1
|
Rathmacher JA, Pitchford LM, Stout JR, Townsend JR, Jäger R, Kreider RB, Campbell BI, Kerksick CM, Harty PS, Candow DG, Roberts BM, Arent SM, Kalman DS, Antonio J. International society of sports nutrition position stand: β-hydroxy-β-methylbutyrate (HMB). J Int Soc Sports Nutr 2025; 22:2434734. [PMID: 39699070 DOI: 10.1080/15502783.2024.2434734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on an analysis of the literature regarding the effects of β-Hydroxy-β-Methylbutyrate (HMB). The following 12 points have been approved by the Research Committee of the Society: 1. HMB is a metabolite of the amino acid leucine that is naturally produced in both humans and other animals. Two forms of HMB have been studied: Calcium HMB (HMB-Ca) and a free acid form of HMB (HMB-FA). HMB-FA appears to lead to increased appearance of HMB in the bloodstream when compared to HMB-Ca, though recent results are mixed. 2. The available safety/toxicity data suggest that chronic HMB-Ca and HMB-FA consumption are safe for oral HMB supplementation in humans up to at least one year. 3. There are no negative effects of HMB-Ca and HMB-FA on glucose tolerance and insulin sensitivity in humans. There may be improvements in glucose metabolism in younger adults. 4. The primary mode of action of HMB appears to be through its dual mechanism to enhance muscle protein synthesis and suppress muscle protein breakdown. HMB's activation of mTORC1 is independent of the leucine-sensing pathway (Sestrin2-GATOR2 complex). 5. HMB may help reduce muscle damage and promote muscle recovery, which can promote muscle growth/repair. HMB may also have anti-inflammatory effects, which could contribute to reducing muscle damage and soreness. 6. HMB consumption in close proximity to an exercise bout may be beneficial to increase muscle protein synthesis and attenuate the inflammatory response. HMB can provide a beneficial physiological effect when consumed both acutely and chronically in humans. 7. Daily HMB supplementation (38 mg/kg body weight) in combination with exercise training may improve body composition through increasing lean mass and/or decreasing fat mass with benefits in participants across age, sex, and training status. The most pronounced of these improvements in body composition with HMB have been observed in studies with robust resistance training programs and dietary control. 8. HMB may improve strength and power in untrained individuals, but its performance benefits in trained athletes are mixed and increase with an increase in study duration (>6 weeks). HMB's beneficial effects on athletic performance are thought to be driven by improved recovery. 9. HMB supplementation appears to potentially have a positive impact on aerobic performance, especially in trained athletes. The mechanisms of the effects are unknown. 10. HMB supplementation may be important in a non-exercising sedentary and aging population to improve muscle strength, functionality, and muscle quality. The effects of HMB supplementation with exercise are varied, but the combination may have a beneficial effect on the treatment of age-associated sarcopenia under select conditions. 11. HMB may be effective in countering muscle disuse atrophy during periods of inactivity due to illness or injury. The modulation of mitochondrial dynamics and lipid metabolism by HMB may be a potential mechanism for preventing disuse atrophy and aiding rehabilitation beyond HMB's effects on rates of muscle protein synthesis and degradation. 12. The efficacy of HMB in combination with certain nutrients may be enhanced under select conditions.
Collapse
Affiliation(s)
- John A Rathmacher
- MTI Biotech Inc, Ames, IA, USA
- lowa State University, Department of Animal Science, Ames, IA, USA
| | - Lisa M Pitchford
- MTI Biotech Inc, Ames, IA, USA
- Iowa State University, Department of Kinesiology, Ames, IA, USA
| | - Jeffrey R Stout
- University of Central Florida, School of Kinesiology and Rehabilitation Sciences, Orlando, FL, USA
| | - Jeremy R Townsend
- Research, Nutrition, and Innovation, AG1, Carson City, NV, USA
- Concordia University Chicago, Health & Human Performance, River Forest, IL, USA
| | | | - Richard B Kreider
- Texas A&M University, Exercise & Sports Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Bill I Campbell
- University of South Florida, Performance & Physique Enhancement Laboratory, Exercise Science Program, Tampa, FL, USA
| | - Chad M Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Saint Charles, MO, USA
| | - Patrick S Harty
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Saint Charles, MO, USA
| | - Darren G Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Brandon M Roberts
- 10 General Greene Ave, Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Shawn M Arent
- University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, SC, USA
| | - Douglas S Kalman
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Nutrition Department, Davie, FL, USA
| | - Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| |
Collapse
|
2
|
Wang YQ, Zhang Q, Liu JC, Yan JN, Wang C, Lai B, Zhang LC, Wu HT. Construction and characterization of alginate/calcium β-hydroxy-β-methylbutyrate hydrogels: Effect of M/G ratios and calcium ion concentration. Int J Biol Macromol 2024; 273:133162. [PMID: 38878925 DOI: 10.1016/j.ijbiomac.2024.133162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Calcium β-hydroxy-β-methylbutyrate (CaHMB), a functional calcium salt, is used to maintain and improve muscle health. Here, a new hydrogel material prepared from alginate (ALG) with three M/G ratios (1:1, 2:1, and 1:2) and CaHMB (0-2 mg/mL) was investigated. CaHMB regulates the formation and properties of ALG hydrogels through chelation and hydrogen bonding. When the M/G ratio was 2:1, the anionic groups of CaHMB containing carboxyl and hydroxyl groups formed hydrogen bonds with the polysaccharide chains, hindering the capture of Ca2+ by the G-residue fragments of ALG, which in turn retarded the gelation process. The noncalcium cross-linked polysaccharide chain structure of ALG and the anionic group of CaHMB also affected the water distribution in the hydrogel, especially when M residue content ≥G residue content. Lower M/G ratios and higher CaHMB concentrations could increase the number of "egg box" crosslinking junctions of calcium alginate, and the microstructure was denser in the gel pores, resulting in a stronger gel strength and more free water bound in the gel matrix. This study provides a theoretical and methodological basis for the design of novel hydrogels by studying the crosslinking features of ALG/CaHMB.
Collapse
Affiliation(s)
- Yu-Qiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qian Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jia-Cheng Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jia-Nan Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ce Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bin Lai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Li-Chao Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Hai-Tao Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Wittholz K, Bongetti AJ, Fetterplace K, Caldow MK, Karahalios A, De Souza DP, Elahee Doomun SN, Rooyackers O, Koopman R, Lynch GS, Ali Abdelhamid Y, Deane AM. Plasma beta-hydroxy-beta-methylbutyrate availability after enteral administration during critical illness after trauma: An exploratory study. JPEN J Parenter Enteral Nutr 2024; 48:421-428. [PMID: 38522007 DOI: 10.1002/jpen.2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND During critical illness skeletal muscle wasting occurs rapidly. Although beta-hydroxy-beta-methylbutyrate (HMB) is a potential treatment to attenuate this process, the plasma appearance and muscle concentration is uncertain. METHODS This was an exploratory study nested within a blinded, parallel group, randomized clinical trial in which critically ill patients after trauma received enteral HMB (3 g daily) or placebo. Plasma samples were collected at 0, 60, and 180 min after study supplement administration on day 1. Needle biopsies of the vastus lateralis muscle were collected (baseline and day 7 of the HMB treatment intervention period). An external standard curve was used to calculate HMB concentrations in plasma and muscle. RESULTS Data were available for 16 participants (male n = 12 (75%), median [interquartile range] age 50 [29-58] years) who received placebo and 18 participants (male n = 14 (78%), age 49 [34-55] years) who received HMB. Plasma HMB concentrations were similar at baseline but increased after HMB (T = 60 min: placebo 0.60 [0.44-1.31] µM; intervention 51.65 [22.76-64.72] µM). Paired muscle biopsies were collected from 11 participants (placebo n = 7, HMB n = 4). Muscle HMB concentrations were similar at baseline between groups (2.35 [2.17-2.95]; 2.07 [1.78-2.31] µM). For participants in the intervention group who had the repeat biopsy within 4 h of HMB administration, concentrations were greater (7.2 and 12.3 µM) than those who had the repeat biopsy >4 h after HMB (2.7 and 2.1 µM). CONCLUSION In this exploratory study, enteral HMB administration increased plasma HMB availability. The small sample size limits interpretation of the muscle HMB findings.
Collapse
Affiliation(s)
- Kym Wittholz
- Department of Allied Health (Clinical Nutrition), Royal Melbourne Hospital, Melbourne, Australia
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Amy J Bongetti
- Department of Anatomy and Physiology, Centre for Muscle Research, University of Melbourne, Melbourne, Australia
| | - Kate Fetterplace
- Department of Allied Health (Clinical Nutrition), Royal Melbourne Hospital, Melbourne, Australia
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Marissa K Caldow
- Department of Anatomy and Physiology, Centre for Muscle Research, University of Melbourne, Melbourne, Australia
| | - Amalia Karahalios
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Olav Rooyackers
- Division of Anesthesiology and Intensive Care, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Huddinge, Sweden
| | - René Koopman
- Department of Anatomy and Physiology, Centre for Muscle Research, University of Melbourne, Melbourne, Australia
| | - Gordon S Lynch
- Department of Anatomy and Physiology, Centre for Muscle Research, University of Melbourne, Melbourne, Australia
| | - Yasmine Ali Abdelhamid
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Australia
| | - Adam M Deane
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
4
|
Ribeiro HR, Jardim FG, Roldán MS, de Salles Painelli V, da Eira Silva V, Tritto ACC, Formalioni A, Custoias GB, Pereira WR, Solis MY, Carvalho F, Junior EP, Artioli GG. Superior bioavailability of the calcium salt form of β-hydroxy-β-methylbutyrate compared with the free acid form. Amino Acids 2024; 56:27. [PMID: 38564019 PMCID: PMC10987370 DOI: 10.1007/s00726-023-03369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/28/2023] [Indexed: 04/04/2024]
Abstract
We investigated the bioavailability of the calcium salt (HMB-Ca) and the free acid (HMB-FA) forms of β-hydroxy-β-methylbutyrate (HMB). Sixteen young individuals received the following treatments on three different occasions in a counterbalanced crossover fashion: (1) HMB-FA in clear capsules; (2) HMB-Ca in gelatine capsules; (3) HMB-Ca dissolved in water. All treatments provided 1 g of HMB. Blood samples were taken before and on multiple time points following ingestion. The following parameters were calculated: peak plasma (Cmax), time to peak (Tmax), slope of HMB appearance in blood, area under the curve (AUC), half-life time (t1/2) and relative bioavailability (HMB-Ca in water set as reference). All treatments led to rapid and large increases in plasma HMB. HMB-Ca in capsules and in water showed similar plasma HMB values across time (p = 0.438). HMB-FA resulted in lower concentrations vs. the other treatments (both p < 0.001). AUC (HMB-Ca in capsules: 50,078 ± 10,507; HMB-Ca in water: 47,871 ± 10,783; HMB-FA: 29,130 ± 12,946 µmol L-1 × 720 min), Cmax (HMB-Ca in capsules: 229.2 ± 65.9; HMB-Ca in water: 249.7 ± 49.7; HMB-FA: 139.1 ± 67.2 µmol L-1) and relative bioavailability (HMB-Ca in capsules: 104.8 ± 14.9%; HMB-FA: 61.5 ± 17.0%) were lower in HMB-FA vs. HMB-Ca (all p < 0.001). HMB-Ca in water resulted in the fastest Tmax (43 ± 22 min) compared to HMB-Ca in capsules (79 ± 40 min) and HMB-FA (78 ± 21 min) (all p < 0.05), while t1/2 was similar between treatments. To conclude, HMB-Ca exhibited superior bioavailability compared to HMB-FA, with HMB-Ca in water showing faster absorption. Elimination kinetics were similar across all forms, suggesting that the pharmaceutical form of HMB affects the absorption rates, but not its distribution or elimination.
