1
|
Wang L, Mao L, Xiao W, Chen P. Natural killer cells immunosenescence and the impact of lifestyle management. Biochem Biophys Res Commun 2023; 689:149216. [PMID: 37976836 DOI: 10.1016/j.bbrc.2023.149216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Natural killer cells (NKs) are lymphocytes of the innate immune system that quickly respond to viruses, infections, and tumors during their short cell life cycle. However, it was recently found that NKs undergo quantitative, distributional, structural, and functional phenotypic changes during aging that suppress immune responses, which is known as immunosenescence. The aging host environment, cytokine regulation, cytomegalovirus status, and hypothalamic‒pituitary‒adrenal axis have significant effects on NK function. Different lifestyle management interventions modulate the number and cytotoxic activity of NKs, which are essential for rebuilding the immune barrier against pathogens in elderly individuals. Based on recent studies, we review the phenotypic changes of and potential threats of NKs during aging and explore the underlying mechanisms. By summarizing the effects of lifestyle management on NKs and their application prospects, we aim to provide evidence for enhancing immune system function against immune diseases in elderly individuals.
Collapse
Affiliation(s)
- Lian Wang
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Liwei Mao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Weihua Xiao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Peijie Chen
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
2
|
Du B, Fu Y, Han Y, Sun Q, Xu J, Yang Y, Rong R. The lung-gut crosstalk in respiratory and inflammatory bowel disease. Front Cell Infect Microbiol 2023; 13:1218565. [PMID: 37680747 PMCID: PMC10482113 DOI: 10.3389/fcimb.2023.1218565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
Both lung and gut belong to the common mucosal immune system (CMIS), with huge surface areas exposed to the external environment. They are the main defense organs against the invasion of pathogens and play a key role in innate and adaptive immunity. Recently, more and more evidence showed that stimulation of one organ can affect the other, as exemplified by intestinal complications during respiratory disease and vice versa, which is called lung-gut crosstalk. Intestinal microbiota plays an important role in respiratory and intestinal diseases. It is known that intestinal microbial imbalance is related to inflammatory bowel disease (IBD), this imbalance could impact the integrity of the intestinal epithelial barrier and leads to the persistence of inflammation, however, gut microbial disturbances have also been observed in respiratory diseases such as asthma, allergy, chronic obstructive pulmonary disease (COPD), and respiratory infection. It is not fully clarified how these disorders happened. In this review, we summarized the latest examples and possible mechanisms of lung-gut crosstalk in respiratory disease and IBD and discussed the strategy of shaping intestinal flora to treat respiratory diseases.
Collapse
Affiliation(s)
- Baoxiang Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Fu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuxiu Han
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qihui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinke Xu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yong Yang
- Shandong Antiviral Engineering Research Center of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Cheng TY, Chang CC, Luo CS, Chen KY, Yeh YK, Zheng JQ, Wu SM. Targeting Lung-Gut Axis for Regulating Pollution Particle-Mediated Inflammation and Metabolic Disorders. Cells 2023; 12:901. [PMID: 36980242 PMCID: PMC10047528 DOI: 10.3390/cells12060901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Cigarette smoking (CS) or ambient particulate matter (PM) exposure is a risk factor for metabolic disorders, such as insulin resistance (IR), increased plasma triglycerides, hyperglycemia, and diabetes mellitus (DM); it can also cause gut microbiota dysbiosis. In smokers with metabolic disorders, CS cessation decreases the risks of serious pulmonary events, inflammation, and metabolic disorder. This review included recent studies examining the mechanisms underlying the effects of CS and PM on gut microbiota dysbiosis and metabolic disorder development; one of the potential mechanisms is the disruption of the lung-gut axis, leading to gut microbiota dysbiosis, intestinal dysfunction, systemic inflammation, and metabolic disease. Short-chain fatty acids (SCFAs) are the primary metabolites of gut bacteria, which are derived from the fermentation of dietary fibers. They activate G-protein-coupled receptor (GPCR) signaling, suppress histone deacetylase (HDAC) activity, and inhibit inflammation, facilitating the maintenance of gut health and biofunction. The aforementioned gut microbiota dysbiosis reduces SCFA levels. Treatment targeting SCFA/GPCR signaling may alleviate air pollution-associated inflammation and metabolic disorders, which involve lung-gut axis disruption.
Collapse
Affiliation(s)
- Tzu-Yu Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Cheng Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Shan Luo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yun-Kai Yeh
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jing-Quan Zheng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Ding K, Jiang W, Zhan W, Xiong C, Chen J, Wang Y, Jia H, Lei M. The therapeutic potential of quercetin for cigarette smoking-induced chronic obstructive pulmonary disease: a narrative review. Ther Adv Respir Dis 2023; 17:17534666231170800. [PMID: 37154390 PMCID: PMC10170608 DOI: 10.1177/17534666231170800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Quercetin is a flavonoid with antioxidant and anti-inflammatory properties. Quercetin has potentially beneficial therapeutic effects for several diseases, including cigarette smoking-induced chronic obstructive pulmonary disease (CS-COPD). Many studies have shown that quercetin's antioxidant and anti-inflammatory properties have positive therapeutic potential for CS-COPD. In addition, quercetin's immunomodulatory, anti-cellular senescence, mitochondrial autophagy-modulating, and gut microbiota-modulating effects may also have therapeutic value for CS-COPD. However, there appears to be no review of the possible mechanisms of quercetin for treating CS-COPD. Moreover, the combination of quercetin with common therapeutic drugs for CS-COPD needs further refinement. Therefore, in this article, after introducing the definition and metabolism of quercetin, and its safety, we comprehensively presented the pathogenesis of CS-COPD related to oxidative stress, inflammation, immunity, cellular senescence, mitochondrial autophagy, and gut microbiota. We then reviewed quercetin's anti-CS-COPD effects, performed by influencing these mechanisms. Finally, we explored the possibility of using quercetin with commonly used drugs for treating CS-COPD, providing a basis for future screening of excellent drug combinations for treating CS-COPD. This review has provided meaningful information on quercetin's mechanisms and clinical use in treating CS-COPD.
Collapse
Affiliation(s)
- Kaixi Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenling Zhan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunping Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieling Chen
- Shehong Hospital of Traditional Chinese Medicine, Shehong, China
| | - Yu Wang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Huanan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
5
|
Krumina A, Bogdanova M, Gintere S, Viksna L. Gut-Lung Microbiota Interaction in COPD Patients: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121760. [PMID: 36556962 PMCID: PMC9785780 DOI: 10.3390/medicina58121760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Respiratory diseases are one of the leading causes of death in the world, which is why a lot of attention has been recently paid to studying the possible mechanisms for the development of pulmonary diseases and assessing the impact on their course. The microbiota plays an important role in these processes and influences the functionality of the human immune system. Thus, alterations in the normal microflora contribute to a reduction in immunity and a more severe course of diseases. In this review, we summarized the information about gut and lung microbiota interactions with particular attention to their influence on the course of chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Angelika Krumina
- Department of Infectology, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia
- Correspondence: (A.K.); (M.B.); Tel.: +371-29113833 (A.K.); +371-26656592 (M.B.)
| | - Marina Bogdanova
- Faculty of Residency, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia
- Correspondence: (A.K.); (M.B.); Tel.: +371-29113833 (A.K.); +371-26656592 (M.B.)
| | - Sandra Gintere
- Department of Family Medicine, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Ludmila Viksna
- Department of Infectology, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| |
Collapse
|
6
|
Chaloulakou S, Poulia KA, Karayiannis D. Physiological Alterations in Relation to Space Flight: The Role of Nutrition. Nutrients 2022; 14:nu14224896. [PMID: 36432580 PMCID: PMC9699067 DOI: 10.3390/nu14224896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Astronauts exhibit several pathophysiological changes due to a variety of stressors related to the space environment, including microgravity, space radiation, isolation, and confinement. Space motion sickness, bone and muscle mass loss, cardiovascular deconditioning and neuro-ocular syndrome are some of the spaceflight-induced effects on human health. Optimal nutrition is of the utmost importance, and-in combination with other measures, such as physical activity and pharmacological treatment-has a key role in mitigating many of the above conditions, including bone and muscle mass loss. Since the beginning of human space exploration, space food has not fully covered astronauts' needs. They often suffer from menu fatigue and present unintentional weight loss, which leads to further alterations. The purpose of this review was to explore the role of nutrition in relation to the pathophysiological effects of spaceflight on the human body.
Collapse
Affiliation(s)
- Stavroula Chaloulakou
- Department of Clinical Nutrition, “Evangelismos” General Hospital of Athens, 10676 Athens, Greece
| | - Kalliopi Anna Poulia
- Laboratory of Dietetics and Quality of Life, Department of Food Science & Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Karayiannis
- Department of Clinical Nutrition, “Evangelismos” General Hospital of Athens, 10676 Athens, Greece
- Correspondence: ; Tel.: +30-213-2045035
| |
Collapse
|
7
|
Agarwal D, Paul S, Lele P, Piprode V, Kawade A, Hajela N, Bavdekar A, Parulekar V, Ginde M, Paranjape G, Matsuda K, Hori T, Juvekar S, Lal G. Changes in immunological parameters by ageing in rural healthy Indian adults and their associations with sex and lifestyle. Sci Rep 2022; 12:15012. [PMID: 36056136 PMCID: PMC9438881 DOI: 10.1038/s41598-022-19227-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Several factors including sex and lifestyle have been reported to contribute to the age-related alteration of immune functions. The study was undertaken to determine age-related differences in the proportion of peripheral blood mononuclear lymphocytes in the Indian population using blood samples from 67 healthy adults (33 females and 34 males) aged between 20 and 80 years old. In the linear regression analysis to estimate the relationship with age categories, there was a significant increase in the frequency of natural killer cells with ageing, while their cytolytic activity significantly declined. The frequency of CD4+ T cells increased with age, whereas that of CD8+ T cells decreased, resulting in the age-associated increase of the CD4/CD8 ratio. The subsets of B cells did not show any significant relationship with age. Although there were variations between the male and female subgroups in effect size of ageing, the trends were in the same direction in all the parameters. Reduced fat intake was associated with a lower frequency of CD4+ T cells, and higher serum cotinine level was associated with a higher CD4/CD8 ratio. The results indicate that cellular immunity in the Indian population is affected by ageing, while humoral immunity is less susceptible to ageing.
