1
|
Rizzo M, Godino G, Perri E, Zelasco S, Lombardo L. Development of a rapid and fruit-saving method for fatty acid composition analysis in olive: a comparative study on 27 cultivars. FRONTIERS IN PLANT SCIENCE 2024; 15:1457518. [PMID: 39297009 PMCID: PMC11409458 DOI: 10.3389/fpls.2024.1457518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024]
Abstract
Fatty acid composition is an essential aspect of the qualitative assessment of olive oil. A method for evaluating and trending fatty acid composition of olive varieties directly from a limited amount of drupes, has been proven reliable in comparison with traditional oil analysis. No significant difference was detected between the two methods for the 27 cultivars tested, despite presenting decidedly different acid compositions. The results obtained, crossed with those of oil yield, can represent a useful resource to set the harvest calendars by choosing the most suitable time for the production of superior quality oils and for reducing the risk of pathogen infections or pest attack. For three cultivars, the acid composition was evaluated during three ripening phases (green, veraisoned and veraisoned to black). The different behaviors suggest it is the genotype that determines this -still little known- physiological trait in olive. An interesting finding was that the oils from drupes harvested in August showed linolenic acid values higher than the limit (1.00%) set in the international standards for the classification of olive oils, requesting further investigation.
Collapse
Affiliation(s)
- Marianna Rizzo
- Council for Agricultural Research and Economics (CREA) Research Centre for Olive, Fruit and Citrus Crops, Rende, Italy
| | - Gianluca Godino
- Council for Agricultural Research and Economics (CREA) Research Centre for Olive, Fruit and Citrus Crops, Rende, Italy
| | - Enzo Perri
- Council for Agricultural Research and Economics (CREA) Research Centre for Olive, Fruit and Citrus Crops, Rende, Italy
| | - Samanta Zelasco
- Council for Agricultural Research and Economics (CREA) Research Centre for Olive, Fruit and Citrus Crops, Rende, Italy
| | - Luca Lombardo
- Council for Agricultural Research and Economics (CREA) Research Centre for Olive, Fruit and Citrus Crops, Rende, Italy
| |
Collapse
|
2
|
Martemucci G, Khalil M, Di Luca A, Abdallah H, D’Alessandro AG. Comprehensive Strategies for Metabolic Syndrome: How Nutrition, Dietary Polyphenols, Physical Activity, and Lifestyle Modifications Address Diabesity, Cardiovascular Diseases, and Neurodegenerative Conditions. Metabolites 2024; 14:327. [PMID: 38921462 PMCID: PMC11206163 DOI: 10.3390/metabo14060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Several hallmarks of metabolic syndrome, such as dysregulation in the glucose and lipid metabolism, endothelial dysfunction, insulin resistance, low-to-medium systemic inflammation, and intestinal microbiota dysbiosis, represent a pathological bridge between metabolic syndrome and diabesity, cardiovascular, and neurodegenerative disorders. This review aims to highlight some therapeutic strategies against metabolic syndrome involving integrative approaches to improve lifestyle and daily diet. The beneficial effects of foods containing antioxidant polyphenols, intestinal microbiota control, and physical activity were also considered. We comprehensively examined a large body of published articles involving basic, animal, and human studie, as well as recent guidelines. As a result, dietary polyphenols from natural plant-based antioxidants and adherence to the Mediterranean diet, along with physical exercise, are promising complementary therapies to delay or prevent the onset of metabolic syndrome and counteract diabesity and cardiovascular diseases, as well as to protect against neurodegenerative disorders and cognitive decline. Modulation of the intestinal microbiota reduces the risks associated with MS, improves diabetes and cardiovascular diseases (CVD), and exerts neuroprotective action. Despite several studies, the estimation of dietary polyphenol intake is inconclusive and requires further evidence. Lifestyle interventions involving physical activity and reduced calorie intake can improve metabolic outcomes.
