1
|
Kamml J, Acevedo C, Kammer DS. Mineral and cross-linking in collagen fibrils: The mechanical behavior of bone tissue at the nano-scale. J Mech Behav Biomed Mater 2024; 159:106697. [PMID: 39182252 PMCID: PMC11539549 DOI: 10.1016/j.jmbbm.2024.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/17/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The mineralized collagen fibril is the main building block of hard tissues and it directly affects the macroscopic mechanics of biological tissues such as bone. The mechanical behavior of the fibril itself is determined by its structure: the content of collagen molecules, minerals, and cross-links, and the mechanical interactions and properties of these components. Advanced glycation end products (AGEs) form cross-links between tropocollagen molecules within the collagen fibril and are one important factor that is believed to have a major influence on the tissue. For instance, it has been shown that brittleness in bone correlates with increased AGEs densities. However, the underlying nano-scale mechanisms within the mineralized collagen fibril remain unknown. Here, we study the effect of mineral and AGEs cross-linking on fibril deformation and fracture behavior by performing destructive tensile tests using coarse-grained molecular dynamics simulations. Our results demonstrate that after exceeding a critical content of mineral, it induces stiffening of the collagen fibril at high strain levels. We show that mineral morphology and location affect collagen fibril mechanics: The mineral content at which this stiffening occurs depends on the mineral's location and morphology. Further, both, increasing AGEs density and mineral content lead to stiffening and increased peak stresses. At low mineral contents, the mechanical response of the fibril is dominated by the AGEs, while at high mineral contents, the mineral itself determines fibril mechanics.
Collapse
Affiliation(s)
- Julia Kamml
- Institute for Building Materials, ETH Zurich, Switzerland
| | - Claire Acevedo
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| | - David S Kammer
- Institute for Building Materials, ETH Zurich, Switzerland.
| |
Collapse
|
2
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Weiner S, Shahar R. Vertebrate mineralized tissues: A modular structural analysis. Acta Biomater 2024; 179:1-12. [PMID: 38561073 DOI: 10.1016/j.actbio.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Vertebrate mineralized tissues, present in bones, teeth and scales, have complex 3D hierarchical structures. As more of these tissues are characterized in 3D using mainly FIB SEM at a resolution that reveals the mineralized collagen fibrils and their organization into collagen fibril bundles, highly complex and diverse structures are being revealed. In this perspective we propose an approach to analyzing these tissues based on the presence of modular structures: material textures, pore shapes and sizes, as well as extents of mineralization. This modular approach is complimentary to the widely used hierarchical approach for describing these mineralized tissues. We present a series of case studies that show how some of the same structural modules can be found in different mineralized tissues, including in bone, dentin and scales. The organizations in 3D of the various structural modules in different tissues may differ. This approach facilitates the framing of basic questions such as: are the spatial relations between modular structures the same or similar in different mineralized tissues? Do tissues with similar sets of modules carry out similar functions or can similar functions be carried out using a different set of modular structures? Do mineralized tissues with similar sets of modules have a common developmental or evolutionary pathway? STATEMENT OF SIGNIFICANCE: 3D organization studies of diverse vertebrate mineralized tissues are revealing detailed, but often confusing details about the material textures, the arrangements of pores and differences in the extent of mineralization within a tissue. The widely used hierarchical scheme for describing such organizations does not adequately provide a basis for comparing these tissues, or addressing issues such as structural components thought to be characteristic of bone, being present in dermal tissues and so on. The classification scheme we present is based on identifying structural components within a tissue that can then be systematically compared to other vertebrate mineralized tissues. We anticipate that this classification approach will provide insights into structure-function relations, as well as the evolution of these tissues.
Collapse
Affiliation(s)
- Steve Weiner
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Ron Shahar
- Faculty of Agriculture Food & Environment, Koret School of Veterinary Medicine, Hebrew University Jerusalem, P.O.B. 12, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Tavakol M, Vaughan TJ. Elucidating the role of diverse mineralisation paradigms on bone biomechanics - a coarse-grained molecular dynamics investigation. NANOSCALE 2024; 16:3173-3184. [PMID: 38259246 PMCID: PMC10851340 DOI: 10.1039/d3nr04660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Bone as a hierarchical composite structure plays a myriad of roles in vertebrate skeletons including providing the structural stability of the body. Despite this critical role, the mechanical behaviour at the sub-micron levels of bone's hierarchy remains poorly understood. At this scale, bone is composed of Mineralised Collagen Fibrils (MCF) embedded within an extra-fibrillar matrix that consists of hydroxyapatite minerals and non-collagenous proteins. Recent experimental studies hint at the significance of the extra-fibrillar matrix in providing the bone with the stiffness and ductility needed to serve its structural roles. However, due to limited resolution of experimental tools, it is not clear how the arrangement of minerals, and in particular their relative distribution between the intra- and extra-fibrillar space contribute to bone's remarkable mechanical properties. In this study, a Coarse Grained Molecular Dynamics (CGMD) framework was developed to study the mechanical properties of MCFs embedded within an extra-fibrillar mineral matrix and the precise roles extra- and intra-fibrillar mineralisation on the load-deformation response was investigated. It was found that the presence of extra-fibrillar mineral resulted in the development of substantial residual stress in the system, by limiting MCF shortening that took place during intra-fibrillar mineralisation, resulting in substantial compressive residual stresses in the extra-fibrillar mineral phase. The simulation results also revealed the crucial role of extra-fibrillar mineralisation in determining the elastic response of the Extrafibrillar mineralised MCF (EFM-MCF) system up to the yield point, while the fibrillar collagen affected the post-yield behaviour. When physiological levels of mineralisation were considered, the mechanical response of the EFM-MCF systems was characterised by high ductility and toughness, with micro-cracks being distributed across the extra-fibrillar matrix, and MCFs effectively bridging these cracks leading to an excellent combination of strength and toughness. Together, these results provide novel insight into the deformation mechanisms of an EFM-MCF system and highlight that this universal building block, which forms the basis for lamellar bone, can provide an excellent balance of stiffness, strength and toughness, achieving mechanical properties that are far beyond the capabilities of the individual constituents acting alone.
Collapse
Affiliation(s)
- Mahdi Tavakol
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| | - Ted J Vaughan
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
5
|
Ibrahim J, Rechav K, Boaretto E, Weiner S. Three dimensional structures of the inner and outer pig petrous bone using FIB-SEM: Implications for development and ancient DNA preservation. J Struct Biol 2023; 215:107998. [PMID: 37422275 DOI: 10.1016/j.jsb.2023.107998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
We report on the 3D ultrastructure of the mineralized petrous bone of mature pig using focused ion beam - scanning electron microscopy (FIB-SEM). We divide the petrous bone into two zones based on the degree of mineralization; one zone close to the otic chamber has higher mineral density than the second zone further away from the otic chamber. The hypermineralization of the petrous bone results in the collagen D-banding being poorly revealed in the lower mineral density zone (LMD), and absent in the high mineral density zone (HMD). We therefore could not use D-banding to decipher the 3D structure of the collagen assembly. Instead we exploited the anisotropy option in the Dragonfly image processing software to visualize the less mineralized collagen fibrils and/or nanopores that surround the more mineralized zones known as tesselles. This approach therefore indirectly tracks the orientations of the collagen fibrils in the matrix itself. We show that the HMD bone has a structure similar to that of woven bone, and the LMD is composed of lamellar bone with a plywood-like structural motif. This agrees with the fact that the bone close to the otic chamber is fetal bone and is not remodeled. The lamellar structure of the bone further away from the otic chamber is consistent with modeling/remodeling. The absence of the less mineralized collagen fibrils and nanopores resulting from the confluence of the mineral tesselles may contribute to shielding DNA during diagenesis. We show that anisotropy evaluation of the less mineralized collagen fibrils could be a useful tool to analyze bone ultrastructures and in particular the directionality of collagen fibril bundles that make up the bone matrix.
Collapse
Affiliation(s)
- Jamal Ibrahim
- Scientific Archaeology Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elisabetta Boaretto
- Scientific Archaeology Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Steve Weiner
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
6
|
Tavakol M, Vaughan TJ. A coarse-grained molecular dynamics investigation of the role of mineral arrangement on the mechanical properties of mineralized collagen fibrils. J R Soc Interface 2023; 20:20220803. [PMID: 36695019 PMCID: PMC9874270 DOI: 10.1098/rsif.2022.0803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
Mineralized collagen fibrils (MCFs) comprise collagen molecules and hydroxyapatite (HAp) crystals and are considered universal building blocks of bone tissue, across different bone types and species. In this study, we developed a coarse-grained molecular dynamics (CGMD) framework to investigate the role of mineral arrangement on the load-deformation behaviour of MCFs. Despite the common belief that the collagen molecules are responsible for flexibility and HAp minerals are responsible for stiffness, our results showed that the mineral phase was responsible for limiting collagen sliding in the large deformation regime, which helped the collagen molecules themselves undergo high tensile loading, providing a substantial contribution to the ultimate tensile strength of MCFs. This study also highlights different roles for the mineralized and non-mineralized protofibrils within the MCF, with the mineralized groups being primarily responsible for load carrying due to the presence of the mineral phase, while the non-mineralized groups are responsible for crack deflection. These results provide novel insight into the load-deformation behaviour of MCFs and highlight the intricate role that both collagen and mineral components have in dictating higher scale bone biomechanics.