Collapse
Affiliation(s)
- Heitor Rodrigues Ribeiro
- Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil
- Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Felipe Gregório Jardim
- Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil
- Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Miriam Sanz Roldán
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Vitor de Salles Painelli
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University UNIP, São Paulo, Brazil
| | - Vinicius da Eira Silva
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Aline Cristina Capparelli Tritto
- Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil
- Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Andressa Formalioni
- Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil
- Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Giovani Boldrini Custoias
- Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil
- Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Wagner Ribeiro Pereira
- Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil
- Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Marina Yazigi Solis
- Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil
- Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Felipe Carvalho
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Ernani Pinto Junior
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Guilherme Giannini Artioli
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, 215 John Dalton Building, Chester Street, Manchester, Lancashire, M1 5DG, UK.
| |
Collapse
|
5
|
Mu H, Yang C, Zhang Y, Chen S, Wang P, Yan B, Zhang Q, Wei C, Gao H. Dietary β-Hydroxy- β-Methylbutyrate Supplementation Affects Growth Performance, Digestion, TOR Pathway, and Muscle Quality in Kuruma Shrimp ( Marsupenaeus japonicas) Fed a Low Protein Diet. AQUACULTURE NUTRITION 2023; 2023:9889533. [PMID: 36860981 PMCID: PMC9973151 DOI: 10.1155/2023/9889533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
An 8-week feeding trial was performed to evaluate the effects of dietary β-hydroxy-β-methylbutyrate (HMB) supplementation on growth performance and muscle quality of kuruma shrimp (Marsupenaeus japonicas) (initial weight: 2.00 ± 0.01 g) fed a low protein diet. The positive control diet (HP) with 490 g/kg protein and negative control diet (LP) with 440 g/kg protein were formulated. Based on the LP, 0.25, 0.5, 1, 2 and 4 g/kg β-hydroxy-β-methylbutyrate calcium were supplemented to design the other five diets named as HMB0.25, HMB0.5, HMB1, HMB2 and HMB4, respectively. Results showed that compared with the shrimp fed LP, the HP, HMB1 and HMB2 groups had significantly higher weight gain and specific growth rate, while significantly lower feed conversion ratio (p < 0.05). Meanwhile, intestinal trypsin activity was significantly elevated in the above three groups than that of the LP group. Higher dietary protein level and HMB inclusion upregulated the expressions of target of rapamycin, ribosomal protein S6 kinase, phosphatidylinositol 3-kinase, and serine/threonine-protein kinase in shrimp muscle, accompanied by the increases in most muscle free amino acids contents. Supplementation of 2 g/kg HMB in a low protein diet improved muscle hardness and water holding capacity of shrimp. Total collagen content in shrimp muscle increased with increasing dietary HMB inclusion. Additionally, dietary inclusion of 2 g/kg HMB significantly elevated myofiber density and sarcomere length, while reduced myofiber diameter. In conclusion, supplementation of 1-2 g/kg HMB in a low protein diet improved the growth performance and muscle quality of kuruma shrimp, which may be ascribed to the increased trypsin activity and activated TOR pathway, as well as elevated muscle collagen content and changed myofiber morphology caused by dietary HMB.
Collapse
Affiliation(s)
- Hua Mu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Chenbin Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shengdi Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Panpan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Qingqi Zhang
- Ganyu Jiaxin Fishery Technical Development Co., Ltd., Lianyungang 222100, China
| | - Chaoqing Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| |
Collapse
|
6
|
Nutritional Compounds to Improve Post-Exercise Recovery. Nutrients 2022; 14:nu14235069. [PMID: 36501099 PMCID: PMC9736198 DOI: 10.3390/nu14235069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
The metabolic and mechanical stresses associated with muscle-fatiguing exercise result in perturbations to bodily tissues that lead to exercise-induced muscle damage (EIMD), a state of fatigue involving oxidative stress and inflammation that is accompanied by muscle weakness, pain and a reduced ability to perform subsequent training sessions or competitions. This review collates evidence from previous research on a wide range of nutritional compounds that have the potential to speed up post-exercise recovery. We show that of the numerous compounds investigated thus far, only two-tart cherry and omega-3 fatty acids-are supported by substantial research evidence. Further studies are required to clarify the potential effects of other compounds presented here, many of which have been used since ancient times to treat conditions associated with inflammation and disease.
Collapse
|
7
|
Phillips SM, Lau KJ, D'Souza AC, Nunes EA. An umbrella review of systematic reviews of β-hydroxy-β-methyl butyrate supplementation in ageing and clinical practice. J Cachexia Sarcopenia Muscle 2022; 13:2265-2275. [PMID: 35818771 PMCID: PMC9530546 DOI: 10.1002/jcsm.13030] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 01/06/2023] Open
Abstract
The compound β-hydroxy-β-methyl butyrate (HMB) is proposed to increase or mitigate the loss of skeletal muscle and improve muscle function. We undertook a review of systematic reviews of HMB supplementation to promote gains or mitigate muscle loss in ageing and clinical populations. Following PRISMA guidelines, we searched for systematic reviews reporting the effect of HMB in our target populations. Dual-energy X-ray absorptiometry (DXA) measured lean soft-tissue mass (LSTM) was accepted as a proxy for muscle. We identified 15 systematic reviews that met our inclusion criteria, which were independently evaluated. The methodological quality of the reviews was assessed using A Measurement Tool to Assess Systematic Reviews (AMSTAR), and standardized effectiveness statements were generated. Five of 15 studies found some evidence that HMB augmented LSTM; the remaining 10 studies reported some evidence favouring no difference (6/10 studies) or insufficient evidence to determine an effect (4/10 studies). Of the 12 studies that evaluated strength, 4/12 found some evidence, 5/12 found some evidence of no effect with one article finding some evidence in favour of patients in peri-hospitalized and no evidence for those that are community-dwelling, 4/12 had insufficient evidence to determine an effect, and 1/12 had insufficient evidence. No]study reported a positive effect of HMB on physical function; however, 2/10 studies found some evidence favouring no effect, and 7/10 studies reported insufficient evidence to determine an effect. The effectiveness of HMB supplementation in augmenting LSTM was heterogeneous, with most reviews finding no effect or inconclusive evidence to determine an effect. Most reviews concluded that HMB supplementation did not affect strength outcome measures or studies were inconclusive. The current evidence is insufficient to assess the impact of HMB supplementation on functional outcome measures. Our analysis shows minor, inconsistent support for HMB as part of an oral nutritional supplement or as a stand-alone supplement (or combined with other amino acids) to increase or promote retention of LSTM, improve strength, and no evidence that it improves physical function in older persons or clinical populations.
Collapse
Affiliation(s)
| | | | | | - Everson A. Nunes
- McMaster UniversityHamiltonOntarioCanada
- Federal University of Santa CatarinaFlorianópolisBrazil
| |
Collapse
|
8
|
Dietary beta-hydroxy-beta-methyl butyrate supplementation improves meat quality of Bama Xiang mini-pigs through manipulation of muscle fiber characteristics. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
9
|
Singh SS, Kumar A, Welch N, Sekar J, Mishra S, Bellar A, Gangadhariah M, Attaway A, Al Khafaji H, Wu X, Pathak V, Agrawal V, McMullen MR, Hornberger TA, Nagy LE, Davuluri G, Dasarathy S. Multiomics-Identified Intervention to Restore Ethanol-Induced Dysregulated Proteostasis and Secondary Sarcopenia in Alcoholic Liver Disease. Cell Physiol Biochem 2021; 55:91-116. [PMID: 33543862 DOI: 10.33594/000000327] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS Signaling and metabolic perturbations contribute to dysregulated skeletal muscle protein homeostasis and secondary sarcopenia in response to a number of cellular stressors including ethanol exposure. Using an innovative multiomics-based curating of unbiased data, we identified molecular and metabolic therapeutic targets and experimentally validated restoration of protein homeostasis in an ethanol-fed mouse model of liver disease. METHODS Studies were performed in ethanol-treated differentiated C2C12 myotubes and physiological relevance established in an ethanol-fed mouse model of alcohol-related liver disease (mALD) or pair-fed control C57BL/6 mice. Transcriptome and proteome from ethanol treated-myotubes and gastrocnemius muscle from mALD and pair-fed mice were analyzed to identify target pathways and molecules. Readouts including signaling responses and autophagy markers by immunoblots, mitochondrial oxidative function and free radical generation, and metabolic studies by gas chromatography-mass spectrometry and sarcopenic phenotype by imaging. RESULTS Multiomics analyses showed that ethanol impaired skeletal muscle mTORC1 signaling, mitochondrial oxidative pathways, including intermediary metabolite regulatory genes, interleukin-6, and amino acid degradation pathways are β-hydroxymethyl-butyrate targets. Ethanol decreased mTORC1 signaling, increased autophagy flux, impaired mitochondrial oxidative function with decreased tricarboxylic acid cycle intermediary metabolites, ATP synthesis, protein synthesis and myotube diameter that were reversed by HMB. Consistently, skeletal muscle from mALD had decreased mTORC1 signaling, reduced fractional and total muscle protein synthesis rates, increased autophagy markers, lower intermediary metabolite concentrations, and lower muscle mass and fiber diameter that were reversed by β-hydroxymethyl-butyrate treatment. CONCLUSION An innovative multiomics approach followed by experimental validation showed that β-hydroxymethyl-butyrate restores muscle protein homeostasis in liver disease.
Collapse
Affiliation(s)
| | - Avinash Kumar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Jinendiran Sekar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Saurabh Mishra
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Annette Bellar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | | | - Amy Attaway
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA.,Department of Pulmonology, Cleveland Clinic, Cleveland, OH, USA
| | - Hayder Al Khafaji
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoqin Wu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Vai Pathak
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Vandana Agrawal
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Megan R McMullen
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | | | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA, .,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
10
|
Kaczka P, Kubicka K, Batra A, Maciejczyk M, Kopera E, Bira J, Zając T. Effects of Co-Ingestion of β-Hydroxy-β-Methylbutyrate and L-Arginine α-Ketoglutarate on Jump Performance in Young Track and Field Athletes. Nutrients 2021; 13:nu13041064. [PMID: 33805883 PMCID: PMC8064357 DOI: 10.3390/nu13041064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/15/2023] Open
Abstract
The aim of the study was to determine the effect of simultaneous supplementation of β-hydroxy-β-methylbutyrate and L-Arginine α-ketoglutarate on lower limb power and muscle damage in medium distance runners aged 15.3 (±0.9) years old. Methods: The study group consisted of 40 volunteers aged 14–17 years practicing medium distance running for at least two years. The study lasted 12 days and followed a randomized, double-blind, placebo-controlled, parallel design. All subjects attended a familiarization session on day 0 before the test. The subjects were randomly divided into two groups: supplements and placebo group. The same training cycle protocol was used in both groups during the 12-day training period. Morning warm-up involved 10 min jogging at 60–75% of maximal heart rate and countermovement jump height measurement. Main training units were carried out for both groups with the same volume. Training load assessment (the daily session Rating of Perceived Exertion (s-RPE) method) method takes into consideration the intensity and the duration of the training session to calculate the “training load” (TL). Results: At the end of the training cycle, a significant (p = 0.002) decrease in the countermovement jump (CMJ) height was found in the placebo group when compared to the baseline. In the supplement group, there was no decrease in the countermovement jump height. Creatine kinase and lactate dehydrogenase concentration increased during the training days similarly in both groups and decreased on rest days. There were no differences between groups in enzymes concentration. The research results indicate that the supplement combination used in the supplements group prevented a reduction in the CMJ values. In contrast to the supplements group, in the placebo group, the CMJ changes were statistically significant: a noticeable (p = 0.002) decrease in CMJ was noted between the baseline measurement and the 6th measurement. The well-being of the subjects from both groups changed significantly during the training period, and the intergroup differences in the mood level were similar and not statistically significant. Conclusions: The results of this study indicate that the daily co-supplementation with calcium salt of β-hydroxy-β-methylbutyrate (7.5 g) and L-Arginine α-ketoglutarate (10 g) during training might help to prevent decline in jump performance. No influence on muscle damage markers or mood was shown.
Collapse
Affiliation(s)
- Piotr Kaczka
- Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (K.K.); (A.B.); (E.K.); (J.B.); (T.Z.)
- Correspondence:
| | - Katarzyna Kubicka
- Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (K.K.); (A.B.); (E.K.); (J.B.); (T.Z.)
| | - Amit Batra
- Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (K.K.); (A.B.); (E.K.); (J.B.); (T.Z.)
| | - Marcin Maciejczyk
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Krakow, Jana Pawła II 78, 31-571 Kraków, Poland;
| | - Edyta Kopera
- Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (K.K.); (A.B.); (E.K.); (J.B.); (T.Z.)
| | - Justyna Bira
- Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (K.K.); (A.B.); (E.K.); (J.B.); (T.Z.)
| | - Tomasz Zając
- Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (K.K.); (A.B.); (E.K.); (J.B.); (T.Z.)
| |
Collapse
|
11
|
Herrod PJJ, Gharahdaghi N, Rudrappa SS, Phillips HG, Ranat RA, Hardy EJO, Rathmacher JA, Atherton PJ, Phillips BE. The impact of acute beta-hydroxy-beta-methylbutyrate (HMB) ingestion on glucose and insulin kinetics in young and older men. J Funct Foods 2020; 73:104163. [PMID: 33101462 PMCID: PMC7573812 DOI: 10.1016/j.jff.2020.104163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance (IR) is a key feature in the development of numerous metabolic diseases. The cornerstone for treatment for IR remains diet and exercise, however these have poor rates of adherence. Beta-hydroxy-beta-methylbutyrate (HMB) is a nutraceutical with contentious effects on IR in animal models. The aim of this study was to evaluate the impact of acute HMB on IR in humans during an oral glucose tolerance test (OGTT). Young and older male volunteers underwent two 75 g OGTT with or without 3 g HMB. In young men, HMB significantly reduced the insulin area-under-the-curve (AUC), with no difference in glucose AUC, resulting in a numerical increase in the Cederholm index of insulin sensitivity. In older men, HMB had no effect on insulin or glucose responses. In conclusion, acute HMB may improve IR following a glucose load in young men; however, this does not appear to be sustained into older age.