Collapse
Affiliation(s)
- Dhiraj Agarwal
- KEM Hospital Research Centre, Vadu Rural Health Program, Pune, Maharashtra, 412216, India
| | - Sourav Paul
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Pallavi Lele
- KEM Hospital Research Centre, Vadu Rural Health Program, Pune, Maharashtra, 412216, India
| | - Vikrant Piprode
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Anand Kawade
- KEM Hospital Research Centre, Vadu Rural Health Program, Pune, Maharashtra, 412216, India
| | - Neerja Hajela
- Yakult Danone India Pvt. Ltd., 212, Ground Floor, Okhla Industrial Estate Phase-III, New Delhi, Delhi, 110020, India
| | - Ashish Bavdekar
- Paediatrics Department, KEM Hospital Research Centre, Pune, Maharashtra, 411011, India
| | - Varsha Parulekar
- DiagnoSearch Life Sciences Pvt. Ltd., 702, Dosti Pinnacle Plot No. E-7, Road No. 22 Wagle Industrial Estate, Thane, Maharashtra, 400604, India
| | - Manisha Ginde
- DiagnoSearch Life Sciences Pvt. Ltd., 702, Dosti Pinnacle Plot No. E-7, Road No. 22 Wagle Industrial Estate, Thane, Maharashtra, 400604, India
| | - Gandhali Paranjape
- DiagnoSearch Life Sciences Pvt. Ltd., 702, Dosti Pinnacle Plot No. E-7, Road No. 22 Wagle Industrial Estate, Thane, Maharashtra, 400604, India
| | - Kazunori Matsuda
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Tetsuji Hori
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Sanjay Juvekar
- KEM Hospital Research Centre, Vadu Rural Health Program, Pune, Maharashtra, 412216, India
| | - Girdhari Lal
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
8
|
Fong FLY, El-Nezami H, Mykkänen O, Kirjavainen PV. The Effects of Single Strains and Mixtures of Probiotic Bacteria on Immune Profile in Liver, Spleen, and Peripheral Blood. Front Nutr 2022; 9:773298. [PMID: 35495948 PMCID: PMC9039324 DOI: 10.3389/fnut.2022.773298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotic bacteria have potential use as immunomodulators but comparative data on their immunological effects are very limited. The aim of this study was to characterize the effect of oral administration of probiotic strains, alone or as mixtures, on systemic and organ-specific immune responses. For this purpose, healthy C57BL/6 mice were perorally administered probiotics for 3 weeks. A total of five common probiotic strains, Lactobacillus rhamnosus species GG (LGG) and LC705, Bifidobacterium breve 99 (Bb99), Propionibacterium freudenreichii Shermanii JS (PJS), and Escherichia coli Nissle 1917 (EcN), and two of their mixtures, were tested. Livers, spleens, and blood were collected for investigation. A number of five treatments increased the abundance of the natural killer (NK) cells. Bb99 had the most prominent effect on hepatic NK cells (20.0 ± 1.8%). LGG (liver: 5.8 ± 1.0%; spleen: 1.6 ± 0.4%), Bb99 (liver: 13.9 ± 4.3%; spleen: 10.3 ± 3.7%), and EcN (liver: 8.5 ± 3.2%; spleen: 1.0 ± 0.2%) increased the percentage of both the hepatic and splenic T-helper 17 cells. Moreover, LGG (85.5 ± 3.0%) and EcN (89.6 ± 1.2%) increased the percentage of splenic regulatory T-cells. The tested mixtures of the probiotics had different immunological effects from their individual components on cell-mediated responses and cytokine production. In conclusion, our results confirm that the immunomodulatory potential of the probiotics is strain- and organ/tissue-specific, and the effects of probiotic mixtures cannot be predicted based on their single constituents.
Collapse
Affiliation(s)
- Fiona Long Yan Fong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR China.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Hani El-Nezami
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR China.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Otto Mykkänen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pirkka V Kirjavainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Department of Environmental Health, Finnish Institute for Health and Welfare, Kuopio, Finland
| |
Collapse
|
9
|
Dong H, Tan R, Chen Z, Wang L, Song Y, Jin M, Yin J, Li H, Li J, Yang D. The Effects of Immunosuppression on the Lung Microbiome and Metabolites in Rats. Front Microbiol 2022; 13:817159. [PMID: 35237248 PMCID: PMC8882871 DOI: 10.3389/fmicb.2022.817159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunosuppressed patients are more likely to suffer from pneumonia, especially Streptococcus and Enterobacter pneumonia. Studies have demonstrated the existence of a complex and dynamic microbiota on the surface of human respiratory epithelial cells, both in healthy and diseased states. However, it is not clear whether the pneumonia in immunosuppressed patients is caused by inhaled oropharyngeal pathogens or abnormal proliferation of pulmonary proteobacteria. In this study, immunosuppressed model was made by intraperitoneal injection of cyclophosphamide and oropharyngeal saliva aspiration was simulated by oral and pharyngeal tracheal instillation of sterilized phosphate buffered saline (PBS). Furthermore, the effects of immunosuppression on the lung microbial community and its metabolism were investigated using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis. The 16S rRNA gene sequencing results showed that immunosuppression alone did not change the composition of pulmonary bacteria. Moreover, although the bacteria brought by sterilized PBS from oropharynx to lower respiratory tract changed the composition of the microflora in healthy and immunosuppressed rats, the change in the latter was more obvious. Metabolomic analysis revealed that the levels of pulmonary metabolites were disturbed in the immunosuppressed rats. The altered lung microbiota, including Streptococcaceae and Enterobacteriaceae, showed significant positive correlations with pulmonary metabolites. Our study suggested that the source of the pathogens of pneumonia in immunosuppressed rats was via inhalation and explored the relationship between lung microbiome and metabolites in immunosuppressed rats. Our results provide the basis for the development of prevention and treatment strategies for pneumonia.
Collapse
|
10
|
Shi CY, Yu CH, Yu WY, Ying HZ. Gut-Lung Microbiota in Chronic Pulmonary Diseases: Evolution, Pathogenesis, and Therapeutics. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2021; 2021:9278441. [PMID: 34900069 PMCID: PMC8664551 DOI: 10.1155/2021/9278441] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022]
Abstract
The microbiota colonized in the human body has a symbiotic relationship with human body and forms a different microecosystem, which affects human immunity, metabolism, endocrine, and other physiological processes. The imbalance of microbiota is usually linked to the aberrant immune responses and inflammation, which eventually promotes the occurrence and development of respiratory diseases. Patients with chronic respiratory diseases, including asthma, COPD, bronchiectasis, and idiopathic pulmonary fibrosis, often have alteration of the composition and function of intestinal and lung microbiota. Gut microbiota affects respiratory immunity and barrier function through the lung-gut microbiota, resulting in altered prognosis of chronic respiratory diseases. In turn, lung dysbiosis promotes aggravation of lung diseases and causes intestinal dysfunction through persistent activation of lymphoid cells in the body. Recent advances in next-generation sequencing technology have disclosed the pivotal roles of lung-gut microbiota in the pathogenesis of chronic respiratory diseases. This review focuses on the association between the gut-lung dysbiosis and respiratory diseases pathogenesis. In addition, potential therapeutic modalities, such as probiotics and fecal microbiota transplantation, are also evaluated for the prevention of chronic respiratory diseases.
Collapse
Affiliation(s)
- Chang Yi Shi
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Chen Huan Yu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Wen Ying Yu
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Hua Zhong Ying
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
11
|
D’Anna SE, Maniscalco M, Cappello F, Carone M, Motta A, Balbi B, Ricciardolo FLM, Caramori G, Di Stefano A. Bacterial and viral infections and related inflammatory responses in chronic obstructive pulmonary disease. Ann Med 2021; 53:135-150. [PMID: 32997525 PMCID: PMC7877965 DOI: 10.1080/07853890.2020.1831050] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
In chronic obstructive pulmonary disease (COPD) patients, bacterial and viral infections play a relevant role in worsening lung function and, therefore, favour disease progression. The inflammatory response to lung infections may become a specific indication of the bacterial and viral infections. We here review data on the bacterial-viral infections and related airways and lung parenchyma inflammation in stable and exacerbated COPD, focussing our attention on the prevalent molecular pathways in these different clinical conditions. The roles of macrophages, autophagy and NETosis are also briefly discussed in the context of lung infections in COPD. Controlling their combined response may restore a balanced lung homeostasis, reducing the risk of lung function decline. KEY MESSAGE Bacteria and viruses can influence the responses of the innate and adaptive immune system in the lung of chronic obstructive pulmonary disease (COPD) patients. The relationship between viruses and bacterial colonization, and the consequences of the imbalance of these components can modulate the inflammatory state of the COPD lung. The complex actions involving immune trigger cells, which activate innate and cell-mediated inflammatory responses, could be responsible for the clinical consequences of irreversible airflow limitation, lung remodelling and emphysema in COPD patients.
Collapse
Affiliation(s)
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, IRCCS, Telese, Italy
| | - Francesco Cappello
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), Istituto di Anatomia Umana e Istologia Università degli Studi di Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Mauro Carone
- UOC Pulmonology and Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS di Bari, Bari, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| | - Fabio L. M. Ricciardolo
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, AOU San Luigi Gonzaga, Torino, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini morfologiche e funzionali (BIOMORF), Università degli studi di Messina, Italy
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| |
Collapse
|
12
|
Sharma H, Ozogul F, Bartkiene E, Rocha JM. Impact of lactic acid bacteria and their metabolites on the techno-functional properties and health benefits of fermented dairy products. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34845955 DOI: 10.1080/10408398.2021.2007844] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
After conversion of lactose to lactic acid, several biochemical changes occur such as enhanced protein digestibility, fatty acids release, and production of bioactive compounds etc. during the fermentation process that brings nutritional and quality improvement in the fermented dairy products (FDP). A diverse range of lactic acid bacteria (LAB) is being utilized for the development of FDP with specific desirable techno-functional attributes. This review contributes to the knowledge of basic pathways and changes during fermentation process and the current research on techniques used for identification and quantification of metabolites. The focus of this article is mainly on the metabolites responsible for maintaining the desired attributes and health benefits of FDP as well as their characterization from raw milk. LAB genera including Lactobacillus, Streptococcus, Leuconostoc, Pediococcus and Lactococcus are involved in the fermentation of milk and milk products. LAB species accrue these benefits and desirable properties of FDP producing the bioactive compounds and metabolites using homo-fermentative and heterofermentative pathways. Generation of metabolites vary with incubation and other processing conditions and are analyzed and quantified using highly advanced and sophisticated instrumentation including nuclear magnetic resonance, mass-spectrometry based techniques. Health benefits of FDP are mainly possible due to the biological roles of such metabolites that also cause technological improvements desired by dairy manufacturers and consumers.