Collapse
Affiliation(s)
- Mahdi Tavakol
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ted J. Vaughan
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
7
|
Hara ES, Nagaoka N, Okada M, Nakano T, Matsumoto T. Distinct Morphologies of Bone Apatite Clusters in Endochondral and Intramembranous Ossification. Adv Biol (Weinh) 2022; 6:e2200076. [PMID: 35859256 DOI: 10.1002/adbi.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/27/2022] [Indexed: 01/28/2023]
Abstract
Bone apatite crystals grow in clusters, but the microstructure of these clusters is unknown. This study compares the structural and compositional differences between bone apatite clusters formed in intramembranous (IO) and endochondral ossification (EO). Calvaria (IO) and femurs (EO) are isolated from mice at embryonic days (E) 14.5 to 15.5 and post-natal days (P) 6 to 7, respectively. Results show that the initially formed bone apatite clusters in EO (≅1.2 µm2 ) are >10 times larger than those in IO (≅0.1 µm2 ), without significant changes in ion composition. In IO (E14.5 calvarium), early minerals are formed inside matrix vesicles (MVs). In contrast, in EO (P6 femur epiphysis), no MVs are observed, and chondrocyte-derived plasma membrane nanofragments (PMNFs) are the nucleation site for mineralization. Apatite cluster size difference is linked with the different nucleation sites. Moreover, an alkaline pH and slow P supply into a Ca-rich microenvironment are suggested to facilitate apatite cluster growth, as demonstrated in a biomimetic mineralization system. Together, the results reveal for the first time the distinct and exquisite microstructures of bone apatite clusters in IO and EO, and provide insightful inspirations for the design of more efficient materials for bone tissue engineering and repair.
Collapse
Affiliation(s)
- Emilio Satoshi Hara
- Department of Biomaterials Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Noriyuki Nagaoka
- Dental School, Okayama University, Advanced Research Center for Oral and Craniofacial Sciences, Okayama, 700-8525, Japan
| | - Masahiro Okada
- Department of Biomaterials Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-Shi, Osaka, 565-0871, Japan
| | - Takuya Matsumoto
- Department of Biomaterials Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| |
Collapse
|
8
|
Ustriyana P, Hennefarth MR, Srirangapatanam S, Jung H, Wang Y, Chen L, Lue TF, Lin G, Kang M, Stoller ML, Ho SP. Mineralized Peyronie's plaque has a phenotypic resemblance to bone. Acta Biomater 2022; 140:457-466. [PMID: 34818578 DOI: 10.1016/j.actbio.2021.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 01/04/2023]
Abstract
Mineralized Peyronie's plaque (MPP) impairs penile function. The association, colocalization, and dynamic interplay between organic and inorganic constituents can provide insights into biomineralization of Peyronie's plaque. Human MPPs (n = 11) were surgically excised, and the organic and inorganic constituents were spatially mapped using multiple high-resolution imaging techniques. Multiscale image analyses resulted in spatial colocalization of elements within a highly porous material with heterogenous composition, lamellae, and osteocytic lacuna-like features with a morphological resemblance to bone. The lower (520 ± 179 mg/cc) and higher (1024 ± 155 mg/cc) mineral density regions were associated with higher (11%) and lower (7%) porosities in MPP. Energy dispersive X-ray and micro-X-ray fluorescent spectroscopic maps in the higher mineral density regions of MPP revealed higher counts of calcium (Ca) and phosphorus (P), and a Ca/P ratio of 1.48 ± 0.06 similar to bone. More importantly, higher counts of zinc (Zn) were localized at the interface between softer (more organic to inorganic ratio) and harder (less organic to inorganic ratio) tissue regions of MPP and adjacent softer matrix, indicating the involvement of Zn-related proteins and/or pathways in the formation of MPP. In particular, dentin matrix protein-1 (DMP-1) was colocalized in a matrix rich in proteoglycans and collagen that contained osteocytic lacuna-like features. This combined materials science and biochemical with correlative microspectroscopic approach provided insights into the plausible cellular and biochemical pathways that incite mineralization of an existing fibrous Peyronie's plaque. STATEMENT OF SIGNIFICANCE: Aberrant human penile mineralization is known as mineralized Peyronie's plaque (MPP) and often results in a loss of form and function. This study focuses on investigating the spatial association of matrix proteins and elemental composition of MPP by colocalizing calcium, phosphorus, and trace metal zinc with dentin matrix protein 1 (DMP-1), acidic proteoglycans, and fibrillar collagen along with the cellular components using high resolution correlative microspectroscopy techniques. Spatial maps provided insights into cellular and biochemical pathways that incite mineralization of fibrous Peyronie's plaque in humans.
Collapse
Affiliation(s)
- Putu Ustriyana
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, CA, United States
| | - Matthew R Hennefarth
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, CA, United States
| | - Sudarshan Srirangapatanam
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, CA, United States
| | - Haeyoon Jung
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, CA, United States
| | - Yongmei Wang
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, CA, United States
| | - Ling Chen
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, CA, United States
| | - Tom F Lue
- Department of Urology, School of Medicine, University of California, San Francisco, California, United States
| | - Guiting Lin
- Department of Urology, School of Medicine, University of California, San Francisco, California, United States
| | - Misun Kang
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, CA, United States
| | - Marshall L Stoller
- Department of Urology, School of Medicine, University of California, San Francisco, California, United States
| | - Sunita P Ho
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, CA, United States; Department of Urology, School of Medicine, University of California, San Francisco, California, United States.
| |
Collapse
|
9
|
Eren ED, Nijhuis WH, van der Weel F, Dede Eren A, Ansari S, Bomans PHH, Friedrich H, Sakkers RJ, Weinans H, de With G. Multiscale characterization of pathological bone tissue. Microsc Res Tech 2021; 85:469-486. [PMID: 34490967 PMCID: PMC9290679 DOI: 10.1002/jemt.23920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/16/2021] [Accepted: 08/18/2021] [Indexed: 11/09/2022]
Abstract
Bone is a complex natural material with a complex hierarchical multiscale organization, crucial to perform its functions. Ultrastructural analysis of bone is crucial for our understanding of cell to cell communication, the healthy or pathological composition of bone tissue, and its three‐dimensional (3D) organization. A variety of techniques has been used to analyze bone tissue. This article describes a combined approach of optical, scanning electron, and transmission electron microscopy for the ultrastructural analysis of bone from the nanoscale to the macroscale, as illustrated by two pathological bone tissues. By following a top‐down approach to investigate the multiscale organization of pathological bones, quantitative estimates were made in terms of calcium content, nearest neighbor distances of osteocytes, canaliculi diameter, ordering, and D‐spacing of the collagen fibrils, and the orientation of intrafibrillar minerals which enable us to observe the fine structural details. We identify and discuss a series of two‐dimensional (2D) and 3D imaging techniques that can be used to characterize bone tissue. By doing so we demonstrate that, while 2D imaging techniques provide comparable information from pathological bone tissues, significantly different structural details are observed upon analyzing the pathological bone tissues in 3D. Finally, particular attention is paid to sample preparation for and quantitative processing of data from electron microscopic analysis.
Collapse
Affiliation(s)
- E Deniz Eren
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wouter H Nijhuis
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Freek van der Weel
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.,Eindhoven University of Technology, Department of Biomedical Engineering, Biointerface Science, Eindhoven, The Netherlands
| | - Sana Ansari
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.,Orthopedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Paul H H Bomans
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Heiner Friedrich
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ralph J Sakkers
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands.,TU Delft, Department of Biomechanical Engineering, Delft, The Netherlands
| | - Gijsbertus de With
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
10
|
Wu L, Wang Q, Li Y, Yang M, Dong M, He X, Zheng S, Cao CY, Zhou Z, Zhao Y, Li QL. A Dopamine Acrylamide Molecule for Promoting Collagen Biomimetic Mineralization and Regulating Crystal Growth Direction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39142-39156. [PMID: 34433244 DOI: 10.1021/acsami.1c12412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The reconstruction of the intra/interfibrillar mineralized collagen microstructure is extremely important in biomaterial science and regeneration medicine. However, certain problems, such as low efficiency and long period of mineralization, are apparent, and the mechanism of interfibrillar mineralization is often neglected in the present literature. Thus, we propose a novel model of biomimetic collagen mineralization that uses molecules with the dual function of cross-linking collagen and regulating collagen mineralization to construct the intrafibrillar and interfibrillar collagen mineralization of the structure of mineralized collagen hard tissues. In the present study completed in vitro, N-2-(3,4-dihydroxyphenyl) acrylamide (DAA) is used to bind and cross-link collagen molecules and further stabilize the self-assembled collagen fibers. The DAA-collagen complex provides more affinity with calcium and phosphate ions, which can reduce the calcium phosphate/collagen interfacial energy to promote hydroxyapatite (HA) nucleation and accelerate the rate of collagen fiber mineralization. Besides inducing intrafibrillar mineralization, the DAA-collagen complex mineralization template can realize interfibrillar mineralization with the c-axis of the HA crystal on the surface of collagen fibers and between fibers that are parallel to the long axis of collagen fibers. The DAA-collagen complex, as a new type of mineralization template, may provide a new collagen mineralization strategy to produce a mineralized scaffold material for tissue engineering or develop bone-like materials.
Collapse
Affiliation(s)
- Leping Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Qingqing Wang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Yuzhu Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Mengmeng Yang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Menglu Dong
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Xiaoxue He
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Shunli Zheng
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Chris Ying Cao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Zheng Zhou
- School of Dentistry, University of Detroit Mercy, Detroit, Michigan 48208-2576, United States
| | - Yuancong Zhao
- Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Quan-Li Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
11
|
Radvar E, Griffanti G, Tsolaki E, Bertazzo S, Nazhat SN, Addison O, Mata A, Shanahan CM, Elsharkawy S. Engineered In vitro Models for Pathological Calcification: Routes Toward Mechanistic Understanding. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Elham Radvar
- Centre for Oral, Clinical and Translational Sciences Faculty of Dentistry, Oral and Craniofacial Sciences King's College London London SE1 1UL UK
| | - Gabriele Griffanti
- Department of Mining and Materials Engineering Faculty of Engineering McGill University Montreal QC H3A 0C5 Canada
| | - Elena Tsolaki
- Department of Medical Physics and Biomedical Engineering University College London London WC1E 6BT UK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering University College London London WC1E 6BT UK
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering Faculty of Engineering McGill University Montreal QC H3A 0C5 Canada
| | - Owen Addison
- Centre for Oral, Clinical and Translational Sciences Faculty of Dentistry, Oral and Craniofacial Sciences King's College London London SE1 1UL UK
| | - Alvaro Mata
- School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Catherine M. Shanahan
- BHF Centre of Research Excellence Cardiovascular Division James Black Centre King's College London London SE1 1UL UK
| | - Sherif Elsharkawy
- Centre for Oral, Clinical and Translational Sciences Faculty of Dentistry, Oral and Craniofacial Sciences King's College London London SE1 1UL UK
| |
Collapse
|
12
|
Lee BEJ, Langelier B, Grandfield K. Visualization of Collagen-Mineral Arrangement Using Atom Probe Tomography. Adv Biol (Weinh) 2021; 5:e2100657. [PMID: 34296817 DOI: 10.1002/adbi.202100657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/24/2021] [Indexed: 11/11/2022]
Abstract
Bone is a functional material comprised of mainly two phases: an organic collagenous phase and an inorganic mineral phase. Collagen-mineral arrangement has implications for bone function, aging, and disease. However, theories on collagen-mineral arrangement have been confined to studies with low spatial and/or compositional resolution resulting in an extensive debate over the location of mineral with respect to collagen. Herein, a strategy is developed to extract a single mineralized collagen fibril from bone and analyze its composition and structure atom-by-atom with 3D sub-nanometer accuracy and compositional clarity using atom probe tomography (APT). It is shown for the first time a method to probe fibril-level mineralization and collagen-mineral arrangement from an in vivo system with both the spatial and compositional precision required to comment on nanoscale collagen-mineral arrangement. APT of leporine bone shows distinct and helical collagen fibrils with mineralized deposits both encapsulating and incorporated into the collagenous structures. This study demonstrates a novel fibril-level detection method that can be used to probe the composition of bone and contribute new insights to the structure and organization of mineralized materials such as bones and teeth.