Collapse
Affiliation(s)
- Philip J J Herrod
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, School of Medicine, Royal Derby Hospital Centre, Derby, UK.,Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby, UK
| | - Nima Gharahdaghi
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, School of Medicine, Royal Derby Hospital Centre, Derby, UK
| | - Supreeth S Rudrappa
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, School of Medicine, Royal Derby Hospital Centre, Derby, UK
| | - Hannah G Phillips
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby, UK
| | - Reesha A Ranat
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby, UK
| | - Edward J O Hardy
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, School of Medicine, Royal Derby Hospital Centre, Derby, UK.,Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby, UK
| | - John A Rathmacher
- Metabolic Technologies Inc., Iowa State University Research Park, Iowa, USA
| | - Philip J Atherton
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, School of Medicine, Royal Derby Hospital Centre, Derby, UK
| | - Bethan E Phillips
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, School of Medicine, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|
12
|
Gonzalez AM, Church DD, Townsend JR, Bagheri R. Emerging Nutritional Supplements for Strength and Hypertrophy: An Update of the Current Literature. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Hu L, Kristensen NB, Krogh U, Theil PK. Net Absorption and Metabolism of β-Hydroxy- β-Methyl Butyrate during Late Gestation in a Pig Model. Nutrients 2020; 12:nu12020561. [PMID: 32098129 PMCID: PMC7071374 DOI: 10.3390/nu12020561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
The leucine metabolite, β-hydroxy-β-methyl butyrate (HMB), is widely used in human nutrition and animal production as a nutritional supplement. Although the HMB usage during late gestation has been demonstrated to have a positive effect on fetal development, knowledge on net absorption and metabolism of HMB and impact of HMB on branched chain amino acids (BCAAs) metabolism is lacking. To address this, we conducted a study using pigs during the perinatal period as a model organism. Eight-second parity sows were fitted with indwelling catheters in the femoral artery and in the portal, hepatic, femoral, and mesenteric veins. Eight hourly sets of blood samples were taken starting 30 min before the morning meal on day –10 and day –3 relative to parturition. Four control (CON) sows were fed a standard lactation diet from day –15 and throughout the experiment, and 4 HMB sows were fed the control diet supplemented with 15 mg Ca(HMB)2/kg body weight mixed in one third of the morning meal from day –10 until parturition. Blood gases, plasma metabolites, milk compositions, and apparent total tract digestibility of nutrients were measured. Arterial plasma concentrations of HMB (p < 0.001), Cys (p < 0.001), and Lys (p < 0.10) were increased in HMB supplemented sows, while arterial plasma triglycerides concentration was decreased (p < 0.05). The net portal recovery of Ala and Asp were increased in HMB sows (p < 0.05). Sows fed HMB had increased hepatic vein flow and net hepatic fluxes of Met, Asn, and Gln (p < 0.05). In contrast, the femoral extraction rates of Ala and Ser were decreased by dietary HMB supplementation (p < 0.05). Dietary HMB treatment and sampling time relative to feeding had an interaction on arterial concentrations, net portal fluxes, and femoral extraction rates of BCAAs. The net portal recovery of HMB was 88%, while 14% of supplemented HMB was excreted through urine and 4% through feces. Moreover, the gastrointestinal tract metabolized 8% while the liver metabolized 12%. Finally, 26% of the daily intake of HMB was secreted via colostrum at the day of farrowing. This study demonstrated that dietary HMB supplementation increased net uptake of amino acids and increased fatty acid oxidation through improving blood flow and insulin sensitivity during the late gestation. Most importantly, oral HMB administration could maintain a stable postprandial absorption and altered metabolism in BCAAs. Net portal flux of HMB at 5.5 to 6.5 h after feeding approached zero, indicating that HMB ideally should be administrated two or three times, daily.
Collapse
Affiliation(s)
- Liang Hu
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark (N.B.K.); (U.K.)
- Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Niels Bastian Kristensen
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark (N.B.K.); (U.K.)
- Danish Agriculture & Food Council F.m.b.A. SEGES Agro Food Park 15, DK 8200 Aarhus N, Denmark
| | - Uffe Krogh
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark (N.B.K.); (U.K.)
- PEGASE, INRAE, Agrocampus Ouest, 35590 Saint-Gilles, France
| | - Peter Kappel Theil
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark (N.B.K.); (U.K.)
- Correspondence: ; Tel.: +45-8715-7803
| |
Collapse
|
14
|
Negligible Effects of β-Hydroxy-β-Methylbutyrate Free Acid and Calcium Salt on Strength and Hypertrophic Responses to Resistance Training: A Randomized, Placebo-Controlled Study. Int J Sport Nutr Exerc Metab 2019; 29:505-511. [PMID: 30859862 DOI: 10.1123/ijsnem.2018-0337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 11/18/2022]
Abstract
This study evaluated the effects of β-hydroxy-β-methylbutyrate free acid (HMB-FA) and calcium salt (HMB-Ca) on strength, hypertrophy, and markers of muscle damage. In this randomized, double-blind, placebo-controlled study, 44 resistance-trained men (age: 26 ± 4 years; body mass: 84.9 ± 12.0 kg) consuming ≥1.7 g·kg-1·day-1 of protein received HMB-FA (3 g/day; n = 14), HMB-Ca (3 g/day; n = 15), or placebo (PL; cornstarch, 3 g/day; n = 15) for 12 weeks, while performing a periodized resistance training program. Before and after intervention, lean body mass (measured with dual X-ray absorptiometry), maximal dynamic strength (one-repetition maximum), knee extension maximal isometric strength (maximal voluntary isometric contraction [MVIC]), cross-sectional area (measured with ultrasound), and muscle soreness were assessed. MVIC was also measured 48 hr after the first and the last training sessions. All groups increased lean body mass (main time effect: p < .0001; HMB-FA: 1.8 ± 1.8 kg; HMB-Ca: 0.8 ± 1.4 kg; PL: 0.9 ± 1.4 kg), cross-sectional area (main time effect: p < .0001; HMB-FA: 6.6 ± 3.8%; HMB-Ca: 4.7 ± 4.4%; PL: 6.9 ± 3.8%), one-repetition maximum bench press (main time effect: p < .0001; HMB-FA: 14.8 ± 8.4 kg; HMB-Ca: 11.8 ± 7.4 kg; PL: 11.2 ± 6.6 kg), MVIC (main time effect: p < .0001; HMB-FA: 34.4 ± 39.3%; HMB-Ca: 32.3 ± 27.4%; PL: 17.7 ± 20.9%) after the intervention, but no differences between groups were shown. HMB-FA group showed greater leg press strength after the intervention than HMB-Ca and PL groups (Group × Time interaction: p < .05; HMB-FA: 47.7 ± 31.2 kg; HMB-Ca: 43.8 ± 31.7 kg; PL: 30.2 ± 20.9 kg). MVIC measured 48 hr after the first and the last sessions showed no attenuation of force decline with supplementation. Muscle soreness following the first and last sessions was not different between groups. The authors concluded that neither HMB-Ca nor HMB-FA improved hypertrophy or reduced muscle damage in resistance-trained men undergoing resistance training ingesting optimal amounts of protein. HMB-FA but not HMB-Ca resulted in a statistically significant yet minor improvement on leg press one-repetition maximum.
Collapse
|
15
|
Mechanism of Action and the Effect of Beta-Hydroxy-Beta-Methylbutyrate (HMB) Supplementation on Different Types of Physical Performance - A Systematic Review. J Hum Kinet 2019; 68:211-222. [PMID: 31531146 PMCID: PMC6724588 DOI: 10.2478/hukin-2019-0070] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB) has been used extensively as a dietary supplement for athletes and physically active people. HMB is a leucine metabolite, which is one of three branched chain amino acids. HMB plays multiple roles in the human body of which most important ones include protein metabolism, insulin activity and skeletal muscle hypertrophy. The ergogenic effects of HMB supplementation are related to the enhancement of sarcolemma integrity, inhibition of protein degradation (ubiquitin pathway), decreased cell apoptosis, increased protein synthesis (mTOR pathway), stimulation of the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and enhancement of muscle stem cells proliferation and differentiation. HMB supplementation has been carried out with various groups of athletes. In endurance and martial arts athletes, HMB supplementation revealed positive effects on specific aerobic capacity variables. Positive results were also disclosed in resistance trained athletes, where changes in strength, body fat and muscle mass as well as anaerobic performance and power output were observed. The purpose of this review was to present the main mechanisms of HMB action, especially related to muscle protein synthesis and degradation, and ergogenic effects on different types of sports and physical activities.
Collapse
|
16
|
Teixeira FJ, Matias CN, Monteiro CP, Valamatos MJ, Reis JF, Tavares F, Batista A, Domingos C, Alves F, Sardinha LB, Phillips SM. Leucine Metabolites Do Not Enhance Training-induced Performance or Muscle Thickness. Med Sci Sports Exerc 2019; 51:56-64. [PMID: 30102677 DOI: 10.1249/mss.0000000000001754] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Leucine metabolites, α-hydroxyisocaproic acid (α-HICA) and β-hydroxy-β-methylbutyrate (calcium, HMB-Ca and free acid, HMB-FA), have been proposed to augment resistance training-induced changes in body composition and performance. PURPOSE We aimed to conduct a double-blind randomized controlled pragmatic trial to evaluate the effects of off-the-shelf leucine metabolite supplements of α-HICA, HMB-FA, and HMB-Ca on resistance training-induced changes in muscle thickness and performance. METHODS Forty men were randomly assigned to receive α-HICA (n = 10, fat-free mass [FFM] = 62.0 ± 7.1 kg), HMB-FA (n = 11, FFM = 62.7 ± 10.5 kg), HMB-Ca (n = 9, FFM = 65.6 ± 10.1 kg), or placebo (PLA; n = 10, FFM = 64.2 ± 5.7 kg). The training program consisted of whole body thrice weekly resistance training for 8 wk (seven exercises per session, three to four sets per session, at 70%-80% one repetition maximum). Skeletal muscle thickness by ultrasound, performance measures, and blood measures (creatine kinase, insulin-like growth factor 1, growth hormone, cortisol, and total testosterone) were evaluated at baseline and at the end of weeks 4 and 8. RESULTS Time-dependent changes were observed for muscle thickness (P < 0.001), one repetition maximum bench press and squat (P < 0.001), Wingate peak power (P = 0.02), countermovement jump height (P = 0.03), power (P = 0.006), creatine kinase, insulin-like growth factor-1, growth hormone, and cortisol (all P < 0.001). No significant between-group or time-group interactions were observed. CONCLUSIONS No leucine metabolite resulted in any ergogenic effects on any outcome variable. Supplementation with leucine metabolites-α-HICA, HMB-FA, or HMB-Ca-is not a supplementation strategy that improves muscle growth and strength development in young adult men.