Collapse
Affiliation(s)
- Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - João Miguel Rocha
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering (DEQ), Faculty of Engineering, University of Porto FEUP), Porto, Portugal
| |
Collapse
|
13
|
Rashidi K, Razi B, Darand M, Dehghani A, Janmohammadi P, Alizadeh S. Effect of probiotic fermented dairy products on incidence of respiratory tract infections: a systematic review and meta-analysis of randomized clinical trials. Nutr J 2021; 20:61. [PMID: 34183001 PMCID: PMC8240278 DOI: 10.1186/s12937-021-00718-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Previous studies have suggested that the consumption of probiotic fermented dairy products (PFDP) may have a protective effect on respiratory tract infections (RTIs). However, the results of studies are inconclusive. We aimed to systematically investigate the effect of PFDP on RTIs by performing a meta-analysis of randomized controlled trials (RCTs). METHODS PubMed and Scopus databases were systematically searched up to October 2020 to identify eligible RCTs. Meta-analysis outcomes were risk of incidence of upper (URTIs ) and lower (LRTIs ) respiratory tract infections. A random-effects model was used to pool the relative risks (RR) and corresponding 95 % confidence intervals (CI) for outcomes following conception of PFDP. RESULTS A total of 22 RCTs, with a total sample size of 10,190 participants, were included in this meta-analysis. Compared with placebo, consumption of PFDP had a significant protective effect against RTIs in the overall analysis (RR = 0.81, 95 %CI: 0.74 to 0.89) and in children (RR = 0.82, 95 %CI: 0.73 to 0.93), adults (RR = 0.81, 95 %CI: 0.66 to 1.00), and elderly population (RR = 0.78, 95 %CI: 0.61 to 0.98). The significant decreased risk of RTIs was also observed for URTIs (RR = 0.83, 95 %CI: 0.73 to 0.93), while, this effect was marginal for LRTIs (RR = 0.78, 95 %CI: 0.60 to 1.01, P = 0.06). The disease-specific analysis showed that PFDP have a protective effect on pneumonia (RR = 0.76, 95 %CI: 0.61 to 0.95) and common cold (RR = 0.68, 95 %CI: 0.49 to 0.96). CONCLUSIONS Consumption of PFDP is a potential dietary approach for the prevention of RTIs.
Collapse
Affiliation(s)
- Kamil Rashidi
- Department of Food Sciences and Technology, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahman Razi
- Department of Hematology and Blood Banking, School of Medicine, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mina Darand
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Dehghani
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Janmohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shahab Alizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
14
|
Otaka M, Kikuchi-Hayakawa H, Ogura J, Ishikawa H, Yomogida Y, Ota M, Hidese S, Ishida I, Aida M, Matsuda K, Kawai M, Yoshida S, Kunugi H. Effect of Lacticaseibacillus paracasei Strain Shirota on Improvement in Depressive Symptoms, and Its Association with Abundance of Actinobacteria in Gut Microbiota. Microorganisms 2021; 9:microorganisms9051026. [PMID: 34068832 PMCID: PMC8150707 DOI: 10.3390/microorganisms9051026] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
We previously reported lower counts of lactobacilli and Bifidobacterium in the gut microbiota of patients with major depressive disorder (MDD), compared with healthy controls. This prompted us to investigate the possible efficacy of a probiotic strain, Lacticaseibacillus paracasei strain Shirota (LcS; basonym, Lactobacillus casei strain Shirota; daily intake of 8.0 × 1010 colony-forming units), in alleviating depressive symptoms. A single-arm trial was conducted on 18 eligible patients with MDD or bipolar disorder (BD) (14 females and 4 males; 15 MDD and 3 BD), assessing changes in psychiatric symptoms, the gut microbiota, and biological markers for intestinal permeability and inflammation, over a 12-week intervention period. Depression severity, evaluated by the Hamilton Depression Rating Scale, was significantly alleviated after LcS treatment. The intervention-associated reduction of depressive symptoms was associated with the gut microbiota, and more pronounced when Bifidobacterium and the Atopobium clusters of the Actinobacteria phylum were maintained at higher counts. No significant changes were observed in the intestinal permeability or inflammation markers. Although it was difficult to estimate the extent of the effect of LcS treatment alone, the results indicated that it was beneficial to alleviate depressive symptoms, partly through its association with abundance of Actinobacteria in the gut microbiota.
Collapse
Affiliation(s)
- Machiko Otaka
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Hiroko Kikuchi-Hayakawa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Jun Ogura
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Hiroshi Ishikawa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Yukihito Yomogida
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Miho Ota
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Shinsuke Hidese
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Ikki Ishida
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Masanori Aida
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Kazunori Matsuda
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Mitsuhisa Kawai
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Sumiko Yoshida
- National Centre of Neurology and Psychiatry, Department of Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8551, Japan;
| | - Hiroshi Kunugi
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
- Department of Psychiatry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
- Correspondence:
| |
Collapse
|
15
|
Johnstone N, Milesi C, Burn O, van den Bogert B, Nauta A, Hart K, Sowden P, Burnet PWJ, Cohen Kadosh K. Anxiolytic effects of a galacto-oligosaccharides prebiotic in healthy females (18-25 years) with corresponding changes in gut bacterial composition. Sci Rep 2021; 11:8302. [PMID: 33859330 PMCID: PMC8050281 DOI: 10.1038/s41598-021-87865-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Current research implicates pre- and probiotic supplementation as a potential tool for improving symptomology in physical and mental ailments, which makes it an attractive concept for clinicians and consumers alike. Here we focus on the transitional period of late adolescence and early adulthood during which effective interventions, such as nutritional supplementation to influence the gut microbiota, have the potential to offset health-related costs in later life. We examined multiple indices of mood and well-being in 64 healthy females in a 4-week double blind, placebo controlled galacto-oligosaccharides (GOS) prebiotic supplement intervention and obtained stool samples at baseline and follow-up for gut microbiota sequencing and analyses. We report effects of the GOS intervention on self-reported high trait anxiety, attentional bias, and bacterial abundance, suggesting that dietary supplementation with a GOS prebiotic may improve indices of pre-clinical anxiety. Gut microbiota research has captured the imagination of the scientific and lay community alike, yet we are now at a stage where this early enthusiasm will need to be met with rigorous research in humans. Our work makes an important contribution to this effort by combining a psychobiotic intervention in a human sample with comprehensive behavioural and gut microbiota measures.
Collapse
Affiliation(s)
- Nicola Johnstone
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Chiara Milesi
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Olivia Burn
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Arjen Nauta
- FrieslandCampina, Amersfoort, The Netherlands
| | - Kathryn Hart
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Paul Sowden
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.,Department of Psychology, University of Winchester, Winchester, UK
| | - Philip W J Burnet
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Kathrin Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
16
|
Hori T, Matsuda K, Oishi K. Probiotics: A Dietary Factor to Modulate the Gut Microbiome, Host Immune System, and Gut-Brain Interaction. Microorganisms 2020; 8:microorganisms8091401. [PMID: 32933067 PMCID: PMC7563712 DOI: 10.3390/microorganisms8091401] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Various benefits of probiotics to the host have been shown in numerous human clinical trials. These organisms have been proposed to act by improving the balance of the gut microbiota and enhancing the production of short-chain fatty acids, as well as by interacting with host cells in the gastrointestinal tract, including immune cells, nerve cells, and endocrine cells. Although the stimulation of host cells by probiotics and subsequent signaling have been explained by in vitro experiments and animal studies, there has been some skepticism as to whether probiotics can actually interact with host cells in the human gastrointestinal tract, where miscellaneous indigenous bacteria coexist. Most recently, it has been shown that the ileal microbiota in humans after consumption of a fermented milk is occupied by probiotics for several hours, indicating that there is adequate opportunity for the ingested strain to stimulate the host cells continuously over a period of time. As the dynamics of ingested probiotics in the human gastrointestinal tract become clearer, further progress in this research area is expected to elucidate their behavior within the tract, as well as the mechanism of their physiological effects on the host.
Collapse
|
17
|
Lockyer S, Aguirre M, Durrant L, Pot B, Suzuki K. The role of probiotics on the roadmap to a healthy microbiota: a symposium report. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2020; 1:e2. [PMID: 39296722 PMCID: PMC11406418 DOI: 10.1017/gmb.2020.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 09/21/2024]
Abstract
The ninth International Yakult Symposium was held in Ghent, Belgium in April 2018. Keynote lectures were from Professor Wijmenga on using biobanks to understand the relationship between the gut microbiota and health; and Professor Hill on phage-probiotic interactions. Session one included talks from Professor Plӧsch on epigenetic programming by nutritional and environmental factors; Professor Wilmes on the use of "omics" methodologies in microbiome research and Professor Rescigno on the gut vascular barrier. Session two explored the evidence behind Lactobacillus casei Shirota with Dr Nanno explaining the plasticity in immunomodulation that enables the strain to balance immune functions; Dr Macnaughtan outlining its potential therapeutic use in cirrhosis and Professor Nishida detailing effects in subjects under stress. The third session saw Professor Marchesi describing that both the host genes and the gut microbiota can play a role in cancer; Professor Bergheim highlighting crosstalk between the gut and the liver and Professor Cani describing the relationship between the gut microbiota and the endocrine system. The final session explored probiotic mechanisms, with Professor Lebeer dissecting the challenges in conducting mechanistic studies; Professor Wehkamp describing the mucosal defence system and Professor Van de Wiele detailing methods for modelling the gut microbiota in vitro.
