1
|
Lv R, Liu B, Jiang Z, Zhou R, Liu X, Lu T, Bao Y, Huang C, Zou G, Zhang Z, Lu L, Yin Q. Intermittent fasting and neurodegenerative diseases: Molecular mechanisms and therapeutic potential. Metabolism 2024; 164:156104. [PMID: 39674569 DOI: 10.1016/j.metabol.2024.156104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Neurodegenerative disorders are straining public health worldwide. During neurodegenerative disease progression, aberrant neuronal network activity, bioenergetic impairment, adaptive neural plasticity impairment, dysregulation of neuronal Ca2+ homeostasis, oxidative stress, and immune inflammation manifest as characteristic pathological changes in the cellular milieu of the brain. There is no drug for the treatment of neurodegenerative disorders, and therefore, strategies/treatments for the prevention or treatment of neurodegenerative disorders are urgently needed. Intermittent fasting (IF) is characterized as an eating pattern that alternates between periods of fasting and eating, requiring fasting durations that vary depending on the specific protocol implemented. During IF, depletion of liver glycogen stores leads to the production of ketone bodies from fatty acids derived from adipocytes, thereby inducing an altered metabolic state accompanied by cellular and molecular adaptive responses within neural networks in the brain. At the cellular level, adaptive responses can promote the generation of synapses and neurons. At the molecular level, IF triggers the activation of associated transcription factors, thereby eliciting the expression of protective proteins. Consequently, this regulatory process governs central and peripheral metabolism, oxidative stress, inflammation, mitochondrial function, autophagy, and the gut microbiota, all of which contribute to the amelioration of neurodegenerative disorders. Emerging evidence suggests that weight regulation significantly contributes to the neuroprotective effects of IF. By alleviating obesity-related factors such as blood-brain barrier dysfunction, neuroinflammation, and β-amyloid accumulation, IF enhances metabolic flexibility and insulin sensitivity, further supporting its potential in mitigating neurodegenerative disorders. The present review summarizes animal and human studies investigating the role and underlying mechanisms of IF in physiology and pathology, with an emphasis on its therapeutic potential. Furthermore, we provide an overview of the cellular and molecular mechanisms involved in regulating brain energy metabolism through IF, highlighting its potential applications in neurodegenerative disorders. Ultimately, our findings offer novel insights into the preventive and therapeutic applications of IF for neurodegenerative disorders.
Collapse
Affiliation(s)
- Renjun Lv
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan 250014, China
| | - Ziying Jiang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Runfa Zhou
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehlstr. 13-17, Mannheim 68167, Germany
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Chunxia Huang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Guichang Zou
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Zongyong Zhang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
2
|
Bianco A, Russo F, Prospero L, Riezzo G, Franco I, D'Attoma B, Ignazzi A, Verrelli N, Bagnato CB, Goscilo F, Mallardi D, Linsalata M, Bonfiglio C, Pesole PL, Ferro A. Beyond Nutritional Treatment: Effects of Fitwalking on Physical Capacity and Intestinal Barrier Integrity in BMI-Stratified IBS Patients. Nutrients 2024; 16:4181. [PMID: 39683574 DOI: 10.3390/nu16234181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Irritable bowel syndrome (IBS) and obesity are associated with intestinal barrier alterations that result in low-grade inflammation. Zonulin and intestinal fatty acid-binding protein (I-FABP) assess gut barrier health, while urinary indican concentrations reflect dysbiosis in the small intestine. Physical activity, such as Fitwalking, aids weight management and improves intestinal permeability. This study assesses the impact of a 12-week Fitwalking program on intestinal barrier health in IBS patients categorized by body mass index (BMI). Methods: Fifty-seven mild IBS patients were categorized as obese (OB = 18), overweight (OW = 24), or normal weight (NW = 15) and assigned to a walking group. Participants walked thrice weekly at moderate intensity for 60 min per session, using the specific Fitwalking technique, supervised by staff. Results: No significant changes in biochemical or anthropometric variables were observed. However, Fitwalking improved the Global Physical Capacity Score (GPCS) by 46%, 48%, and 24% in the NW, OW, and OB groups. Post-intervention, serum zonulin levels notably decreased in OB individuals, suggesting reduced inflammation. OW patients unexpectedly showed increased fecal zonulin levels. OB participants experienced decreased urinary indican levels. Zonulin levels positively correlated with BMI and inversely with GPCS. Conclusions: Regular exercise benefits the intestinal barrier, especially in obese IBS patients. Monitoring zonulin and I-FABP may offer insights into gut barrier integrity and GI injury severity. Future studies should explore longer intervention durations, larger populations, and advanced diagnostic tools to validate findings and investigate the mechanisms behind exercise-induced changes in intestinal permeability and gut health markers.
Collapse
Affiliation(s)
- Antonella Bianco
- Laboratory of Movement and Wellness, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, BA, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, BA, Italy
| | - Laura Prospero
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, BA, Italy
| | - Giuseppe Riezzo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, BA, Italy
| | - Isabella Franco
- Laboratory of Movement and Wellness, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, BA, Italy
| | - Benedetta D'Attoma
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, BA, Italy
| | - Antonia Ignazzi
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, BA, Italy
| | - Nicola Verrelli
- Laboratory of Movement and Wellness, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, BA, Italy
| | - Claudia Beatrice Bagnato
- Laboratory of Movement and Wellness, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, BA, Italy
| | - Francesco Goscilo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, BA, Italy
| | - Domenica Mallardi
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, BA, Italy
| | - Michele Linsalata
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, BA, Italy
| | - Caterina Bonfiglio
- Data Science Unit, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, BA, Italy
| | - Pasqua Letizia Pesole
- Core Facility Biobank, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, BA, Italy
| | - Annalisa Ferro
- Laboratory of Clinical Pathology, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, BA, Italy
| |
Collapse
|
3
|
Charoensiddhi S, Kovitvadhi A, Sukmak R, Manatchaiworakul W, Sae-Tan S. Mung bean seed coat extract modulates gut microbiota and inflammatory markers in high-fat fed rats. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2299-2309. [PMID: 39431187 PMCID: PMC11486875 DOI: 10.1007/s13197-024-05995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 10/22/2024]
Abstract
Gut microbiota dysbiosis is associated with inflammation and many chronic diseases. The present study investigated the efficacy of mung bean seed coat extract (MSE) on gut microbiome modulation and the attenuation of inflammatory markers in high-fat diet (HFD)-fed rats. The high-throughput sequencing of the 16S rRNA showed the low dose (0.3%) of MSE improved HFD-induced gut microbiota dysbiosis and enhanced the gut microbiota richness. The low dose of MSE showed a significant increase in the abundance of beneficial bacteria, particularly Blautia and Lactobacillus, and decreased abundance of potentially pathogenic bacteria (Escherichia-Shigella). The low dose of MSE also significantly decreased IL-1β mRNA expression and tended to lower IL-6, TNF-α, and LPS levels. In conclusion, this study suggested that the MSE could modulate gut microbiota and reduce inflammatory responses in HFD-fed rats and this indicated the potential health properties of mung bean seed coat. This research provides informative support for the application of mung bean seed coat as functional ingredients. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05995-1.
Collapse
Affiliation(s)
- Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900 Thailand
| | - Rachrapee Sukmak
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900 Thailand
| | | | - Sudathip Sae-Tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
| |
Collapse
|
4
|
Chen WB, Hu GA, Dong BC, Sun HY, Lu DZ, Ru MY, Yu YL, Wang H, Wei B. Insights into the modulatory effects of host-gut microbial xanthine co-metabolism on high-fat diet-fed mice. Biochem Pharmacol 2024; 230:116596. [PMID: 39481656 DOI: 10.1016/j.bcp.2024.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Gut microbiota-mediated endobiotic and xenobiotic metabolism play crucial roles in disease progression, and drug therapy/toxicity. Our recent study suggested that gut microbiota-mediated xanthine metabolism is correlated with resistance to high-fat diet (HFD)-induced obesity. Here, we explored the role of host-gut microbial xanthine co-metabolism in the prevention and treatment of HFD-induced obesity by orally administration of Bifidobacterium longum, xanthine, and a xanthine oxidase inhibitor (topiroxostat). The findings indicate that xanthine exhibits a significantly protective effect against HFD-induced obesity. While B. longum, xanthine, and topiroxostat did not alleviate the dysbiosis of the weight and glucose metabolism of HFD-induced obesity (DIO) and obesity resistance (DIR) mice. 16S rRNA sequencing analyses revealed that treatments with B. longum significantly altered gut microbiota composition in HFD-fed and DIO mice. Microbial interaction network analysis revealed several Bacteroidetes species, such as Amulumruptor caecigallinarius and Muribaculum intestinale, as keystone taxa that were notably enriched by B. longum. Untargeted metabolomics analysis implied that xanthine might serve as a crucial molecule in regulating body weight, exerting a preventive effect on HFD-induced obesity. This study offers new perspectives on the influence of host-gut microbial xanthine co-metabolism on HFD-fed mice and emphasizes the promising role of xanthine in promoting weight loss.
Collapse
Affiliation(s)
- Wei-Bing Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gang-Ao Hu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bing-Cheng Dong
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huai-Ying Sun
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dong-Ze Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meng-Ying Ru
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan-Lei Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China; Binjiang Institute of Artificial Intelligence, ZJUT, Hangzhou 310056, China.
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China; Binjiang Institute of Artificial Intelligence, ZJUT, Hangzhou 310056, China.
| |
Collapse
|
5
|
Arrari F, Ortiz-Flores RM, Lhamyani S, Garcia-Fuentes E, Jabri MA, Sebai H, Bermudez-Silva FJ. Protective Effects of Spirulina Against Lipid Micelles and Lipopolysaccharide-Induced Intestinal Epithelium Disruption in Caco-2 Cells: In Silico Molecular Docking Analysis of Phycocyanobilin. Nutrients 2024; 16:4074. [PMID: 39683467 DOI: 10.3390/nu16234074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Damage to intestinal epithelial cells is present in obesity and other diseases because of inflammatory and oxidative processes. This damage compromises the gastrointestinal barrier, killing enterocytes, altering intestinal permeability, and eliciting abnormal immune responses that promote chronic inflammation. Recent evidence shows that spirulina is a potent natural agent with antioxidant and anti-inflammatory properties. OBJECTIVES This study was conducted to evaluate the effect of spirulina aqueous extract (SPAE) on the alterations of the intestinal epithelium induced by lipid micelles (LMs) and/or inflammation induced by lipopolysaccharides (LPSs) in the Caco-2 cell line. METHODS In the current research, we assessed the protective actions of SPAE against cytotoxicity, oxidative stress, inflammation, and epithelial barrier perturbation by using an in vitro model, the intestinal Caco-2 cells, treated with LPSs and/or LMs. We also performed an in silico molecular docking analysis with spirulina's bioactive compound, phycocyanobilin. RESULTS Our results showed that SPAE has no cytotoxic effect on Caco-2 cells. On the contrary, it improved cell viability and exhibited anti-inflammatory and antioxidant actions. SPAE also protected against endoplasmic reticulum stress and tight junction proteins, thus improving the epithelial barrier. The in silico study revealed a strong binding affinity of the phycocyanobilin compound with human SOD and NADPH oxidase and a good binding affinity towards COX-2 and iNOS. CONCLUSIONS Taken together, these findings demonstrate the beneficial actions of SPAE on Caco-2 cells, suggesting it may be useful in preserving the epithelial intestinal barrier in human conditions involving oxidative stress and inflammation such as obesity.
Collapse
Affiliation(s)
- Fatma Arrari
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Rodolfo-Matias Ortiz-Flores
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Regional Universitario de Malaga, UGC Endocrinología y Nutricion, 29009 Malaga, Spain
| | - Said Lhamyani
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Regional Universitario de Malaga, UGC Endocrinología y Nutricion, 29009 Malaga, Spain
| | - Eduardo Garcia-Fuentes
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Virgen de la Victoria, UGC de Aparato Digestivo, 29010 Malaga, Spain
| | - Mohamed-Amine Jabri
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Francisco-Javier Bermudez-Silva
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Regional Universitario de Malaga, UGC Endocrinología y Nutricion, 29009 Malaga, Spain
| |
Collapse
|
6
|
Zeng F, He S, Sun Y, Li X, Chen K, Wang H, Man S, Lu F. Abnormal enterohepatic circulation of bile acids caused by fructooligosaccharide supplementation along with a high-fat diet. Food Funct 2024; 15:11432-11443. [PMID: 39450588 DOI: 10.1039/d4fo03353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Fructooligosaccharide (FOS) is a widely used prebiotic and health food ingredient, but few reports have focused on its risk to specific populations. Recently, it has been shown that the intake of inulin, whose main component is FOS, can lead to cholestasis and induce hepatocellular carcinoma in mice fed a high-fat diet (HFD); however, the molecular mechanism behind this is not clear. This study found that FOS supplementation induced abnormal enterohepatic circulation of bile acids in HFD-fed mice, which showed a significant increase in bile acid levels in the blood and liver, especially the secondary bile acids with high cytotoxicity, such as deoxycholic acid. The abundance of Clostridium, Bacteroides, and other bacteria in the gut microbiota also increased significantly. The analysis of the signaling pathway involved in regulating the enterohepatic circulation of bile acids showed that the weakening of the feedback inhibition of FXR-FGF15 and FXR-SHP signalling pathways possibly induced the enhancement of CYP7A1 activity and bile acid reabsorption in the blood and liver and led to an increase in bile acid synthesis and accumulation in the liver, increasing the risk of cholestasis. This study showed the risk of health damage caused by FOS supplementation in HFD-fed mice, which is caused by gut microbiota dysfunction and abnormal enterohepatic circulation of bile acids. Therefore, the application of FOS should be standardized to avoid the health risks of unreasonable FOS use in specific populations.