Collapse
Affiliation(s)
- Bryan E J Lee
- School of Biomedical Engineering, McMaster University, Hamilton, L8S 4L8, Canada
| | - Brian Langelier
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, L8S 4L8, Canada
| | - Kathryn Grandfield
- School of Biomedical Engineering, McMaster University, Hamilton, L8S 4L8, Canada.,Department of Materials Science and Engineering, McMaster University, Hamilton, L8S 4L8, Canada
| |
Collapse
|
13
|
Yi Q, Feng X, Zhang C, Wang X, Wu X, Wang J, Cui F, Wang S. Comparison of dynamic mechanical properties of dentin between deciduous and permanent teeth. Connect Tissue Res 2021; 62:402-410. [PMID: 32308055 DOI: 10.1080/03008207.2020.1758684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Even though differences between deciduous and permanent dentin have been widely studied, their dynamic mechanical behavior has never been compared. The objective of the present study was to quantify the differences between deciduous and permanent dentin under cyclic mechanical loading, which is similar to masticatory stress.Materials and Methods: Deciduous and permanent teeth, respectively from children (9 ~ 12 years old) and young people (18 ~ 25 years old), were wet-sectioned perpendicular to the longitudinal axis and the central specimens of coronal dentin were evaluated by nanoscopic dynamic mechanical analysis (nanoDMA).Results: The average storage, loss, and complex moduli, as well as the hardness of deciduous dentin were significantly (p < 0.05) lower than those of permanent dentin. Moreover, the tan δ value of permanent dentin was significantly (p < 0.05) lower than that of deciduous dentin across the loading frequency range, indicating that viscoelastic behavior and loss of elastic energy were significantly reduced in the stiffer permanent dentin. All the nanoDMA responses showed a significant influence of the dynamic loading frequency (p < 0.05): Both deciduous and permanent dentin showed reduced viscoelasticty with increased loading frequencies.Conclusions: Compared with deciduous dentin, permanent dentin exhibits higher stiffness with reduced energy loss during deformation, and therefore superior mechanical characteristics for the mastication process.
Collapse
Affiliation(s)
- Qiao Yi
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, P. R. China
| | - Xiaoyu Feng
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, P. R. China
| | - Chunmei Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, P. R. China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, P. R. China
| | - Xiaoshan Wu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, P. R. China.,Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Shangsha, China
| | - Jingsong Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, P. R. China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, P. R. China
| | - Fuzhai Cui
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, P. R. China
| | - Songlin Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, P. R. China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, P. R. China
| |
Collapse
|
14
|
Weiner S, Raguin E, Shahar R. High resolution 3D structures of mineralized tissues in health and disease. Nat Rev Endocrinol 2021; 17:307-316. [PMID: 33758360 DOI: 10.1038/s41574-021-00479-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
A thorough knowledge of the structures of healthy mineralized tissues, such as bone or cartilage, is key to understanding the pathological changes occurring during disease. Such knowledge enables the underlying mechanisms that are responsible for pathology to be pinpointed. One high-resolution 3D method in particular - focused ion beam-scanning electron microscopy (FIB-SEM) - has fundamentally changed our understanding of healthy vertebrate mineralized tissues. FIB-SEM can be used to study demineralized matrix, the hydrated components of tissue (including cells) using cryo-fixation and even untreated mineralized tissue. The latter requires minimal sample preparation, making it possible to study enough samples to carry out studies capable of detecting statistically significant differences - a pre-requisite for the study of pathological tissues. Here, we present an imaging and characterization strategy for tissue structures at different length scales, describe new insights obtained on healthy mineralized tissues using FIB-SEM, and suggest future research directions for both healthy and diseased mineralized tissues.
Collapse
Affiliation(s)
- Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Emeline Raguin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Shahar
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
15
|
Vidavsky N, Kunitake JAMR, Estroff LA. Multiple Pathways for Pathological Calcification in the Human Body. Adv Healthc Mater 2021; 10:e2001271. [PMID: 33274854 PMCID: PMC8724004 DOI: 10.1002/adhm.202001271] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization of skeletal components (e.g., bone and teeth) is generally accepted to occur under strict cellular regulation, leading to mineral-organic composites with hierarchical structures and properties optimized for their designated function. Such cellular regulation includes promoting mineralization at desired sites as well as inhibiting mineralization in soft tissues and other undesirable locations. In contrast, pathological mineralization, with potentially harmful health effects, can occur as a result of tissue or metabolic abnormalities, disease, or implantation of certain biomaterials. This progress report defines mineralization pathway components and identifies the commonalities (and differences) between physiological (e.g., bone remodeling) and pathological calcification formation pathways, based, in part, upon the extent of cellular control within the system. These concepts are discussed in representative examples of calcium phosphate-based pathological mineralization in cancer (breast, thyroid, ovarian, and meningioma) and in cardiovascular disease. In-depth mechanistic understanding of pathological mineralization requires utilizing state-of-the-art materials science imaging and characterization techniques, focusing not only on the final deposits, but also on the earlier stages of crystal nucleation, growth, and aggregation. Such mechanistic understanding will further enable the use of pathological calcifications in diagnosis and prognosis, as well as possibly provide insights into preventative treatments for detrimental mineralization in disease.
Collapse
Affiliation(s)
- Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Jennie A M R Kunitake
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| |
Collapse
|
16
|
Zhou Z, Zhang L, Li J, Shi Y, Wu Z, Zheng H, Wang Z, Zhao W, Pan H, Wang Q, Jin X, Zhang X, Tang R, Fu B. Polyelectrolyte-calcium complexes as a pre-precursor induce biomimetic mineralization of collagen. NANOSCALE 2021; 13:953-967. [PMID: 33367434 DOI: 10.1039/d0nr05640e] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyelectrolytes such as polyaspartic acid (PAsp) are critical in biomimetic mineralization as stabilizers of amorphous calcium phosphate (ACP) precursors and as nucleation inhibitors similar to non-collagenous proteins (NCPs). Nevertheless, the application of polyelectrolyte-calcium complexes as a pre-precursor, such as PAsp-Ca complexes, in the mineralization of collagen is unexplored. Herein, we propose a polyelectrolyte-Ca complex pre-precursor (PCCP) process for collagen mineralization. By combining three-dimensional (3D) STORM, potential measurements, and cryogenic transmission electron microscopy with molecular dynamics simulations, we show that liquid-like electropositive PAsp-Ca complexes along with free calcium ions infiltrate electronegative collagen fibrils. The PAsp-Ca complexes are immobilized within the fibrils via chelation and hydrogen bonds, and outward movement of free calcium ions is prevented while phosphate and hydroxide are recruited through electrostatic attractions. Afterwards, ACP instantly forms and gradually crystallizes. The PCCP process not only unites two distinct crystallization pathways (classical (free Ca/P ions) and non-classical (polyelectrolyte-Ca complexes)), but also provides a novel strategy for rapid biomimetic mineralization of collagen.
Collapse
Affiliation(s)
- Zihuai Zhou
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Low doses of uranium and osteoclastic bone resorption: key reciprocal effects evidenced using new in vitro biomimetic models of bone matrix. Arch Toxicol 2021; 95:1023-1037. [PMID: 33426622 DOI: 10.1007/s00204-020-02966-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/22/2020] [Indexed: 01/18/2023]
Abstract
Uranium is widely spread in the environment due to its natural and anthropogenic occurrences, hence the importance of understanding its impact on human health. The skeleton is the main site of long-term accumulation of this actinide. However, interactions of this metal with biological processes involving the mineralized extracellular matrix and bone cells are still poorly understood. To get a better insight into these interactions, we developed new biomimetic bone matrices containing low doses of natural uranium (up to 0.85 µg of uranium per cm2). These models were characterized by spectroscopic and microscopic approaches before being used as a support for the culture and differentiation of pre-osteoclastic cells. In doing so, we demonstrate that uranium can exert opposite effects on osteoclast resorption depending on its concentration in the bone microenvironment. Our results also provide evidence for the first time that resorption contributes to the remobilization of bone matrix-bound uranium. In agreement with this, we identified, by HRTEM, uranium phosphate internalized in vesicles of resorbing osteoclasts. Thanks to the biomimetic matrices we developed, this study highlights the complex mutual effects between osteoclasts and uranium. This demonstrates the relevance of these 3D models to further study the cellular mechanisms at play in response to uranium storage in bone tissue, and thus better understand the impact of environmental exposure to uranium on human bone health.