Collapse
Affiliation(s)
| | | | | | - Bruno Pot
- Yakult Europe B.V., Almere, The Netherlands
| | | |
Collapse
|
18
|
The Gut Microbiota and Respiratory Diseases: New Evidence. J Immunol Res 2020; 2020:2340670. [PMID: 32802893 PMCID: PMC7415116 DOI: 10.1155/2020/2340670] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Human body surfaces, such as the skin, intestines, and respiratory and urogenital tracts, are colonized by a large number of microorganisms, including bacteria, fungi, and viruses, with the gut being the most densely and extensively colonized organ. The microbiome plays an essential role in immune system development and tissue homeostasis. Gut microbiota dysbiosis not only modulates the immune responses of the gastrointestinal (GI) tract but also impacts the immunity of distal organs, such as the lung, further affecting lung health and respiratory diseases. Here, we review the recent evidence of the correlations and underlying mechanisms of the relationship between the gut microbiota and common respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), lung cancer, and respiratory infection, and probiotic development as a therapeutic intervention for these diseases.
Collapse
|
19
|
A novel kefir product (PFT) inhibits Ehrlich ascites carcinoma in mice via induction of apoptosis and immunomodulation. BMC Complement Med Ther 2020; 20:127. [PMID: 32345289 PMCID: PMC7189677 DOI: 10.1186/s12906-020-02901-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The popularity of fermented foods such as kefir, kuniss, and tofu has been greatly increasing over the past several decades, and the ability of probiotic bacteria to exert anticancer effects has recently become the focus of research. While we have recently demonstrated the ability of the novel kefir product PFT (Probiotics Fermentation Technology) to exert anticancer effects in vitro, here we demonstrate its ability to inhibit Ehrlich ascites carcinoma (EAC) in mice. METHODS Mice were inoculated intramuscularly with EAC cells to develop solid tumors. PFT was administered orally (2 g/kg/day) to mice 6 days/week, either 2 days before tumor cell inoculation or 9 days after inoculation to mice bearing solid tumors. Tumor growth, blood lymphocyte levels, cell cycle progression, apoptosis, apoptotic regulator expression, TNF-α expression, changes in mitochondrial membrane potential (MMP), PCNA, and CD4+ and CD8+ T cells in tumor cells were quantitatively evaluated by flow cytometry or RT-PCR. Further studies in vitro were carried out where EAC cells along with several other human cancer cell lines were cultured in the presence of PFT (0-5 mg/mL). Percent cell viability and IC50 was estimated by MTT assay. RESULTS Our data shows that PFT exerts the following: 1) inhibition of tumor incidence and tumor growth; 2) inhibition of cellular proliferation via a marked decrease in the expression of tumor marker PCNA; 3) arrest of the tumor cell cycle in the sub-G0/G1 phase, signifying apoptosis; 4) induction of apoptosis in cancer cells via a mitochondrial-dependent pathway as indicated by the up-regulation of p53 expression, increased Bax/Bcl-2 ratio, decrease in the polarization of MMP, and caspase-3 activation; and 5) immunomodulation with an increase in the number of infiltrating CD4+ and CD8+ T cells and an enhancement of TNF-α expression within the tumor. CONCLUSIONS PFT reduces tumor incidence and tumor growth in mice with EAC by inducing apoptosis in EAC cells via the mitochondrial-dependent pathway, suppressing cancer cell proliferation, and stimulating the immune system. PFT may be a useful agent for cancer prevention.
Collapse
|
20
|
Kazemi A, Soltani S, Ghorabi S, Nasri F, Babajafari S, Mazloomi SM. Is Probiotic and Synbiotic Supplementation Effective on Immune Cells? A Systematic Review and Meta-analysis of Clinical Trials. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2019.1710748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Asma Kazemi
- Nutrition research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Soltani
- Yazd Cardiovascular research center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sima Ghorabi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetic, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nasri
- Department immunology, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sivash Babajafari
- Nutrition research center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Mazloomi
- Nutrition research center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Liu RT, Walsh RFL, Sheehan AE. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev 2019; 102:13-23. [PMID: 31004628 PMCID: PMC6584030 DOI: 10.1016/j.neubiorev.2019.03.023] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/16/2022]
Abstract
With growing interest in the gut microbiome, prebiotics and probiotics have received considerable attention as potential treatments for depression and anxiety. We conducted a random-effects meta-analysis of 34 controlled clinical trials evaluating the effects of prebiotics and probiotics on depression and anxiety. Prebiotics did not differ from placebo for depression (d = -.08, p = .51) or anxiety (d = .12, p = .11). Probiotics yielded small but significant effects for depression (d = -.24, p < .01) and anxiety (d = -.10, p = .03). Sample type was a moderator for probiotics and depression, with a larger effect observed for clinical/medical samples (d = -.45, p < .001) than community ones. This effect increased to medium-to-large in a preliminary analysis restricted to psychiatric samples (d = -.73, p < .001). There is general support for antidepressant and anxiolytic effects of probiotics, but the pooled effects were reduced by the paucity of trials with clinical samples. Additional randomized clinical trials with psychiatric samples are necessary fully to evaluate their therapeutic potential.
Collapse
Affiliation(s)
- Richard T Liu
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, East Providence, RI, United States.
| | - Rachel F L Walsh
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, East Providence, RI, United States
| | - Ana E Sheehan
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, East Providence, RI, United States
| |
Collapse
|
22
|
Nikbakht E, Jamaluddin R, Redzwan SM, Khalesi S. Oral administration of Lactobacillus casei Shirota can ameliorate the adverse effect of an acute aflatoxin exposure in Sprague Dawley rats. INT J VITAM NUTR RES 2019; 88:199-208. [PMID: 31056010 DOI: 10.1024/0300-9831/a000513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin B1(AFB1) is a toxic compound commonly found in some crops with an adverse health effect on human and animals. Some beneficial microorganisms (or probiotics) such as lactic acid bacteria have shown the ability to reduce the bioavailability of aflatoxins and its intestinal absorption. However, the dose and duration of aflatoxins exposure and probiotic treatment can influence the ability of probiotics to remove aflatoxins. Therefore, this research aimed to investigate the efficacy of oral probiotic Lactobacillus casei Shirota strain (LcS) induction in an acute exposure to AFB1 in rats. Experimentally, Sprague Dawley rats were divided into three groups: AFB1 only (n = 9); AFB1 treated with LcS (n = 9); and control (no AFB1 exposure) (n = 6) groups. The blood AFB1 level of rats treated with LcS was slightly lower than the untreated AFB1 induced rats (11.12 ± 0.71 vs 10.93 ± 0.69 ng g-1). Also, LcS treatment slightly moderated the liver and kidney biomarkers in AFB1 induced rats. However, a trend for a significant difference was only observed in ALT of AFB1 induced rats treated with LcS compared to their counterparts (126.11 ± 36.90 vs 157.36 ± 15.46, p = 0.06). Rats' body weight decreased in all animals force-fed with AFB1 with no significant difference between LcS treatment compared to the counterpart. In conclusion, this experiment indicated that probiotic LsC was able to slightly ameliorate the adverse effect of an acute exposure to AFB1 in rats. However, future studies with longer probiotics treatment or higher probiotics dose is required to confirm these findings.
Collapse
Affiliation(s)
- Elham Nikbakht
- 1 Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, Australia
| | - Rosita Jamaluddin
- 2 Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - S Mohd Redzwan
- 2 Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Saman Khalesi
- 3 Physical Activity Research Group, Appleton Institute and School of Health, Medical and Applied Sciences, Central Queensland University, Brisbane, Australia
| |
Collapse
|
23
|
Nadeem I, Rahman MZ, Ad-Dab'bagh Y, Akhtar M. Effect of probiotic interventions on depressive symptoms: A narrative review evaluating systematic reviews. Psychiatry Clin Neurosci 2019; 73:154-162. [PMID: 30499231 DOI: 10.1111/pcn.12804] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/08/2018] [Accepted: 11/25/2018] [Indexed: 12/12/2022]
Abstract
Depression is one of the most prevalent mental illnesses and is often associated with various other medical disorders. Since the 1980s, the primary pharmacological treatment has been antidepressants, but due to the recent discovery of the association between the gut microbiome and mental health, probiotics have been proposed as an adjunctive or alternate treatment. In this narrative review, we aim to provide a holistic perspective by synthesizing and evaluating existing evidence, discussing key biological mechanisms, exploring the history of probiotic use, and appreciating the influence of modern diet on mental health. Five online databases were searched for relevant studies up to December 2017. Systematic reviews that included randomized controlled trials assessing the efficacy of probiotics in the treatment of depressive symptoms were included. Seven systematic reviews met the inclusion criteria. Three of these reviews conducted meta-analyses, out of which, two concluded that probiotics improved depressive symptoms in the sample population. Out of the four reviews that conducted qualitative analysis, three reviews concluded that probiotics have the potential to be used as a treatment. Due to the differences in clinical trials, a definitive effect of probiotics on depressive symptoms cannot be concluded. Nonetheless, probiotics seem to potentially produce a significant therapeutic effect for subjects with pre-existing depressive symptoms. Further studies are warranted for definitive conclusions.
Collapse
Affiliation(s)
- Ibrahim Nadeem
- Faculty of Bachelor of Health Sciences, McMaster University, Hamilton, Canada
| | - Mohammed Z Rahman
- School of Medicine, The University of Queensland, Brisbane, Australia
| | - Yasser Ad-Dab'bagh
- Mental Health Department, Neuroscience Center, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia.,Department of Psychiatry, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mahmood Akhtar
- Faculty of Bachelor of Health Sciences, McMaster University, Hamilton, Canada.,Mental Health Department, Neuroscience Center, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| |
Collapse
|
24
|
Abstract
The gut microbiome is implicated in the pathophysiology of a wide range of psychological disorders. Preclinical studies have provided us with key insights into the mechanisms by which the microbiome influences bidirectional gut-brain communication. There are many signaling pathways involved, including the hypothalamic-pituitary-adrenal axis, immune modulation, tryptophan and serotonin metabolism, bile acid transformation, microbial production of neuroactive compounds, and regulation of the endocannabinoid system. The complex and widespread influence of the microbiome on many physiological and psychological processes has generated a keen interest in its therapeutic potential for depression, anxiety, autism, and other psychiatric disorders. It has been shown that the microbiome composition of people suffering with such conditions differs significantly from that of healthy controls, and although the area is in its infancy, interventional studies that alter a person's microbiome through the use of probiotics, prebiotics, or dietary change can alleviate psychopathological symptoms.