Collapse
Affiliation(s)
- Fang Zeng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Shi He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Ying Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Xue Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Kaiyang Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Shuli Man
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| |
Collapse
|
7
|
Lu C, Zhu Y. The dietary inflammatory index and asthma prevalence: a cross-sectional analysis from NHANES. Front Nutr 2024; 11:1485399. [PMID: 39650711 PMCID: PMC11622817 DOI: 10.3389/fnut.2024.1485399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024] Open
Abstract
Background Inflammation is a key factor in the development of asthma, and diet significantly influences inflammatory responses. This study examines the relationship between the Dietary Inflammatory Index (DII) and asthma prevalence. Methods We conducted a cross-sectional analysis using data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. Demographic details, anthropometric measurements, dietary habits, lifestyle factors, and asthma status were recorded for all participants. Multivariable logistic regression was utilized to assess the relationship between DII and asthma prevalence. Additionally, restricted cubic spline (RCS) analysis was employed to explore the nonlinearity and dose-response relationship between DII and asthma risk. Subgroup analyses were stratified by gender, age, race, body mass index (BMI), poverty income ratio (PIR), education, smoking status, alcohol use, and family medical history to dissect the association between DII and asthma across diverse populations. Results The analysis included 37,283 adults from NHANES. After adjusting for potential confounders in the multivariable logistic regression model, a significant positive association was identified between DII and asthma (OR, 95% CI: 1.05, 1.02-1.09, per 1 SD increase). The RCS analysis revealed a nonlinear association (p for nonlinearity = 0.0026), with an inflection point at 1.366, beyond which an increase in DII was significantly associated with asthma risk. Furthermore, the stratified analyses indicated a positive association between DII and asthma in the majority of subgroups. Conclusion The findings underscore a significant and nonlinear association between DII and asthma. To enhance asthma prevention and management, greater emphasis should be placed on modulating dietary-induced inflammation.
Collapse
Affiliation(s)
- Chuansen Lu
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yike Zhu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
8
|
Ghosh S, Ghosh AJ, Islam R, Sarkar S, Saha T. Lactobacillus plantarum KAD protects against high-fat diet-induced hepatic complications in Swiss albino mice: Role of inflammation and gut integrity. PLoS One 2024; 19:e0313548. [PMID: 39531444 PMCID: PMC11556687 DOI: 10.1371/journal.pone.0313548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Hepatic complications are the major health issues associated with dietary intake of calorie saturated food e.g. high-fat diet (HFD). Recent studies have revealed the beneficial effects of probiotics in HFD fed mice with hepatic complications. Some probiotic Lactic acid bacteria (LAB) e.g. Lactobacillus plantarum have drawn our attention in managing hepatic complications. Here, we aim to elucidate the protective effects of L. plantarum KAD strain, isolated from ethnic fermented food 'Kinema' in HFD-fed mice as, a preventive approach. Eighteen Swiss albino mice were equally divided into 3 groups: Normal Diet (ND), negative control (HFD), and HFD-fed with oral L. plantarum KAD supplementation (LP). All the experimental groups were subjected to specific diet according to grouping for eight weeks. After completion of the regime, subjects were anesthetized and sacrificed. Organs, blood, and fecal samples were collected and stored appropriately. Physical indices, including body weight gain, organ co-efficients were calculated along with assessment of glycemic, lipidomic, hepatic, oxidative stress, inflammatory, and histological parameters. Gut microbiota analysis was performed using 16s V3-V4 fecal metagenomic profiling, and sequencing were done using Illumina Miseq system. Oral administration of L. plantarum KAD is found to significantly (p<0.05) restore metabolic health by normalizing glycemic, lipidomic, hepatic parameters, oxidative stress and inflammatory parameters. Moreover, LP group (7.08±0.52 mg/g) showed significantly (p<0.001) decreased hepatic triglyceride level compared to HFD group (20.07±1.32 mg/g). L. plantarum KAD improved the adipocytic, and colonic histomorphology with significantly better scoring pattern. LP group (1.83±0.41) showed a significantly (p<0.001) reduced hepatic score compared to negative control group (5.00±0.63), showing reduced hepatosteatosis, and immune infiltration. The strain modulated gut health by altering its microbial composition positively towards normalization. In conclusion, the results of the experiment suggest that prophylactic L. plantarum KAD administration has beneficial effects on the onset of HFD induced hepatic complications in mice. Further studies are needed, on this strain for its clinical use as dietary supplement.
Collapse
Affiliation(s)
- Supriyo Ghosh
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Siliguri, West Bengal, India
| | - Amlan Jyoti Ghosh
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Siliguri, West Bengal, India
| | - Rejuan Islam
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Siliguri, West Bengal, India
| | - Sagar Sarkar
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Siliguri, West Bengal, India
- Department of Zoology, Siliguri College, Siliguri, West Bengal, India
| | - Tilak Saha
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Siliguri, West Bengal, India
| |
Collapse
|
9
|
Dassoff ES, Hamad S, Campagna E, Thilakarathna SH, Michalski MC, Wright AJ. Influence of Emulsion Lipid Droplet Crystallinity on Postprandial Endotoxin Transporters and Atherogenic And Inflammatory Profiles in Healthy Men - A Randomized Double-Blind Crossover Acute Meal Study. Mol Nutr Food Res 2024; 68:e2400365. [PMID: 39388527 DOI: 10.1002/mnfr.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/15/2024] [Indexed: 10/12/2024]
Abstract
SCOPE Consumption of high-fat meals is associated with increased endotoxemia, inflammation, and atherogenic profiles, with repeated postprandial responses suggested as contributors to chronically elevated risk factors. However, effects of lipid solid versus liquid state specifically have not been investigated. METHODS AND RESULTS This exploratory randomized crossover study tests the impact of lipid crystallinity on plasma levels of endotoxin transporters (lipopolysaccharide [LPS] binding protein [LBP] and soluble cluster of differentiation 14 [sCD14]) and select proinflammatory and atherogenic markers (tumor necrosis factor-alpha [TNF-α], C-reactive protein [CRP], interleukin-1-beta [IL-1β], interferon-gamma [IFN-γ], interleukin-6 [IL-6], soluble intercellular adhesion molecule [sICAM], soluble vascular cell adhesion molecule [sVCAM], monocyte chemoattractant protein-1 [MCP-1/CCL2], plasminogen activator inhibitor-1 [PAI-1], and fibrinogen). Fasted healthy men (n = 14, 28 ± 5.5 years, 24.1 ± 2.6 kg m-2) consumed two 50 g palm stearin oil-in-water emulsions tempered to contain either liquid or crystalline lipid droplets at 37 °C on separate occasions with blood sampling at 0, 2-, 4-, and 6-h post-meal. Timepoint data, area under the curve, and peak concentration values are compared. Overall, no treatment effects are seen (p > 0.05). There are significant effects of time, with values decreasing from baseline, for TNF-α, MCP-1/CCL2, PAI-1, and fibrinogen (p < 0.05). CONCLUSION Responder analysis pointed to differential treatment effects associated with some participant baseline characteristics but, overall, palm-stearin emulsion droplet crystallinity does not acutely affect plasma endotoxin transporters nor select inflammatory and atherogenic markers.
Collapse
Affiliation(s)
- Erik S Dassoff
- Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Samar Hamad
- Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Elaina Campagna
- Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Surangi H Thilakarathna
- Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Marie-Caroline Michalski
- INRAE, CarMeN Laboratory, Inserm, Univ-Lyon, Université Claude Bernard Lyon, Centre de Recherche en Nutrition Humain Rhône-Alpes, Pierre Bénite, France
| | - Amanda J Wright
- Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Zein L, Grossmann J, Swoboda H, Borgel C, Wilke B, Awe S, Nist A, Stiewe T, Stehling O, Freibert SA, Adhikary T, Chung HR. Haptoglobin buffers lipopolysaccharides to delay activation of NFκB. Front Immunol 2024; 15:1401527. [PMID: 39416789 PMCID: PMC11479958 DOI: 10.3389/fimmu.2024.1401527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
It has remained yet unclear which soluble factors regulate the anti-inflammatory macrophage phenotype observed in both homeostasis and tumourigenesis. We show here that haptoglobin, a major serum protein with elusive immunoregulatory properties, binds and buffers bacterial lipopolysaccharides to attenuate activation of NFκB in macrophages. Haptoglobin binds different lipopolysaccharides with low micromolar affinities. Given its abundance, haptoglobin constitutes a buffer for serum-borne lipopolysaccharides, shielding them to safeguard against aberrant inflammatory reactions by reducing the amount of free lipopolysaccharides available for binding to TLR4. Concordantly, NFκB activation by haptoglobin-associated lipopolysaccharides was markedly delayed relative to stimulation with pure lipopolysaccharide. Our findings warrant evaluation of therapeutic benefits of haptoglobin for inflammatory conditions and re-evaluation of purification strategies. Finally, they allow to elucidate mechanisms of enhanced immunosuppression by oncofetal haptoglobin.
Collapse
Affiliation(s)
- Laura Zein
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Josina Grossmann
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Helena Swoboda
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Christina Borgel
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Bernhard Wilke
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Stephan Awe
- Institute for Molecular Biology and Tumor Research, Biomedical Research Center, Philipps University Marburg, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Oliver Stehling
- Protein Biochemistry and Spectroscopy Core Facility, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Institute of Cytobiology, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Sven-Andreas Freibert
- Protein Biochemistry and Spectroscopy Core Facility, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Institute of Cytobiology, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Till Adhikary
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
11
|
Stappenbeck F, Wang F, Sinha SK, Hui ST, Farahi L, Mukhamedova N, Fleetwood A, Murphy AJ, Sviridov D, Lusis AJ, Parhami F. Anti-Inflammatory Oxysterol, Oxy210, Inhibits Atherosclerosis in Hyperlipidemic Mice and Inflammatory Responses of Vascular Cells. Cells 2024; 13:1632. [PMID: 39404395 PMCID: PMC11475996 DOI: 10.3390/cells13191632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND AIMS We previously reported that Oxy210, an oxysterol-based drug candidate, exhibits antifibrotic and anti-inflammatory properties. We also showed that, in mice, it ameliorates hepatic hallmarks of non-alcoholic steatohepatitis (NASH), including inflammation and fibrosis, and reduces adipose tissue inflammation. Here, we aim to investigate the effects of Oxy210 on atherosclerosis, an inflammatory disease of the large arteries that is linked to NASH in epidemiologic studies, shares many of the same risk factors, and is the major cause of mortality in people with NASH. METHODS Oxy210 was studied in vivo in APOE*3-Leiden.CETP mice, a humanized mouse model for both NASH and atherosclerosis, in which symptoms are induced by consumption of a high fat, high cholesterol "Western" diet (WD). Oxy210 was also studied in vitro using two cell types that are important in atherogenesis: human aortic endothelial cells (HAECs) and macrophages treated with atherogenic and inflammatory agents. RESULTS Oxy210 reduced atherosclerotic lesion formation by more than 50% in hyperlipidemic mice fed the WD for 16 weeks. This was accompanied by reduced plasma cholesterol levels and reduced macrophages in lesions. In HAECs and macrophages, Oxy210 reduced the expression of key inflammatory markers associated with atherosclerosis, including interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), vascular cell adhesion molecule-1 (VCAM-1), and E-Selectin. In addition, cholesterol efflux was significantly enhanced in macrophages treated with Oxy210. CONCLUSIONS These findings suggest that Oxy210 could be a drug candidate for targeting both NASH and atherosclerosis, as well as chronic inflammation associated with the manifestations of metabolic syndrome.