Collapse
Affiliation(s)
- Filipe J Teixeira
- Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL
| | - Catarina N Matias
- Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL.,Laboratory of Exercise and Health, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL.,Center for the Study of Human Performance, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL
| | - Cristina P Monteiro
- Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL.,Center for the Study of Human Performance, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL
| | - Maria J Valamatos
- Center for the Study of Human Performance, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL.,Neuromuscular Research Lab, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL
| | - Joana F Reis
- Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL.,Center for the Study of Human Performance, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL.,Faculty of Health and Sports, Universidade Europeia, Laureate International Universities, Lisboa, PORTUGAL
| | - Francisco Tavares
- Faculty of Health, Sport and Human Performance, The University of Waikato, Hamilton, NEW ZEALAND
| | - Ana Batista
- Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL
| | - Christophe Domingos
- Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL
| | - Francisco Alves
- Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL.,Center for the Study of Human Performance, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL
| | - Luís B Sardinha
- Laboratory of Exercise and Health, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL.,Center for the Study of Human Performance, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, PORTUGAL
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, CANADA
| |
Collapse
|
17
|
Arazi H, Hosseini Z, Asadi A, Ramirez-Campillo R, Suzuki K. β-Hydroxy- β-Methylbutyrate Free Acid Attenuates Oxidative Stress Induced by a Single Bout of Plyometric Exercise. Front Physiol 2019; 10:776. [PMID: 31293445 PMCID: PMC6603230 DOI: 10.3389/fphys.2019.00776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/04/2019] [Indexed: 01/10/2023] Open
Abstract
PURPOSE The purpose of this study was to examine the effect of β-hydroxy-β methylbutyrate free acid (HMB-FA) ingestion on oxidative stress and leukocyte responses to plyometric exercise. METHODS In a randomized double-blind placebo-controlled design, physically active males were assigned to the HMB-FA (n = 8) or placebo (n = 8) groups that consumed either 1 g of HMB-FA or placebo 30 min prior to performing an acute plyometric exercise protocol (15 sets of 10 repetitions of maximal-effort vertical jumps). Blood was obtained pre-(T1), post-(T2), and 1-h post-(T3) exercise to determine changes in serum levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDA), protein carbonyl (PC), and white blood cells (WBC). RESULTS The exercise protocol significantly elevated 8-OHdG (HMB-FA, T2 9.5 and T3 12.6%; placebo, T2 18.2 and T3 36.5%), MDA (HMB-FA, T2 11.6 and T3 25.2%; placebo, T2 11.8 and T3 41%) and PC (HMB-FA, T2 6.9 and T3 25%; placebo, T2 23.4 and T3 55.3%) at post- and 1-h post-exercise, respectively. However, at 1-h post-exercise, greater increases in oxidative stress markers (8-OHdG 36.5 vs. 12.6%; MDA 41 vs. 25.1% and PC 55.3 vs. 25%) were observed in the placebo group compared to the HMB-FA group (p < 0.05). In addition, the WBC level was greater for the placebo group in comparison to the HMB-FA group at post-exercise. CONCLUSION HMB-FA attenuated oxidative stress and leukocyte responses to plyometric exercise compared with placebo.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Zahra Hosseini
- Bandar Anzali Branch, Islamic Azad University, Bandar Anzali, Iran
| | - Abbas Asadi
- Department of Physical Education and Sport Sciences, Payame Noor University, Tehran, Iran
| | - Rodrigo Ramirez-Campillo
- Laboratory of Human Performance, Quality of Life and Wellness Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile
| | | |
Collapse
|
18
|
Teixeira FJ, Matias CN, Monteiro CP, Valamatos MJ, Reis JF, Morton RW, Alves F, Sardinha LB, Phillips SM. Leucine metabolites do not attenuate training-induced inflammation in young resistance trained men. J Sports Sci 2019; 37:2037-2044. [PMID: 31079555 DOI: 10.1080/02640414.2019.1617503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Leucine metabolites may reduce training-induced inflammation; however, there is scant evidence for this assertion. We conducted a double-blind randomized controlled pragmatic trial where 40 male participants were allocated into 4 groups: α-hydroxyisocaproic acid group ([α-HICA], n = 10, Fat-free mass [FFM] = 62.0 ± 7.1 kg), β-hydroxy-β-methylbutyrate free acid group ([HMB-FA], n = 11, FFM = 62.7 ± 10.5 kg), calcium β-hydroxy-β-methylbutyrate group ([HMB-Ca], n = 9, FFM = 65.6 ± 10.1 kg) or placebo group ([PLA]; n = 10, FFM = 64.2 ± 5.7 kg). An 8-week whole-body resistance training routine (3 training sessions per week) was employed to induce gains in skeletal-muscle thickness. Skeletal muscle thickness (MT), one repetition maximum (1RM), interleukin-6 (IL-6), high-sensitivity C-reactive protein (hsCRP) and tumour necrosis factor alpha (TNF-α) were assessed at baseline and at the end of weeks 4 and 8. Time-dependent increases were detected from baseline to week 8 for MT (vastus lateralis: p = 0.009; rectus femoris: p = 0.018), 1RM (back squat: α-HICA, 18.5% ± 18.9%; HMB-FA, 23.2% ± 16%; HMB-Ca, 10.5% ± 13.8%; PLA, 19.7% ± 9% and bench press: α-HICA, 13.8% ± 19.1%; HMB-FA, 15.5% ± 9.3%; HMB-Ca, 10% ± 10.4%; PLA, 14.4 ± 11.3%, both p < 0.001), IL-6, hsCRP (both p < 0.001) and TNF-α (p = 0.045). No differences were found between groups at any time point. No leucine metabolite attenuated inflammation during training. Additionally, backwards elimination regressions showed that no circulating inflammatory marker consistently shared variance with the change in any outcome. Using leucine metabolites to modulate inflammation cannot be recommended from the results obtained herein. Furthermore, increases in inflammatory markers, from training, do not correlate with any outcome variable and are likely the result of training adaptations.
Collapse
Affiliation(s)
- Filipe J Teixeira
- a Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal
| | - Catarina N Matias
- a Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,b Laboratory of Exercise and Health, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,c Center for the Study of Human Performance, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal
| | - Cristina P Monteiro
- a Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,c Center for the Study of Human Performance, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal
| | - Maria J Valamatos
- c Center for the Study of Human Performance, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,d Neuromuscular research Lab, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal
| | - Joana F Reis
- a Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,c Center for the Study of Human Performance, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,e Universidade Europeia , Lisboa , Portugal
| | - Robert W Morton
- f Department of Kinesiology , McMaster University , Hamilton , ON , Canada
| | - Francisco Alves
- a Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,c Center for the Study of Human Performance, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal
| | - Luís B Sardinha
- b Laboratory of Exercise and Health, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal.,c Center for the Study of Human Performance, Faculty of Human Kinetics , Universidade de Lisboa , Cruz Quebrada , Portugal
| | - Stuart M Phillips
- f Department of Kinesiology , McMaster University , Hamilton , ON , Canada
| |
Collapse
|
19
|
Zhong Y, Song B, Zheng C, Li F, Kong X, Duan Y, Deng J. α-Ketoisocaproate and β-hydroxy-β-methyl butyrate regulate fatty acid composition and lipid metabolism in skeletal muscle of growing pigs. J Anim Physiol Anim Nutr (Berl) 2019; 103:846-857. [PMID: 30775808 DOI: 10.1111/jpn.13077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/05/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES This study aims to investigate the effects and roles of excess leucine (Leu) versus its metabolites α-ketoisocaproate (KIC) and β-hydroxy-β-methyl butyrate (HMB) on fatty acid composition and lipid metabolism in skeletal muscle of growing pigs. METHODS AND RESULTS Thirty-two pigs with a similar initial weight (9.55 ± 0.19 kg) were fed one of the four diets (basal diet, L-Leu, KIC-Ca and HMB-Ca) for 45 days. Results indicated that dietary treatments did not affect the intramuscular fat (IMF) content (p > 0.05), but differently influenced the fatty acid composition of longissimus dorsi muscle (LM) and soleus muscle (SM). In particular, the proportion of N3 PUFA specifically in LM was significantly decreased in the Leu group and increased in both KIC and HMB group relative to the basal diet group (p < 0.05). Furthermore, pigs fed KIC-supplemented diets exhibited decreased expression of FATP-1, ACC, ATGL, C/EBPα, PPARγ and SREBP-1c in LM and increased expression of FATP-1, FAT/CD36, ATGL and M-CPT-1 in SM relative to the basal diet control (p < 0.05). CONCLUSIONS These findings indicated that doubling dietary Leu content decreased the percentage of N3 PUFA mainly in glycolytic skeletal muscle, whereas KIC and HMB improved muscular fatty acid composition and altered lipid metabolism in skeletal muscle of growing pigs. The mechanism of action of KIC might be related to the TFs, and the mechanism of action of HMB might be associated with the AMPK-mTOR signalling pathway.
Collapse
Affiliation(s)
- Yinzhao Zhong
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| | - Bo Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| | - Changbing Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| | - Fengna Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Xiangfeng Kong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Jakubowski JS, Wong EPT, Nunes EA, Noguchi KS, Vandeweerd JK, Murphy KT, Morton RW, McGlory C, Phillips SM. Equivalent Hypertrophy and Strength Gains in β-Hydroxy-β-Methylbutyrate- or Leucine-supplemented Men. Med Sci Sports Exerc 2019; 51:65-74. [PMID: 30113522 PMCID: PMC6303132 DOI: 10.1249/mss.0000000000001752] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ingestion of proteins with high leucine content during resistance training (RT) can augment hypertrophy. Some data suggest that a leucine metabolite, β-hydroxy, β-methylbutyrate (HMB), is substantially more anabolically efficacious than leucine. PURPOSE We aimed to test whether supplementation with HMB versus leucine, added to whey protein, would result in differential muscle hypertrophy and strength gains in young men performing RT. METHODS Twenty-six resistance-trained men (23 ± 2 yr) performed 12 wk of RT with three phases. Phase 1: 8 wk of periodized RT (three training sessions per week). Phase 2: 2 wk overreaching period (five sessions per week). Phase 3: 2 wk taper (three sessions per week). Participants were randomly assigned to twice daily ingestion of: whey protein (25 g) plus HMB (1.5 g) (whey+HMB; n = 13) or whey protein (25 g) plus leucine (1.5 g) (whey+leu; n = 13). Skeletal muscle biopsies were performed before and after RT. Measures of fat- and bone-free mass, vastus lateralis (VL) muscle thickness and muscle cross-sectional area (CSA) (both by ultrasound), muscle fiber CSA, and 1-repetition maximum (1-RM) strength tests were determined. RESULTS We observed increases in fat- and bone-free mass, VL muscle thickness, muscle CSA and fiber type CSA and 1-RM strength with no differences between groups at any phase. We observed no differences between groups or time-group interactions in hormone concentrations at any phase of the RT program. CONCLUSIONS β-Hydroxy-β-methylbutyrate added to whey did not result in greater increases in any measure of muscle mass, strength, or hormonal concentration compared to leucine added to whey. Our results show that HMB is no more effective in stimulating RT-induced hypertrophy and strength gains than leucine.
Collapse
Affiliation(s)
| | - Edwin P T Wong
- Department of Kinesiology, McMaster University, Ontario, CANADA
| | - Everson A Nunes
- Department of Physiological Sciences, Federal University of Santa Catarina, Florianopólis, BRAZIL
| | | | | | - Kevin T Murphy
- Department of Kinesiology, McMaster University, Ontario, CANADA
| | - Robert W Morton
- Department of Kinesiology, McMaster University, Ontario, CANADA
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Ontario, CANADA
| | | |
Collapse
|
21
|
Wilkinson DJ, Hossain T, Limb MC, Phillips BE, Lund J, Williams JP, Brook MS, Cegielski J, Philp A, Ashcroft S, Rathmacher JA, Szewczyk NJ, Smith K, Atherton PJ. Impact of the calcium form of β-hydroxy-β-methylbutyrate upon human skeletal muscle protein metabolism. Clin Nutr 2018; 37:2068-2075. [PMID: 29097038 PMCID: PMC6295980 DOI: 10.1016/j.clnu.2017.09.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/24/2017] [Accepted: 09/29/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS β-hydroxy-β-methylbutyrate (HMB) is purported as a key nutritional supplement for the preservation of muscle mass in health, disease and as an ergogenic aid in exercise. Of the two available forms of HMB (calcium (Ca-HMB) salt or free acid (FA-HMB)) - differences in plasma bioavailability have been reported. We previously reported that ∼3 g oral FA-HMB increased muscle protein synthesis (MPS) and reduced muscle protein breakdown (MPB). The objective of the present study was to quantify muscle protein metabolism responses to oral Ca-HMB. METHODS Eight healthy young males received a primed constant infusion of 1,2 13C2 leucine and 2H5 phenylalanine to assess MPS (by tracer incorporation in myofibrils) and MPB (via arterio-venous (A-V) dilution) at baseline and following provision of ∼3 g of Ca-HMB; muscle anabolic (MPS) and catabolic (MPB) signalling was assessed via immunoblotting. RESULTS Ca-HMB led a significant and rapid (<60 min) peak in plasma HMB concentrations (483.6 ± 14.2 μM, p < 0.0001). This rise in plasma HMB was accompanied by increases in MPS (PA: 0.046 ± 0.004%/h, CaHMB: 0.072 ± 0.004%/h, p < 0001) and suppressions in MPB (PA: 7.6 ± 1.2 μmol Phe per leg min-1, Ca-HMB: 5.2 ± 0.8 μmol Phe per leg min-1, p < 0.01). Increases in the phosphorylation of mTORc1 substrates i.e. p70S6K1 and RPS6 were also observed, with no changes detected in the MPB targets measured. CONCLUSIONS These findings support the pro-anabolic properties of HMB via mTORc1, and show that despite proposed differences in bioavailability, Ca-HMB provides a comparable stimulation to MPS and suppression of MPB, to FA-HMB, further supporting its use as a pharmaconutrient in the modulation of muscle mass.
Collapse
Affiliation(s)
- D J Wilkinson
- MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - T Hossain
- MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - M C Limb
- MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - B E Phillips
- MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - J Lund
- MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - J P Williams
- MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - M S Brook
- MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - J Cegielski
- MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - A Philp
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - S Ashcroft
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - J A Rathmacher
- Metabolic Technologies, Inc, Iowa State University Research Park, 2711 S. Loop Drive, Ste 4400, Ames, IA 50010, USA
| | - N J Szewczyk
- MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - K Smith
- MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - P J Atherton
- MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.
| |
Collapse
|
22
|
Gepner Y, Varanoske AN, Boffey D, Hoffman JR. Benefits of β-hydroxy-β-methylbutyrate supplementation in trained and untrained individuals. Res Sports Med 2018; 27:204-218. [PMID: 30348016 DOI: 10.1080/15438627.2018.1533470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
β-Hydroxy-β-Methylbutyrate (HMB) is a metabolite of the branched-chain amino acid leucine and its ketoacid α-ketoisocaproate. HMB has been widely used as an ergogenic supplement to increase muscle strength, muscle hypertrophy and enhance recovery. The physiological mechanisms that underlie these benefits are related to HMB's ability to stimulate muscle protein synthesis and minimize muscle breakdown. Although evidence supporting the benefits of HMB supplementation is not conclusive, many of these studies have suffered from methodological flaws including different formulations, supplement duration and population studied. HMB in its free acid formulation is suggestive of having a greater potential for efficacy in both trained and untrained populations than its calcium-salt form. However, the evidence regarding HMB's role in limiting muscle degradation and increasing muscle protein synthesis has created an exciting interest in examining its efficacy among untrained individuals. Recent investigations examining intense training have demonstrated efficacy in maintaining muscle mass and attenuating the inflammatory response.