Collapse
|
18
|
Thomas J, Worch H, Kruppke B, Gemming T. Contribution to understand the biomineralization of bones. J Bone Miner Metab 2020; 38:456-468. [PMID: 32008099 DOI: 10.1007/s00774-020-01083-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The goal is to propose a material scientific hypothesis for the atomic arrangement of calcium phosphates during the mineralization of bones. MATERIALS AND METHODS It was reached by the analysis of bones of healthy and osteoporotic rats using analytical transmission electron microscopic methods. RESULTS Electron diffraction patterns show hydroxyapatite (HAP) as dominant phase within the mineralized areas. In the electron energy loss spectrum, a double peak of the phosphorous L-edge seems to be a characteristic feature of the phosphorous binding in biological HAP. The hypothesis bases on periodic features on the collagen surface which agree with distances between oxygen atoms in the (200) plane of octacalcium phosphate (OCP). Bridge pillars for the HAP network consist of OCP coupled with a half unit cell on collagen by oxygen-hydrogen bridges. Possibly, the metastable OCP bridges are only a transient step, while the mineralization is starting. OCP and HAP couple by similar distances of calcium atoms in an interface close to the (100) planes of the OCP and the HAP network. To reach the perfect overlap of the equidistant Ca atoms, the HAP network has to be rotated by 22.5° around the a-axis, 11.5° around the c-axis of HAP, and 10.1° around an axis perpendicular to a and c. CONCLUSIONS A supercell based on this idea is able to explain the dominance of HAP in the electron diffraction patterns, the arrangement of the (002) lattice planes perpendicular to the collagen fiber axis, and sections of high-resolution TEM images.
Collapse
Affiliation(s)
- Jürgen Thomas
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069, Dresden, Germany.
| | - Hartmut Worch
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Thomas Gemming
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| |
Collapse
|
19
|
Iacoviello F, Kirby AC, Javanmardi Y, Moeendarbary E, Shabanli M, Tsolaki E, Sharp AC, Hayes MJ, Keevend K, Li JH, Brett DJL, Shearing PR, Olivo A, Herrmann IK, Evans SE, Moazen M, Bertazzo S. The multiscale hierarchical structure of Heloderma suspectum osteoderms and their mechanical properties. Acta Biomater 2020; 107:194-203. [PMID: 32109598 DOI: 10.1016/j.actbio.2020.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
Osteoderms are hard tissues embedded in the dermis of vertebrates and have been suggested to be formed from several different mineralized regions. However, their nano architecture and micro mechanical properties had not been fully characterized. Here, using electron microscopy, µ-CT, atomic force microscopy and finite element simulation, an in-depth characterization of osteoderms from the lizard Heloderma suspectum, is presented. Results show that osteoderms are made of three different mineralized regions: a dense apex, a fibre-enforced region comprising the majority of the osteoderm, and a bone-like region surrounding the vasculature. The dense apex is stiff, the fibre-enforced region is flexible and the mechanical properties of the bone-like region fall somewhere between the other two regions. Our finite element analyses suggest that when combined into the osteoderm structure, the distinct tissue regions are able to shield the body of the animal by bearing the external forces. These findings reveal the structure-function relationship of the Heloderma suspectum osteoderm in unprecedented detail. STATEMENT OF SIGNIFICANCE: The structures of bone and teeth have been thoroughly investigated. They provide a basis not only for understanding the mechanical properties and functions of these hard tissues, but also for the de novo design of composite materials. Osteoderms, however, are hard tissues that must possess mechanical properties distinct from teeth and bone to function as a protective armour. Here we provide a detailed analysis of the nanostructure of vertebrate osteoderms from Heloderma suspectum, and show that their mechanical properties are determined by their multiscale hierarchical tissue. We believe this study contributes to advance the current knowledge of the structure-function relationship of the hierarchical structures in the Heloderma suspectum osteoderm. This knowledge might in turn provide a source of inspiration for the design of bioinspired and biomimetic materials.
Collapse
Affiliation(s)
- Francesco Iacoviello
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Alexander C Kirby
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Murad Shabanli
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Elena Tsolaki
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Alana C Sharp
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Matthew J Hayes
- Department of Ophthalmology, University College London, London WC1E 6BT, UK
| | - Kerda Keevend
- Department of Materials, Meet Life, Swiss Federal Laboratories for Materials Science and Technology, (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Jian-Hao Li
- Department of Materials, Meet Life, Swiss Federal Laboratories for Materials Science and Technology, (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Daniel J L Brett
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Paul R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Inge K Herrmann
- Department of Materials, Meet Life, Swiss Federal Laboratories for Materials Science and Technology, (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Susan E Evans
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
20
|
Sanchez-Siles JM, Tamimi-Mariño I, Cortes ARG, Ackerman JL, González-Quevedo D, Guerado E, García A, Yaghoubi F, Abdallah MN, Eimar H, Laurenti M, Al-Subaie A, Tamimi F. Age related changes in the bone microstructure in patients with femoral neck fractures. Injury 2020; 51 Suppl 1:S12-S18. [PMID: 32115206 DOI: 10.1016/j.injury.2020.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/08/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The risk of femoral neck fracture progressively increases with age. However, the reasons behind this consistent increase in the fracture risk can't be completely justified by the decrease in the bone mineral density. The objective of this study was to analyze the correlation between various bone structural features and age. STUDY DESIGN & METHODS A total of 29 consecutive patients who suffered an intracapsular hip fracture and underwent joint replacement surgery between May 2012 and March 2013 were included in this study. A 2 cm × 1 cm Ø cylindrical trabecular bone sample was collected from the femoral heads and preserved in formaldehyde. Bone mineral density (BMD), microarchitecture, organic content and crystallography were analyzed using a Dual-energy X-ray absorptiometry scan, micro-CT scan, and high resolution magic-angle-spinning-nuclear magnetic resonance (MAS-NMR), respectively. Statistical correlations were made using Spearman´s or Pearson´s correlation tests depending on the distribution of the continuous variables. RESULTS The mean patient age was 79.83 ± 9.31 years. A moderate negative correlation was observed between age and the hydrogen content in bone (1H), which is an indirect estimate to quantify the organic matrix (r = -0.512, p = 0.005). No correlations were observed between BMD, trabecular number, trabecular thickness, phosphorous content, apatite crystal size, and age (r = 0.06, p = 0.755; r = -0.008, p = 0.967; r = -0.046, p = 0.812; r = -0.152, p = 0.430, respectively). A weak positive correlation was observed between Charlson´s comorbidity index (CCI) and c-axis of the hydroxiapatite (HA) crystals (r = -0.400, p = 0.035). CONCLUSION The femoral head relative protein content progressively decreases with age. BMD was not correlated with other structural bone parameters and age. Patients with higher comorbidity scores had larger HA crystals. The present results suggest that the progressive increase in the hip fracture risk in elderly patients could be partially explained by the lower bone protein content in this age group.
Collapse
Affiliation(s)
- J M Sanchez-Siles
- Faculty of Medicine, Department of Surgery, University of Málaga, Bulevar Louis Pasteur, 32, 29010 Málaga, Spain; Hospital Regional Universitario de Malaga, Avenida Carlos Haya SN, Malaga, 29010, Spain.
| | - I Tamimi-Mariño
- Hospital Regional Universitario de Malaga, Avenida Carlos Haya SN, Malaga, 29010, Spain
| | - A R G Cortes
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA. Department of Radiology, Harvard Medical School, Boston, MA, USA; Faculty of Dental Surgery, Department of Dental Surgery, University of Malta (Msida, MALTA)
| | - J L Ackerman
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA. Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - D González-Quevedo
- Hospital Regional Universitario de Malaga, Avenida Carlos Haya SN, Malaga, 29010, Spain
| | - E Guerado
- Faculty of Medicine, Department of Surgery, University of Málaga, Bulevar Louis Pasteur, 32, 29010 Málaga, Spain.
| | - A García
- Hospital Regional Universitario de Malaga, Avenida Carlos Haya SN, Malaga, 29010, Spain
| | - F Yaghoubi
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, Canada, H3A 2B2
| | - M N Abdallah
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, Canada, H3A 2B2.
| | - H Eimar
- Faculty of Medicine and Dentistry, University of Alberta, 2J2.00 WC Mackenzie Health Sciences Centre 8440 112 St. NW Edmonton, Alberta, Canada T6G 2R7.
| | - M Laurenti
- Facultad de Farmacia Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Spain
| | - A Al-Subaie
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, Canada, H3A 2B2.
| | - F Tamimi
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, Canada, H3A 2B2.
| |
Collapse
|
21
|
Yang T, Xie P, Wu Z, Liao Y, Chen W, Hao Z, Wang Y, Zhu Z, Teng W. The Injectable Woven Bone-Like Hydrogel to Perform Alveolar Ridge Preservation With Adapted Remodeling Performance After Tooth Extraction. Front Bioeng Biotechnol 2020; 8:119. [PMID: 32154241 PMCID: PMC7047753 DOI: 10.3389/fbioe.2020.00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/06/2020] [Indexed: 02/05/2023] Open
Abstract
Grafting bone substitute is paramount to prevent the alveolar ridge resorption after tooth extraction and facilitate the subsequent implant treatment. An ideal bone substitute should acquire the excellent osteogenic property, more importantly, possess the suitable remodeling rate in balance with bone formation and desirable clinical manageability. However, none of bone substitute is simultaneously characterized by these features, and currently, the limited remodeling property leads to the excessive waiting time before implantation. Enlightened by woven bone, the transitional tissue that is able to induce osteogenesis during bone healing could be easily remodeled within a short period and depend on the favorable injectability of hydrogel, an injectable woven bone-like hydrogel (IWBLH) was constructed in this study to address the above problems. To mimic the component and hierarchical structure of woven bone, amorphous calcium phosphate (ACP) and mineralized collagen fibril were synthesized and compounded with alginate to form IWBLHs with various ratio. Screened by physiochemical characterization and in vitro biological assays, an optimal IWBLH was selected and further explored in rat model of tooth extraction. Compared with the most widely used bone substitute, we showed that IWBLH could be easily handled to fully fill the tooth socket, perform a comparable function to prevent the alveolar bone resorption, and completely remodeled within 4 weeks. This IWBLH stands as a promising candidate for alveolar ridge preservation (ARP) in future.