Collapse
Affiliation(s)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.L.); (A.G.D.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | | |
Collapse
|
3
|
Yan X, Huang W, Suo X, Pan S, Li T, Liu H, Tan B, Zhang S, Yang Y, Dong X. Integrated analysis of microbiome and host transcriptome reveals the damage/protective mechanism of corn oil and olive oil on the gut health of grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu). Int J Biol Macromol 2023; 253:127550. [PMID: 37865354 DOI: 10.1016/j.ijbiomac.2023.127550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
As digestive and immune organs of animals, the gut was frequently used to evaluate the health status of aquatic animals. In previous oil source alternatives study, corn oil (CO) had been found to induce gut inflammation, while olive oil (OO) had been found to be effective in protecting intestinal health. Three diets with different oil sources (fish oil, CO, OO) were formulated for an 8-week culture experiment, and it was proposed to combine 16S sequencing and transcriptome sequencing analysis to preliminarily elucidate the damage/protection mechanism of CO and OO on the gut health of grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu). We found that CO indeed damaged to gut health and destroyed the gut structure, while OO had a positive outcome in protecting the gut structure, promoting digestibility and relieving enteritis. Photobacterium, Romboutsia and Epulopiscium were significantly enriched in OO group and Staphylococcus were significantly enriched in CO group. Transcriptome sequencing further revealed CO could activated Complement and coagulation cascades, Staphylococcus aureus infection, Systemic lupus erythematosus, and Tuberculosis pathways; conversely, OO activated B-cell signaling receptors, promoted B-cell proliferation and apoptosis, and thus activated B-cell signaling pathways to enhance immunity, whereas OO can regulate IL17 signaling pathway and TNF signaling pathway to inhibit NF-κB signaling pathway to reduce pro-inflammatory response. By integrating the microbiome and transcriptome, further identified all differential microorganisms were directly and significantly correlated with differential genes, and Clostridium_sensu_stricto_1, Romboutsia, Staphylococcus might as the core regulates the expression of differential gene in the organism. These results reveal that different oil sources alter gut gene expression mainly by modulating the composition and abundance of gut microbiota, further regulating the health status of the gut. Gut microbiota could be used as biomarkers to provide reference and solutions for the mitigation of inflammation in aquatic animals.
Collapse
Affiliation(s)
- Xiaobo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Weibin Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Xiangxiang Suo
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Simiao Pan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Hao Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China.
| |
Collapse
|
4
|
Zhou Y, Huang X, Hu T, Chen S, Wang Y, Shi X, Yin M, Li R, Wang J, Jia X. Genome-Wide Analysis of Glycerol-3-Phosphate Acyltransferase (GPAT) Family in Perilla frutescens and Functional Characterization of PfGPAT9 Crucial for Biosynthesis of Storage Oils Rich in High-Value Lipids. Int J Mol Sci 2023; 24:15106. [PMID: 37894786 PMCID: PMC10606570 DOI: 10.3390/ijms242015106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol (TAG) biosynthesis. However, GPAT members and their functions remain poorly understood in Perilla frutescens, a special edible-medicinal plant with its seed oil rich in polyunsaturated fatty acids (mostly α-linolenic acid, ALA). Here, 14 PfGPATs were identified from the P. frutescens genome and classified into three distinct groups according to their phylogenetic relationships. These 14 PfGPAT genes were distributed unevenly across 11 chromosomes. PfGPAT members within the same subfamily had highly conserved gene structures and four signature functional domains, despite considerable variations detected in these conserved motifs between groups. RNA-seq and RT-qPCR combined with dynamic analysis of oil and FA profiles during seed development indicated that PfGPAT9 may play a crucial role in the biosynthesis and accumulation of seed oil and PUFAs. Ex vivo enzymatic assay using the yeast expression system evidenced that PfGPAT9 had a strong GPAT enzyme activity crucial for TAG assembly and also a high substrate preference for oleic acid (OA, C18:1) and ALA (C18:3). Heterogeneous expression of PfGPAT9 significantly increased total oil and UFA (mostly C18:1 and C18:3) levels in both the seeds and leaves of the transgenic tobacco plants. Moreover, these transgenic tobacco lines exhibited no significant negative effect on other agronomic traits, including plant growth and seed germination rate, as well as other morphological and developmental properties. Collectively, our findings provide important insights into understanding PfGPAT functions, demonstrating that PfGPAT9 is the desirable target in metabolic engineering for increasing storage oil enriched with valuable FA profiles in oilseed crops.