Collapse
Affiliation(s)
- Mary I Butler
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork T12 K8AF, Ireland; .,APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork T12 K8AF, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork T12 K8AF, Ireland; .,APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
25
|
Okubo R, Koga M, Katsumata N, Odamaki T, Matsuyama S, Oka M, Narita H, Hashimoto N, Kusumi I, Xiao J, Matsuoka YJ. Effect of bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: A proof-of-concept study. J Affect Disord 2019; 245:377-385. [PMID: 30423465 DOI: 10.1016/j.jad.2018.11.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/19/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Studies of probiotics have suggested they have a positive effect on anxiety and depressive symptoms in humans. This study investigated the effect of consuming the probiotic Bifidobacterium breve A-1 on anxiety and depressive symptoms in patients with schizophrenia and explored its effect on immune products such as cytokines and chemokines. METHODS In this open-label single-arm study, all participants received B. breve strain A-1 (1011 cfu/day) for 4 weeks followed by 4 weeks of observation. The primary outcome was the Hospital Anxiety and Depression Scale (HADS) score. Secondary outcomes were anxiety and depressive symptoms on the Positive and Negative Syndrome Scale (PANSS), blood test findings, and fecal microbiome composition. RESULTS Twenty-nine outpatients completed the study. HADS total score and PANSS anxiety/depression score were significantly improved at 4 weeks. Based on the criterion of a greater than 25% reduction in HADS total score at 4 weeks from baseline, there were 12 responders and 17 non-responders. Responders were found to have fewer negative symptoms, reduced intake of dairy products, and higher relative abundance of Parabacteroides in the gut microbiome than non-responders. Moreover, IL-22 and TRANCE expression was significantly increased at 4 weeks from baseline in responders but not in non-responders. LIMITATIONS This open-label, single-arm study cannot exclude a placebo effect. CONCLUSIONS The results suggest the potential effect of B. breve A-1 in improving anxiety and depressive symptoms in patients with schizophrenia. Further studies should investigate this effect in patients with other psychiatric conditions and assess dietary habits and the gut microbiome.
Collapse
Affiliation(s)
- Ryo Okubo
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, West 7, North 15, Kita Ward, Sapporo, Hokkaido, Japan; Division of Health Care Research, Center for Public Health Sciences, National Cancer Center Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Minori Koga
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, West 7, North 15, Kita Ward, Sapporo, Hokkaido, Japan
| | - Noriko Katsumata
- Next Generation Science Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa, Japan
| | - Shiina Matsuyama
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, West 7, North 15, Kita Ward, Sapporo, Hokkaido, Japan
| | - Matsuhiko Oka
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, West 7, North 15, Kita Ward, Sapporo, Hokkaido, Japan
| | - Hisashi Narita
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, West 7, North 15, Kita Ward, Sapporo, Hokkaido, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, West 7, North 15, Kita Ward, Sapporo, Hokkaido, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, West 7, North 15, Kita Ward, Sapporo, Hokkaido, Japan
| | - Jinzhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa, Japan
| | - Yutaka J Matsuoka
- Division of Health Care Research, Center for Public Health Sciences, National Cancer Center Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
26
|
Cross-species examination of single- and multi-strain probiotic treatment effects on neuropsychiatric outcomes. Neurosci Biobehav Rev 2018; 99:160-197. [PMID: 30471308 DOI: 10.1016/j.neubiorev.2018.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 11/10/2018] [Accepted: 11/18/2018] [Indexed: 12/15/2022]
Abstract
Interest in elucidating gut-brain-behavior mechanisms and advancing neuropsychiatric disorder treatments has led to a recent proliferation of probiotic trials. Yet, a considerable gap remains in our knowledge of probiotic efficacy across populations and experimental contexts. We conducted a cross-species examination of single- and multi-strain combinations of established probiotics. Forty-eight human (seven infant/child, thirty-six young/middle-aged adult, five older adult) and fifty-eight non-human (twenty-five rat, twenty-seven mouse, five zebrafish, one quail) investigations met the inclusion/exclusion criteria. Heterogeneity of probiotic strains, substrains, and study methodologies limited our ability to conduct meta-analyses. Human trials detected variations in anxiety, depression, or emotional regulation (single-strain 55.6%; multi-strain 50.0%) and cognition or social functioning post-probiotic intake (single-strain 25.9%; multi-strain 31.5%). For the non-human studies, single- (60.5%) and multi-strain (45.0%) combinations modified stress, anxiety, or depression behaviors in addition to altering social or cognitive performance (single-strain 57.9%; multi-strain 85.0%). Rigorous trials that confirm existing findings, investigate additional probiotic strain/substrain combinations, and test novel experimental paradigms, are necessary to develop future probiotic treatments that successfully target specific neuropsychiatric outcomes.
Collapse
|
27
|
Soldi S, Tagliacarne SC, Valsecchi C, Perna S, Rondanelli M, Ziviani L, Milleri S, Annoni A, Castellazzi A. Effect of a multistrain probiotic (Lactoflorene ® Plus) on inflammatory parameters and microbiota composition in subjects with stress-related symptoms. Neurobiol Stress 2018; 10:100138. [PMID: 30937345 PMCID: PMC6430185 DOI: 10.1016/j.ynstr.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/17/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022] Open
Abstract
Stress affects the immune system and intestinal microbiota composition and can lead to imbalance between pro- and anti-inflammatory cytokines or to uncontrolled production of cytokines. The effect of emotional stress on secretory IgA levels also indicates that stress decreases mucosal integrity. Our aim was to evaluate whether a probiotic product (Lactoflorene® Plus) can prevent alterations in the immune response associated with self-reported stress and microbiota composition. Healthy adult volunteers who self-reported psychological stress were enrolled and randomised into a placebo and a probiotic group. Salivary stress markers (α-amylase, cortisol, chromogranin A) and immunological parameters (sIgA, NK cell activity, IL-8, IL-10, TNF-α) in feces and the composition of intestinal microbiota were evaluated. Administration of the product did not exert a direct effect on the salivary stress markers or NK cell activity but did reduce abdominal pain and increase faecal IgA and IL-10 levels. The probiotic product induced a moderate increase in Bifidobacterium and Lactobacillus spp., as expected, and in Faecalibacterium spp., and decreased the size of the Dialister spp. and Escherichia and Shigella populations. Administration of the product helped protect the mucosal barrier by supporting the number of short-chain fatty acid producers and decreasing the load of potentially harmful bacteria, thus reducing intestinal inflammation and abdominal discomfort. ClinicalTrials.gov NCT03234452.
Collapse
Affiliation(s)
- Sara Soldi
- AAT – Advanced Analytical Technologies Srl, via P. Majavacca 12, 29017, Fiorenzuola d’Arda, Pc, Italy
- Corresponding author.
| | - Sara Carlotta Tagliacarne
- Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, P.le Golgi 2, 27100, Pavia, Italy
| | - Chiara Valsecchi
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, P. O. Box 32038, Bahrain
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, Italy
| | - Luigi Ziviani
- Centro Ricerche Cliniche di Verona Srl, P.le L.A. Scuro 10, 37134, Verona, Vr, Italy
| | - Stefano Milleri
- Centro Ricerche Cliniche di Verona Srl, P.le L.A. Scuro 10, 37134, Verona, Vr, Italy
| | - Ariella Annoni
- Montefarmaco OTC, via IV Novembre 92, 20021, Bollate, Mi, Italy
| | - Annamaria Castellazzi
- Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, P.le Golgi 2, 27100, Pavia, Italy
| |
Collapse
|
28
|
Lee YJ, Lee A, Yoo HJ, Kim M, Noh GM, Lee JH. Supplementation with the probiotic strain Weissella cibaria JW15 enhances natural killer cell activity in nondiabetic subjects. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
29
|
Probiotics into outer space: feasibility assessments of encapsulated freeze-dried probiotics during 1 month's storage on the International Space Station. Sci Rep 2018; 8:10687. [PMID: 30013086 PMCID: PMC6048169 DOI: 10.1038/s41598-018-29094-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/05/2018] [Indexed: 11/19/2022] Open
Abstract
Suppression of immune function during long spaceflights is an issue that needs to be overcome. The well-established probiotic Lactobacillus casei strain Shirota (LcS) could be a promising countermeasure, and we have launched a project to investigate the efficacy of its use on the International Space Station (ISS). As a first step, we developed a specialist probiotic product for space experiments, containing freeze-dried LcS in capsule form (Probiotics Package), and tested its stability through 1 month of storage on the ISS. The temperature inside the ISS ranged from 20.0 to 24.5 °C. The absorbed dose rate of the flight sample was 0.26 mGy/day and the dose equivalent rate was 0.52 mSv/day. The number of live LcS was 1.05 × 1011 colony-forming units/g powder (49.5% of the initial value) 6 months after the start of the study; this value was comparable to those in the two ground controls. Profiles of randomly amplified polymorphic DNA, sequence variant frequency, carbohydrate fermentation, reactivity to LcS-specific antibody, and the cytokine-inducing ability of LcS in the flight sample did not differ from those of the ground controls. We can therefore maintain the viability and basic probiotic properties of LcS stored as a Probiotics Package on the ISS.
Collapse
|
30
|
Slykerman RF, Hood F, Wickens K, Thompson JMD, Barthow C, Murphy R, Kang J, Rowden J, Stone P, Crane J, Stanley T, Abels P, Purdie G, Maude R, Mitchell EA. Effect of Lactobacillus rhamnosus HN001 in Pregnancy on Postpartum Symptoms of Depression and Anxiety: A Randomised Double-blind Placebo-controlled Trial. EBioMedicine 2017; 24:159-165. [PMID: 28943228 PMCID: PMC5652021 DOI: 10.1016/j.ebiom.2017.09.013] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/31/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background Probiotics may help to prevent symptoms of anxiety and depression through several putative mechanisms. Objective The aim of this study was to evaluate the effect of Lactobacillus rhamnosus HN001 (HN001) given in pregnancy and postpartum on symptoms of maternal depression and anxiety in the postpartum period. This was a secondary outcome, the primary outcome being eczema in the offspring at 12 months of age. Design, Setting, Participants A randomised, double-blind, placebo-controlled trial of the effect of HN001 on postnatal mood was conducted in 423 women in Auckland and Wellington, New Zealand. Women were recruited at 14–16 weeks gestation. Intervention Women were randomised to receive either placebo or HN001 daily from enrolment until 6 months postpartum if breastfeeding. Outcome Measures Modified versions of the Edinburgh Postnatal Depression Scale and State Trait Anxiety Inventory were used to assess symptoms of depression and anxiety postpartum. Trial Registration Australia NZ Clinical Trials Registry: ACTRN12612000196842. Findings 423 women were recruited between December 2012 and November 2014. 212 women were randomised to HN001 and 211 to placebo. 380 women (89.8%) completed the questionnaire on psychological outcomes, 193 (91.0%) in the treatment group and 187 (88.6%) in the placebo group. Mothers in the probiotic treatment group reported significantly lower depression scores (HN001 mean = 7·7 (SD = 5·4), placebo 9·0 (6·0); effect size -1·2, (95% CI -2·3, -0·1), p = 0·037) and anxiety scores (HN001 12·0 (4·0), placebo 13·0 (4·0); effect size -1·0 (-1·9, -0·2), p = 0·014) than those in the placebo group. Rates of clinically relevant anxiety on screening (score > 15) were significantly lower in the HN001 treated mothers (OR = 0·44 (0·26, 0·73), p = 0·002). Interpretation Women who received HN001 had significantly lower depression and anxiety scores in the postpartum period. This probiotic may be useful for the prevention or treatment of symptoms of depression and anxiety postpartum. Funding Source Health Research Council of New Zealand (11/318) and Fonterra Co-operative Group Ltd. The microbiome-gut-brain axis may be important for mental health. We conducted a study of probiotic supplementation in pregnancy and 6 months after delivery if breastfeeding. The probiotic treatment group reported significantly lower depression and anxiety scores than those in the placebo group.