Collapse
Affiliation(s)
- Yftach Gepner
- a Institute of Exercise Physiology and Wellness, Sport and Exercise Science , University of Central Florida , Orlando , FL , USA
| | - Alyssa N Varanoske
- a Institute of Exercise Physiology and Wellness, Sport and Exercise Science , University of Central Florida , Orlando , FL , USA
| | - David Boffey
- a Institute of Exercise Physiology and Wellness, Sport and Exercise Science , University of Central Florida , Orlando , FL , USA
| | - Jay R Hoffman
- a Institute of Exercise Physiology and Wellness, Sport and Exercise Science , University of Central Florida , Orlando , FL , USA
| |
Collapse
|
23
|
Arazi H, Taati B, Suzuki K. A Review of the Effects of Leucine Metabolite (β-Hydroxy-β-methylbutyrate) Supplementation and Resistance Training on Inflammatory Markers: A New Approach to Oxidative Stress and Cardiovascular Risk Factors. Antioxidants (Basel) 2018; 7:antiox7100148. [PMID: 30347824 PMCID: PMC6210682 DOI: 10.3390/antiox7100148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/03/2018] [Accepted: 10/18/2018] [Indexed: 01/03/2023] Open
Abstract
β-hydroxy β-methylbutyrate (HMB) is a bioactive metabolite formed from the breakdown of the branched-chain amino acid, leucine. Given the popularity of HMB supplements among different athletes, specifically, those who participate in regular resistance training, this review was performed to summarize current literature on some aspects of HMB supplementation that have received less attention. Because of the small number of published studies, it has not been possible to conclude the exact effects of HMB on cardiovascular parameters, oxidative stress, and inflammatory markers. Thus, the interpretation of outcomes should be taken cautiously. However, the data presented here suggest that acute HMB supplementation may attenuate the pro-inflammatory response following an intense bout of resistance exercise in athletes. Also, the available findings collectively indicate that chronic HMB consumption with resistance training does not improve cardiovascular risk factors and oxidative stress markers greater than resistance training alone. Taken together, there is clearly a need for further well-designed, long-term studies to support these findings and determine whether HMB supplementation affects the adaptations induced by resistance training associated with the body’s inflammatory condition, antioxidative defense system, and cardiovascular risk factors in humans.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht 4199843653, Iran.
| | - Behzad Taati
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht 4199843653, Iran.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| |
Collapse
|
24
|
Din USU, Brook MS, Selby A, Quinlan J, Boereboom C, Abdulla H, Franchi M, Narici MV, Phillips BE, Williams JW, Rathmacher JA, Wilkinson DJ, Atherton PJ, Smith K. A double-blind placebo controlled trial into the impacts of HMB supplementation and exercise on free-living muscle protein synthesis, muscle mass and function, in older adults. Clin Nutr 2018; 38:2071-2078. [PMID: 30360984 PMCID: PMC6876270 DOI: 10.1016/j.clnu.2018.09.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 01/06/2023]
Abstract
Age-related sarcopenia and dynapenia are associated with frailty and metabolic diseases. Resistance exercise training (RET) adjuvant to evidence-based nutritional intervention(s) have been shown as mitigating strategies. Given that β-hydroxy-β-methyl-butyrate (HMB) supplementation during RET improves lean body mass in younger humans, and that we have shown that HMB acutely stimulates muscle protein synthesis (MPS) and inhibits breakdown; we hypothesized that chronic supplementation of HMB free acid (HMB-FA) would enhance MPS and muscle mass/function in response to RET in older people. We recruited 16 healthy older men (Placebo (PLA): 68.5 ± 1.0 y, HMB-FA: 67.8 ± 1.15 y) for a randomised double-blind-placebo controlled trial (HMB-FA 3 × 1 g/day vs. PLA) involving a 6-week unilateral progressive RET regime (6 × 8 repetitions, 75% 1-RM, 3 · wk−1). Deuterium oxide (D2O) dosing was performed over the first two weeks (0–2 wk) and last two weeks (4–6 wk) with bilateral vastus lateralis (VL) biopsies at 0–2 and 4–6 wk (each time 75 ± 2 min after a single bout of resistance exercise (RE)) for quantification of early and later MPS responses and post-RE myogenic gene expression. Thigh lean mass (TLM) was measured by DXA, VL thickness and architecture (fibre length and pennation angle) by ultrasound at 0/3/6 wk, and strength by knee extensor 1-RM testing and MVC by isokinetic dynamometry (approx. every 10 days). RET induced strength increases (1-RM) in the exercised leg of both groups (398 ± 22N to 499 ± 30N HMB-FA vs. 396 ± 29N to 510 ± 43N PLA (both P < 0.05)). In addition, maximal voluntary contraction (MVC) also increased (179 ± 12 Nm to 203 ± 12 Nm HMB-FA vs. 185 ± 10 Nm to 217 ± 11 Nm PLA (both P < 0.05); with no group differences. VL muscle thickness increased significantly in the exercised leg in both groups, with no group differences. TLM (by DXA) rose to significance only in the HMB-FA group (by 5.8%–5734 ± 245 g p = 0.015 vs. 3.0% to 5644 ± 323 g P = 0.06 in PLA). MPS remained unchanged in the untrained legs (UT) 0–2 weeks being 1.06 ± 0.08%.d−1 (HMB-FA) and 1.14 ± 0.09%.d−1 (PLA), the trained legs (T) exhibited increased MPS in the HMB-FA group only at 0–2-weeks (1.39 ± 0.10%.d−1, P < 0.05) compared with UT: but was not different at 4–6-weeks: 1.26 ± 0.05%.d−1. However, there were no significant differences in MPS between the HMB-FA and PLA groups at any given time point and no significant treatment interaction observed. We also observed significant inductions of c-Myc gene expression following each acute RE bout, with no group differences. Further, there were no changes in any other muscle atrophy/hypertrophy or myogenic transcription factor genes we measured. RET with adjuvant HMB-FA supplements in free-living healthy older men did not enhance muscle strength or mass greater than that of RET alone (PLA). That said, only HMB-FA increased TLM, supported by early increases in chronic MPS. As such, chronic HMB-FA supplementation may result in long term benefits in older males, however longer and larger studies may be needed to fully determine the potential effects of HMB-FA supplementation; translating to any functional benefit.
Collapse
Affiliation(s)
- U S U Din
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - M S Brook
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK; Nottingham NIHR BRC, UK
| | - A Selby
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - J Quinlan
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - C Boereboom
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - H Abdulla
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - M Franchi
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - M V Narici
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - B E Phillips
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK; Nottingham NIHR BRC, UK
| | - J W Williams
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - J A Rathmacher
- Metabolic Technologies, Inc, Iowa State University Research Park, 2711 S. Loop Drive, Ste 4400, Ames, IA, 50010, USA
| | - D J Wilkinson
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK; Nottingham NIHR BRC, UK
| | - P J Atherton
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK; Nottingham NIHR BRC, UK
| | - K Smith
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby, UK; Nottingham NIHR BRC, UK.
| |
Collapse
|
25
|
Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, Collins R, Cooke M, Davis JN, Galvan E, Greenwood M, Lowery LM, Wildman R, Antonio J, Kreider RB. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr 2018; 15:38. [PMID: 30068354 PMCID: PMC6090881 DOI: 10.1186/s12970-018-0242-y] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Background Sports nutrition is a constantly evolving field with hundreds of research papers published annually. In the year 2017 alone, 2082 articles were published under the key words ‘sport nutrition’. Consequently, staying current with the relevant literature is often difficult. Methods This paper is an ongoing update of the sports nutrition review article originally published as the lead paper to launch the Journal of the International Society of Sports Nutrition in 2004 and updated in 2010. It presents a well-referenced overview of the current state of the science related to optimization of training and performance enhancement through exercise training and nutrition. Notably, due to the accelerated pace and size at which the literature base in this research area grows, the topics discussed will focus on muscle hypertrophy and performance enhancement. As such, this paper provides an overview of: 1.) How ergogenic aids and dietary supplements are defined in terms of governmental regulation and oversight; 2.) How dietary supplements are legally regulated in the United States; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of nutritional approaches to augment skeletal muscle hypertrophy and the potential ergogenic value of various dietary and supplemental approaches. Conclusions This updated review is to provide ISSN members and individuals interested in sports nutrition with information that can be implemented in educational, research or practical settings and serve as a foundational basis for determining the efficacy and safety of many common sport nutrition products and their ingredients.
Collapse
Affiliation(s)
- Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA.
| | - Colin D Wilborn
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | | | - Abbie Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Rick Collins
- Collins Gann McCloskey and Barry PLLC, Mineola, NY, USA
| | - Mathew Cooke
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jaci N Davis
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | - Elfego Galvan
- University of Texas Medical Branch, Galveston, TX, USA
| | - Mike Greenwood
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA
| | - Lonnie M Lowery
- Department of Human Performance & Sport Business, University of Mount Union, Alliance, OH, USA
| | | | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| | - Richard B Kreider
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
26
|
Arazi H, Asadi A, Suzuki K. The Effects of Beta-Hydroxy-Beta-Methylbutyrate-Free Acid Supplementation and Resistance Training on Oxidative Stress Markers: A Randomized, Double-Blind, Placebo-Controlled Study. Antioxidants (Basel) 2018; 7:antiox7060076. [PMID: 29891761 PMCID: PMC6025490 DOI: 10.3390/antiox7060076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/02/2018] [Accepted: 06/08/2018] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to investigate the effects of 6-week beta-hydroxy-beta methylbutyrate-free acid (HMB-FA) supplementation on oxidative stress and biochemical variables in responses to resistance training. Sixteen healthy young males participated in this study and were randomly assigned to a HMB-FA supplementation group (n = 8) or a placebo supplementation group (n = 8). The resistance training program was applied for 6 weeks with two sessions per week. Blood samples were collected before and after training, and 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDA), protein carbonyl (PC), and biochemical variables, such as alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and the numbers of total white blood cells (WBC), neutrophils, lymphocytes, and monocytes were analyzed. Following intervention, both the HMB-FA and placebo supplementation groups showed significant decreases in MDA (effect size [ES]; −0.39, −0.33) and PC (ES; −1.37, −1.41), respectively. However, 8-OHdG did not change after 6 weeks of training in any of the groups. In addition, both groups showed similar training effects on biochemical variables after 6 weeks of intervention. It was concluded that HMB-FA supplementation during resistance training did not add further adaptive changes related to oxidative stress markers.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sports Sciences, University of Guilan, Rasht 1438, Iran.
| | - Abbas Asadi
- Department of Exercise Physiology, Faculty of Sports Sciences, University of Guilan, Rasht 1438, Iran.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| |
Collapse
|
27
|
Correia ALM, de Lima FD, Bottaro M, Vieira A, da Fonseca AC, Lima RM. Pre-exercise β-hydroxy-β-methylbutyrate free-acid supplementation improves work capacity recovery: a randomized, double-blinded, placebo-controlled study. Appl Physiol Nutr Metab 2018; 43:691-696. [PMID: 29420925 DOI: 10.1139/apnm-2017-0867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to investigate the effects of a single-dose of β-hydroxy-β-methylbutyrate free acid (HMB-FA) supplementation on muscle recovery after a high-intensity exercise bout. Twenty-three trained young males were randomly assigned to receive either a single-dose supplementation of 3 g of HMB-FA (n = 12; age, 22.8 ± 3.0 years) or placebo (PLA; n = 11; age, 22.9 ± 3.1 years). A muscle damage protocol was applied 60 min after supplementation, and consisted of 7 sets of 20 drop jumps from a 60-cm box with 2-min rest intervals between sets. Muscle swelling, countermovement jump (CMJ), maximal voluntary isometric torque (MVIT), and work capacity (WC) were measured before, immediately after, and 24, 48, and 72 h after the exercise protocol. Muscle swelling, CMJ, and MVIT changed similarly in both groups after the exercise protocol (p < 0.001), but returned to pre-exercise levels after 24 h in both groups. WC decreased similarly in both groups after the exercise protocol (p < 0.01). For HMB-FA, WC returned to pre-exercise level 24 h after exercise protocol. However, for PLA, WC did not return to pre-exercise level even 72 h after the exercise protocol. In summary, a single-dose of HMB-FA supplementation improved WC recovery after a high-intensity exercise bout. However, HMB-FA did not affect the time-course of muscle swelling, MVIT, and CMJ recovery.