Collapse
Affiliation(s)
- Tao Yang
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Peng Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhenzhen Wu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yunmao Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhichao Hao
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Teng
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Bertazzo S, Gentleman E. Aortic valve calcification: a bone of contention. Eur Heart J 2019; 38:1189-1193. [PMID: 26994153 PMCID: PMC5400053 DOI: 10.1093/eurheartj/ehw071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sergio Bertazzo
- Department of Medical Physics & Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Eileen Gentleman
- Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
23
|
Zanghellini B, Grünewald TA, Burghammer M, Rennhofer H, Liegl-Atzwanger B, Leithner A, Lichtenegger HC. High-resolution large-area imaging of nanoscale structure and mineralization of a sclerosing osteosarcoma in human bone. J Struct Biol 2019; 207:56-66. [PMID: 31004766 DOI: 10.1016/j.jsb.2019.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
Abstract
Osteosarcoma is the most common primary bone cancer type in humans. It is predominantly found in young individuals, with a second peak later in life. The tumour is formed by malignant osteoblasts and consists of collagenous, sometimes also mineralized, bone matrix. While the morphology of osteosarcoma has been well studied, there is virtually no information about the nanostructure of the tumour and changes in mineralization on the nanoscale level. In the present paper, human bone tissue inside, next to and remote from a sclerosing osteosarcoma was studied with small angle x-ray scattering, x-ray diffraction and electron microscopy. Quantitative evaluation of nanostructure parameters was combined with high resolution, large area mapping to obtain microscopic images with nanostructure parameter contrast. It was found that the tumour regions were characterized by a notable reduction in mineral particle size, while the mineral content was even higher than that in normal bone. Furthermore, the normal preferential orientation of mineral particles along the longitudinal direction of corticalis or trabeculae was largely suppressed. Also the bone mineral crystal structure was affected: severe crystal lattice distortions were detected in mineralized tumour tissue pointing to a different ion substitution of hydroxyl apatite in tumorous tissue than in healthy tissue.
Collapse
Affiliation(s)
- Benjamin Zanghellini
- Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
| | | | | | - Harald Rennhofer
- Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
| | | | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Helga C Lichtenegger
- Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
| |
Collapse
|
24
|
Assis S, Keenleyside A. The macroscopic and histomorphological properties of periosteal rib lesions and its relation with disease duration: evidence from the Luis Lopes Skeletal Collection (Lisbon, Portugal). J Anat 2019; 234:480-501. [PMID: 30706479 DOI: 10.1111/joa.12936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Periosteal new bone formation (PNBF) is a common finding in a large spectrum of diseases. In clinical practice, the morphology and location of periosteal lesions are frequently used to assist in the differential diagnosis of distinct bone conditions. Less commonly reported is the presence of PNBF on the ribs. This contrasts with the data retrieved from the study of skeletonized human remains that shows a high frequency of cases and a strong, albeit not specific, association between periosteal rib lesions and pulmonary conditions (e.g. tuberculosis). Despite that, an overall disagreement regarding the specificity and non-specificity of periosteal reactions exists in the study of dry bone remains. The insufficient number of clinical models exploring the morphology and the pathophysiology of PNBF's and the lack of systematic studies of pathological samples with a known diagnosis are claimed as major reasons for the disagreements. This study aimed to describe and compare the macroscopic and the histomorphologic appearance of periosteal rib lesions and to discuss their usefulness as diagnostic indicators. To pursue this goal, an assemblage of 13 rib samples (males = 11, females = 2, mean age-at-death = 36.6 years old) was collected from the Luis Lopes Skeletal Collection (Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, Portugal). The assemblage belongs to individuals who died from pulmonary-TB (group 1), non-TB pulmonary infections (group 2) and other conditions (group 3). Prior to sample preparation, the ribs were visually inspected and the PNBF described according to its thickness, the degree of cortical integration and the type of new bone formed (e.g. woven, lamellar or both). After sampling, each bone sample was prepared for histological analysis under plane and polarized light microscopy. Macroscopically, the results showed no differences in the new bone composition between cause-of-death groups. Only slight differences in the degree of cortical integration, which was most frequently classified as mild to high in the pulmonary-TB group, were observed. Histologically, no distinguishing features were identified by pathological group. However, new bone microarchitectures were observed compatible with (1) acute, fast-growing processes (e.g. spiculated reactions), (2) long-standing processes with a rapid bone formation (e.g. appositional layering of bone) and/or (3) chronic, slow-growing processes (e.g. layers of compact lamellae). To some extent, these distinct rates of disease progression resonate with the cause-of-death listed for some individuals. Despite the small sample size, the results of this investigation are in agreement with previous studies, according to which the macroscopic and histological appearance of periosteal formations are not specific for a particular pathological conditions. Nevertheless, the results support the conclusion that the morphology of periosteal lesions is a good biological indicator for inferring the rate of progression and duration of pathological processes. This study provides important reference data regarding the histomorphology of periosteal lesions that can be used for comparative purposes, as well as to narrow down the differential diagnosis in unidentified skeletal remains.
Collapse
Affiliation(s)
- Sandra Assis
- Faculdade de Ciências Sociais e Humanas (FCSH), Centro em Rede de Investigação em Antropologia (CRIA), Universidade Nova de Lisboa, Lisbon, Portugal.,Department of Life Sciences, CIAS - Research Centre for Anthropology and Health, University of Coimbra, Coimbra, Portugal
| | - Anne Keenleyside
- Department of Anthropology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
25
|
Abstract
The mechanism (s) that drive the organization of bone mineral throughout the bone extracellular matrix remain unclear. The long-standing theory implicates the organic matrix, namely specific non-collagenous proteins and/or collagen fibrils, while a recent theory proposes a self-assembly mechanism. Applying a combination of spectroscopic and microscopic techniques in wet and dry conditions to bone-like hydroxyapatite nanoparticles that were used as a proxy for bone mineral, we confirm that mature bone mineral particles have the capacity to self-assemble into organized structures. A large quantity of water is present at the surface of bone mineral due to the presence of a hydrophilic, amorphous surface layer that coats bone mineral nanoparticles. These water molecules must not only be strongly bound to the surface of bone mineral in the form of a rigid hydration shell, but they must also be trapped within the amorphous surface layer. Cohesive forces between these water molecules present at the mineral–mineral interface not only hold the mature bone mineral particles together, but also promote their oriented stacking. This intrinsic ability of mature bone mineral particles to organize themselves without recourse to the organic matrix forms the foundation for the development of the next generation of orthopedic biomaterials.
Collapse
|
26
|
Grandfield K, Vuong V, Schwarcz HP. Ultrastructure of Bone: Hierarchical Features from Nanometer to Micrometer Scale Revealed in Focused Ion Beam Sections in the TEM. Calcif Tissue Int 2018; 103:606-616. [PMID: 30008091 DOI: 10.1007/s00223-018-0454-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/06/2018] [Indexed: 12/25/2022]
Abstract
The ultrastructure of bone has been widely debated, in part due to limitations in visualizing nanostructural features over relevant micrometer length scales. Here, we employ the high resolving power and compositional contrast of high-angle annular dark-field scanning transmission electron microscopy (HAADF STEM) to investigate new features in human bone with nanometer resolution over microscale areas. Using focused ion beam (FIB)-milled sections that span an area of 50 μm2, we have shown how most of the mineral of cortical human osteonal bone occurs in the form of long, thin polycrystalline plates (mineral lamellae, MLs) which are either flat or curved to wrap closely around collagen fibrils. Close to the collagen fibril (< 20 nm), the radius of curvature matches that of the fibril diameter, while at greater distances, MLs form arcs with much larger radii of curvature. In addition, stacks of closely packed planar (uncurved) MLs occur between fibrils. The curving of mineral lamellae both around and between the fibrils would contribute to the strength of bone. At a larger scale, rosette-like clusters of fibrils are noted for the first time, arranged in quasi-circular arrays that define tube-like structures in alternating osteonal lamellae. At the boundary between adjacent osteonal lamellae, the orientation of fibrils and surrounding mineral lamellae changes abruptly, resembling the "orthogonal" patterns identified by others (Reznikov et al. in Acta Biomater 10:3815-3826, 2014). These features spanning nanometer to micrometer scale have implications for our understanding of bone structure and mechanical integrity.
Collapse
Affiliation(s)
- Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, 1280 Main St W, ETB 403, Hamilton, ON, L8S 4L7, Canada.
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada.
| | - Vicky Vuong
- Department of Materials Science and Engineering, McMaster University, 1280 Main St W, ETB 403, Hamilton, ON, L8S 4L7, Canada
| | - Henry P Schwarcz
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada.
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, L8S 4L7, Canada.
| |
Collapse
|
27
|
Computational investigation of ultrastructural behavior of bone using a cohesive finite element approach. Biomech Model Mechanobiol 2018; 18:463-478. [PMID: 30470944 DOI: 10.1007/s10237-018-1096-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/08/2018] [Indexed: 01/01/2023]
Abstract
Bone ultrastructure at sub-lamellar length scale is a key structural unit in bone that bridges nano- and microscale hierarchies of the tissue. Despite its influence on bulk response of bone, the mechanical behavior of bone at ultrastructural level remains poorly understood. To fill this gap, in this study, a two-dimensional cohesive finite element model of bone at sub-lamellar level was proposed and analyzed under tensile and compressive loading conditions. In the model, ultrastructural bone was considered as a composite of mineralized collagen fibrils (MCFs) embedded in an extrafibrillar matrix (EFM) that is comprised of hydroxyapatite (HA) polycrystals bounded via thin organic interfaces of non-collagenous proteins (NCPs). The simulation results indicated that in compression, EFM dictated the pre-yield deformation of the model, then damage was initiated via relative sliding of HA polycrystals along the organic interfaces, and finally shear bands were formed followed by delamination between MCF and EFM and local buckling of MCF. In tension, EFM carried the most of load in pre-yield deformation, and then an array of opening-mode nano-cracks began to form within EFM after yielding, thus gradually transferring the load to MCF until failure, which acted as crack bridging filament. The failure modes, stress-strain curves, and in situ mineral strain of ultrastructural bone predicted by the model were in good agreement with the experimental observations reported in the literature, thus suggesting that this model can provide new insights into sub-microscale mechanical behavior of bone.