There is mounting evidence from animal studies that the microbiome-gut-brain axis may be important for mental health. Depression and anxiety in pregnancy and after birth affects 10–15% of women, although many are not recognised or treated. We conducted a double-blind placebo-controlled study of probiotic (Lactobacillus rhamnosus HN001) supplementation (from early pregnancy through to 6 months after delivery if breastfeeding) on postnatal symptoms of depression and anxiety in a group (n = 380) of healthy women. Mothers in the probiotic treatment group reported significantly lower depression and anxiety scores than those in the placebo group.
Collapse
Affiliation(s)
- R F Slykerman
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - F Hood
- Department of Medicine, University of Otago, P O Box 7343, Wellington, New Zealand
| | - K Wickens
- Department of Medicine, University of Otago, P O Box 7343, Wellington, New Zealand
| | - J M D Thompson
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - C Barthow
- Department of Medicine, University of Otago, P O Box 7343, Wellington, New Zealand
| | - R Murphy
- Department of Medicine, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - J Kang
- Department of Medicine, University of Otago, P O Box 7343, Wellington, New Zealand
| | - J Rowden
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - P Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - J Crane
- Department of Medicine, University of Otago, P O Box 7343, Wellington, New Zealand
| | - T Stanley
- Department of Paediatrics, University of Otago, P O Box 7343, Wellington, New Zealand
| | - P Abels
- Department of Medicine, University of Otago, P O Box 7343, Wellington, New Zealand
| | - G Purdie
- Dean's Office, University of Otago, P O Box 7343, Wellington, New Zealand
| | - R Maude
- Graduate School of Nursing, Midwifery, and Health, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - E A Mitchell
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | |
Collapse
|
31
|
Harbige LS, Pinto E, Allgrove J, Thomas LV. Immune Response of Healthy Adults to the Ingested Probiotic Lactobacillus casei Shirota. Scand J Immunol 2017; 84:353-364. [PMID: 27718254 DOI: 10.1111/sji.12495] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022]
Abstract
Daily ingestion of a probiotic drink containing Lactobacillus casei Shirota (LcS; 1.3 × 1010 live cells) by healthy adults for (1) 4-week LcS, (2) 6-week discontinuation of LcS and (3) a final 4 weeks of LcS was investigated. There was a significant increase in expression of the T cell activation marker CD3+ CD69+ in ex vivo unstimulated blood cells at weeks 10 and 14, and there was a significant increase in the NK cell marker CD3+ CD16/56+ in ex vivo unstimulated blood cells at weeks 4, 10 and 14. Expression of the NK cell activation marker CD16/56+ CD69+ in ex vivo unstimulated blood cells was 62% higher at week 10 and 74% higher at week 14. Intracellular staining of IL-4 in ex vivo unstimulated and PMA-/ionomycin-stimulated CD3+ β7+ integrin blood cells was significantly lower at weeks 10 and 14. Intracellular staining of IL-12 in ex vivo unstimulated and LPS-stimulated CD14+ blood cells was significantly lower at weeks 4, 10 and 14. Intracellular staining of TNF-α in LPS-stimulated CD14+ blood cells was significantly lower at weeks 4, 10 and 14. Mucosal salivary IFN-γ, IgA1 and IgA2 concentrations were significantly higher at week 14, but LcS did not affect systemic circulating influenza A-specific IgA or IgG and tetanus-specific IgG antibody levels. In addition to the decrease in CD3+ β7+ integrin cell IL-4 and a reduced CD14+ cell pro-inflammatory cytokine profile, at week 14 increased expression of activation markers on circulating T cells and NK cells and higher mucosal salivary IgA1 and IgA2 concentration indicated a secondary boosting effect of LcS.
Collapse
Affiliation(s)
- L S Harbige
- Department of Life Sciences, Faculty of Engineering and Science, University of Greenwich at Medway, Chatham Maritime, Kent, UK
| | - E Pinto
- Department of Life Sciences, Faculty of Engineering and Science, University of Greenwich at Medway, Chatham Maritime, Kent, UK
| | - J Allgrove
- Faculty of Science, Engineering and Computing, Kingston University, Surrey, UK
| | - L V Thomas
- Yakult UK Ltd, Anteros, Odyssey Business Park, South Ruislip, Middlesex, UK
| |
Collapse
|
32
|
Shukla SD, Budden KF, Neal R, Hansbro PM. Microbiome effects on immunity, health and disease in the lung. Clin Transl Immunology 2017; 6:e133. [PMID: 28435675 PMCID: PMC5382435 DOI: 10.1038/cti.2017.6] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), are among the leading causes of mortality and morbidity worldwide. In the past decade, the interest in the role of microbiome in maintaining lung health and in respiratory diseases has grown exponentially. The advent of sophisticated multiomics techniques has enabled the identification and characterisation of microbiota and their roles in respiratory health and disease. Furthermore, associations between the microbiome of the lung and gut, as well as the immune cells and mediators that may link these two mucosal sites, appear to be important in the pathogenesis of lung conditions. Here we review the recent evidence of the role of normal gastrointestinal and respiratory microbiome in health and how dysbiosis affects chronic pulmonary diseases. The potential implications of host and environmental factors such as age, gender, diet and use of antibiotics on the composition and overall functionality of microbiome are also discussed. We summarise how microbiota may mediate the dynamic process of immune development and/or regulation focusing on recent data from both clinical human studies and translational animal studies. This furthers the understanding of the pathogenesis of chronic pulmonary diseases and may yield novel avenues for the utilisation of microbiota as potential therapeutic interventions.
Collapse
Affiliation(s)
- Shakti D Shukla
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Rachael Neal
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
33
|
Wang H, Lee IS, Braun C, Enck P. Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review. J Neurogastroenterol Motil 2016; 22:589-605. [PMID: 27413138 PMCID: PMC5056568 DOI: 10.5056/jnm16018] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/25/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023] Open
Abstract
To systematically review the effects of probiotics on central nervous system function in animals and humans, to summarize effective interventions (species of probiotic, dose, duration), and to analyze the possibility of translating preclinical studies. Literature searches were conducted in Pubmed, Medline, Embase, and the Cochrane Library. Only randomized controlled trials were included. In total, 38 studies were included: 25 in animals and 15 in humans (2 studies were conducted in both). Most studies used Bifidobacterium (eg, B. longum, B. breve, and B. infantis) and Lactobacillus (eg, L. helveticus, and L. rhamnosus), with doses between 109 and 1010 colony-forming units for 2 weeks in animals and 4 weeks in humans. These probiotics showed efficacy in improving psychiatric disorder-related behaviors including anxiety, depression, autism spectrum disorder (ASD), obsessive-compulsive disorder, and memory abilities, including spatial and non-spatial memory. Because many of the basic science studies showed some efficacy of probiotics on central nervous system function, this background may guide and promote further preclinical and clinical studies. Translating animal studies to human studies has obvious limitations but also suggests possibilities. Here, we provide several suggestions for the translation of animal studies. More experimental designs with both behavioral and neuroimaging measures in healthy volunteers and patients are needed in the future.
Collapse
Affiliation(s)
- Huiying Wang
- Department of Psychosomatic Medicine and Psychotherapy, University of Tübingen, Germany.,MEG Center, University Hospital Tübingen, Germany.,Graduate Training Center of Neuroscience, IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany
| | - In-Seon Lee
- Department of Psychosomatic Medicine and Psychotherapy, University of Tübingen, Germany.,MEG Center, University Hospital Tübingen, Germany.,Graduate Training Center of Neuroscience, IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University Hospital Tübingen, Germany.,CIMeC, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University of Tübingen, Germany
| |
Collapse
|
34
|
Budden KF, Gellatly SL, Wood DLA, Cooper MA, Morrison M, Hugenholtz P, Hansbro PM. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol 2016; 15:55-63. [PMID: 27694885 DOI: 10.1038/nrmicro.2016.142] [Citation(s) in RCA: 894] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The microbiota is vital for the development of the immune system and homeostasis. Changes in microbial composition and function, termed dysbiosis, in the respiratory tract and the gut have recently been linked to alterations in immune responses and to disease development in the lungs. In this Opinion article, we review the microbial species that are usually found in healthy gastrointestinal and respiratory tracts, their dysbiosis in disease and interactions with the gut-lung axis. Although the gut-lung axis is only beginning to be understood, emerging evidence indicates that there is potential for manipulation of the gut microbiota in the treatment of lung diseases.