Collapse
Affiliation(s)
| | - Filipe Dinato de Lima
- b College of Health Sciences, University of Brasília, Brasília - DF, 70910-900, Brazil
| | - Martim Bottaro
- a College of Physical Education, University of Brasília, Brasília - DF, 70910-900, Brazil
| | - Amilton Vieira
- a College of Physical Education, University of Brasília, Brasília - DF, 70910-900, Brazil
| | | | - Ricardo Moreno Lima
- a College of Physical Education, University of Brasília, Brasília - DF, 70910-900, Brazil
| |
Collapse
|
28
|
Effects of β-Hydroxy-β-methylbutyrate-free Acid Supplementation on Strength, Power and Hormonal Adaptations Following Resistance Training. Nutrients 2017; 9:nu9121316. [PMID: 29207472 PMCID: PMC5748766 DOI: 10.3390/nu9121316] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND β-Hydroxy-β-methylbutyrate-free acid (HMB-FA) has been ingested prior to exercise to reduce muscle damage, however the effects of HMB-FA supplementation on hormonal, strength and power adaptation are unclear. METHODS Sixteen healthy men were matched and randomized into two groups and performed six-week resistance training while supplementing with either HMB-FA or placebo (3 g per day). The subjects were evaluated for 1 repetition maximum (1RM) bench press and leg press and vertical jump (VJ) prior to and after training intervention. In addition, blood samples were obtained before and after resistance training to evaluate resting growth hormone (GH), insulin like growth factor 1 (IGF-1), testosterone (TEST), cortisol (CORT), and adrenocorticotropic hormone (ACTH) responses. The HMB-FA supplementation group showed greater gains compared with the placebo group in peak power (effect size ES = 0.26 vs. 0.01) and 1RM leg press (ES = 1.52 vs. 0.96). In addition, the HMB-FA supplementation group indicated greater decrements in ACTH and CORT responses to training in comparison to the placebo group (p < 0.05). Likewise, in GH (ES = 1.41 vs. 0.12) and IGF-1 (ES = 0.83 vs. 0.41), the HMB-FA indicated greater training effects when compared with the placebo group. CONCLUSIONS These findings provide further support for the potential anabolic benefits associated with HMB-FA supplementation.
Collapse
|
29
|
Sanchez-Martinez J, Santos-Lozano A, Garcia-Hermoso A, Sadarangani KP, Cristi-Montero C. Effects of beta-hydroxy-beta-methylbutyrate supplementation on strength and body composition in trained and competitive athletes: A meta-analysis of randomized controlled trials. J Sci Med Sport 2017; 21:727-735. [PMID: 29249685 DOI: 10.1016/j.jsams.2017.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 09/27/2017] [Accepted: 11/05/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The aim of this meta-analysis was to examine the evidence for the effectiveness of beta-hydroxy-beta-methylbutyrate supplementation interventions on modification in strength and body composition in trained and competitive athletes. DESIGN Systematic review and meta-analysis. METHODS A systematic search was performed using three databases: MEDLINE, EBSCO and Web of Science. The analysis was restricted to randomized controlled trials that examined the effect of HMB supplementation interventions on modification in bench and leg press strength, body mass, fat-free mass and fat mass. Effect sizes (ES) and 95% confidence intervals (CIs) were calculated using a fixed effect meta-analysis due to low value of the heterogeneity. The Egger test was used to determine the presence of publication bias, and the Q and I2 statistics were used to assess heterogeneity among studies. Significance was set at p<0.05. RESULTS Six studies were selected for meta-analysis, as they fulfilled the inclusion criteria (n=193 participants). HMB supplementation interventions present a trivial non-significant ES in all variables studied (bench press ES=0.00, leg press ES=0.09, body mass ES=-0.01, fat-free mass ES=0.16, and fat mass ES=-0.20; all cases p>0.05, and null heterogeneity I2=0.0% p>0.05). These results remained constant even analyzing by subgroups (HMB doses, duration of intervention, training level and diet co-intervention). CONCLUSIONS This meta-analysis found no effect of HMB supplementation on strength and body composition in trained and competitive athletes.
Collapse
Affiliation(s)
- Javier Sanchez-Martinez
- IRyS Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Chile
| | - Alejandro Santos-Lozano
- European University Miguel de Cervantes, GIDFYS, Department of Health Sciences, Spain; i+HeALTH, European University Miguel de Cervantes, Valladolid, Spain
| | - Antonio Garcia-Hermoso
- Science Laboratory of Physical Activity, Sport and Health, Universidad de Santiago de Chile, USACH, Chile
| | - Kabir P Sadarangani
- School of Kinesiology, Faculty of Health Sciences, Universidad San Sebastián, Chile; Department of Physical Education, Sport and Human Motricity, Faculty of Teacher Training and Education, Universidad Autónoma de Madrid, Spain
| | - Carlos Cristi-Montero
- IRyS Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Chile.
| |
Collapse
|
30
|
Silva VR, Belozo FL, Micheletti TO, Conrado M, Stout JR, Pimentel GD, Gonzalez AM. β-hydroxy-β-methylbutyrate free acid supplementation may improve recovery and muscle adaptations after resistance training: a systematic review. Nutr Res 2017; 45:1-9. [DOI: 10.1016/j.nutres.2017.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 11/27/2022]
|
31
|
Holeček M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J Cachexia Sarcopenia Muscle 2017; 8:529-541. [PMID: 28493406 PMCID: PMC5566641 DOI: 10.1002/jcsm.12208] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 12/21/2022] Open
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite of the essential amino acid leucine that has been reported to have anabolic effects on protein metabolism. The aims of this article were to summarize the results of studies of the effects of HMB on skeletal muscle and to examine the evidence for the rationale to use HMB as a nutritional supplement to exert beneficial effects on muscle mass and function in various conditions of health and disease. The data presented here indicate that the beneficial effects of HMB have been well characterized in strength-power and endurance exercise. HMB attenuates exercise-induced muscle damage and enhances muscle hypertrophy and strength, aerobic performance, resistance to fatigue, and regenerative capacity. HMB is particularly effective in untrained individuals who are exposed to strenuous exercise and in trained individuals who are exposed to periods of high physical stress. The low effectiveness of HMB in strength-trained athletes could be due to the suppression of the proteolysis that is induced by the adaptation to training, which may blunt the effects of HMB. Studies performed with older people have demonstrated that HMB can attenuate the development of sarcopenia in elderly subjects and that the optimal effects of HMB on muscle growth and strength occur when it is combined with exercise. Studies performed under in vitro conditions and in various animal models suggest that HMB may be effective in treatment of muscle wasting in various forms of cachexia. However, there are few clinical reports of the effects of HMB on muscle wasting in cachexia; in addition, most of these studies evaluated the therapeutic potential of combinations of various agents. Therefore, it has not been possible to determine whether HMB was effective or if there was a synergistic effect. Although most of the endogenous HMB is produced in the liver, there are no reports regarding the levels and the effects of HMB supplementation in subjects with liver disease. Several studies have suggested that anabolic effects of HMB supplementation on skeletal muscle do not occur in healthy, non-exercising subjects. It is concluded that (i) HMB may be applied to enhance increases in the mass and strength of skeletal muscles in subjects who exercise and in the elderly and (ii) studies examining the effects of HMB administered alone are needed to obtain conclusions regarding the specific effectiveness in attenuating muscle wasting in various muscle-wasting disorders.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
32
|
The Effect of a 12-Week Beta-hydroxy-beta-methylbutyrate (HMB) Supplementation on Highly-Trained Combat Sports Athletes: A Randomised, Double-Blind, Placebo-Controlled Crossover Study. Nutrients 2017; 9:nu9070753. [PMID: 28708126 PMCID: PMC5537867 DOI: 10.3390/nu9070753] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to verify the effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation on physical capacity, body composition and the value of biochemical parameters in highly-trained combat sports athletes. Forty-two males highly-trained in combat sports were subjected to 12 weeks of supplementation with HMB and a placebo in a randomized, placebo controlled, double-blind crossover manner. Over the course of the experiment, aerobic and anaerobic capacity was determined, while analyses were conducted on body composition and levels of creatine kinase, lactate dehydrogenase, testosterone, cortisol and lactate. Following HMB supplementation, fat-free mass increased (p = 0.049) with a simultaneous reduction of fat mass (p = 0.016) in comparison to placebo. In turn, after HMB supplementation, the following indicators increased significantly in comparison to the placebo: the time to reach ventilatory threshold (p < 0.0001), threshold load (p = 0.017) and the threshold HR (p < 0.0001), as well as anaerobic peak power (p = 0.005), average power (p = 0.029), maximum speed (p < 0.001) and post-exercise lactate concentrations (p < 0.0001). However, when compared to the placebo, no differences were observed in blood marker levels. The results indicate that supplying HMB promotes advantageous changes in body composition and stimulates an increase in aerobic and anaerobic capacity in combat sports athletes.
Collapse
|
33
|
Gepner Y, Hoffman JR, Shemesh E, Stout JR, Church DD, Varanoske AN, Zelicha H, Shelef I, Chen Y, Frankel H, Ostfeld I. Combined effect of Bacillus coagulans GBI-30, 6086 and HMB supplementation on muscle integrity and cytokine response during intense military training. J Appl Physiol (1985) 2017; 123:11-18. [DOI: 10.1152/japplphysiol.01116.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to compare the coadministration of the probiotic Bacillus coagulans GBI-30, 6086 (BC30) with β-hydroxy-β-methylbutyrate (HMB) calcium (CaHMB) to CaHMB alone on inflammatory response and muscle integrity during 40 days of intense military training. Soldiers were randomly assigned to one of two groups: CaHMB with BC30 (CaHMBBC30; n = 9) or CaHMB with placebo (CaHMBPL, n = 9). A third group of participants served as a control (CTL; n = 8). During the first 28 days soldiers were garrisoned on base and participated in the same training tasks. During the final 2 wk soldiers navigated 25–30 km per night in difficult terrain carrying ~35 kg of equipment. All assessments (blood draws and diffusion tensor imaging to assess muscle integrity) were conducted before and ~12 h after final supplement consumption. Analysis of covariance was used to analyze all blood and muscle measures. Significant attenuations were noted in IL-1β, IL-2, IL-6, CX3CL1, and TNF-α for both CaHMBBC30 and CaHMBPL compared with CTL. Plasma IL-10 concentrations were significantly attenuated for CaHMBBC30 compared with CTL only. A significant decrease in apparent diffusion coefficients was also observed for CaHMBBC30 compared with CaHMBPL. Results provide further evidence that HMB supplementation may attenuate the inflammatory response to intense training and that the combination of the probiotic BC30 with CaHMB may be more beneficial than CaHMB alone in maintaining muscle integrity during intense military training. NEW & NOTEWORTHY β-Hydroxy-β-methylbutyrate (HMB) in its free acid form was reported to attenuate inflammation and maintain muscle integrity during military training. However, this formulation was difficult to maintain in the field. In this investigation, soldiers ingested HMB calcium (CaHMB) with Bacillus coagulans (BC30) or CaHMB alone during 40 days of training. Results indicated that CaHMB attenuated the inflammatory response and that BC30 combined with CaHMB may be more beneficial than CaHMB alone in maintaining muscle integrity during intense military training.