Collapse
Affiliation(s)
| | - Feng Wang
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| | - Satyesh K. Sinha
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Simon T. Hui
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Lia Farahi
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Nigora Mukhamedova
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew Fleetwood
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew J. Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Farhad Parhami
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| |
Collapse
|
12
|
Kim B, Ronaldo R, Kweon BN, Yoon S, Park Y, Baek JH, Lee JM, Hyun CK. Mesenchymal Stem Cell-Derived Exosomes Attenuate Hepatic Steatosis and Insulin Resistance in Diet-Induced Obese Mice by Activating the FGF21-Adiponectin Axis. Int J Mol Sci 2024; 25:10447. [PMID: 39408777 PMCID: PMC11476820 DOI: 10.3390/ijms251910447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Exosomes derived from mesenchymal stem cells have shown promise in treating metabolic disorders, yet their specific mechanisms remain largely unclear. This study investigates the protective effects of exosomes from human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs) against adiposity and insulin resistance in high-fat diet (HFD)-induced obese mice. HFD-fed mice treated with hWJMSC-derived exosomes demonstrated improved gut barrier integrity, which restored immune balance in the liver and adipose tissues by reducing macrophage infiltration and pro-inflammatory cytokine expression. Furthermore, these exosomes normalized lipid metabolism including lipid oxidation and lipogenesis, which alleviate lipotoxicity-induced endoplasmic reticulum (ER) stress, thereby decreasing fat accumulation and chronic tissue inflammation in hepatic and adipose tissues. Notably, hWJMSC-derived exosomes also promoted browning and thermogenic capacity of adipose tissues, which was linked to reduced fibroblast growth factor 21 (FGF21) resistance and increased adiponectin production. This process activated the AMPK-SIRT1-PGC-1α pathway, highlighting the role of the FGF21-adiponectin axis. Our findings elucidate the molecular mechanisms through which hWJMSC-derived exosomes counteract HFD-induced metabolic dysfunctions, supporting their potential as therapeutic agents for metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang 37554, Gyungbuk, Republic of Korea
| |
Collapse
|
13
|
Li F, Sun X, Gao X, Zhao S, Tavakoli S, Du Z, Wei Y. Anti-colorectal cancer activity of mannatide from spent brewer's yeast by regulating immune cells and immune function in the tumor microenvironment. Int J Biol Macromol 2024; 280:135531. [PMID: 39270895 DOI: 10.1016/j.ijbiomac.2024.135531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Chemotherapy and radiotherapy are generally accompanied by adverse effects, which reduce tolerance to cancer therapies. Immunonutrition improves the clinical outcomes of cancer patients. Hence, natural immunomodulator is therefore considered as a favorable alternative. This study aimed to elucidate the anti-colorectal cancer (CRC) effect of mannatide (MTE) from the immunostimulatory perspective. MTE (concentrations≥1200 μg/mL) significantly inhibited HT-29 cells viabilities compared with the 5-fluorouracil (5-FU) group and all predetermined concentrations of MTE promoted the proliferation of RAW264.7 (p < 0.01). Moreover, MTE treatment suppressed tumor growth, decreased leukocyte and platelet count, and regulated immune organ indexes compared with the model group. In comparison of Model and 5-FU groups, MTE treatment reshaped tumor-associated macrophages (TAMs) from alternatively activated macrophages (M2)-like into classical activated macrophages (M1)-like phenotype. Also, it increased the proportion of CD8+ and CD4+ T cells accompanied by secreting pro-inflammatory cytokines (interferon (IFN)-γ and tumor necrosis factor (TNF)-α) and decreasing pro-inflammatory cytokines (interleukin (IL)-4, interleukin (IL)-6, arginine (Arg)-1, and cyclooxygenase (COX)-2) to reduce immunosuppression. Moreover, MTE-administrated alleviated intestinal mucositis and improved the prognostic indexes compared with the 5-FU group. Notably, the ability of low-dose MTE to regulate immune cells and the function of the tumor microenvironment was higher than that of high-dose. Generally, MTE as an immunomodulator presents great potential to strengthen anti-CRC activity.
Collapse
Affiliation(s)
- Fei Li
- College of Life Science, Qingdao University, Qingdao 266071, China; Shandong Luhua Group Co., Ltd., Laiyang 265200, China
| | - Xiaopeng Sun
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Xiang Gao
- College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Shuang Zhao
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Samad Tavakoli
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zubo Du
- Shandong Luhua Group Co., Ltd., Laiyang 265200, China.
| | - Yuxi Wei
- College of Life Science, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
14
|
Dora D, Szőcs E, Soós Á, Halasy V, Somodi C, Mihucz A, Rostás M, Mógor F, Lohinai Z, Nagy N. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol 2024; 15:1434804. [PMID: 39301033 PMCID: PMC11410641 DOI: 10.3389/fimmu.2024.1434804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Mógor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
He M, Shi J, Wu C, Xu YJ, Liu Y. Integrating Lipidomics, Metabolomics, and Network Pharmacology to Reveal the Mechanism of Cannabidiol against Inflammation in High-Fat, High-Cholesterol Diet-Induced Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19246-19256. [PMID: 39150414 DOI: 10.1021/acs.jafc.4c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Inflammation plays a critical role in the development of numerous diseases. Cannabidiol (CBD), found in hemp, exhibits significant pharmacological activities. Accumulating evidence suggests that CBD has anti-inflammatory and cardiovascular protection effects, but the potential mechanisms require further exploration. In this study, we aimed to reveal the mechanisms of CBD against high-fat, high-cholesterol (HFC) diet-induced inflammation combining metabolomics with network pharmacology. First, plasma lipidomics results indicated that oxidized lipids could serve as potential biomarkers for HFC diet-induced inflammation, and CBD reversed the elevated levels of oxidized lipids. The HFC diet was also found to enhance intestinal permeability, facilitating the entry of lipopolysaccharides (LPSs) into the circulatory system and subsequently increasing systemic inflammation. Additionally, cell metabolomic results indicated that CBD could reverse 10 important differential metabolites in LPS-induced RAW 264.7 cells. Using network pharmacology, we identified 49 core targets, and enrichment analysis revealed that arachidonic acid was the most significantly affected by CBD, which was closely associated with inflammation. Further integrated analysis focused on three key targets, including PTGS2, ALOX5, and ALOX15. Molecular docking showed high affinities between key targets and CBD, and qPCR further demonstrated that CBD could reverse the mRNA expression of these key targets in RAW 264.7 cells. Collectively, this finding integrates lipidomics and metabolomics with network pharmacology to elucidate the anti-inflammatory effects of CBD and validates key therapeutic targets.
Collapse
Affiliation(s)
- Mengxue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Cong Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Li Z, Wan M, Wang M, Duan J, Jiang S. Modulation of gut microbiota on intestinal permeability: A novel strategy for treating gastrointestinal related diseases. Int Immunopharmacol 2024; 137:112416. [PMID: 38852521 DOI: 10.1016/j.intimp.2024.112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Accumulating evidence emphasizes the critical reciprocity between gut microbiota and intestinal barrier function in maintaining the gastrointestinal homeostasis. Given the fundamental role caused by intestinal permeability, which has been scrutinized as a measurable potential indicator of perturbed barrier function in clinical researches, it seems not surprising that recent decades have been marked by augmented efforts to determine the interaction between intestinal microbes and permeability of the individual. However, despite the significant progress in characterizing intestinal permeability and the commensal bacteria in the intestine, the mechanisms involved are still far from being thoroughly revealed. In the present review, based on multiomic methods, high-throughput sequencing and molecular biology techniques, the impacts of gut microbiota on intestinal permeability as well as their complex interaction networks are systematically summarized. Furthermore, the diseases related to intestinal permeability and main causes of changes in intestinal permeability are briefly introduced. The purpose of this review is to provide a novel prospection to elucidate the correlation between intestinal microbiota and permeability, and to explore a promising solution for diagnosis and treatment of gastrointestinal related diseases.
Collapse
Affiliation(s)
- Zhuotong Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Meiyu Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Mingyang Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| |
Collapse
|
17
|
Jacob T, Sindhu S, Hasan A, Malik MZ, Arefanian H, Al-Rashed F, Nizam R, Kochumon S, Thomas R, Bahman F, Shenouda S, Wilson A, Akther N, Al-Roub A, Abukhalaf N, Albeloushi S, Abu-Farha M, Al Madhoun A, Alzaid F, Thanaraj TA, Koistinen HA, Tuomilehto J, Al-Mulla F, Ahmad R. Soybean oil-based HFD induces gut dysbiosis that leads to steatosis, hepatic inflammation and insulin resistance in mice. Front Microbiol 2024; 15:1407258. [PMID: 39165573 PMCID: PMC11334085 DOI: 10.3389/fmicb.2024.1407258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
High-fat diets (HFDs) shape the gut microbiome and promote obesity, inflammation, and liver steatosis. Fish and soybean are part of a healthy diet; however, the impact of these fats, in the absence of sucrose, on gut microbial dysbiosis and its association with liver steatosis remains unclear. Here, we investigated the effect of sucrose-free soybean oil-and fish oil-based high fat diets (HFDs) (SF-Soy-HFD and SF-Fish-HFD, respectively) on gut dysbiosis, obesity, steatosis, hepatic inflammation, and insulin resistance. C57BL/6 mice were fed these HFDs for 24 weeks. Both diets had comparable effects on liver and total body weights. But 16S-rRNA sequencing of the gut content revealed induction of gut dysbiosis at different taxonomic levels. The microbial communities were clearly separated, showing differential dysbiosis between the two HFDs. Compared with the SF-Fish-HFD control group, the SF-Soy-HFD group had an increased abundance of Bacteroidetes, Firmicutes, and Deferribacteres, but a lower abundance of Verrucomicrobia. The Clostridia/Bacteroidia (C/B) ratio was higher in the SF-Soy-HFD group (3.11) than in the SF-Fish-HFD group (2.5). Conversely, the Verrucomicrobiacae/S24_7 (also known as Muribaculaceae family) ratio was lower in the SF-Soy-HFD group (0.02) than that in the SF-Fish-HFD group (0.75). The SF-Soy-HFD group had a positive association with S24_7, Clostridiales, Allobaculum, Coriobacteriaceae, Adlercreutzia, Christensenellaceae, Lactococcus, and Oscillospira, but was related to a lower abundance of Akkermansia, which maintains gut barrier integrity. The gut microbiota in the SF-Soy-HFD group had predicted associations with host genes related to fatty liver and inflammatory pathways. Mice fed the SF-Soy-HFD developed liver steatosis and showed increased transcript levels of genes associated with de novo lipogenesis (Acaca, Fasn, Scd1, Elovl6) and cholesterol synthesis (Hmgcr) pathways compared to those in the SF-Fish-HFD-group. No differences were observed in the expression of fat uptake genes (Cd36 and Fabp1). The expression of the fat efflux gene (Mttp) was reduced in the SF-Soy-HFD group. Moreover, hepatic inflammation markers (Tnfa and Il1b) were notably expressed in SF-Soy-HFD-fed mice. In conclusion, SF-Soy-HFD feeding induced gut dysbiosis in mice, leading to steatosis, hepatic inflammation, and impaired glucose homeostasis.
Collapse
Affiliation(s)
- Texy Jacob
- Dasman Diabetes Institute, Dasman, Kuwait
| | | | - Amal Hasan
- Dasman Diabetes Institute, Dasman, Kuwait
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Dasman, Kuwait
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | | | - Heikki A Koistinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
18
|
AlMarzooqi SK, Almarzooqi F, Sadida HQ, Jerobin J, Ahmed I, Abou-Samra AB, Fakhro KA, Dhawan P, Bhat AA, Al-Shabeeb Akil AS. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes Rev 2024; 25:e13766. [PMID: 38745386 DOI: 10.1111/obr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara K AlMarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Fajr Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
19
|
Harvei S, Skogen V, Egelandsdal B, Birkeland S, Paulsen JE, Carlsen H. Chronic oral LPS administration does not increase inflammation or induce metabolic dysregulation in mice fed a western-style diet. Front Nutr 2024; 11:1376493. [PMID: 39077160 PMCID: PMC11284168 DOI: 10.3389/fnut.2024.1376493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Lipopolysaccharides (LPS) present in the intestine are suggested to enter the bloodstream after consumption of high-fat diets and cause systemic inflammation and metabolic dysregulation through a process named "metabolic endotoxemia." This study aimed to determine the role of orally administered LPS to mice in the early stage of chronic low-grade inflammation induced by diet. Methods We supplemented the drinking water with E. coli derived LPS to mice fed either high-fat Western-style diet (WSD) or standard chow (SC) for 7 weeks (n = 16-17). Body weight was recorded weekly. Systemic inflammatory status was assessed by in vivo imaging of NF-κB activity at different time points, and glucose dysregulation was assessed by insulin sensitivity test and glucose tolerance test near the end of the study. Systemic LPS exposure was estimated indirectly via quantification of LPS-binding protein (LBP) and antibodies against LPS in plasma, and directly using an LPS-sensitive cell reporter assay. Results and discussion Our results demonstrate that weight development and glucose regulation are not affected by LPS. We observed a transient LPS dependent upregulation of NF-κB activity in the liver region in both diet groups, a response that disappeared within the first week of LPS administration and remained low during the rest of the study. However, WSD fed mice had overall a higher NF-κB activity compared to SC fed mice at all time points independent of LPS administration. Our findings indicate that orally administered LPS has limited to no impact on systemic inflammation and metabolic dysregulation in mice fed a high-fat western diet and we question the capability of intestinally derived LPS to initiate systemic inflammation through a healthy and uncompromised intestine, even when exposed to a high-fat diet.