Collapse
Affiliation(s)
- Kurtis F Budden
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
| | - Shaan L Gellatly
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
| | - David L A Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4072, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, and the Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia; and The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
| |
Collapse
|
35
|
Eslami S, Hadjati J, Motevaseli E, Mirzaei R, Farashi Bonab S, Ansaripour B, Khoramizadeh MR. Lactobacillus crispatus strain SJ-3C-US induces human dendritic cells (DCs) maturation and confers an anti-inflammatory phenotype to DCs. APMIS 2016; 124:697-710. [PMID: 27245496 DOI: 10.1111/apm.12556] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/25/2016] [Indexed: 12/16/2022]
Abstract
Lactobacillus crispatus is one of the most predominant species in the healthy vagina microbiota. Nevertheless, the interactions between this commensal bacterium and the immune system are largely unknown. Given the importance of the dendritic cells (DCs) in the regulation of the immunity, this study was performed to elucidate the influence of vaginal isolated L. crispatus SJ-3C-US from healthy Iranian women on DCs, either directly by exposure of DCs to ultraviolet-inactivated (UVI) and heat-killed (HK) L. crispatus SJ-3C-US or indirectly to its cell-free supernatant (CFS), and the outcomes of immune response. In this work we showed that L. crispatus SJ-3C-US induced strong dose-dependent activation of dendritic cells and production of high levels of IL-10, whereas IL-12p70 production was induced at low level in an inverse dose-dependent manner. This stimulation skewed T cells polarization toward CD4(+) CD25(+) FOXP3(+) Treg cells and production of IL-10 in a dose-dependent manner in mixed leukocyte reaction (MLR) test. The mode of bacterial inactivation did not affect the DCs activation pattern, upon encounter with L. crispatus SJ-3C-US. Moreover, while DCs stimulated with CFS showed moderate phenotypic maturation and IL-10 production, it failed to skew T cells polarization toward CD4(+) CD25(+) FOXP3(+) regulatory T cells (Treg) and production of IL-10. This study showed that L. crispatus SJ-3C-US confers an anti-inflammatory phenotype to DCs through up-regulation of anti-inflammatory/regulatory IL-10 cytokine production and induction of CD4(+) CD25(+) FOXP3(+) T cells at optimal dosage. Our findings suggest that L. crispatus SJ-3C-US could be a potent candidate as protective probiotic against human immune-mediated pathologies, such as chronic inflammation, vaginitis or pelvic inflammatory disease (PID).
Collapse
Affiliation(s)
- Solat Eslami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samad Farashi Bonab
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Ansaripour
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khoramizadeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, EMRI, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Kato-Kataoka A, Nishida K, Takada M, Suda K, Kawai M, Shimizu K, Kushiro A, Hoshi R, Watanabe O, Igarashi T, Miyazaki K, Kuwano Y, Rokutan K. Fermented milk containing Lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students under academic examination stress. Benef Microbes 2016; 7:153-6. [DOI: 10.3920/bm2015.0100] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This pilot study investigated the effects of the probiotic Lactobacillus casei strain Shirota (LcS) on psychological, physiological, and physical stress responses in medical students undertaking an authorised nationwide examination for promotion. In a double-blind, placebo-controlled trial, 24 and 23 healthy medical students consumed a fermented milk containing LcS and a placebo milk, respectively, once a day for 8 weeks until the day before the examination. Psychophysical state, salivary cortisol, faecal serotonin, and plasma L-tryptophan were analysed on 5 different sampling days (8 weeks before, 2 weeks before, 1 day before, immediately after, and 2 weeks after the examination). Physical symptoms were also recorded in a diary by subjects during the intervention period for 8 weeks. In association with a significant elevation of anxiety at 1 day before the examination, salivary cortisol and plasma L-tryptophan levels were significantly increased in only the placebo group (P<0.05). Two weeks after the examination, the LcS group had significantly higher faecal serotonin levels (P<0.05) than the placebo group. Moreover, the rate of subjects experiencing common abdominal and cold symptoms and total number of days experiencing these physical symptoms per subject were significantly lower in the LcS group than in the placebo group during the pre-examination period at 5-6 weeks (each P<0.05) and 7-8 weeks (each P<0.01) during the intervention period. Our results suggest that the daily consumption of fermented milk containing LcS may exert beneficial effects preventing the onset of physical symptoms in healthy subjects exposed to stressful situations.
Collapse
Affiliation(s)
- A. Kato-Kataoka
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - K. Nishida
- Department of Pathophysiology, Tokushima University Graduate School of Medicine, 3-18-5 Kuramoto, Tokushima, Tokushima 770-8503, Japan
| | - M. Takada
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - K. Suda
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - M. Kawai
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - K. Shimizu
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - A. Kushiro
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - R. Hoshi
- Faculty of Research and Development, Yakult Honsya Co., Ltd., 1-1-19 Higashi-Shimbashi, Minato, Tokyo 105-8660, Japan
| | - O. Watanabe
- Faculty of Research and Development, Yakult Honsya Co., Ltd., 1-1-19 Higashi-Shimbashi, Minato, Tokyo 105-8660, Japan
| | - T. Igarashi
- Faculty of Research and Development, Yakult Honsya Co., Ltd., 1-1-19 Higashi-Shimbashi, Minato, Tokyo 105-8660, Japan
| | - K. Miyazaki
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - Y. Kuwano
- Department of Pathophysiology, Tokushima University Graduate School of Medicine, 3-18-5 Kuramoto, Tokushima, Tokushima 770-8503, Japan
| | - K. Rokutan
- Department of Pathophysiology, Tokushima University Graduate School of Medicine, 3-18-5 Kuramoto, Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
37
|
Abstract
During the last decade, probiotics have been established to be important mediators of host immunity. Their effects on both innate and adaptive immunity have been documented in the literature. Although several reports have correlated different strains of bacteria as probiotics, their effects on immunity vary. Clearly, there is a complex interplay between various constituents of probiotics and the immune response in humans. The role of probiotics on natural killer (NK) cells in the gut has been the subject of a few reports. In this review, we summarize the reported findings on the role of probiotics in the activation of gut-associated NK cells and the response of NK cells to stimuli elicited by probiotics and their microenvironment. The effects of probiotics on the activation of NK cells and their secretion of immune factors (e.g., interferon-γ, tumor necrosis factor-α, interleukin-2, etc.) are discussed in regard to their clinical significance in various diseases. Current investigations are being pursued, in particular, on the role of probiotics-activated NK cells in promoting the adaptive immune response against pathogens.
Collapse
Affiliation(s)
- Nabil Aziz
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| |
Collapse
|
38
|
Effect of Probiotic Supplement on Cytokine Levels in HIV-Infected Individuals: A Preliminary Study. Nutrients 2015; 7:8335-47. [PMID: 26426044 PMCID: PMC4632416 DOI: 10.3390/nu7105396] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/31/2015] [Accepted: 09/21/2015] [Indexed: 12/24/2022] Open
Abstract
Inflammation persists in patients infected with HIV. Reduction of inflammatory cytokines and microbial translocation might be one way that this could be managed. Purpose: The anti-inflammatory properties of certain probiotic strains prompted us to investigate whether a probiotic could reduce the inflammatory index of HIV-infected patients. Methods: The study involved 30 HIV+ males on antiretroviral therapy, who were given one bottle of fermented milk Yakult Light® containing Lactobacillus casei Shirota (LcS) twice a day for four weeks. Results: The probiotic LcS was associated with an increase of T lymphocytes and a significant increase of CD56+ cells (p = 0.04). There was also a significant decrease of mRNA levels of TGFβ, IL-10 and IL-12 (p < 0.001) and IL-1β expression (p < 0.001) and an increase of serum IL-23 (p = 0.03). In addition, decreased inflammation and cardiovascular risk were observed, as shown by a reduction of cystatin C (p < 0.001). Conclusions: These data provide preliminary evidence that probiotic supplementation may modulate certain immunological parameters and some of the cytokines that were analyzed. Thus, we propose that LcS may be an inexpensive and practical strategy to support the immune function of HIV+ patients.
Collapse
|
39
|
Romijn AR, Rucklidge JJ. Systematic review of evidence to support the theory of psychobiotics. Nutr Rev 2015; 73:675-93. [DOI: 10.1093/nutrit/nuv025] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
40
|
Akoglu B, Loytved A, Nuiding H, Zeuzem S, Faust D. Probiotic Lactobacillus casei Shirota improves kidney function, inflammation and bowel movements in hospitalized patients with acute gastroenteritis – A prospective study. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
41
|
Takagi A, Kano M, Kaga C. Possibility of breast cancer prevention: use of soy isoflavones and fermented soy beverage produced using probiotics. Int J Mol Sci 2015; 16:10907-20. [PMID: 25984609 PMCID: PMC4463682 DOI: 10.3390/ijms160510907] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/10/2015] [Accepted: 04/24/2015] [Indexed: 11/21/2022] Open
Abstract
The various beneficial effects of soybeans, which are rich in phytochemicals, have received much attention because of increasing health awareness. Soy milk that has been fermented using lactic acid bacteria has been used to prepare cheese-like products, tofu (bean-curd), and yogurt-type products. However, the distinct odor of soybeans has limited the acceptance of such foods, particularly in Western countries. In Japan, while tofu and soy milk have long been habitually consumed, the development of novel, palatable food products has not been easy. The unpleasant odor of soy milk and the absorption efficiency for isoflavones can be improved using a recently developed fermented soy milk beverage. Cancer has been the leading cause of death, and breast cancer is the most common malignancy among women. The most common type of breast cancer is estrogen-dependent, and the anti-estrogenic effects of isoflavones are known. The present review focuses on the characteristics of soy milk fermented using probiotics, an epidemiological study examining the incidence of breast cancer and soy isoflavone consumption, and a non-clinical study examining breast cancer prevention using fermented soy milk beverage.