Collapse
Affiliation(s)
- Yftach Gepner
- Sport and Exercise Science, Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida
| | - Jay R. Hoffman
- Sport and Exercise Science, Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida
| | - Elad Shemesh
- Israel Defense Force Medical Corps, Tel Hashomer, Israel
| | - Jeffrey R. Stout
- Sport and Exercise Science, Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida
| | - David D. Church
- Sport and Exercise Science, Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida
| | - Alyssa N. Varanoske
- Sport and Exercise Science, Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida
| | - Hila Zelicha
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; and
| | | | - Yacov Chen
- Israel Defense Force Medical Corps, Tel Hashomer, Israel
| | - Hagai Frankel
- Israel Defense Force Medical Corps, Tel Hashomer, Israel
| | - Ishay Ostfeld
- Israel Defense Force Medical Corps, Tel Hashomer, Israel
| |
Collapse
|
34
|
Phillips SM, Aragon AA, Arciero PJ, Arent SM, Close GL, Hamilton DL, Helms ER, Henselmans M, Loenneke JP, Norton LE, Ormsbee MJ, Sale C, Schoenfeld BJ, SmithRyan AE, Tipton KD, Vukovich MD, Wilborn C, Willoughby DS. Changes in body composition and performance with supplemental HMB-FA+ATP. J Strength Cond Res 2017; 31:e71-e72. [PMID: 28301440 DOI: 10.1519/jsc.0000000000001760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stuart M Phillips
- 1McMaster University 2California State University, Northridge 3Skidmore College 4Rutgers University 5Liverpool John Moores University 6University of Stirling 7Sports Performance Research Institute New Zealand 8Bayesian Bodybuilding Research and Development 9The University of Mississippi 10BioLayne LLC 11Florida State University 12Nottingham-Trent University 13Lehman College 14University of North Carolina 15South Dakota State University 16University of Mary Hardin-Baylor 17Baylor University
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brioche T, Pagano AF, Py G, Chopard A. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention. Mol Aspects Med 2016; 50:56-87. [PMID: 27106402 DOI: 10.1016/j.mam.2016.04.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
Identification of cost-effective interventions to maintain muscle mass, muscle strength, and physical performance during muscle wasting and aging is an important public health challenge. It requires understanding of the cellular and molecular mechanisms involved. Muscle-deconditioning processes have been deciphered by means of several experimental models, bringing together the opportunities to devise comprehensive analysis of muscle wasting. Studies have increasingly recognized the importance of fatty infiltrations or intermuscular adipose tissue for the age-mediated loss of skeletal-muscle function and emphasized that this new important factor is closely linked to inactivity. The present review aims to address three main points. We first mainly focus on available experimental models involving cell, animal, or human experiments on muscle wasting. We next point out the role of intermuscular adipose tissue in muscle wasting and aging and try to highlight new findings concerning aging and muscle-resident mesenchymal stem cells called fibro/adipogenic progenitors by linking some cellular players implicated in both FAP fate modulation and advancing age. In the last part, we review the main data on the efficiency and molecular and cellular mechanisms by which exercise, replacement hormone therapies, and β-hydroxy-β-methylbutyrate prevent muscle wasting and sarcopenia. Finally, we will discuss a potential therapeutic target of sarcopenia: glucose 6-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Thomas Brioche
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France.
| | - Allan F Pagano
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Guillaume Py
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| |
Collapse
|
36
|
Comparison of availability and plasma clearance rates of β-hydroxy-β-methylbutyrate delivery in the free acid and calcium salt forms. Br J Nutr 2015; 114:1403-9. [PMID: 26373270 DOI: 10.1017/s0007114515003050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
β-Hydroxy-β-methylbutyrate (HMB), a leucine metabolite, has long been supplemented as a Ca salt (Ca-HMB) to increase strength and performance gains with exercise and to reduce recovery time. Recently, the free acid form of HMB (HMB-FA) has become commercially available in capsule form (gelcap). The current study was conducted to compare the bioavailability of HMB using the two commercially available capsule forms of HMB-FA and Ca-HMB. We also compared the pharmacokinetics of each form when administered mixed in water. Ten human subjects (five male and five female) were studied in a randomised crossover design. There was no significant sex by treatment interaction for any of the pharmacokinetic parameters measured. HMB-FA administered in capsules was more efficient than Ca-HMB capsule at HMB delivery with a 37 % increase in plasma clearance rate (74·8 (sem 4·0) v. 54·5 (sem 3·2) ml/min, P<0·0001) and a 76 % increase in peak plasma HMB concentration (270·2 (sem 17·8) v. 153·9 (sem 17·9) μmol/l, P<0·006), which was reached in one-third the time (P<0·009). When HMB-FA and Ca-HMB were administered in water, the differences still favoured HMB-FA, albeit to a lesser degree. Plasma HMB with HMB-FA administered in water was greater during the early phase of absorption (up to 45 min postadministration, P<0·05); this resulted in increased AUC during the first 60 min after administration, when compared with Ca-HMB mixed in water (P<0·03). In conclusion, HMB-FA in capsule form improves clearance rate and availability of HMB compared with Ca-HMB in capsule form.
Collapse
|
37
|
The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 2015; 48:41-51. [DOI: 10.1007/s00726-015-2067-1] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/29/2015] [Indexed: 01/30/2023]
|
38
|
Townsend JR, Hoffman JR, Gonzalez AM, Jajtner AR, Boone CH, Robinson EH, Mangine GT, Wells AJ, Fragala MS, Fukuda DH, Stout JR. Effects of β-Hydroxy-β-methylbutyrate Free Acid Ingestion and Resistance Exercise on the Acute Endocrine Response. Int J Endocrinol 2015; 2015:856708. [PMID: 25792982 PMCID: PMC4352513 DOI: 10.1155/2015/856708] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
Objective. To examine the endocrine response to a bout of heavy resistance exercise following acute β-hydroxy-β-methylbutyrate free acid (HMB-FA) ingestion. Design. Twenty resistance trained men were randomized and consumed either 1 g of HMB-FA (BetaTor) or placebo (PL) 30 min prior to performing an acute heavy resistance exercise protocol. Blood was obtained before (PRE), immediately after (IP), and 30 min after exercise (30P). Circulating concentrations of testosterone, growth hormone (GH), insulin-like growth factor (IGF-1), and insulin were assayed. Data were analyzed with a repeated measures ANOVA and area under the curve (AUC) was analyzed by the trapezoidal rule. Results. The resistance exercise protocol resulted in significant elevations from PRE in testosterone (P < 0.01), GH (P < 0.01), and insulin (P = 0.05) at IP, with GH (P < 0.01) and insulin (P < 0.01) remaining elevated at 30P. A significant interaction was noted between groups in the plasma GH response at IP, which was significantly higher following HMB-FA compared to PL (P < 0.01). AUC analysis revealed an elevated GH and IGF-1 response in the HMB-FA group compared to PL. Conclusion. HMB-FA prior to resistance exercise augments the GH response to high volume resistance exercise compared to PL. These findings provide further support for the potential anabolic benefits associated with HMB supplementation.
Collapse
Affiliation(s)
- Jeremy R. Townsend
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Jay R. Hoffman
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
- *Jay R. Hoffman:
| | - Adam M. Gonzalez
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Adam R. Jajtner
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Carleigh H. Boone
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Edward H. Robinson
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Gerald T. Mangine
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Adam J. Wells
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Maren S. Fragala
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - David H. Fukuda
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Jeffrey R. Stout
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
39
|
Shreeram S, Johns PW, Subramaniam S, Ramesh S, Vaidyanathan V, Puthan JK, Mandal S, Mamidi VK, Gelling RW. The relative bioavailability of the calcium salt of β-hydroxy-β-methylbutyrate is greater than that of the free fatty acid form in rats. J Nutr 2014; 144:1549-55. [PMID: 25143371 DOI: 10.3945/jn.114.196527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND β-Hydroxy-β-methylbutyrate (HMB) supplementation has been demonstrated to enhance muscle protein synthesis and attenuate loss of muscle mass by multiple pathways. The beneficial effects of HMB have been studied by using either the calcium salt, monohydrate, of HMB (CaHMB) or the free acid form (FAHMB). OBJECTIVE The present study was designed to compare the pharmacokinetics and relative bioavailability of the 2 forms of HMB administered as a liquid suspension in male Sprague-Dawley rats. METHODS CaHMB at 30, 100, and 300 mg/kg and equivalent doses of FAHMB at 24.2, 80.8, and 242 mg/kg were administered orally as a liquid suspension to male Sprague-Dawley rats. A single i.v. dose of 5 mg/kg CaHMB, corresponding to an equivalent dose of 4.04 mg/kg FAHMB, was also administered. Plasma concentrations of HMB were analyzed by liquid chromatography tandem mass spectrometry, and pharmacokinetic variables and relative bioavailability of the 2 forms of HMB were determined. RESULTS After oral administration, the area under the plasma concentration time curve (AUC) from time 0 to time t (0-t) and from time 0 to infinity (0-∞) and the maximum (peak) plasma concentration (Cmax) for CaHMB were significantly greater than for FAHMB, whereas the time to reach Cmax did not differ from that of FAHMB. The relative bioavailability of CaHMB was 49%, 54%, and 27% greater than that of FAHMB for the 3 respective oral doses tested. After i.v. administration, the AUCs 0-t and 0-∞ of the calcium salt were significantly greater than those of FAHMB. The relative bioavailability of CaHMB was 80% greater than that of FAHMB. The higher relative bioavailability of CaHMB may be attributable to its low systemic clearance compared with FAHMB. CONCLUSIONS This study demonstrates the enhanced relative bioavailability of CaHMB compared with FAHMB. Further studies are warranted to understand the physiologic mechanisms contributing to the differences in systemic clearance.
Collapse
Affiliation(s)
| | - Paul W Johns
- Abbott Nutrition Research and Development, Columbus, OH
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Szcześniak KA, Ostaszewski P, Fuller JC, Ciecierska A, Sadkowski T. Dietary supplementation of β-hydroxy-β-methylbutyrate in animals - a review. J Anim Physiol Anim Nutr (Berl) 2014; 99:405-17. [DOI: 10.1111/jpn.12234] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/06/2014] [Indexed: 01/10/2023]
Affiliation(s)
- K. A. Szcześniak
- Department of Physiological Sciences; Faculty of Veterinary Medicine; Warsaw University of Life Science - SGGW; Warsaw Poland
| | - P. Ostaszewski
- Department of Physiological Sciences; Faculty of Veterinary Medicine; Warsaw University of Life Science - SGGW; Warsaw Poland
| | - J. C. Fuller
- Metabolic Technologies, Inc.; Iowa State University Research Park; Ames IA USA
| | - A. Ciecierska
- Department of Physiological Sciences; Faculty of Veterinary Medicine; Warsaw University of Life Science - SGGW; Warsaw Poland
| | - T. Sadkowski
- Department of Physiological Sciences; Faculty of Veterinary Medicine; Warsaw University of Life Science - SGGW; Warsaw Poland
| |
Collapse
|
41
|
Fuller JC, Arp LH, Diehl LM, Landin KL, Baier SM, Rathmacher JA. Subchronic toxicity study of β-hydroxy-β-methylbutyric free acid in Sprague–Dawley rats. Food Chem Toxicol 2014; 67:145-53. [DOI: 10.1016/j.fct.2014.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/04/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
42
|
Gonzalez AM, Stout JR, Jajtner AR, Townsend JR, Wells AJ, Beyer KS, Boone CH, Pruna GJ, Mangine GT, Scanlon TM, Bohner JD, Oliveira LP, Fragala MS, Hoffman JR. Effects of β-hydroxy-β-methylbutyrate free acid and cold water immersion on post-exercise markers of muscle damage. Amino Acids 2014; 46:1501-11. [PMID: 24639242 DOI: 10.1007/s00726-014-1722-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/03/2014] [Indexed: 01/28/2023]
Abstract
The aim of the current study was to examine the effects of cold water immersion (CWI) with and without the free acid form of β-hydroxy-β-methylbutyrate (HMB-FA) on markers of muscle damage following acute lower body resistance exercise. Forty recreationally resistance-trained men (22.3 ± 2.4 years) were randomly divided into one of the four groups: (1) Placebo (PL); (2) HMB-FA; (3) HMB-FA-CWI; (4) PL-CWI. HMB-FA groups ingested 3 g day(-1) and CWI groups submersed their lower body into 10-12 °C water for 10-min post-exercise. No differences between groups were observed for CK; however, PL-CWI had significantly greater elevations in myoglobin 30-min post-exercise compared to HMB-FA (p = 0.009) and PL (p = 0.005), and HMB-FA-CWI was significantly greater than HMB-FA (p = 0.046) and PL (p = 0.028). No differences between groups were observed for IL-6 and IL-10, although CRP was significantly greater 24-h post-exercise for PL-CWI compared to HMB-FA-CWI (p = 0.02) and HMB-FA (p = 0.046). Only HMB-FA-CWI showed significantly (p = 0.02) greater improvements in average power per repetition. CWI appeared to elevate myoglobin compared to other groups, while HMB-FA may have attenuated the increase in CRP when combined with CWI. Nevertheless, HMB-FA or CWI treatments did not appear to provide benefit over PL for recovery. Instead, the combination of CWI and HMB-FA improved performance recovery compared to other groups.
Collapse
Affiliation(s)
- Adam M Gonzalez
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, 32816, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wilson JM, Lowery RP, Joy JM, Andersen JC, Wilson SMC, Stout JR, Duncan N, Fuller JC, Baier SM, Naimo MA, Rathmacher J. The effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid supplementation on muscle mass, strength, and power in resistance-trained individuals: a randomized, double-blind, placebo-controlled study. Eur J Appl Physiol 2014; 114:1217-27. [PMID: 24599749 PMCID: PMC4019830 DOI: 10.1007/s00421-014-2854-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/13/2014] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Studies utilizing beta-hydroxy-beta-methylbutyrate (HMB) supplementation in trained populations are limited. No long-term studies utilizing HMB free acid (HMB-FA) have been conducted. Therefore, we investigated the effects of 12 weeks of HMB-FA supplementation on skeletal muscle hypertrophy, body composition, strength, and power in trained individuals. We also determined the effects of HMB-FA on muscle damage and performance during an overreaching cycle. METHODS A three-phase double-blind, placebo- and diet-controlled randomized intervention study was conducted. Phase 1 was an 8-week-periodized resistance-training program; Phase 2 was a 2-week overreaching cycle; and Phase 3 was a 2-week taper. Muscle mass, strength, and power were examined at weeks 0, 4, 8, and 12 to assess the chronic effects of HMB-FA; and assessment of these, as well as cortisol, testosterone, and creatine kinase (CK) was performed at weeks 9 and 10 of the overreaching cycle. RESULTS HMB-FA resulted in increased total strength (bench press, squat, and deadlift combined) over the 12-week training (77.1 ± 18.4 vs. 25.3 ± 22.0 kg, p < 0.001); a greater increase in vertical jump power (991 ± 168 vs. 630 ± 167 W, p < 0.001); and increased lean body mass gain (7.4 ± 4.2 vs. 2.1 ± 6.1 kg, p < 0.001) in HMB-FA- and placebo-supplemented groups, respectively. During the overreaching cycle, HMB-FA attenuated increases in CK (-6 ± 91 vs. 277 ± 229 IU/l, p < 0.001) and cortisol (-0.2 ± 2.9 vs. 4.5 ± 1.7 μg/dl, p < 0.003) in the HMB-FA- and placebo-supplemented groups, respectively. CONCLUSIONS These results suggest that HMB-FA enhances hypertrophy, strength, and power following chronic resistance training, and prevents decrements in performance following the overreaching.