Collapse
Affiliation(s)
- Silje Harvei
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Vemund Skogen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Bjørg Egelandsdal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Signe Birkeland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Jan Erik Paulsen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, As, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| |
Collapse
|
20
|
Xu Q, Liu F, Wu Z, Chen M, Zhou Y, Shi Y. Suppression of STK39 weakens the MASLD/MASH process by protecting the intestinal barrier. Biosci Trends 2024; 18:289-302. [PMID: 38925962 DOI: 10.5582/bst.2024.01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
STK39 is reportedly a critical negative regulator of intestinal barrier. Pharmacological targeting of STK39 is expected to protect the intestinal barrier and thereby weaken metabolic dysfunction-associated steatohepatitis (MASH); Proximal colon biopsy tissues from patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and those without MASLD were analyzed for STK39 expression. Wildtype (WT) mice and systemic STK39 gene knockout (STK39-/-) male mice were fed a normal diet or a high-fat methionine-choline deficient diet (HFMCD) for 8 weeks. The MASH mice were grouped and treated with ZT-1a (a STK39 inhibitor) or vehicle intraperitoneal injection during the procedure of HFMCD induction. Liver and intestinal tissues were collected for further examination; Colon tissues from patients with MASLD exhibited higher levels of STK39 than those from subjects without MASLD. Knockout of STK39 diminished CD68+ Kupffer cells and α-SMA+ hepatic stellate cells infiltration in mouse MASH model. Treatment with ZT-1a also prevented severe steatohepatitis in a mouse MASH model, including milder histological and pathological manifestations (lobular inflammation and fibrosis) in the liver. Interestingly, Inhibition of STK39 had minimal effects on hepatic lipid metabolism. The reduced liver injury observed in mice with STK39 inhibition was linked to significant decreases in mucosal inflammation, tight junction disruption and intestinal epithelial permeability to bacterial endotoxins; Collectively, we have revealed that inhibiting STK39 prevents the progression of MASH by protecting the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Qing Xu
- Institute of Clinical Pathology & Department of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Liu
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenru Wu
- Institute of Clinical Pathology & Department of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Menglin Chen
- Institute of Clinical Pathology & Department of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjie Zhou
- Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, China
| | - Yujun Shi
- Institute of Clinical Pathology & Department of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Vliex LMM, Penders J, Nauta A, Zoetendal EG, Blaak EE. The individual response to antibiotics and diet - insights into gut microbial resilience and host metabolism. Nat Rev Endocrinol 2024; 20:387-398. [PMID: 38486011 DOI: 10.1038/s41574-024-00966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 06/16/2024]
Abstract
Antibiotic use disrupts microbial composition and activity in humans, but whether this disruption in turn affects host metabolic health is unclear. Cohort studies show associations between antibiotic use and an increased risk of developing obesity and type 2 diabetes mellitus. Here, we review available clinical trials and show the disruptive effect of antibiotic use on the gut microbiome in humans, as well as its impact on bile acid metabolism and microbial metabolites such as short-chain fatty acids. Placebo-controlled human studies do not show a consistent effect of antibiotic use on body weight and insulin sensitivity at a population level, but rather an individual-specific or subgroup-specific response. This response to antibiotic use is affected by the resistance and resilience of the gut microbiome, factors that determine the extent of disruption and the speed of recovery afterwards. Nutritional strategies to improve the composition and functionality of the gut microbiome, as well as its recovery after antibiotic use (for instance, with prebiotics), require a personalized approach to increase their efficacy. Improved insights into key factors that influence the individual-specific response to antibiotics and dietary intervention may lead to better efficacy in reversing or preventing antibiotic-induced microbial dysbiosis as well as strategies for preventing cardiometabolic diseases.
Collapse
Affiliation(s)
- Lars M M Vliex
- Department of Human Biology, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Arjen Nauta
- FrieslandCampina, Amersfoort, The Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
22
|
Mogilevski T, Maconi G, Gibson PR. Recent advances in measuring the effects of diet on gastrointestinal physiology: Probing the "leaky gut" and application of real-time ultrasound. JGH Open 2024; 8:e13081. [PMID: 38957479 PMCID: PMC11217769 DOI: 10.1002/jgh3.13081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 07/04/2024]
Abstract
There is a large pool of ideas in both mainstream and non-mainstream medicine on how diet can be manipulated in order to treat or prevent illnesses. Despite this, our understanding of how specific changes in diet influence the structure and function of the gastrointestinal tract is limited. This review aims to describe two areas that might provide key information on the integrity and function of the gastrointestinal tract. First, demystifying the "leaky gut syndrome" requires rational application and interpretation of tests of intestinal barrier function. Multiple ways of measuring barrier function have been described, but the inherent difficulties in translation from animal studies to humans have created misinterpretations and misconceptions. The intrinsic nature of intestinal barrier function is dynamic. This is seldom considered in studies of intestinal barrier assessment. To adequately understand the effects of dietary interventions on intestinal barrier function, background barrier function in different regions of the gut and the dynamic responses to stressors (such as psychological stress) should be assessed as a minimum. Second, intestinal ultrasound, which is now established in the assessment and monitoring of inflammatory bowel disease, has hitherto been poorly evaluated in assessing real-time intestinal function and novel aspects of structure in patients with disorders of gut-brain interaction. In conclusion, a more complete functional and structural profile that these investigations enable should permit a greater understanding of the effects of dietary manipulation on the gastrointestinal tract and provide clinically relevant information that, amongst other advantages, might permit opportunities for personalized health care delivery.
Collapse
Affiliation(s)
- Tamara Mogilevski
- Department of GastroenterologySchool of Translational Medicine, Monash UniversityMelbourneVictoriaAustralia
| | - Giovanni Maconi
- Gastroenterology Unit, Department of Biomedical and Clinical SciencesLuigi Sacco University Hospital University of MilanMilanItaly
| | - Peter R Gibson
- Department of GastroenterologySchool of Translational Medicine, Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
23
|
Wang Q, Hartig SM, Ballantyne CM, Wu H. The multifaceted life of macrophages in white adipose tissue: Immune shift couples with metabolic switch. Immunol Rev 2024; 324:11-24. [PMID: 38683173 PMCID: PMC11262992 DOI: 10.1111/imr.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
White adipose tissue (WAT) is a vital endocrine organ that regulates energy balance and metabolic homeostasis. In addition to fat cells, WAT harbors macrophages with distinct phenotypes that play crucial roles in immunity and metabolism. Nutrient demands cause macrophages to accumulate in WAT niches, where they remodel the microenvironment and produce beneficial or detrimental effects on systemic metabolism. Given the abundance of macrophages in WAT, this review summarizes the heterogeneity of WAT macrophages in physiological and pathological conditions, including their alterations in quantity, phenotypes, characteristics, and functions during WAT growth and development, as well as healthy or unhealthy expansion. We will discuss the interactions of macrophages with other cell partners in WAT including adipose stem cells, adipocytes, and T cells in the context of various microenvironment niches in lean or obese condition. Finally, we highlight how adipose tissue macrophages merge immunity and metabolic changes to govern energy balance for the organism.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Sean M. Hartig
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA 77030
| | | | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA 77030
| |
Collapse
|
24
|
Ronen D, Rokach Y, Abedat S, Qadan A, Daana S, Amir O, Asleh R. Human Gut Microbiota in Cardiovascular Disease. Compr Physiol 2024; 14:5449-5490. [PMID: 39109979 DOI: 10.1002/cphy.c230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut ecosystem, termed microbiota, is composed of bacteria, archaea, viruses, protozoa, and fungi and is estimated to outnumber human cells. Microbiota can affect the host by multiple mechanisms, including the synthesis of metabolites and toxins, modulating inflammation and interaction with other organisms. Advances in understanding commensal organisms' effect on human conditions have also elucidated the importance of this community for cardiovascular disease (CVD). This effect is driven by both direct CV effects and conditions known to increase CV risk, such as obesity, diabetes mellitus (DM), hypertension, and renal and liver diseases. Cardioactive metabolites, such as trimethylamine N -oxide (TMAO), short-chain fatty acids (SCFA), lipopolysaccharides, bile acids, and uremic toxins, can affect atherosclerosis, platelet activation, and inflammation, resulting in increased CV incidence. Interestingly, this interaction is bidirectional with microbiota affected by multiple host conditions including diet, bile acid secretion, and multiple diseases affecting the gut barrier. This interdependence makes manipulating microbiota an attractive option to reduce CV risk. Indeed, evolving data suggest that the benefits observed from low red meat and Mediterranean diet consumption can be explained, at least partially, by the changes that these diets may have on the gut microbiota. In this article, we depict the current epidemiological and mechanistic understanding of the role of microbiota and CVD. Finally, we discuss the potential therapeutic approaches aimed at manipulating gut microbiota to improve CV outcomes. © 2024 American Physiological Society. Compr Physiol 14:5449-5490, 2024.
Collapse
Affiliation(s)
- Daniel Ronen
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Rokach
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abed Qadan
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samar Daana
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
25
|
Manzo R, Gallardo-Becerra L, Díaz de León-Guerrero S, Villaseñor T, Cornejo-Granados F, Salazar-León J, Ochoa-Leyva A, Pedraza-Alva G, Pérez-Martínez L. Environmental Enrichment Prevents Gut Dysbiosis Progression and Enhances Glucose Metabolism in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2024; 25:6904. [PMID: 39000013 PMCID: PMC11241766 DOI: 10.3390/ijms25136904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Obesity is a global health concern implicated in numerous chronic degenerative diseases, including type 2 diabetes, dyslipidemia, and neurodegenerative disorders. It is characterized by chronic low-grade inflammation, gut microbiota dysbiosis, insulin resistance, glucose intolerance, and lipid metabolism disturbances. Here, we investigated the therapeutic potential of environmental enrichment (EE) to prevent the progression of gut dysbiosis in mice with high-fat diet (HFD)-induced metabolic syndrome. C57BL/6 male mice with obesity and metabolic syndrome, continuously fed with an HFD, were exposed to EE. We analyzed the gut microbiota of the mice by sequencing the 16s rRNA gene at different intervals, including on day 0 and 12 and 24 weeks after EE exposure. Fasting glucose levels, glucose tolerance, insulin resistance, food intake, weight gain, lipid profile, hepatic steatosis, and inflammatory mediators were evaluated in serum, adipose tissue, and the colon. We demonstrate that EE intervention prevents the progression of HFD-induced dysbiosis, reducing taxa associated with metabolic syndrome (Tepidimicrobium, Acidaminobacteraceae, and Fusibacter) while promoting those linked to healthy physiology (Syntrophococcus sucrumutans, Dehalobacterium, Prevotella, and Butyricimonas). Furthermore, EE enhances intestinal barrier integrity, increases mucin-producing goblet cell population, and upregulates Muc2 expression in the colon. These alterations correlate with reduced systemic lipopolysaccharide levels and attenuated colon inflammation, resulting in normalized glucose metabolism, diminished adipose tissue inflammation, reduced liver steatosis, improved lipid profiles, and a significant reduction in body weight gain despite mice's continued HFD consumption. Our findings highlight EE as a promising anti-inflammatory strategy for managing obesity-related metabolic dysregulation and suggest its potential in developing probiotics targeting EE-modulated microbial taxa.
Collapse
Affiliation(s)
- Rubiceli Manzo
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Sol Díaz de León-Guerrero
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Tomas Villaseñor
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Jonathan Salazar-León
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
26
|
Kodani H, Aoi W, Hirata M, Takami M, Kobayashi Y, Kuwahata M. Skeletal muscle metabolic dysfunction with circulating carboxymethyl-lysine in dietary food additive-induced leaky gut. FASEB J 2024; 38:e23715. [PMID: 38837260 DOI: 10.1096/fj.202302473r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Impaired intestinal permeability induces systemic inflammation and metabolic disturbance. The effect of a leaky gut on metabolism in skeletal muscle, a major nutrient consumer, remains unclear. In this study, we aimed to investigate the glucose metabolic function of the whole body and skeletal muscles in a mouse model of diet-induced intestinal barrier dysfunction. At Week 2, we observed higher intestinal permeability in mice fed a titanium dioxide (TiO2)-containing diet than that of mice fed a normal control diet. Subsequently, systemic glucose and insulin tolerance were found to be impaired. In the skeletal muscle, glucose uptake and phosphorylation levels in insulin signaling were lower in the TiO2 group than those in the control group. Additionally, the levels of pro-inflammatory factors were higher in TiO2-fed mice than those in the control group. We observed higher carboxymethyl-lysin (CML) levels in the plasma and intestines of TiO2-fed mice and lower insulin-dependent glucose uptake in CML-treated cultured myotubes than those in the controls. Finally, soluble dietary fiber supplementation improved glucose and insulin intolerance, suppressed plasma CML, and improved intestinal barrier function. These results suggest that an impaired intestinal barrier leads to systemic glucose intolerance, which is associated with glucose metabolism dysfunction in the skeletal muscles due to circulating CML derived from the intestine. This study highlights that the intestinal condition regulates muscle and systemic metabolic health.