Collapse
|
28
|
Individual response variations in scaffold-guided bone regeneration are determined by independent strain- and injury-induced mechanisms. Biomaterials 2018; 194:183-194. [PMID: 30611115 PMCID: PMC6345626 DOI: 10.1016/j.biomaterials.2018.11.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/31/2018] [Accepted: 11/15/2018] [Indexed: 01/15/2023]
Abstract
This study explored the regenerative osteogenic response in the distal femur of sheep using scaffolds having stiffness values within, and above and below, the range of trabecular bone apparent modulus. Scaffolds 3D-printed from stiff titanium and compliant polyamide were implanted into a cylindrical metaphyseal defect 15 × 15 mm. After six weeks, bone ingrowth varied between 7 and 21% of the scaffold pore volume and this was generally inversely proportional to scaffold stiffness. The individual reparative response considerably varied among the animals, which could be divided into weak and strong responders. Notably, bone regeneration specifically within the interior of the scaffold was inversely proportional to scaffold stiffness and was strain-driven in strongly-responding animals. Conversely, bone regeneration at the periphery of the defect was injury-driven and equal in all scaffolds and in all strongly- and weakly-responding animals. The observation of the strain-driven response in some, but not all, animals highlights that scaffold compliance is desirable for triggering host bone regeneration, but scaffold permanence is important for the load-bearing, structural role of the bone-replacing device. Indeed, scaffolds may benefit from being nonresorbable and mechanically reliable for those unforeseeable cases of weakly responding recipients.
Collapse
|
29
|
Elsharkawy S, Mata A. Hierarchical Biomineralization: from Nature's Designs to Synthetic Materials for Regenerative Medicine and Dentistry. Adv Healthc Mater 2018; 7:e1800178. [PMID: 29943412 DOI: 10.1002/adhm.201800178] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/08/2018] [Indexed: 12/28/2022]
Abstract
Biomineralization is a highly dynamic, yet controlled, process that many living creatures employ to develop functional tissues such as tooth enamel, bone, and others. A major goal in materials science is to create bioinspired functional structures based on the precise organization of building blocks across multiple length scales. Therefore, learning how nature has evolved to use biomineralization could inspire new ways to design and develop synthetic hierarchical materials with enhanced functionality. Toward this goal, this review dissects the current understanding of structure-function relationships of dental enamel and bone using a materials science perspective and discusses a wide range of synthetic technologies that aim to recreate their hierarchical organization and functionality. Insights into how these strategies could be applied for regenerative medicine and dentistry are also provided.
Collapse
Affiliation(s)
- Sherif Elsharkawy
- Institute of Bioengineering; Queen Mary University of London; London E1 4NS UK
- School of Engineering and Materials Science; Queen Mary University of London; London E1 4NS UK
- Institute of Dentistry; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London E1 4NS UK
| | - Alvaro Mata
- Institute of Bioengineering; Queen Mary University of London; London E1 4NS UK
- School of Engineering and Materials Science; Queen Mary University of London; London E1 4NS UK
| |
Collapse
|
30
|
Raucci MG, Demitri C, Soriente A, Fasolino I, Sannino A, Ambrosio L. Gelatin/nano-hydroxyapatite hydrogel scaffold prepared by sol-gel technology as filler to repair bone defects. J Biomed Mater Res A 2018; 106:2007-2019. [PMID: 29575606 DOI: 10.1002/jbm.a.36395] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/02/2018] [Accepted: 02/27/2018] [Indexed: 11/06/2022]
Abstract
This study reports on the development of a scaffold with a gradient of bioactive solid signal embedded in the biodegradable polymer matrix by combining a sol-gel approach and freeze-drying technology. The chemical approach based on the sol-gel transition of calcium phosphates ensures the particles dispersion into the gelatin matrix and a direct control of interaction among COOHgelatin /Ca2+ ions. Morphological analysis demonstrated that on the basis of the amount of inorganic component and by using specific process conditions, it is possible to control the spatial distribution of nanoparticles around the gelatin helix. In fact, methodology and formulations were able to discriminate between the different hydroxyapatite concentrations and their respective morphology. The good biological response represented by good cell attachment, proliferation and increased levels of alkaline phosphatase as an indicator of osteoblastic differentiation of human mesenchymal stem cells toward the osteogenic lineage, demonstrating the effect of bioactive solid signals on cellular behavior. Furthermore, the inhibition of reactive oxygen species production by composite materials predicted potential anti-inflammatory properties of scaffolds thus confirming their biocompatibility. Indeed, these interesting biological results suggest good potential application of this scaffold as filler to repair bone defects. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2007-2019, 2018.
Collapse
Affiliation(s)
- Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials - National Research Council of Italy, Mostra d'Oltremare Pad.20 - Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Christian Demitri
- Department of Engineering for Innovation, University of Salento, Via Monteroni, km 1, Lecce, 73100, Italy
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials - National Research Council of Italy, Mostra d'Oltremare Pad.20 - Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials - National Research Council of Italy, Mostra d'Oltremare Pad.20 - Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, km 1, Lecce, 73100, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials - National Research Council of Italy, Mostra d'Oltremare Pad.20 - Viale J.F. Kennedy 54, Naples, 80125, Italy
| |
Collapse
|
31
|
Wang Z, Vashishth D, Picu RC. Bone toughening through stress-induced non-collagenous protein denaturation. Biomech Model Mechanobiol 2018; 17:1093-1106. [DOI: 10.1007/s10237-018-1016-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/02/2018] [Indexed: 01/17/2023]
|
32
|
Bini F, Pica A, Marinozzi A, Marinozzi F. 3D diffusion model within the collagen apatite porosity: An insight to the nanostructure of human trabecular bone. PLoS One 2017; 12:e0189041. [PMID: 29220377 PMCID: PMC5722326 DOI: 10.1371/journal.pone.0189041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/19/2017] [Indexed: 11/18/2022] Open
Abstract
Bone tissue at nanoscale is a composite mainly made of apatite crystals, collagen molecules and water. This work is aimed to study the diffusion within bone nanostructure through Monte-Carlo simulations. To this purpose, an idealized geometric model of the apatite-collagen structure was developed. Gaussian probability distribution functions were employed to design the orientation of the apatite crystals with respect to the axes (length L, width W and thickness T) of a plate-like trabecula. We performed numerical simulations considering the influence of the mineral arrangement on the effective diffusion coefficient of water. To represent the hindrance of the impermeable apatite crystals on the water diffusion process, the effective diffusion coefficient was scaled with the tortuosity, the constrictivity and the porosity factors of the structure. The diffusion phenomenon was investigated in the three main directions of the single trabecula and the introduction of apatite preferential orientation allowed the creation of an anisotropic medium. Thus, different diffusivities values were observed along the axes of the single trabecula. We found good agreement with previous experimental results computed by means of a genetic algorithm.
Collapse
Affiliation(s)
- Fabiano Bini
- Department of Mechanical and Aerospace Engineering, “Sapienza” University of Rome, Rome, Italy
- * E-mail:
| | - Andrada Pica
- Department of Mechanical and Aerospace Engineering, “Sapienza” University of Rome, Rome, Italy
| | - Andrea Marinozzi
- Orthopedy and Traumatology Area, “Campus Bio-Medico” University, Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
33
|
Georgiadis M, Müller R, Schneider P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J R Soc Interface 2017; 13:rsif.2016.0088. [PMID: 27335222 DOI: 10.1098/rsif.2016.0088] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils.
Collapse
Affiliation(s)
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
34
|
Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide for bone regeneration. Int J Biol Macromol 2017; 103:467-476. [DOI: 10.1016/j.ijbiomac.2017.05.086] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022]
|
35
|
Lin HY, Peng ZX. Nanofibers grafted on titanium alloy: the effects of fiber alignment and density on osteoblast mineralization. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:140. [PMID: 28819756 DOI: 10.1007/s10856-017-5951-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
The surface of medical implant alloy Ti-6Al-4V was chemically modified to allow it to covalently bond with collagen/PVA nanofibers. These nanofibers were successfully attached to the Ti-6Al-4V surface in three different morphologies: randomly oriented high-density fiber, COL(H); randomly oriented low-density fiber, COL(L); and aligned high-density fiber, COL(A). The effects of the morphology of these covalently-bound collagen nanofibers on the growth and differentiation of osteoblasts were studied for 21 days. The low-density nanofibers covered approximately 80% of the Ti64 surface, while the high-density nanofibers covered nearly 100%. These covalently attached fibrous coatings remained attached to the metal surface after 3 weeks of cell culture. In the first week the aligned fibers of COL(A) allowed the osteoblasts to stretch and elongate in the direction of the fibers. This directional elongation was not seen in the cells on the randomly-oriented samples. Cells proliferated and differentiated on all three surfaces over time. By the end of the test, the amount of type I collagen secreted by the cells on COL(H) was the highest, while the degree of mineralization was highest on COL(A) among the three samples (p < 0.05). Different nanofiber morphologies changed the cell morphology and the secretion of cellular products. The mechanisms remained to be investigated. The surface of medical implant alloy Ti-6Al-4V was chemically modified to allow it to covalently bond with collagen/PVA nanofibers. The SEM micrographs in the top row show the random and aligned morphology of the collagen-PVA nanofibers. The nanofibers on COL(A) were aligned in the general direction indicated by the arrow. The second row are images from EDX titanium element mapping. The location of the titanium elements are shown as bright dots. The low-density nanofibers, COL(L), covered approximately 80% of the Ti64 surface, while the high-density nanofibers, COL(H) and COL(A), covered nearly 100%. All three surfaces demonstrated good biocompatibility for the cultured osteoblasts. The fiber alignment seemed to have an effect on early cellular morphology (day 7), collagen secretion and calcium deposition, while the density of the fibers seemed to have no significant effect on cell behavior. SEM micrographs of osteoblasts after 7 and 14 days of cell culture are shown in the third and fourth rows. The surface of COL(L) has more cell-free spots indicated by (*) on day 7 as other two surfaces were covered by cells. The nanofibers could no longer be observed and were covered with mineralized granules (circles) after 14 days of cell culture. The cells appear stretched out on the mineralized granules.
Collapse
Affiliation(s)
- Hsin-Yi Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, 106.