Collapse
Affiliation(s)
- Jacob M Wilson
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, 33606, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Townsend JR, Fragala MS, Jajtner AR, Gonzalez AM, Wells AJ, Mangine GT, Robinson EH, McCormack WP, Beyer KS, Pruna GJ, Boone CH, Scanlon TM, Bohner JD, Stout JR, Hoffman JR. β-Hydroxy-β-methylbutyrate (HMB)-free acid attenuates circulating TNF-α and TNFR1 expression postresistance exercise. J Appl Physiol (1985) 2013; 115:1173-82. [DOI: 10.1152/japplphysiol.00738.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to examine the effect of β-hydroxy-β-methylbutyrate-free acid (HMB-FA) and cold-water immersion (CWI) on circulating concentrations of TNF-α and monocyte TNF-α receptor 1 (TNFR1) expression. Forty resistance-trained men (22.3 ± 2.4 yr) were randomized into four groups [placebo (PL), HMB-FA, CWI, and HMB-FA-CWI] and performed an acute, intense exercise protocol (four sets of up to 10 repetitions of the squat, dead lift, and split squat). Participants also performed four sets of up to 10 repetitions of the squat at 24 and 48 h following the initial exercise bout. Blood was sampled before exercise (PRE), immediately postexercise (IP), and 30 min, 24 h, and 48 h postexercise (30P, 24P, and 48P, respectively). Circulating TNF-α was assayed, and TNFR1 expression on CD14+ monocytes was measured by flow cytometry. The exercise protocol significantly elevated TNF-α in only PL ( P = 0.006) and CWI ( P = 0.045) IP. Mean percent changes show that TNF-α significantly increased from PRE to IP for only PL and CWI groups ( P < 0.05), whereas the percent change of TNF-α for HMB-FA and HMB-FA-CWI was not significant. TNFR1 expression was elevated in PL ( P = 0.023) and CWI ( P = 0.02) at 30P compared with PRE, whereas both HMB-FA-treated groups did not increase significantly. In conclusion, HMB-FA attenuated circulating TNF-α IP and TNFR1 expression during recovery compared with PL and CWI. HMB-FA supplementation may attenuate the initial immune response to intense exercise, which may reduce recovery time following intense exercise.
Collapse
Affiliation(s)
- Jeremy R. Townsend
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| | - Maren S. Fragala
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| | - Adam R. Jajtner
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| | - Adam M. Gonzalez
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| | - Adam J. Wells
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| | - Gerald T. Mangine
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| | - Edward H. Robinson
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| | - William P. McCormack
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| | - Kyle S. Beyer
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| | - Gabriel J. Pruna
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| | - Carleigh H. Boone
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| | - Tyler M. Scanlon
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| | - Jonathan D. Bohner
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| | - Jeffrey R. Stout
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| | - Jay R. Hoffman
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| |
Collapse
|
45
|
Beta-hydroxy-beta-methylbutyrate supplementation in health and disease: a systematic review of randomized trials. Amino Acids 2013; 45:1273-92. [PMID: 24057808 DOI: 10.1007/s00726-013-1592-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 09/05/2013] [Indexed: 12/13/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB), a metabolite of the branched-chain amino acid leucine, is extensively used by athletes and bodybuilders in order to increase strength, muscle mass and exercise performance. We performed a systematic review of the clinical literature on the effectiveness of HMB supplementation in healthy and pathological conditions (i.e. training programs, aging, acute and chronic diseases, and after bariatric surgery). We reviewed all clinical trials indexed in Medline that tested HMB supplementation as well as all the experimental data regarding HMB intracellular mechanisms of action. Search terms included: randomized controlled trials, controlled clinical trials, single- and double-blind method, HMB, proteolytic pathways, muscle atrophy, cachexia, and training. We found out 13 studies testing HMB in healthy young trained subjects, 11 in healthy young untrained subjects, 9 in patients affected by chronic diseases (i.e. cancer, HIV, chronic obstructive pulmonary disease), and 6 in elderly subjects. The indexed studies support that HMB is effective in preventing exercise-related muscle damage in healthy trained and untrained individuals as well as muscle loss during chronic diseases. Most of the selected studies showed the effectiveness of HMB in preventing exercise-related muscle damage in healthy trained and untrained individuals as well as muscle loss during chronic diseases. The usual dose of 3 g/day may be routinely recommended to maintain or improve muscle mass and function in health and disease. The safety profile of HMB is unequivocal. Further, well-designed clinical studies are needed to confirm effectiveness and mode of action of HMB, particularly in pathological conditions.
Collapse
|
46
|
Wilkinson DJ, Hossain T, Hill DS, Phillips BE, Crossland H, Williams J, Loughna P, Churchward-Venne TA, Breen L, Phillips SM, Etheridge T, Rathmacher JA, Smith K, Szewczyk NJ, Atherton PJ. Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J Physiol 2013; 591:2911-23. [PMID: 23551944 PMCID: PMC3690694 DOI: 10.1113/jphysiol.2013.253203] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Maintenance of skeletal muscle mass is contingent upon the dynamic equilibrium (fasted losses–fed gains) in protein turnover. Of all nutrients, the single amino acid leucine (Leu) possesses the most marked anabolic characteristics in acting as a trigger element for the initiation of protein synthesis. While the mechanisms by which Leu is ‘sensed’ have been the subject of great scrutiny, as a branched-chain amino acid, Leu can be catabolized within muscle, thus posing the possibility that metabolites of Leu could be involved in mediating the anabolic effect(s) of Leu. Our objective was to measure muscle protein anabolism in response to Leu and its metabolite HMB. Using [1,2-13C2]Leu and [2H5]phenylalanine tracers, and GC-MS/GC-C-IRMS we studied the effect of HMB or Leu alone on MPS (by tracer incorporation into myofibrils), and for HMB we also measured muscle proteolysis (by arteriovenous (A–V) dilution). Orally consumed 3.42 g free-acid (FA-HMB) HMB (providing 2.42 g of pure HMB) exhibited rapid bioavailability in plasma and muscle and, similarly to 3.42 g Leu, stimulated muscle protein synthesis (MPS; HMB +70%vs. Leu +110%). While HMB and Leu both increased anabolic signalling (mechanistic target of rapamycin; mTOR), this was more pronounced with Leu (i.e. p70S6K1 signalling ≤90 min vs. ≤30 min for HMB). HMB consumption also attenuated muscle protein breakdown (MPB; −57%) in an insulin-independent manner. We conclude that exogenous HMB induces acute muscle anabolism (increased MPS and reduced MPB) albeit perhaps via distinct, and/or additional mechanism(s) to Leu.
Collapse
Affiliation(s)
- D J Wilkinson
- Metabolic and Molecular Physiology Research Group, MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Graduate Entry Medicine and Health, Derby DE22 3DT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wilson JM, Fitschen PJ, Campbell B, Wilson GJ, Zanchi N, Taylor L, Wilborn C, Kalman DS, Stout JR, Hoffman JR, Ziegenfuss TN, Lopez HL, Kreider RB, Smith-Ryan AE, Antonio J. International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB). J Int Soc Sports Nutr 2013; 10:6. [PMID: 23374455 PMCID: PMC3568064 DOI: 10.1186/1550-2783-10-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 12/12/2022] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the use of beta-hydroxy-beta-methylbutyrate (HMB) as a nutritional supplement. The ISSN has concluded the following. 1. HMB can be used to enhance recovery by attenuating exercise induced skeletal muscle damage in trained and untrained populations. 2. If consuming HMB, an athlete will benefit from consuming the supplement in close proximity to their workout. 3. HMB appears to be most effective when consumed for 2 weeks prior to an exercise bout. 4. Thirty-eight mg·kg·BM-1 daily of HMB has been demonstrated to enhance skeletal muscle hypertrophy, strength, and power in untrained and trained populations when the appropriate exercise prescription is utilized. 5. Currently, two forms of HMB have been used: Calcium HMB (HMB-Ca) and a free acid form of HMB (HMB-FA). HMB-FA may increase plasma absorption and retention of HMB to a greater extent than HMB-CA. However, research with HMB-FA is in its infancy, and there is not enough research to support whether one form is superior. 6. HMB has been demonstrated to increase LBM and functionality in elderly, sedentary populations. 7. HMB ingestion in conjunction with a structured exercise program may result in greater declines in fat mass (FM). 8. HMB's mechanisms of action include an inhibition and increase of proteolysis and protein synthesis, respectively. 9. Chronic consumption of HMB is safe in both young and old populations.
Collapse
Affiliation(s)
- Jacob M Wilson
- Department of Health Sciences and Human Performance, University of Tampa, Tampa, FL, USA
| | - Peter J Fitschen
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Bill Campbell
- Exercise and Performance Nutrition Laboratory, Dept. of Physical Education and Exercise Science, University of South Florida, 4202 E. Fowler Avenue, PED 214, Tampa, FL, 33620, USA
| | - Gabriel J Wilson
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nelo Zanchi
- Laboratory of Applied Nutrition and Metabolism, Physical Education and School of Sports, University of São Paulo, São Paulo, Brazil
| | - Lem Taylor
- Human Performance Laboratory, Exercise & Sport Science Department, University of Mary Hardin-Baylor, Belton, TX, 76513, USA
| | - Colin Wilborn
- Human Performance Laboratory, Exercise & Sport Science Department, University of Mary Hardin-Baylor, Belton, TX, 76513, USA
| | - Douglas S Kalman
- Miami Research Associates, Endocrinology & Nutrition Department, 6141 Sunset Drive - Suite 301, Miami, FL, 33143, USA
| | - Jeffrey R Stout
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Jay R Hoffman
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | | | - Hector L Lopez
- The Center for Applied Health Sciences, Stow, OH, 44224, USA.,Supplement Safety Solutions, Bedford, MA, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Abbie E Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599-8605, USA
| | - Jose Antonio
- Exercise and Sports Science, Nova Southeastern University, Davie, FL, 33314, USA
| |
Collapse
|
48
|
β-Hydroxy-β-methylbutyrate free acid reduces markers of exercise-induced muscle damage and improves recovery in resistance-trained men. Br J Nutr 2013; 110:538-44. [PMID: 23286834 DOI: 10.1017/s0007114512005387] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of the present study was to determine the effects of short-term supplementation with the free acid form of b-hydroxyb-methylbutyrate (HMB-FA) on indices of muscle damage, protein breakdown, recovery and hormone status following a high-volume resistance training session in trained athletes. A total of twenty resistance-trained males were recruited to participate in a high-volume resistance training session centred on full squats, bench presses and dead lifts. Subjects were randomly assigned to receive either 3 g/d of HMB-FA or a placebo. Immediately before the exercise session and 48 h post-exercise, serum creatine kinase (CK), urinary 3-methylhistadine (3-MH), testosterone, cortisol and perceived recovery status (PRS) scale measurements were taken. The results showed that CK increased to a greater extent in the placebo (329%) than in the HMB-FA group (104%) (P¼0·004, d ¼ 1·6). There was also a significant change for PRS, which decreased to a greater extent in the placebo (9·1 (SEM 0·4) to 4·6 (SEM 0·5)) than in the HMB-FA group (9·1 (SEM 0·3) to 6·3 (SEM 0·3)) (P¼0·005, d ¼ 20·48). Muscle protein breakdown, measured by 3-MH analysis, numerically decreased with HMB-FA supplementation and approached significance (P¼0·08, d ¼ 0·12). There were no acute changes in plasma total or free testosterone, cortisol or C-reactive protein. In conclusion, these results suggest that an HMB-FA supplement given to trained athletes before exercise can blunt increases in muscle damage and prevent declines in perceived readiness to train following a high-volume, muscle-damaging resistance-training session.
Collapse
|
49
|
Wilson JM, Wilson SM, Loenneke JP, Wray M, Norton LE, Campbell BI, Lowery RP, Stout JR. Effects of Amino Acids and their Metabolites on Aerobic and Anaerobic Sports. Strength Cond J 2012. [DOI: 10.1519/ssc.0b013e31825663bd] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|