Collapse
Affiliation(s)
- Hinako Kodani
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Wataru Aoi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Mikiko Hirata
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Maki Takami
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yukiko Kobayashi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Masashi Kuwahata
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
27
|
Del Carmen Fernández-Fígares Jiménez M. Plant foods, healthy plant-based diets, and type 2 diabetes: a review of the evidence. Nutr Rev 2024; 82:929-948. [PMID: 37550262 DOI: 10.1093/nutrit/nuad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic chronic disease in which insulin resistance and insufficient insulin production lead to elevated blood glucose levels. The prevalence of T2D is growing worldwide, mainly due to obesity and the adoption of Western diets. Replacing animal foods with healthy plant foods is associated with a lower risk of T2D in prospective studies. In randomized controlled trials, the consumption of healthy plant foods in place of animal foods led to cardiometabolic improvements in patients with T2D or who were at high risk of the disease. Dietary patterns that limit or exclude animal foods and focus on healthy plant foods (eg, fruits, vegetables, whole grains, nuts, legumes), known as healthy, plant-based diets, are consistently associated with a lower risk of T2D in cohort studies. The aim of this review is to examine the differential effects of plant foods and animal foods on T2D risk and to describe the existing literature about the role of healthy, plant-based diets, particularly healthy vegan diets, in T2D prevention and management. The evidence from cohort studies and randomized controlled trials will be reported, in addition to the potential biological mechanisms that seem to be involved.
Collapse
|
28
|
Cinca-Morros S, Álvarez-Herms J. The Importance of Maintaining and Improving a Healthy Gut Microbiota in Athletes as a Preventive Strategy to Improve Heat Tolerance and Acclimatization. Microorganisms 2024; 12:1160. [PMID: 38930542 PMCID: PMC11205789 DOI: 10.3390/microorganisms12061160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Exposure to passive heat (acclimation) and exercise under hot conditions (acclimatization), known as heat acclimation (HA), are methods that athletes include in their routines to promote faster recovery and enhance physiological adaptations and performance under hot conditions. Despite the potential positive effects of HA on health and physical performance in the heat, these stimuli can negatively affect gut health, impairing its functionality and contributing to gut dysbiosis. Blood redistribution to active muscles and peripheral vascularization exist during exercise and HA stimulus, promoting intestinal ischemia. Gastrointestinal ischemia can impair intestinal permeability and aggravate systemic endotoxemia in athletes during exercise. Systemic endotoxemia elevates the immune system as an inflammatory responses in athletes, impairing their adaptive capacity to exercise and their HA tolerance. Better gut microbiota health could benefit exercise performance and heat tolerance in athletes. This article suggests that: (1) the intestinal modifications induced by heat stress (HS), leading to dysbiosis and altered intestinal permeability in athletes, can decrease health, and (2) a previously acquired microbial dysbiosis and/or leaky gut condition in the athlete can negatively exacerbate the systemic effects of HA. Maintaining or improving the healthy gut microbiota in athletes can positively regulate the intestinal permeability, reduce endotoxemic levels, and control the systemic inflammatory response. In conclusion, strategies based on positive daily habits (nutrition, probiotics, hydration, chronoregulation, etc.) and preventing microbial dysbiosis can minimize the potentially undesired effects of applying HA, favoring thermotolerance and performance enhancement in athletes.
Collapse
Affiliation(s)
- Sergi Cinca-Morros
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Jesús Álvarez-Herms
- Physiology and Molecular Laboratory (Phymolab), 40170 Collado Hermoso, Spain;
| |
Collapse
|
29
|
Zhang X, Jiang L, Xie C, Mo Y, Zhang Z, Xu S, Guo X, Xing K, Wang Y, Su Z. The Recombinant Lactobacillus Strains with the Surface-Displayed Expression of Amuc_1100 Ameliorate Obesity in High-Fat Diet-Fed Adult Mice. Bioengineering (Basel) 2024; 11:574. [PMID: 38927810 PMCID: PMC11200897 DOI: 10.3390/bioengineering11060574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Excessive dietary fat intake is closely associated with an increased risk of obesity, type 2 diabetes, cardiovascular disease, gastrointestinal diseases, and certain types of cancer. The administration of multi-strain probiotics has shown a significantly beneficial effect on the mitigation of obesity induced by high-fat diets (HFDs). In this study, Amuc_1100, an outer membrane protein of Akkermansia muciniphila, was fused with green fluorescent protein and LPXTG motif anchor protein and displayed on the surface of Lactobacillus rhamnosus (pLR-GAA) and Lactobacillus plantarum (pLP-GAA), respectively. The localization of the fusion protein on the bacterial cell surface was confirmed via fluorescence microscopy and Western blotting. Both recombinant strains demonstrated the capacity to ameliorate hyperglycemia and decrease body weight gain in a dose-dependent manner. Moreover, daily oral supplementation of pLR-GAA or pLP-GAA suppressed the HFD-induced intestinal permeability by regulating the mRNA expressions of tight junction proteins and inflammatory cytokines, thereby reducing gut microbiota-derived lipopolysaccharide concentration in serum and mitigating damage to the gut, liver, and adipose tissue. Compared with Lactobacillus rhamnosus treatment, high-dose pLR-GAA restored the expression level of anti-inflammatory factor interleukin-10 in the intestine. In conclusion, our approach enables the maintenance of intestinal health through the use of recombinant probiotics with surface-displayed functional protein, providing a potential therapeutic strategy for HFD-induced obesity and associated metabolic comorbidities.
Collapse
Affiliation(s)
- Xueni Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Lei Jiang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Cankun Xie
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yidi Mo
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Zihao Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Shengxia Xu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Xiaoping Guo
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ke Xing
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yina Wang
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Zhijian Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
30
|
Sun M, Zhang Z, Zhang J, Zhang J, Jia Z, Zhao L, Han X, Sun X, Zong J, Zhu Y, Wang S. Causal relationships of Helicobacter pylori and related gastrointestinal diseases on Type 2 diabetes: Univariable and Multivariable Mendelian randomization. PLoS One 2024; 19:e0300835. [PMID: 38652719 PMCID: PMC11037534 DOI: 10.1371/journal.pone.0300835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Previous observational studies have demonstrated a connection between the risk of Type 2 diabetes mellitus (T2DM) and gastrointestinal problems brought on by Helicobacter pylori (H. pylori) infection. However, little is understood about how these factors impact on T2DM. METHOD This study used data from the GWAS database on H. pylori antibodies, gastroduodenal ulcers, chronic gastritis, gastric cancer, T2DM and information on potential mediators: obesity, glycosylated hemoglobin (HbA1c) and blood glucose levels. Using univariate Mendelian randomization (MR) and multivariate MR (MVMR) analyses to evaluate the relationship between H. pylori and associated gastrointestinal diseases with the risk of developing of T2DM and explore the presence of mediators to ascertain the probable mechanisms. RESULTS Genetic evidence suggests that H. pylori IgG antibody (P = 0.006, b = 0.0945, OR = 1.0995, 95% CI = 1.023-1.176), H. pylori GroEL antibody (P = 0.028, OR = 1.033, 95% CI = 1.004-1.064), gastroduodenal ulcers (P = 0.019, OR = 1.036, 95% CI = 1.006-1.068) and chronic gastritis (P = 0.005, OR = 1.042, 95% CI = 1.012-1.074) are all linked to an increased risk of T2DM, additionally, H. pylori IgG antibody is associated with obesity (P = 0.034, OR = 1.03, 95% CI = 1.002-1.055). The results of MVMR showed that the pathogenic relationship between H. pylori GroEL antibody and gastroduodenal ulcer in T2DM is mediated by blood glucose level and obesity, respectively. CONCLUSION Our study found that H. pylori IgG antibody, H. pylori GroEL antibody, gastroduodenal ulcer and chronic gastritis are all related to t T2DM, and blood glucose level and obesity mediate the development of H. pylori GroEL antibody and gastroduodenal ulcer on T2DM, respectively. These findings may inform new prevention and intervention strategies for T2DM.
Collapse
Affiliation(s)
- Mei Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of gastroenterology, Dalian Municipal Central Hospital, Dalian, China
| | - Zhe Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jingjing Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Juewei Zhang
- Health Inspection and Quarantine, College of Medical Laboratory, Dalian Medical University, Dalian, China
| | - Zhuqiang Jia
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Naqu People’s Hospital, Tibet, China
| | - Lin Zhao
- Department of Quality Management, Dalian Municipal Central Hospital, Dalian, China
| | - Xin Han
- Naqu People’s Hospital, Tibet, China
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohong Sun
- Department of Nursing, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junwei Zong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shouyu Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
31
|
Wang K, Lai W, Min T, Wei J, Bai Y, Cao H, Guo J, Su Z. The Effect of Enteric-Derived Lipopolysaccharides on Obesity. Int J Mol Sci 2024; 25:4305. [PMID: 38673890 PMCID: PMC11050189 DOI: 10.3390/ijms25084305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Endotoxin is a general term for toxic substances in Gram-negative bacteria, whose damaging effects are mainly derived from the lipopolysaccharides (LPS) in the cell walls of Gram-negative bacteria, and is a strong pyrogen. Obesity is a chronic, low-grade inflammatory condition, and LPS are thought to trigger and exacerbate it. The gut flora is the largest source of LPS in the body, and it is increasingly believed that altered intestinal microorganisms can play an essential role in the pathology of different diseases. Today, the complex axis linking gut flora to inflammatory states and adiposity has not been well elucidated. This review summarises the evidence for an interconnection between LPS, obesity, and gut flora, further expanding our understanding of LPS as a mediator of low-grade inflammatory disease and contributing to lessening the effects of obesity and related metabolic disorders. As well as providing targets associated with LPS, obesity, and gut flora, it is hoped that interventions that combine targets with gut flora address the individual differences in gut flora treatment.
Collapse
Affiliation(s)
- Kai Wang
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiwen Lai
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jintao Wei
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China;
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
32
|
Xiao H, Yin D, Du L, Li G, Lin J, Fang C, Shen S, Xiao G, Fang R. Effects of pork sausage on intestinal microecology and metabolism in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3413-3427. [PMID: 38111159 DOI: 10.1002/jsfa.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/01/2023] [Accepted: 12/16/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Processed meat, as an important part of the human diet, has been recognized as a carcinogen by the International Agency for Research on Cancer (IARC). Although numerous epidemiological reports supported the IARC's view, the relevant evidence of a direct association between processed meat and carcinogenicity has been insufficient and the mechanism has been unclear. This study aims to investigate the effects of pork sausage (as a representative example of processed meat) intake on gut microbial communities and metabolites of mice. Microbial communities and metabolites from all groups were analyzed using 16S rRNA gene sequencing and Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometer (UPLC-Q-TOF/MS), respectively. RESULTS The levels of Bacteroidetes, Bacteroides, Alloprevotella, Lactobacillus, Prevotella_9, Lachnospiraceae_NK4A136_group, Alistipes, Blautia, Proteobacteria, Firmicutes, Allobaculum, Helicobacter, Desulfovibrio, Clostridium_sensu_stricto_1, Ruminococcaceae_UCG-014, Lachnospiraceae_UCG-006 and Streptococcus (P < 0.05) were obviously altered in the mice fed a pork sausage diet. Twenty-seven metabolites from intestinal content samples and fourteen matabolites from whole blood samples were identified as potential biomarkers from multivariate analysis, including Phosphatidic acid (PA), Sphingomyelin (SM), Lysophosphatidylcholine (LysoPC), Diglyceride (DG), D-maltose, N-acylamides and so forth. The significant changes in these biomarkers demonstrate metabonomic variations in pork sausage treated rats, especially carbohydrate metabolism, lipid metabolism, and amino acid metabolism. CONCLUSION The present study provided evidence that a processed meat diet can increase the risk of colorectal cancer and other diseases significantly by altering the microbial community structure and disrupting the body's metabolic pathways. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hailong Xiao
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou, China
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Danhan Yin
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Lidan Du
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Gaotian Li
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Jie Lin
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Chenyu Fang
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Shaolin Shen
- Hangzhou Xiaoshan Institute of Measurement for Quality and Technique Supervision, Hangzhou, China
| | - Gongnian Xiao
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ruosi Fang
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
33
|
da C. Pinaffi-Langley AC, Melia E, Hays FA. Exploring the Gut-Mitochondrial Axis: p66Shc Adapter Protein and Its Implications for Metabolic Disorders. Int J Mol Sci 2024; 25:3656. [PMID: 38612468 PMCID: PMC11011581 DOI: 10.3390/ijms25073656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
This review investigates the multifaceted role of the p66Shc adaptor protein and the gut microbiota in regulating mitochondrial function and oxidative stress, and their collective impact on the pathogenesis of chronic diseases. The study delves into the molecular mechanisms by which p66Shc influences cellular stress responses through Rac1 activation, Forkhead-type transcription factors inactivation, and mitochondria-mediated apoptosis, alongside modulatory effects of gut microbiota-derived metabolites and endotoxins. Employing an integrative approach, the review synthesizes findings from a broad array of studies, including molecular biology techniques and analyses of microbial metabolites' impacts on host cellular pathways. The results underscore a complex interplay between microbial metabolites, p66Shc activation, and mitochondrial dysfunction, highlighting the significance of the gut microbiome in influencing disease outcomes through oxidative stress pathways. Conclusively, the review posits that targeting the gut microbiota-p66Shc-mitochondrial axis could offer novel therapeutic strategies for mitigating the development and progression of metabolic diseases. This underscores the potential of dietary interventions and microbiota modulation in managing oxidative stress and inflammation, pivotal factors in chronic disease etiology.