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan, 106.
| | - Zhao-Xiang Peng
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan, 106
| |
Collapse
|
36
|
Kim JK, Kwon YE, Lee SG, Lee JH, Kim JG, Huh M, Lee E, Kim YJ. Disparities in correlating microstructural to nanostructural preservation of dinosaur femoral bones. Sci Rep 2017; 7:45562. [PMID: 28358033 PMCID: PMC5372082 DOI: 10.1038/srep45562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/27/2017] [Indexed: 11/11/2022] Open
Abstract
Osteohistological researches on dinosaurs are well documented, but descriptions of direct correlations between the bone microstructure and corresponding nanostructure are currently lacking. By applying correlative microscopy, we aimed to verify that well-preserved osteohistological features correlate with pristine fossil bone nanostructures from the femoral bones of Koreanosaurus boseongensis. The quality of nanostructural preservation was evaluated based on the preferred orientation level of apatite crystals obtained from selected area electron diffraction (SAED) patterns and by measuring the "arcs" from the {100} and {002} diffraction rings. Unlike our expectations, our results revealed that well-preserved microstructures do not guarantee pristine nanostructures and vice versa. Structural preservation of bone from macro- to nanoscale primarily depends on original bioapatite density, and subsequent taphonomical factors such as effects from burial, pressure, influx of external elements and the rate of diagenetic alteration of apatite crystals. Our findings suggest that the efficient application of SAED analysis opens the opportunity for comprehensive nanostructural investigations of bone.
Collapse
Affiliation(s)
- Jung-Kyun Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Yong-Eun Kwon
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Sang-Gil Lee
- Center for Electron Microscopic Research, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon, 34133, South Korea
| | - Ji-Hyun Lee
- Center for Electron Microscopic Research, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon, 34133, South Korea
| | - Jin-Gyu Kim
- Center for Electron Microscopic Research, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon, 34133, South Korea
| | - Min Huh
- Korea Dinosaur Research Center &Department of Earth Systems and Environmental Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Eunji Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Youn-Joong Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
- Center for Electron Microscopic Research, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon, 34133, South Korea
| |
Collapse
|
37
|
Teotia AK, Raina DB, Singh C, Sinha N, Isaksson H, Tägil M, Lidgren L, Kumar A. Nano-Hydroxyapatite Bone Substitute Functionalized with Bone Active Molecules for Enhanced Cranial Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6816-6828. [PMID: 28171719 DOI: 10.1021/acsami.6b14782] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aim of this study was to synthesize and characterize a nano-hydroxyapatite (nHAP) and calcium sulfate bone substitute (NC) for cranioplasty. The NC was functionalized with low concentrations of bone morphogenetic protein-2 (BMP-2) and zoledronic acid (ZA) and characterized both in vitro and in vivo. In vitro studies included MTT, ALP assays, and fluorescent staining of Saos-2 (human osteoblasts) and MC3T3-E1 (murine preosteoblasts) cells cultured on NC. An in vivo study divided 20 male Wistar rats into four groups: control (defect only), NC, NC + ZA, and NC + ZA + rhBMP-2. The materials were implanted in an 8.5 mm critical size defect in the calvarium for 12 weeks. Micro-CT quantitative analysis was carried out in vivo at 8 weeks and ex vivo after 12 weeks. Mineralization was highest in the NC + ZA + rhBMP-2 group (13.0 ± 2.8 mm3) compared to the NC + ZA group (9.0 ± 3.2 mm3), NC group (6.4 ± 1.9 mm3), and control group (3.4 ± 1.0 mm3) after 12 weeks. Histological and spectroscopic analysis of the defect site provided a qualitative confirmation of neo-bone, which was in agreement with the micro-CT results. In conclusion, NC can be used as a carrier for bioactive molecules, and functionalization with rhBMP-2 and ZA in low doses enhances bone regeneration.
Collapse
Affiliation(s)
- Arun Kumar Teotia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Deepak Bushan Raina
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
- Department of Orthopedics, Clinical Sciences Lund, Lund University , Lund 221 85, Sweden
| | - Chandan Singh
- Center for Biomedical Research, SGPGIMS Campus , Lucknow 226014, India
| | - Neeraj Sinha
- Center for Biomedical Research, SGPGIMS Campus , Lucknow 226014, India
| | - Hanna Isaksson
- Department of Orthopedics, Clinical Sciences Lund, Lund University , Lund 221 85, Sweden
- Department of Biomedical Engineering, Lund University , Lund 221 00, Sweden
| | - Magnus Tägil
- Department of Orthopedics, Clinical Sciences Lund, Lund University , Lund 221 85, Sweden
| | - Lars Lidgren
- Department of Orthopedics, Clinical Sciences Lund, Lund University , Lund 221 85, Sweden
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| |
Collapse
|
38
|
Lai ZB, Yan C. Mechanical behaviour of staggered array of mineralised collagen fibrils in protein matrix: Effects of fibril dimensions and failure energy in protein matrix. J Mech Behav Biomed Mater 2017; 65:236-247. [DOI: 10.1016/j.jmbbm.2016.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 08/03/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
|
39
|
Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation. Biomech Model Mechanobiol 2016; 16:159-172. [DOI: 10.1007/s10237-016-0808-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
|
40
|
Chen X, Meng Y, Wang Y, Du C, Yang C. A Biomimetic Material with a High Bio-responsibility for Bone Reconstruction and Tissue Engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 22:153-63. [PMID: 20546681 DOI: 10.1163/092050609x12583524936191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A biomimetic composite was prepared using type-I collagen as the matrix, and particles of sol-gel-derived bioactive glass (58S), hyaluronic acid and phosphatidylserine as additives. The material has an interconnected 3-D porous structure with a porosity > 85%. When incubated in simulated body fluid (SBF), the composite induced the formation of microcrystals of bone-like hydroxyapatite (HA), suggesting good bioactive properties. During the in vitro cell-culture experiment, MC3T3-E1 cells adhered to, migrated and spread on the surface of the porous composite. The material was employed to repair a 10-mm defect in a rabbit's radius. The composite was gradually degraded within 8 weeks and replaced by new bone. After 12 weeks, the bone marrow cavity was restored and the Haversian canal was noted from the histological observation. The biomimetic composite is a potential scaffold material for bone reconstruction and bone tissue engineering.
Collapse
Affiliation(s)
- Xiaofeng Chen
- a Biomaterials Research Institute, College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China; The Key Laboratory of Specially Functional Materials, Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China
| | | | | | | | | |
Collapse
|
41
|
Hu C, Zilm M, Wei M. Fabrication of intrafibrillar and extrafibrillar mineralized collagen/apatite scaffolds with a hierarchical structure. J Biomed Mater Res A 2016; 104:1153-61. [PMID: 26748775 DOI: 10.1002/jbm.a.35649] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/08/2016] [Indexed: 12/23/2022]
Abstract
A biomimetic collagen-apatite (Col-Ap) scaffold resembling the composition and structure of natural bone from the nanoscale to the macroscale has been successfully prepared for bone tissue engineering. We have developed a bottom-up approach to fabricate hierarchically biomimetic Col-Ap scaffolds with both intrafibrillar and extrafibrillar mineralization. To achieve intrafibrillar mineralization, polyacrylic acid (PAA) was used as a sequestrating analog of noncollagenous proteins (NCPs) to form a fluidic amorphous calcium phosphate (ACP) nanoprecursor through attraction of calcium and phosphate ions. Sodium tripolyphosphate was used as a templating analog to regulate orderly deposition of apatite within collagen fibrils. Both X-ray diffraction and Fourier transform infrared spectroscopy suggest that the mineral phase was apatite. Field emission scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction confirmed that hierarchical collagen-Ap scaffolds were produced with both intrafibrillar and extrafibrillar mineralization. Biomimetic Col-Ap scaffolds with both intrafibrillar and extrafibrillar mineralization (IE-Col-Ap) were compared with Col-Ap scaffolds with extrafibrillar mineralization only (E-Col-Ap) as well as pure collagen scaffolds in vitro for cellular proliferation using MC3T3-E1 cells. Pure collagen scaffolds had the highest rate of proliferation, while there was no statistically significant difference between IE-Col-Ap and E-Col-Ap scaffolds. Thus, the bottom-up biomimetic fabrication approach has rendered a group of promising Col-Ap scaffolds, which bear high resemblance to natural bone in terms of composition and structure.
Collapse
Affiliation(s)
- Changmin Hu
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269
| | - Michael Zilm
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269
| | - Mei Wei
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269.,Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269
| |
Collapse
|
42
|
Luczynski KW, Steiger-Thirsfeld A, Bernardi J, Eberhardsteiner J, Hellmich C. Extracellular bone matrix exhibits hardening elastoplasticity and more than double cortical strength: Evidence from homogeneous compression of non-tapered single micron-sized pillars welded to a rigid substrate. J Mech Behav Biomed Mater 2015; 52:51-62. [DOI: 10.1016/j.jmbbm.2015.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/13/2015] [Accepted: 03/01/2015] [Indexed: 11/17/2022]
|
43
|
Dorozhkin SV. Calcium orthophosphates (CaPO 4): occurrence and properties. Prog Biomater 2015; 5:9-70. [PMID: 27471662 PMCID: PMC4943586 DOI: 10.1007/s40204-015-0045-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates (CaPO4). This type of materials is of the special significance for the human beings because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with CaPO4, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenorthophosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of CaPO4. Similarly, dental caries and osteoporosis might be considered as in vivo dissolution of CaPO4. In addition, natural CaPO4 are the major source of phosphorus, which is used to produce agricultural fertilizers, detergents and various phosphorus-containing chemicals. Thus, there is a great significance of CaPO4 for the humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
44
|
Dumont VC, Mansur AAP, Carvalho SM, Medeiros Borsagli FGL, Pereira MM, Mansur HS. Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:265-277. [PMID: 26652373 DOI: 10.1016/j.msec.2015.10.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/03/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022]
Abstract
Synthetic biomaterials based on calcium phosphates (CaP) have been widely studied for bone tissue reconstruction therapies, but no definitive solution that fulfills all of the required properties has been identified. Thus, this study reports the synthesis of composite membranes based on nanohydroxyapatite particles (nHA) embedded in chitosan (CHI) and O-carboxymethyl chitosan (CMC) matrices produced using a one-step co-precipitation method in water media. Biopolymers were used as capping ligands for simultaneously controlling the nucleation and growth of the nHA particles during the precipitation process and also to form the polymeric network of the biocomposites. The bionanocomposites were extensively characterized using light microscopy (LM), scanning and transmission electron microscopy (SEM/TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray micro-CT analysis (μCT), andMTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide) cell proliferation assays for cell cytotoxicity. The results demonstrated that the ligands used during the synthesis highly affected the composites produced, primarily due the changes in the mechanisms and kinetics of nucleation and growth of the HA particles at the nanoscale level. The SEMimages revealed that the use of carboxyl-functionalized chitosan (CMC) ligands significantly reduced the average size of theHA nanoparticles and caused the formation of a narrower size distribution (90±20nm) compared to theHAnanoparticles producedwith chitosan ligands (220±50nm). The same trend was verified by the AFM analysis,where the nHA particles were formed evenly dispersed in the polymer matrix. However, the CMC-based composites were more homogeneously distributed, which was endorsed by the images collected via X-ray micro-CT. The FTIR spectra and the XRD analysis indicated that nanosized hydroxyapatite was the predominant calcium phosphate phase produced during the co-precipitation aqueous process for both the chitosan and CMC biocomposites. These novel hybrid systems based on chitosan and chitosan-derivatives with nHA composites were non-cytotoxic to a human osteoblast-like model cell line (SAOS) according to MTT in vitro assays. Moreover, the CMC-nHA biocomposites revealed a striking improvement in the cell viability response compared to the CHI-nHA biocomposite, which was attributed to the much higher surface area caused by the refinement of the nanoparticles size. Thus, the results of this study demonstrate that these novel bionanocomposite membranes offer promising perspectives as biomaterials for potential repair and replacement of cartilage and bone tissues.