Collapse
Affiliation(s)
- Akimitsu Takagi
- Pharmaceutical Research Laboratory, Yakult Central Institute, Tokyo 186-8650, Japan.
| | - Mitsuyoshi Kano
- Food Research Laboratory, Yakult Central Institute, Tokyo 186-8650, Japan.
| | - Chiaki Kaga
- Food Research Laboratory, Yakult Central Institute, Tokyo 186-8650, Japan.
| |
Collapse
|
42
|
Pérez-Martínez A, Valentín J, Fernández L, Hernández-Jiménez E, López-Collazo E, Zerbes P, Schwörer E, Nuñéz F, Martín IG, Sallis H, Díaz MÁ, Handgretinger R, Pfeiffer MM. Arabinoxylan rice bran (MGN-3/Biobran) enhances natural killer cell–mediated cytotoxicity against neuroblastoma in vitro and in vivo. Cytotherapy 2015; 17:601-12. [DOI: 10.1016/j.jcyt.2014.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 12/25/2022]
|
43
|
Daily intake of probiotics with high IFN-γ/IL-10 ratio increases the cytotoxicity of human natural killer cells: a personalized probiotic approach. J Immunol Res 2014; 2014:721505. [PMID: 25759833 PMCID: PMC4352450 DOI: 10.1155/2014/721505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022] Open
Abstract
A personalized probiotic microfluidic chip system has been established and used to screen the probiotics which had the highest value of IFN-γ/IL-10 or IL-10/IFN-γ among six probiotics, including L. paracasei BRAP01, L. acidophilus AD300, B. longum BA100, E. faecium BR0085, L. rhamnosus AD500, and L. reuteri BR101. One hundred volunteers were included and their PBMCs were collected and stimulated by the six probiotics. People who belonged to the IFN-γ group took the probiotics that exerted the highest ratio of IFN-γ/IL-10 and vice versa in IL-10 group. A significant increase in NK cytotoxicity of 69 volunteers in the IFN-γ group was observed compared to the IL-10 group (n = 21) and control group (n = 10). The result also showed that L. paracasei BRAP01 and L. acidophilus AD300 were the two dominant inducers in IFN-γ group which yielded higher value of IFN-γ/IL-10 than the other 4 probiotics, while L. reuteri BR101 was the most effective agent on the ratio of IL-10/IFN-γ in the IL-10 group. Our finding highlighted the concept of personalized probiotics and also provided a good foundation to investigate the probiotics with NK activity.
Collapse
|
44
|
Franz CMAP, Huch M, Seifert S, Kramlich J, Bub A, Cho GS, Watzl B. Influence of a probiotic Lactobacillus casei strain on the colonisation with potential pathogenic streptococci and Staphylococcus aureus in the nasopharyngeal space of healthy men with a low baseline NK cell activity. Med Microbiol Immunol 2014; 204:527-38. [PMID: 25416927 DOI: 10.1007/s00430-014-0366-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/05/2014] [Indexed: 12/30/2022]
Abstract
The effect of a daily intake of the probiotic strain Lactobacillus casei Shirota (LcS) on the colonisation of pathogens, specifically streptococci and Staphylococcus aureus, in the nose and throat of healthy human volunteers with low natural killer cell activity, was investigated in a randomised and controlled intervention study. The study consisted of a 2-week run-in phase, followed by a 4-week intervention phase. The probiotic treatment group received a fermented milk drink with LcS, while the placebo group received an equally composed milk drink without the probiotic additive. To isolate potential pathogenic streptococci and Staph. aureus, samples from the pharynx, as well as of both middle nasal meati, were taken, once after the run-in phase and once at the end of the intervention phase. Isolated bacteria were identified as either Staph. aureus and α- or β-haemolytic streptococci in a polyphasic taxonomical approach based on phenotypic tests, amplified ribosomal DNA restriction analysis genotyping, and 16S rRNA gene sequencing of representative strains. Salivary secretory immunoglobulin A (SIgA) was used as marker of protective mucosal immunity to evaluate whether LcS treatment influenced SIgA production. No statistically significant effect could be determined for intervention with LcS on the incidence of Staph. aureus in the nasal space, Staph. aureus in the pharyngeal space or for β-haemolytic streptococci and Streptococcus pneumoniae in the pharyngeal space. Thus, the intervention did not influence the nasopharyngeal colonisation with Gram-positive potential pathogens. Production of salivary SIgA as a potential means of microbiota modulation was also not affected.
Collapse
Affiliation(s)
- Charles M A P Franz
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany,
| | | | | | | | | | | | | |
Collapse
|
45
|
Sanders ME, Klaenhammer TR, Ouwehand AC, Pot B, Johansen E, Heimbach JT, Marco ML, Tennilä J, Ross RP, Franz C, Pagé N, Pridmore RD, Leyer G, Salminen S, Charbonneau D, Call E, Lenoir-Wijnkoop I. Effects of genetic, processing, or product formulation changes on efficacy and safety of probiotics. Ann N Y Acad Sci 2014; 1309:1-18. [PMID: 24571253 DOI: 10.1111/nyas.12363] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Commercial probiotic strains for food or supplement use can be altered in different ways for a variety of purposes. Production conditions for the strain or final product may be changed to address probiotic yield, functionality, or stability. Final food products may be modified to improve flavor and other sensory properties, provide new product formats, or respond to market opportunities. Such changes can alter the expression of physiological traits owing to the live nature of probiotics. In addition, genetic approaches may be used to improve strain attributes. This review explores whether genetic or phenotypic changes, by accident or design, might affect the efficacy or safety of commercial probiotics. We highlight key issues important to determining the need to re-confirm efficacy or safety after strain improvement, process optimization, or product formulation changes. Research pinpointing the mechanisms of action for probiotic function and the development of assays to measure them are greatly needed to better understand if such changes have a substantive impact on probiotic efficacy.
Collapse
Affiliation(s)
- Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, Colorado
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fujita R, Iimuro S, Shinozaki T, Sakamaki K, Uemura Y, Takeuchi A, Matsuyama Y, Ohashi Y. Decreased duration of acute upper respiratory tract infections with daily intake of fermented milk: a multicenter, double-blinded, randomized comparative study in users of day care facilities for the elderly population. Am J Infect Control 2013; 41:1231-5. [PMID: 23890374 DOI: 10.1016/j.ajic.2013.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND There is insufficient evidence of preventive effect of probiotics on upper respiratory tract infections (URTIs) in an elderly population. METHODS We conducted a multicenter, double-blinded, randomized, placebo-controlled parallel group study. Elderly persons had participated who used day care at 4 facilities in Tokyo. We used fermented milks containing Lactobacillus casei strain Shirota (LcS) and placebo drinks as test drinks. RESULTS A total of 154 subjects was analyzed. The number of persons diagnosed with an acute URTIs was almost identical in both groups (LcS: 31, placebo: 32), whereas the number of acute URTIs events (LcS: 68, placebo: 51) and the symptom score (LcS: 425, placebo: 396) were both higher in the LcS group. Permutation tests performed using the total number of acute URTIs infection events/total days of observation and the total symptom score/total days of observation found no statistically significant difference respectively (P values of .89 and .64, respectively). Comparing the mean duration of infection per infection event found a shorter mean duration in the LcS group (LcS: 3.71 days, placebo: 5.40 days), and the difference was statistically significant. CONCLUSION The results suggest that fermented milk containing LcS probably reduces the duration of acute URTIs.
Collapse
Affiliation(s)
- Retsu Fujita
- Clinical Research Support Center, The University of Tokyo Hospital, Tokyo, Japan; Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Dysregulated circulating dendritic cell function in ulcerative colitis is partially restored by probiotic strain Lactobacillus casei Shirota. Mediators Inflamm 2013; 2013:573576. [PMID: 23970814 PMCID: PMC3732609 DOI: 10.1155/2013/573576] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Dendritic cells regulate immune responses to microbial products and play a key role in ulcerative colitis (UC) pathology. We determined the immunomodulatory effects of probiotic strain Lactobacillus casei Shirota (LcS) on human DC from healthy controls and active UC patients. METHODS Human blood DC from healthy controls (control-DC) and UC patients (UC-DC) were conditioned with heat-killed LcS and used to stimulate allogeneic T cells in a 5-day mixed leucocyte reaction. RESULTS UC-DC displayed a reduced stimulatory capacity for T cells (P < 0.05) and enhanced expression of skin-homing markers CLA and CCR4 on stimulated T cells (P < 0.05) that were negative for gut-homing marker β7. LcS treatment restored the stimulatory capacity of UC-DC, reflecting that of control-DC. LcS treatment conditioned control-DC to induce CLA on T cells in conjunction with β7, generating a multihoming profile, but had no effects on UC-DC. Finally, LcS treatment enhanced DC ability to induce TGFβ production by T cells in controls but not UC patients. CONCLUSIONS We demonstrate a systemic, dysregulated DC function in UC that may account for the propensity of UC patients to develop cutaneous manifestations. LcS has multifunctional immunoregulatory activities depending on the inflammatory state; therapeutic effects reported in UC may be due to promotion of homeostasis.
Collapse
|
48
|
Inoue S, Suzuki-Utsunomiya K, Komori Y, Kamijo A, Yumura I, Tanabe K, Miyawaki A, Koga K. Fermentation of non-sterilized fish biomass with a mixed culture of film-forming yeasts and lactobacilli and its effect on innate and adaptive immunity in mice. J Biosci Bioeng 2013; 116:682-7. [PMID: 23810659 DOI: 10.1016/j.jbiosc.2013.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/21/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
Non-sterilized fish waste containing fish bones was fermented using combined starter cultures of film-forming yeast (Candida ethanolica) and lactic acid bacteria (LAB; Lactobacillus casei and Lactobacillus rhamnosus) in order to obtain a liquefied fermented broth without spoiling. During the entire fermentation, the number of LAB cells was maintained at a high level (6 × 10(8)-5 × 10(7) cells/ml). Although the number of general bacteria was 10(6)cell/ml after adding non-sterilized fish biomass, its growth was suppressed to be 1-3 × 10(4) cells/ml. The entire biomass had completely liquefied and the fermented broth contained all 20 α-amino acids composed of protein and also various kinds of minerals in abundance. The weight of mice group fed the fermented broth content feed (sample feed) for 31 days significantly increased compared with that fed no broth feed (control feed) (21.37 g vs 20.76 g (p < 0.05). No abnormal behavior and appearance were observed. All internal organs (the heart, the liver, the lung, the intestines, and the spleen) of both groups were confirmed to be normal by visual observation. In peripheral blood, the percentages of NK cells and CD8+ T cells of the mice in the sample feed group increased significantly relative to those in the control feed group (NK cells: 19% vs 11%, CD8+ T cells: 9% vs 5%, p < 0.05). In the spleen, the percentage of NK cells in the sample feed group also increased significantly compared to that in the control feed group (p < 0.05). The fermented fish biomass is expected to be effective for innate and adaptive immunity and thus fit for animal feed.
Collapse
Affiliation(s)
- Shigeaki Inoue
- Institute of Innovative Science and Technology, Tokai University, School of Medicine, Shimokasuya 143, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bernardeau M, Vernoux JP. Overview of differences between microbial feed additives and probiotics for food regarding regulation, growth promotion effects and health properties and consequences for extrapolation of farm animal results to humans. Clin Microbiol Infect 2013; 19:321-30. [DOI: 10.1111/1469-0691.12130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 12/28/2022]
|