Collapse
Affiliation(s)
- Ana Clara da C. Pinaffi-Langley
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA; (A.C.d.C.P.-L.); (E.M.)
| | - Elizabeth Melia
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA; (A.C.d.C.P.-L.); (E.M.)
| | - Franklin A. Hays
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA; (A.C.d.C.P.-L.); (E.M.)
- Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
| |
Collapse
|
34
|
Karim MR, Iqbal S, Mohammad S, Morshed MN, Haque MA, Mathiyalagan R, Yang DC, Kim YJ, Song JH, Yang DU. Butyrate's (a short-chain fatty acid) microbial synthesis, absorption, and preventive roles against colorectal and lung cancer. Arch Microbiol 2024; 206:137. [PMID: 38436734 DOI: 10.1007/s00203-024-03834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 03/05/2024]
Abstract
Butyrate, a short-chain fatty acid (SCFA) produced by bacterial fermentation of fiber in the colon, is a source of energy for colonocytes. Butyrate is essential for improving gastrointestinal (GI) health since it helps colonocyte function, reduces inflammation, preserves the gut barrier, and fosters a balanced microbiome. Human colonic butyrate producers are Gram-positive firmicutes, which are phylogenetically varied. The two most prevalent subgroups are associated with Eubacterium rectale/Roseburia spp. and Faecalibacterium prausnitzii. Now, the mechanism for the production of butyrate from microbes is a very vital topic to know. In the present study, we discuss the genes encoding the core of the butyrate synthesis pathway and also discuss the butyryl-CoA:acetate CoA-transferase, instead of butyrate kinase, which usually appears to be the enzyme that completes the process. Recently, butyrate-producing microbes have been genetically modified by researchers to increase butyrate synthesis from microbes. The activity of butyrate as a histone deacetylase inhibitor (HDACi) has led to several clinical trials to assess its effectiveness as a potential cancer treatment. Among various significant roles, butyrate is the main energy source for intestinal epithelial cells, which helps maintain colonic homeostasis. Moreover, people with non-small-cell lung cancer (NSCLC) have distinct gut microbiota from healthy adults and frequently have dysbiosis of the butyrate-producing bacteria in their guts. So, with an emphasis on colon and lung cancer, this review also discusses how the microbiome is crucial in preventing the progression of certain cancers through butyrate production. Further studies should be performed to investigate the underlying mechanisms of how these specific butyrate-producing bacteria can control both colon and lung cancer progression and prognosis.
Collapse
Affiliation(s)
- Md Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
- Department of Microbiology, Varendra Institute of Biosciences, Affiliated University of Rajshahi, Natore, 6400, Rajshahi, Bangladesh
| | - Shahnawaz Mohammad
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Md Niaj Morshed
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Md Anwarul Haque
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Deok Chun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
- Hanbangbio Inc., Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea
| | - Yeon Ju Kim
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Joong Hyun Song
- Department of Veterinary International Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| | - Dong Uk Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea.
- AIBIOME, 6, Jeonmin-Ro 30Beon-Gil, Yuseong-Gu, Daejeon, Republic of Korea.
| |
Collapse
|
35
|
Li C, Ng JKC, Chan GCK, Fung WWS, Lai KB, Poon PYK, Luk CCW, Chow KM, Szeto CC. Gut permeability, circulating bacterial fragments and measures of congestion in peritoneal dialysis. Clin Kidney J 2024; 17:sfae056. [PMID: 38516523 PMCID: PMC10956420 DOI: 10.1093/ckj/sfae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 03/23/2024] Open
Abstract
Background Limited data exist on the association between gut permeability, circulating bacterial fragment and volume overload in peritoneal dialysis (PD) patients. We measured circulating bacterial fragments, N-terminal pro B-type natriuretic peptide (NT-proBNP), calprotectin and zonulin levels, and evaluate their association with the clinical outcomes in PD patients. Methods This was a single-center prospective study on 108 consecutive incident PD patients. Plasma endotoxin and bacterial DNA, and serum NT-proBNP, calprotectin and zonulin levels were measured. Primary outcomes were technique and patient survival, secondary outcomes were hospitalization data. Results There was no significant correlation between plasma endotoxin and bacterial DNA, and serum NT-proBNP, calprotectin and zonulin levels. The Homeostatic Model Assessment for Insulin Resistance (HOMA)-2β index, which represents insulin resistance, positively correlated with plasma bacterial DNA (r = 0.421, P < .001) and calprotectin levels (r = 0.362, P = .003), while serum NT-proBNP level correlated with the severity of volume overload and residual renal function. Serum NT-proBNP level was associated with technique survival even after adjusting for confounding factors [adjusted hazard ratio (aHR) 1.030, 95% confidence interval 1.009-1.051]. NT-proBNP level was also associated with patient survival by univariate analysis, but the association became insignificant after adjusting for confounding factors (aHR 1.010, P = .073). Similarly, NT-proBNP correlated with the number of hospitalizations and duration of hospitalization by univariate analysis, but the association became insignificant after adjusting for confounding factors. Conclusion There was no correlation between markers of gut permeability, circulating bacterial fragments and measures of congestion in PD patients. Bacterial fragments levels and gut permeability are both associated with insulin resistance. Serum NT-proBNP level is associated with the severity of volume overload and technique survival. Further studies are required to delineate the mechanism of high circulating bacterial fragment levels in PD patients.
Collapse
Affiliation(s)
- Chuanlei Li
- Carol & Richard Yu Peritoneal Dialysis Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jack Kit-Chung Ng
- Carol & Richard Yu Peritoneal Dialysis Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Gordon Chun-Kau Chan
- Carol & Richard Yu Peritoneal Dialysis Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Winston Wing-Shing Fung
- Carol & Richard Yu Peritoneal Dialysis Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Ka-Bik Lai
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Peter Yam-Kau Poon
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Cathy Choi-Wan Luk
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kai-Ming Chow
- Carol & Richard Yu Peritoneal Dialysis Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Cheuk-Chun Szeto
- Carol & Richard Yu Peritoneal Dialysis Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
36
|
Morsy SAA, Fathelbab MH, El-Sayed NS, El-Habashy SE, Aly RG, Harby SA. Doxycycline-Loaded Calcium Phosphate Nanoparticles with a Pectin Coat Can Ameliorate Lipopolysaccharide-Induced Neuroinflammation Via Enhancing AMPK. J Neuroimmune Pharmacol 2024; 19:2. [PMID: 38236457 PMCID: PMC10796490 DOI: 10.1007/s11481-024-10099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Neuroinflammation occurs in response to different injurious triggers to limit their hazardous effects. However, failure to stop this process can end in multiple neurological diseases. Doxycycline (DX) is a tetracycline, with potential antioxidant and anti-inflammatory properties. The current study tested the effects of free DX, DX-loaded calcium phosphate (DX@CaP), and pectin-coated DX@CaP (Pec/DX@CaP) nanoparticles on the lipopolysaccharide (LPS)-induced neuroinflammation in mice and to identify the role of adenosine monophosphate-activated protein kinase (AMPK) in this effect. The present study was conducted on 48 mice, divided into 6 groups, eight mice each. Group 1 (normal control), Group 2 (blank nanoparticles-treated), Group 3 (LPS (untreated)), Groups 4, 5, and 6 received LPS, then Group 4 received free DX, Group 5 received DX-loaded calcium phosphate nanoparticles (DX@CaP), and Group 6 received DX-loaded calcium phosphate nanoparticles with a pectin coat (Pec/DX@CaP). At the end of the experimentation period, behavioral tests were carried out. Then, mice were sacrificed, and brain tissue was extracted and used for histological examination, and assessment of interleukin-6 positive cells in different brain areas, in addition to biochemical measurement of SOD activity, TLR-4, AMPK and Nrf2. LPS can induce prominent neuroinflammation. Treatment with (Pec/DX@CaP) can reverse most behavioral, histopathological, and biochemical changes caused by LPS. The findings of the current study suggest that (Pec/DX@CaP) exerts a significant reverse of LPS-induced neuroinflammation by enhancing SOD activity, AMPK, and Nrf2 expression, in addition to suppression of TLR-4.
Collapse
Affiliation(s)
| | - Mona Hassan Fathelbab
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Norhan S El-Sayed
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rania G Aly
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sahar A Harby
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
37
|
Chireshe R, Manyangadze T, Naidoo K. Diabetes mellitus and associated factors among HIV-positive patients at primary health care facilities in Harare, Zimbabwe: a descriptive cross-sectional study. BMC PRIMARY CARE 2024; 25:28. [PMID: 38221613 PMCID: PMC10789024 DOI: 10.1186/s12875-024-02261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Highly active antiretroviral therapy (HAART) has improved the life expectancy of people living with HIV (PLWH) and has increased the risk of chronic non-communicable diseases. Comorbid HIV and diabetes mellitus (DM) significantly increase cardiovascular disease and mortality risk. This study aimed to determine the prevalence of type 2 diabetes mellitus among HIV-positive patients receiving HAART in Zimbabwe and its associated risk factors. METHODS This cross-sectional study was conducted at eight primary healthcare facilities in Harare, Zimbabwe, between January 2022 and March 2023. Non-probability convenience sampling was used to recruit adult HIV-positive patients undergoing HAART attending the facilities. Data were captured on clinical history and socio-demographic and behavioral characteristics, and analyzed using descriptive statistics to determine DM prevalence rates. Additionally, bivariate and multivariate logistic regression models were employed to examine factors associated with HIV and DM comorbidities. RESULTS A total of 450 participants were included in this study, of which 57.6% (n = 259) were female. The majority were married (73.8%) and older than 35 years (80.2%). Most participants had completed high school (87.6%) and 68.9% were employed either formally or self-employed. The prevalence of diabetes mellitus (DM) was 14.9%. HIV/DM comorbidity was more prevalent in patients who were female, self-employed, and smoked (p < 0.05). Multivariate logistic regression analysis revealed that the factors associated with DM-HIV comorbidity were gender, age, education, marital status, employment status, smoking, physical activities, duration of HAART, and diet. Age, level of education, marital status, and occupation were not associated with HIV-DM comorbidity. Obesity (body mass index > 30 kg/m2), smoking, and alcohol consumption were associated with an increased risk of DM. Regular physical activity is associated with a reduced risk of DM. CONCLUSION A substantial burden of DM was found in PLWH. The intersectoral integration approach is advocated, and active screening for DM is recommended. Gender-specific interventions are necessary to target diseases and health behaviors that differ between men and women. These interventions should be customized to the specific diseases and behaviors of each group.
Collapse
Affiliation(s)
- Rumbidzai Chireshe
- Discipline of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Howard Campus, Mazisi Kunene Road, Glenwood, Durban, 4041, South Africa.
| | - Tawanda Manyangadze
- Discipline of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Howard Campus, Mazisi Kunene Road, Glenwood, Durban, 4041, South Africa
- 2Department of Geosciences, School of Geosciences, Disasters, and Development, Faculty of Sciences and Engineering, Bindura University of Science Education, Bindura, Zimbabwe
| | - Keshena Naidoo
- Department of Family Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
38
|
Oral S, Celik S, Akpak YK, Golbasi H, Bayraktar B, Unver G, Sahin S, Yurtcu N, Soyer Caliskan C. Prediction of gestational diabetes mellitus and perinatal outcomes by plasma zonulin levels. Arch Gynecol Obstet 2024; 309:119-126. [PMID: 35994108 DOI: 10.1007/s00404-022-06751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Zonulin has been shown to be associated with many metabolic disorders, including type 2 diabetes mellitus, metabolic syndrome, and obesity. In this study, we aimed to evaluate the association between maternal plasma zonulin levels and gestational diabetes mellitus (GDM) and its perinatal outcomes. MATERIALS A total of 100 pregnant women, 56 with GDM and 44 controls, were included in this prospective case-control study. Maternal plasma zonulin levels were evaluated in each trimester. The association between zonulin levels and GDM, body mass index (BMI) and adverse perinatal outcomes was evaluated. The GDM predictability of zonulin levels for each trimester was analyzed with the receiver operator curve (ROC). RESULTS Plasma zonulin levels were significantly higher in pregnant with GDM in all trimesters (p < 0.001; for all). Optimum cut-off values of plasma zonulin levels in predicting GDM: first trimester: 6.27 ng/mL, second trimester: 12.71 ng/mL, and third trimester: 18.38 ng/mL. BMI was significantly higher in pregnant women with GDM (30.5 vs 26.1; p < 0.001). Zonulin levels were significantly higher in pregnant women with GDM with overweight BMI [≥ 25-30 (kg/m2)] in all trimesters (p < 0.05; for all). Zonulin levels were significantly higher in pregnant women with composite adverse outcomes that included at least one of neonatal intensive care unit (NICU) admission, meconium-stained amniotic fluid, and 1st minute APGAR score < 7. CONCLUSION Increased maternal plasma zonulin levels were associated with increased risk of GDM and adverse perinatal outcomes. Zonulin may be a potential marker to predict GDM risk and perinatal outcomes.