Collapse
Affiliation(s)
- Vitor C Dumont
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais-UFMG, Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais-UFMG, Brazil
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais-UFMG, Brazil
| | - Fernanda G L Medeiros Borsagli
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais-UFMG, Brazil
| | - Marivalda M Pereira
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais-UFMG, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais-UFMG, Brazil..
| |
Collapse
|
45
|
Qiu ZY, Cui Y, Tao CS, Zhang ZQ, Tang PF, Mao KY, Wang XM, Cui FZ. Mineralized Collagen: Rationale, Current Status, and Clinical Applications. MATERIALS 2015; 8:4733-4750. [PMID: 28793468 PMCID: PMC5455477 DOI: 10.3390/ma8084733] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/29/2015] [Accepted: 07/13/2015] [Indexed: 01/19/2023]
Abstract
This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.
Collapse
Affiliation(s)
- Zhi-Ye Qiu
- School of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
- Beijing Allgens Medical Science and Technology Co., Ltd., No.1 Disheng East Road, Yizhuang Economic and Technological Development Zone, Beijing 100176, China.
| | - Yun Cui
- Beijing Allgens Medical Science and Technology Co., Ltd., No.1 Disheng East Road, Yizhuang Economic and Technological Development Zone, Beijing 100176, China.
| | - Chun-Sheng Tao
- School of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
- The 401 Hospital of Chinese People's Liberation Army, No. 22 Minjiang Road, Qingdao 266071, China.
| | - Zi-Qiang Zhang
- Beijing Allgens Medical Science and Technology Co., Ltd., No.1 Disheng East Road, Yizhuang Economic and Technological Development Zone, Beijing 100176, China.
| | - Pei-Fu Tang
- The General Hospital of People's Liberation Army, No. 28 Fuxing Road, Beijing 100853, China.
| | - Ke-Ya Mao
- The General Hospital of People's Liberation Army, No. 28 Fuxing Road, Beijing 100853, China.
| | - Xiu-Mei Wang
- School of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
| | - Fu-Zhai Cui
- School of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
| |
Collapse
|
46
|
Schwarcz HP. The ultrastructure of bone as revealed in electron microscopy of ion-milled sections. Semin Cell Dev Biol 2015; 46:44-50. [PMID: 26165821 DOI: 10.1016/j.semcdb.2015.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/22/2015] [Accepted: 06/28/2015] [Indexed: 11/25/2022]
Abstract
Mineral makes up more than half the volume of bone, but its spatial and structural relationship to collagen and other proteins is still a matter of debate. Due to the nanometer-size of bone crystals this matter can be resolved only with transmission electron microscope (TEM) images. Using sections cut with an ultramicrotome, previous investigators determined most mineral lies in the 40nm wide gap zone in collagen fibrils. Using less invasive sectioning methods (ion milling and focused ion beam [FIB]) reveals that most mineral is extrafibrillar, occurring in the form of mineral lamellae, polycrystalline plates 300nm or more long, packed around collagen fibrils in stacks of four or more lamellae <1nm apart. While Ca and P also occur in the gap zone, they do not appear to be in the form of well-crystallized apatite. This new model for bone ultrastructure resolves outstanding problems presented by the previous model.
Collapse
Affiliation(s)
- Henry P Schwarcz
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
47
|
Zhang R, Gong H, Zhu D, Ma R, Fang J, Fan Y. Multi-level femoral morphology and mechanical properties of rats of different ages. Bone 2015; 76:76-87. [PMID: 25857690 DOI: 10.1016/j.bone.2015.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/24/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
A macro-micro-nano-multi-level study was conducted to explore age-related structural and mechanical properties of bone, as well as the effects of aging on bone properties. A total of 70 male Wistar rats were used, ranging in the ages of 1, 3, 5, 7, 9, 11, 14, 15, 16, and 17 months (n = 7/age group). After micro-computed tomography (CT) scanning, longitudinal cortical bone specimens with a length of 5mm were cut along the femoral shaft axis from left femur shafts for mechanical testing, and the cross-sectional areas were measured. The macro-mechanical properties obtained in mechanical testing and microarchitecture parameters measured by micro-CT were significantly correlated with the animal age (r(2) = 0.96, p < 0.001). Scanning electron microscopy was used for detecting the microarchitecture features of the fractured surfaces, which exhibited age-related plate-fibrous-mixed fibrous-plate texture, resulting in changes in macro-mechanical properties (r(2) > 0.90, p < 0.001). The mineral phase of the left femoral shaft and head was analyzed by atomic force microscopy. Longitudinal and transverse trabecular bone tissues, as well as longitudinal cortical bone tissue, were used for nanoindentation test, and the chemical composition was evaluated by quantitative chemical analyses. The correlations between mineral content and bone material properties (i.e., elastic properties of the bone tissue and size and roughness of bone mineral grains) were highly significant (r > 0.95, p < 0.001). Multi-level femur morphology, mechanical property, and mineral content were significantly correlated with the animal age. The correlations between bone mineral content and bone material morphological and mechanical properties may partly explain the increase in bone fragility with aging, which will provide a theoretical basis for the investigation of age-related bone properties in clinics.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China; Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, People's Republic of China
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China.
| | - Dong Zhu
- Department of Orthopedic Surgery, No. 1 Hospital of Jilin University, Changchun, People's Republic of China
| | - Renshi Ma
- Department of Orthopedic Surgery, No. 1 Hospital of Jilin University, Changchun, People's Republic of China
| | - Juan Fang
- Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, People's Republic of China
| | - Yobo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China; National Research Center for Rehabilitation Technical Aids, Beijing, People's Republic of China.
| |
Collapse
|
48
|
Lausch AJ, Sone ED. A Top-down Approach to Elucidate the Role of Matrix-Bound Phosphoproteins in Control of Collagen Biomineralization. Biomacromolecules 2015; 16:1938-47. [DOI: 10.1021/acs.biomac.5b00287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander J. Lausch
- Institute of Biomaterials and Biomedical Engineering, ‡Department of Materials Science & Engineering, and §Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Eli D. Sone
- Institute of Biomaterials and Biomedical Engineering, ‡Department of Materials Science & Engineering, and §Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
49
|
Bertazzo S, Maidment SCR, Kallepitis C, Fearn S, Stevens MM, Xie HN. Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens. Nat Commun 2015; 6:7352. [PMID: 26056764 PMCID: PMC4468865 DOI: 10.1038/ncomms8352] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/30/2015] [Indexed: 02/05/2023] Open
Abstract
Exceptionally preserved organic remains are known throughout the vertebrate fossil record, and recently, evidence has emerged that such soft tissue might contain original components. We examined samples from eight Cretaceous dinosaur bones using nano-analytical techniques; the bones are not exceptionally preserved and show no external indication of soft tissue. In one sample, we observe structures consistent with endogenous collagen fibre remains displaying ∼ 67 nm banding, indicating the possible preservation of the original quaternary structure. Using ToF-SIMS, we identify amino-acid fragments typical of collagen fibrils. Furthermore, we observe structures consistent with putative erythrocyte remains that exhibit mass spectra similar to emu whole blood. Using advanced material characterization approaches, we find that these putative biological structures can be well preserved over geological timescales, and their preservation is more common than previously thought. The preservation of protein over geological timescales offers the opportunity to investigate relationships, physiology and behaviour of long extinct animals.
Collapse
Affiliation(s)
- Sergio Bertazzo
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Present address: Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Susannah C. R. Maidment
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Charalambos Kallepitis
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Institute for Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Sarah Fearn
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Institute for Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Hai-nan Xie
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Institute for Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
50
|
Gimeno-Fabra M, Hild F, Dunne PW, Walton K, Grant DM, Irvine DJ, Lester EH. Continuous synthesis of dispersant-coated hydroxyapatite plates. CrystEngComm 2015. [DOI: 10.1039/c5ce00628g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A continuous flow hydrothermal synthetic route which allows the direct “in situ” capping/coating of hydroxyapatite nanoplates with functional dispersants in a single stage is reported.
Collapse
Affiliation(s)
| | - F. Hild
- University of Nottingham
- University Park
- Nottingham, UK
| | - P. W. Dunne
- University of Nottingham
- University Park
- Nottingham, UK
| | - K. Walton
- University of Nottingham
- University Park
- Nottingham, UK
| | - D. M. Grant
- University of Nottingham
- University Park
- Nottingham, UK
| | | | - E. H. Lester
- University of Nottingham
- University Park
- Nottingham, UK
| |
Collapse
|