COV-2 that has greatly affected the whole world. Bruton tyrosine kinase (BTK) inhibitors are drugs that are used for the management of cancer, and are being repurposed for COVID-19. BTK regulates macrophage and B cell activation, development, survival, and signaling. Inhibition of BTK has revealed an ameliorative effect on lung injury in patients with severe COVID-19. Thus, this review aimed to summarize evidence regarding the role of Bruton tyrosine kinase inhibitors against COVID-19. To include findings from diverse studies, publications related to BTK inhibitors and Covid-19 were searched from the databases such as SCOPUS, Web of Science, Medline, Google Scholar, PubMed, and Elsevier, using English key terms. Both experimental and clinical studies suggest that targeting excessive host inflammation with a BTK inhibitor is a potential therapeutic strategy in the treatment of patients with severe COVID-19. Currently, BTK inhibitors such as ibrutinib and acalabrutinib have shown a protective effect against pulmonary injury in a small series group of COVID-19 infected patients. Small molecule inhibitors like BTK inhibitors, targeting a wide range of pro-inflammatory singling pathways, may a key role in the management of COVID-19.
Collapse
Affiliation(s)
- Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
50
|
Liang Y, Wang X, Wang H, Yang W, Yi P, Soong L, Cong Y, Cai J, Fan X, Sun J. IL-33 activates mTORC1 and modulates glycolytic metabolism in CD8 + T cells. Immunology 2021; 165:61-73. [PMID: 34411293 DOI: 10.1111/imm.13404] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Interleukin (IL)-33, a member in the IL-1 family, plays a central role in innate and adaptive immunity; however, how IL-33 mediates cytotoxic T-cell regulation and the downstream signals remain elusive. In this study, we found increased mouse IL-33 expression in CD8+ T cells following cell activation via anti-CD3/CD28 stimulation in vitro or lymphocytic choriomeningitis virus (LCMV) infection in vivo. Our cell adoptive transfer experiment demonstrated that extracellular, but not nuclear, IL-33 contributed to the activation and proliferation of CD8+ , but not CD4+ T effector cells in LCMV infection. Importantly, IL-33 induced mTORC1 activation in CD8+ T cells as evidenced by increased phosphorylated S6 ribosomal protein (p-S6) levels both in vitro and in vivo. Meanwhile, this IL-33-induced CD8+ T-cell activation was suppressed by mTORC1 inhibitors. Furthermore, IL-33 elevated glucose uptake and lactate production in CD8+ T cells in both dose- and time-dependent manners. The results of glycolytic rate assay demonstrated the increased glycolytic capacity of IL-33-treated CD8+ T cells compared with that of control cells. Our mechanistic study further revealed the capacity of IL-33 in promoting the expression of glucose transporter 1 (Glut1) and glycolytic enzymes via mTORC1, leading to accelerated aerobic glucose metabolism Warburg effect and increased effector T-cell activation. Together, our data provide new insights into IL-33-mediated regulation of CD8+ T cells, which might be beneficial for therapeutic strategies of inflammatory and infectious diseases in the future.
Collapse
Affiliation(s)
- Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiaofang Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Panpan Yi
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jiyang Cai
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuegong Fan
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|