Collapse
Affiliation(s)
- Serkan Oral
- Department of Obstetrics and Gynaecology, Halic University, Istanbul, Turkey
| | - Sebahattin Celik
- Department of Obstetrics and Gynecology, Balikesir State Hospital, Balikesir, Turkey
| | - Yasam Kemal Akpak
- Department of Obstetrics and Gynecology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Hakan Golbasi
- Department of Perinatology, Bakırcay University Cigli Education and Research Hospital, Izmir, Turkey.
| | - Burak Bayraktar
- Department of Obstetrics and Gynecology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Gokhan Unver
- Department of Obstetrics and Gynecology, University of Health Sciences Samsun Training and Research Hospital, Samsun, Turkey
| | - Sami Sahin
- Department of Obstetrics and Gynecology, University of Health Sciences Samsun Training and Research Hospital, Samsun, Turkey
| | - Nazan Yurtcu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Canan Soyer Caliskan
- Department of Obstetrics and Gynecology, University of Health Sciences Samsun Training and Research Hospital, Samsun, Turkey
| |
Collapse
|
39
|
Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, D’Alessandro AG. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants (Basel) 2023; 12:2091. [PMID: 38136211 PMCID: PMC10740837 DOI: 10.3390/antiox12122091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic syndrome (MS) is a growing disorder affecting thousands of people worldwide, especially in industrialised countries, increasing mortality. Oxidative stress, hyperglycaemia, insulin resistance, inflammation, dysbiosis, abdominal obesity, atherogenic dyslipidaemia and hypertension are important factors linked to MS clusters of different pathologies, such as diabesity, cardiovascular diseases and neurological disorders. All biochemical changes observed in MS, such as dysregulation in the glucose and lipid metabolism, immune response, endothelial cell function and intestinal microbiota, promote pathological bridges between metabolic syndrome, diabesity and cardiovascular and neurodegenerative disorders. This review aims to summarise metabolic syndrome's involvement in diabesity and highlight the link between MS and cardiovascular and neurological diseases. A better understanding of MS could promote a novel strategic approach to reduce MS comorbidities.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Marilena Muraglia
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Tardugno
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Savina Dibenedetto
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | | |
Collapse
|
40
|
Islam MM, Islam MM, Rahman MA, Ripon MAR, Hossain MS. Gut microbiota in obesity and related complications: Unveiling the complex interplay. Life Sci 2023; 334:122211. [PMID: 38084672 DOI: 10.1016/j.lfs.2023.122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
In recent years, the obesity epidemic has escalated into a serious public health catastrophe that is only getting worse. However, research into the pathophysiological pathways behind the obesity development and the illnesses that it is associated with is ongoing. In the last decades, it is now clear that the gut microbiota plays a significant role in the genesis and progression of obesity and obesity-related illnesses, particularly changes in its metabolites and composition as obesity progresses. Here, we provide a summary of the processes by which variations in gut metabolite levels and the composition of gut microbiota affect obesity and associated disorders. The bacteria residing in the gut release several chemicals that influence the appetite control, metabolism, and other systems. Since it can either encourage or restrict the deposition of fat in several different ways, the gut microbiota's role in obesity is debatable. Additionally, we go over potential therapeutic approaches that could be utilized to alter gut microbiota composition and focus on the important metabolic pathways associated with obesity and metabolic disorders linked to obesity.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Mahmodul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Abdur Rahman
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Abdur Rahman Ripon
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| |
Collapse
|
41
|
Chen CC, Lii CK, Liu KL, Lin YL, Lo CW, Li CC, Yang YC, Chen HW. Andrographolide Attenuates Oxidized LDL-Induced Activation of the NLRP3 Inflammasome in Bone Marrow-Derived Macrophages and Mitigates HFCCD-Induced Atherosclerosis in Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:2175-2193. [PMID: 37930331 DOI: 10.1142/s0192415x23500933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Andrographolide (AND) is a bioactive component of the herb Andrographis paniculata and a well-known anti-inflammatory agent. Atherosclerosis is a chronic inflammatory disease of the vasculature, and oxidized LDL (oxLDL) is thought to contribute heavily to atherosclerosis-associated inflammation. The aim of this study was to investigate whether AND mitigates oxLDL-mediated foam cell formation and diet-induced atherosclerosis (in mice fed a high-fat, high-cholesterol, high-cholic acid [HFCCD] diet) and the underlying mechanisms involved. AND attenuated LPS/oxLDL-mediated foam cell formation, IL-1[Formula: see text] mRNA and protein (p37) expression, NLR family pyrin domain containing 3 (NLRP3) mRNA and protein expression, caspase-1 (p20) protein expression, and IL-1[Formula: see text] release in BMDMs. Treatment with oxLDL significantly induced protein and mRNA expression of CD36, lectin-like oxLDL receptor-1 (LOX-1), and scavenger receptor type A (SR-A), whereas pretreatment with AND significantly inhibited protein and mRNA expression of SR-A only. Treatment with oxLDL significantly induced ROS generation and Dil-oxLDL uptake; however, pretreatment with AND alleviated oxLDL-induced ROS generation and Dil-oxLDL uptake. HFCCD feeding significantly increased aortic lipid accumulation, ICAM-1 expression, and IL-1[Formula: see text] mRNA expression, as well as blood levels of glutamic pyruvic transaminase (GPT), total cholesterol, and LDL-C. AND co-administration mitigated aortic lipid accumulation, the protein expression of ICAM-1, mRNA expression of IL-1[Formula: see text] and ICAM-1, and blood levels of GPT. These results suggest that the working mechanisms by which AND mitigates atherosclerosis involve the inhibition of foam cell formation and NLRP3 inflammasome-dependent vascular inflammation as evidenced by decreased SR-A expression and IL-1[Formula: see text] release, respectively.
Collapse
Affiliation(s)
- Chih-Chieh Chen
- Department of Sports Medicine, China Medical University, Taichung 406040, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413305, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung 402306, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Yi-Ling Lin
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| | - Chia-Wen Lo
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung 402306, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Ya-Chen Yang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413305, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
42
|
You N, Chen Y, Yan X, Gu B, Wang J, Zhang J. Persistent Helicobacter pylori infection leads to elevated fasting plasma glucose level: A retrospective cohort study based on a nondiabetes Chinese population. J Gastroenterol Hepatol 2023; 38:1942-1948. [PMID: 37403267 DOI: 10.1111/jgh.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND AND AIM The relationship between Helicobacter pylori (H. pylori) and fast plasma glucose (FPG) on nondiabetes populations is still inconclusive. Nowadays, not only the high infection rate of H. pylori but also the high FPG level is threatening the Chinese people. METHODS A retrospective cohort study has been established to analyze the relationship between H. pylori infection and FPG level, 18 164 individuals performed healthy examination in Taizhou Hospital Health Examination Center from 2017 to 2022 were included, and hematological indicators, body parameters, and H. pylori detection by 13 C-urea breath test were collected from patients. The follow-up intervals were greater than 12 months. RESULTS H. pylori infection was regarded as an independent risk factor for elevated FPG after multivariate logistic regression. Additionally, the average interval time were 33.6 ± 13.3 months. Mean changed FPG values in the persistent infection group were higher than in the subgroup of persistent negative (P = 0.029) as well as eradication infection (P = 0.007). The aforementioned changes began to appear after 2 years of follow-up. Similarly, when compared with the subgroup of persistent infection, mean changed triglyceride/high density lipoprotein (TG/HDL) values were much lower in the subgroup of persistent negative (P = 0.008) and eradication infection (P = 0.018), but the differences appeared after 3 years of follow-up. CONCLUSIONS H. pylori infection is an independent risk factor for elevated FPG in non-diabetes mellitus (DM) individuals. Persistent H. pylori infection causes an increase in FPG level and TG/HDL, which may be a risk factor for diabetes mellitus.
Collapse
Affiliation(s)
- Ningning You
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Zhejiang, China
| | - Yi Chen
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Zhejiang, China
| | - Xiaodan Yan
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Zhejiang, China
| | - Binbin Gu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Zhejiang, China
| | - Jun Wang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Zhejiang, China
| | - Jinshun Zhang
- Health Management Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
43
|
Lv W, Song J, Nowshin Raka R, Sun J, Shi G, Wu H, Xiao J, Xu D. Effects of food emulsifiers on high fat-diet-induced obesity, intestinal inflammation, changes in bile acid profile, and liver dysfunction. Food Res Int 2023; 173:113302. [PMID: 37803614 DOI: 10.1016/j.foodres.2023.113302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Obesity has become one of the most prevalent health concerns of our time. A long-term high-fat diet is closely related to obesity. Food emulsifiers are incorporated into high-fat foods to enhance the texture and stability. Whether food emulsifiers exacerbate obesity and metabolic disorders induced by a high-fat diet remains unclear. This study aimed to investigate the effects of polysorbate-80 (P80) and polyglycerol polyricinoleate (PGPR) on lipid metabolism, bile acid profile, and gut microbiota in normal and high-fat-diet-induced obesity in mice. The results of this study showed that P80 and PGPR had little effect on body weight but significantly increased epididymal-fat weight, total energy intake, and blood lipid levels. P80 and PGPR stimulated colon inflammation and improved the expression of inflammatory factors in the colon and liver significantly. P80 and PGPR changed the bile acid profile. However, P80 and PGPR did not aggravate inflammation, obesity and alter bile acid profile by altering the composition of the gut microbiota. The results of this study provide an experimental reference for the rational use of food additives and the adjustment of dietary structure, which are important and have application value.
Collapse
Affiliation(s)
- Wenwen Lv
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Jingyi Song
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Rifat Nowshin Raka
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Jinlong Sun
- Department of Stomatology, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Guizhi Shi
- Laboratory Animal Center of the Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Wu
- Beijing Technology and Business University, Beijing 100048, China
| | - Junsong Xiao
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China.
| | - Duoxia Xu
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| |
Collapse
|
44
|
Abuqwider J, Di Porzio A, Barrella V, Gatto C, Sequino G, De Filippis F, Crescenzo R, Spagnuolo MS, Cigliano L, Mauriello G, Iossa S, Mazzoli A. Limosilactobacillus reuteri DSM 17938 reverses gut metabolic dysfunction induced by Western diet in adult rats. Front Nutr 2023; 10:1236417. [PMID: 37908302 PMCID: PMC10613642 DOI: 10.3389/fnut.2023.1236417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Microencapsulation of probiotic bacteria is an efficient and innovative new technique aimed at preserving bacterial survival in the hostile conditions of the gastrointestinal tract. However, understanding whether a microcapsule preserves the effectiveness of the bacterium contained within it is of fundamental importance. Methods Male Wistar rats aged 90 days were fed a control diet or a Western diet for 8 weeks, with rats fed the Western diet divided into three groups: one receiving the diet only (W), the second group receiving the Western diet and free L. reuteri DSM 17938 (WR), and the third group receiving the Western diet and microencapsulated L. reuteri DSM 17938 (WRM). After 8 weeks of treatment, gut microbiota composition was evaluated, together with occludin, one of the tight junction proteins, in the ileum and the colon. Markers of inflammation were also quantified in the portal plasma, ileum, and colon, as well as markers for gut redox homeostasis. Results The Western diet negatively influenced the intestinal microbiota, with no significant effect caused by supplementation with free and microencapsulated L. reuteri. However, L. reuteri, in both forms, effectively preserved the integrity of the intestinal barrier, thus protecting enterocytes from the development of inflammation and oxidative stress. Conclusion From these whole data, it emerges that L. reuteri DSM 17938 can be an effective probiotic in preventing the unhealthy consequences of the Western diet, especially in the gut, and that microencapsulation preserves the probiotic effects, thus opening the formulation of new preparations to be able to improve gut function independent of dietary habits.
Collapse
Affiliation(s)
- Jumana Abuqwider
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Di Porzio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Valentina Barrella
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Cristina Gatto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | | | - Maria Stefania Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System in the Mediterranean Environment, National Research Council Naples (CNR-ISPAAM), Naples, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
45
|
Lê S, Cecchin-Albertoni C, Thomas C, Kemoun P, Minty M, Blasco-Baque V. The Role of Dysbiotic Oral Microbiota in Cardiometabolic Diseases: A Narrative Review. Diagnostics (Basel) 2023; 13:3184. [PMID: 37892006 PMCID: PMC10605832 DOI: 10.3390/diagnostics13203184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Over the past decade, there have been significant advancements in the high-flow analysis of "omics," shedding light on the relationship between the microbiota and the host. However, the full recognition of this relationship and its implications in cardiometabolic diseases are still underway, despite advancements in understanding the pathophysiology of these conditions. Cardiometabolic diseases, which include a range of conditions from insulin resistance to cardiovascular disease and type 2 diabetes, continue to be the leading cause of mortality worldwide, with a persistently high morbidity rate. While the link between the intestinal microbiota and cardiometabolic risks has been extensively explored, the role of the oral microbiota, the second-largest microbiota in the human body, and specifically the dysbiosis of this microbiota in causing these complications, remains incompletely defined. This review aims to examine the association between the oral microbiota and cardiometabolic diseases, focusing on the dysbiosis of the oral microbiota, particularly in periodontal disease. Additionally, we will dive into the mechanistic aspects of this dysbiosis that contribute to the development of these complications. Finally, we will discuss potential prevention and treatment strategies, including the use of prebiotics, probiotics, and other interventions.
Collapse
Affiliation(s)
- Sylvie Lê
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC)—UMR1297 Inserm, Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France
| | - Chiara Cecchin-Albertoni
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- RESTORE Research Center, CNRS, EFS, ENVT, Batiment INCERE, INSERM, Université de Toulouse, 4 bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Charlotte Thomas
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC)—UMR1297 Inserm, Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France
| | - Philippe Kemoun
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- RESTORE Research Center, CNRS, EFS, ENVT, Batiment INCERE, INSERM, Université de Toulouse, 4 bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Matthieu Minty
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC)—UMR1297 Inserm, Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France
| | - Vincent Blasco-Baque
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC)—UMR1297 Inserm, Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France
| |
Collapse
|
46
|
Nathani S, Das N, Katiyar P, Waghmode B, Sircar D, Roy P. Consumption of honey ameliorates lipopolysaccharide-induced intestinal barrier dysfunction via upregulation of tight junction proteins. Eur J Nutr 2023; 62:3033-3054. [PMID: 37493680 DOI: 10.1007/s00394-023-03203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 06/30/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE The leaky gut barrier is an important factor leading to various inflammatory gastrointestinal disorders. The nutritional value of honey and variety of its health benefits have long been recognized. This study was undertaken to assess the role of Indian mustard honey in preventing lipopolysaccharide (LPS)-induced intestinal barrier dysfunction using a combination of in vitro and in vivo experimental model systems. METHODS LPS was used to induce intestinal barrier damage in a trans-well model of Caco-2 cells (1 µg/ml) and in Swiss albino mice (5 mg/kg body weight). Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were used to analyse sugar and phenolic components in honey samples. The Caco-2 cell monolayer integrity was evaluated by transepithelial electrical resistance (TEER) and paracellular permeability assays. The histopathology of intestinal tissue was analysed by haematoxylin and eosin dual staining. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to quantify the transcription of genes. The protein expression was analysed by immunofluorescence, western blot and ELISA-based techniques. RESULTS The in vitro data showed that honey prevented LPS-induced intestinal barrier dysfunction dose dependently as was measured by TEER and paracellular flux of FITC-dextran dye. Further, the in vivo data showed a prophylactic effect of orally administered honey as it prevented the loss of intestinal barrier integrity and villus structure. The cellular localization and expression of tight junction (TJ) proteins were upregulated along with downregulation of pro-inflammatory cytokines in response to the administration of honey with LPS. CONCLUSIONS The findings of this study suggest a propitious role of honey in the maintenance of TJ protein integrity, thereby preventing LPS-induced intestinal barrier disintegration.
Collapse
Affiliation(s)
- Sandip Nathani
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Neeladrisingha Das
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Parul Katiyar
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Bhairavnath Waghmode
- Plant Molecular Biology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India.
| |
Collapse
|
47
|
Almanza-Aguilera E, Cano A, Gil-Lespinard M, Burguera N, Zamora-Ros R, Agudo A, Farràs M. Mediterranean diet and olive oil, microbiota, and obesity-related cancers. From mechanisms to prevention. Semin Cancer Biol 2023; 95:103-119. [PMID: 37543179 DOI: 10.1016/j.semcancer.2023.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/02/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Olive oil (OO) is the main source of added fat in the Mediterranean diet (MD). It is a mix of bioactive compounds, including monounsaturated fatty acids, phytosterols, simple phenols, secoiridoids, flavonoids, and terpenoids. There is a growing body of evidence that MD and OO improve obesity-related factors. In addition, obesity has been associated with an increased risk for several cancers: endometrial, oesophageal adenocarcinoma, renal, pancreatic, hepatocellular, gastric cardia, meningioma, multiple myeloma, colorectal, postmenopausal breast, ovarian, gallbladder, and thyroid cancer. However, the epidemiological evidence linking MD and OO with these obesity-related cancers, and their potential mechanisms of action, especially those involving the gut microbiota, are not clearly described or understood. The goals of this review are 1) to update the current epidemiological knowledge on the associations between MD and OO consumption and obesity-related cancers, 2) to identify the gut microbiota mechanisms involved in obesity-related cancers, and 3) to report the effects of MD and OO on these mechanisms.
Collapse
Affiliation(s)
- Enrique Almanza-Aguilera
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Ainara Cano
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Mercedes Gil-Lespinard
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Nerea Burguera
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain; Department of Nutrition, Food Sciences, and Gastronomy, Food Innovation Network (XIA), Institute for Research on Nutrition and Food Safety (INSA), Faculty of Pharmacy and Food Sciences University of Barcelona, Barcelona, Spain.
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Marta Farràs
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
48
|
Sun J, Germain A, Kaglan G, Servant F, Lelouvier B, Federici M, Fernandez-Real JM, Sala DT, Neagoe RM, Bouloumié A, Burcelin R. The visceral adipose tissue bacterial microbiota provides a signature of obesity based on inferred metagenomic functions. Int J Obes (Lond) 2023; 47:1008-1022. [PMID: 37488221 DOI: 10.1038/s41366-023-01341-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Metabolic inflammation mediated obesity requires bacterial molecules to trigger immune and adipose cells leading to inflammation and adipose depot development. In addition to the well-established gut microbiota dysbiosis, a leaky gut has been identified in patients with obesity and animal models, characterized by the presence of a tissue microbiota in the adipose fat pads. METHODS To determine its potential role, we sequenced the bacterial 16 S rRNA genes in the visceral adipose depot of patients with obesity. Taking great care (surgical, biochemical, and bioinformatic) to avoid environmental contaminants. We performed statistical discriminant analyses to identify specific signatures and constructed network of interactions between variables. RESULTS The data showed that a specific 16SrRNA gene signature was composed of numerous bacterial families discriminating between lean versus patients with obesity and people with severe obesity. The main discriminant families were Burkholderiaceae, Yearsiniaceae, and Xanthomonadaceae, all of which were gram-negative. Interestingly, the Morganellaceae were totally absent from people without obesity while preponderant in all in patients with obesity. To generate hypotheses regarding their potential role, we inferred metabolic pathways from the 16SrRNA gene signatures. We identified several pathways associated with adenosyl-cobalamine previously described to be linked with adipose tissue development. We further identified chorismate biosynthesis, which is involved in aromatic amino-acid metabolism and could play a role in fat pad development. This innovative approach generates novel hypotheses regarding the gut to adipose tissue axis. CONCLUSIONS This innovative approach generates novel hypotheses regarding the gut to adipose tissue axis in obesity and notably the potential role of tissue microbiota.
Collapse
Affiliation(s)
- Jiuwen Sun
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse Cedex 4, France
| | - Alberic Germain
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse Cedex 4, France
| | - Gracia Kaglan
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse Cedex 4, France
| | | | | | - Massimo Federici
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - José Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona 'Dr Josep Trueta'; Institut d'Investigacio Biomedica de Girona IdibGi; and CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Daniela Tatiana Sala
- University of Medicine Pharmacy, Science and Technology "George Emil Palade" Tîrgu Mures, Second Department of Surgery, Emergency Mureş County Hospital, Târgu Mureș, Romania
| | - Radu Mircea Neagoe
- University of Medicine Pharmacy, Science and Technology "George Emil Palade" Tîrgu Mures, Second Department of Surgery, Emergency Mureş County Hospital, Târgu Mureș, Romania
| | - Anne Bouloumié
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse Cedex 4, France
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse Cedex 4, France.
| |
Collapse
|
49
|
Rusnak T, Azarcoya-Barrera J, Wollin B, Makarowski A, Nelson R, Field CJ, Jacobs RL, Richard C. A Physiologically Relevant Dose of 50% Egg-Phosphatidylcholine Is Sufficient in Improving Gut Permeability while Attenuating Immune Cell Dysfunction Induced by a High-Fat Diet in Male Wistar Rats. J Nutr 2023; 153:3131-3143. [PMID: 37586605 DOI: 10.1016/j.tjnut.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Obesity is associated with increased intestinal permeability and a diminished immune response. Phosphatidylcholine (PC), a form of choline found in eggs, has been shown to beneficially modulate T-cell response in the context of obesity when provided as the sole form of choline in the diet. OBJECTIVE This study aimed to determine the impact of varying doses of PC as part of a high-fat diet (HFD) on immune cell function and intestinal permeability. METHODS Male Wistar rats 4 wk of age were randomly assigned to consume 1 of 6 diets for 12 wk containing the same amount of total choline but differing in the forms of choline: 1-control low-fat (CLF, 20% fat, 100% free choline [FC]); 2-control high-fat (CHF, 50% fat, 100% FC); 3-100% PC (100PC, 50% fat, 100% egg-PC); 4-75% PC (75PC, 50% fat, 75% egg-PC+25% FC); 5-50% PC (50PC, 50% fat, 50% egg-PC+50% FC); and 6-25% PC (25PC; 50% fat, 25% egg-PC+75% FC). Intestinal permeability was measured by fluorescein isothiocyanate-dextran. Immune function was assessed by ex vivo cytokine production of splenocytes and cells isolated from the mesenteric lymph node (MLN) after stimulation with different mitogens. RESULTS Feeding the CHF diet increased intestinal permeability compared with the CLF diet, and doses of PC 50% or greater returned permeability to levels similar to that of the CLF diet. Feeding the CHF diet lowered splenocyte production of interleukin (IL)-1β, IL-2, IL-10, and tumor necrosis factor-alpha, and MLN production of IL-2 compared with the CLF group. The 50PC diet most consistently significantly improved cytokine levels (IL-2, IL-10, tumor necrosis factor-alpha) compared with the CHF diet. CONCLUSIONS Our results show that a dose of 50% of total choline derived from egg-PC can ameliorate HFD-induced intestinal permeability and immune cell dysfunction.
Collapse
Affiliation(s)
- Tianna Rusnak
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jessy Azarcoya-Barrera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Bethany Wollin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Makarowski
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Randal Nelson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
50
|
Zhou Y, Jia Y, Xu N, Tang L, Chang Y. Auricularia auricula-judae (Bull.) polysaccharides improve obesity in mice by regulating gut microbiota and TLR4/JNK signaling pathway. Int J Biol Macromol 2023; 250:126172. [PMID: 37558018 DOI: 10.1016/j.ijbiomac.2023.126172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/20/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Obesity has emerged as a crucial factor impacting people's lives, and gut microbiota disorders contribute to its development and progression. Auricularia auricula-judae (Bull.) polysaccharides (AAPs), a traditional functional food in Asia, exhibit potential anti-obesity effects. However, the specific mechanism still needs to be further confirmed. This study investigated the beneficial effects and specific mechanisms of AAPs on obesity. Firstly, AAPs showed significant improvements in overweight, insulin resistance, glucose and lipid metabolism disorders, and liver damage in obese mice. Additionally, AAPs ameliorated gut microbiota disorders, promoting the proliferation of beneficial bacteria like Lactobacillus and Roseburia, resulting in increased levels of SCFAs, folate, and cobalamin. Simultaneously, AAPs inhibited the growth of harmful bacteria, thereby protecting intestinal barrier function, improving endotoxemia, and decreasing the levels of inflammatory factors such as TNF-α and IL-6. Furthermore, AAPs can inhibit the TLR4/JNK signaling pathway while promoting the activation of AKT and AMPK. Importantly, our study underscored the pivotal role of gut microbiota in the anti-obesity effects of AAPs, as evidenced by fecal microbiota transplantation experiments. In conclusion, our findings elucidated that AAPs improve obesity by regulating gut microbiota and TLR4/JNK signaling pathway, offering novel perspectives for further conclusion the anti-obesity potential of AAPs.
Collapse
Affiliation(s)
- Yingjun Zhou
- East China University of Science and Technology, People's Republic of China
| | - Yuezhong Jia
- East China University of Science and Technology, People's Republic of China
| | - Nuo Xu
- East China University of Science and Technology, People's Republic of China
| | - Lihua Tang
- East China University of Science and Technology, People's Republic of China
| | - Yaning Chang
- East China University of Science and Technology, People's Republic of China.
| |
Collapse
|