Collapse
Affiliation(s)
- Yali Zhou
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Xusheng Huang
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Ting Hu
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Shuwei Chen
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Yao Wang
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Xianfei Shi
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Miao Yin
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Runzhi Li
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Jiping Wang
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Xiaoyun Jia
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
5
|
Ivashkevich D, Ponomarenko A, Manzhulo I, Sultanov R, Dyuizen I. Effect of Oleoylethanolamide-Based Dietary Supplement on Systemic Inflammation in the Development of Alimentary-Induced Obesity in Mice. Nutrients 2023; 15:4345. [PMID: 37892420 PMCID: PMC10609781 DOI: 10.3390/nu15204345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The complex effect of oleoylethanolamide-based dietary supplement (OEA-DS) was studied in a model of diet-induced obesity in mice. Physiological, biochemical, and immunohistochemical methods were used to reveal differences in the changes in the weight of experimental animals, morphological changes in the spleen tissues, and changes in the cytokine expression profile in the spleen, blood plasma, and macrophage cell culture. First, it is shown that a hypercaloric diet high in carbohydrates and cholesterol led to the development of systemic inflammation, accompanied by organ morphological changes and increased production of proinflammatory cytokines. In parallel, the use of OEA-DS reduced the intensity of cellular inflammatory reactions, accompanied by a decrease in markers of cellular inflammation and proliferation, such as CD68, Iba-1, and Ki67 in the spleen tissue, and stabilized the level of proinflammatory cytokines (IL-1β, IL-6, TNFα) both in animals and in cell culture. In addition, in the macrophage cell culture (RAW264.7), it was shown that OEA-DS also suppressed the production of reactive oxygen species and nitrites in LPS-induced inflammation. The results of this study indicate the complex action of OEA-DS in obesity, which includes a reduction of systemic inflammation.
Collapse
Affiliation(s)
| | - Arina Ponomarenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (D.I.); (I.M.); (R.S.); (I.D.)
| | | | | | | |
Collapse
|
6
|
Abd El-Aziz GS, Alturkistani HA, Alshali RA, Halawani MM, Hamdy RM, Aggad WS, Kamal NJ, Hindi EA. The potential protectivity of honey and olive oil in methotrexate induced renal damage in rats. Toxicon 2023; 234:107268. [PMID: 37673343 DOI: 10.1016/j.toxicon.2023.107268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
Methotrexate (MTX) is an antimetabolite used to treat inflammatory diseases, autoimmune disorders and some malignancies. However, it has some life-threatening side effects such as nephrotoxicity which limit its clinical applications. That motivated the attention to seek for a defensive material to improve the outcomes of methotrexate while minimizing both renal and non-renal toxicity. Both honey (H) and olive oil (OO) are bioactive substances widely used as nutraceuticals that exhibited a potent therapeutic and antioxidant properties. This study aimed to assess the possible protective effect of H and OO intake either singly or together against the biochemical and structural Methotrexate-induced nephrotoxicity in rats. The study was conducted on 56 adult albino rats, they were divided into seven groups (n = 8): group 1 received only distelled water (negative control), group 2 received H (1.2 g/kg/day), group 3 received OO (1.25 ml/kg/day), group 4 received a single intraperitoneal injection of MTX (20 mg/kg), group 5 received MTX and H, group 6 received MTX and OO, group 7 received MTX, H and OO together. At the end of the experiment (2 weeks), all rats were sacrificed, and blood samples were assessed for kidney function tests. Kidney tissues were evaluated for several antioxidant parameters including Malondialdehyde (MDA), Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. Tissues were also processed for histological and immunohistochemical assessments. Results revealed that both H and OO improved the kidney function markers, histopathological and immunohistological changes due to Methotrexate-induced renal damage. Additionally, both substances also redeemed the oxidative damage of the kidney by decreasing MDA and increasing anti-oxidant enzymatic activities. Such effects were more apparent when the two substances were given together. Ultimately, our results proof that H and OO amiolerate the Methotrexate-induced nephrotoxicity in rats, thus they can be used as an adjuvant supplements for patients requiring methotrexate therapy.
Collapse
Affiliation(s)
- Gamal S Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani A Alturkistani
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasha A Alshali
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mervat M Halawani
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raid M Hamdy
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waheeb S Aggad
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nezar J Kamal
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad A Hindi
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Ma Y, Ding X, Gu J, Zhou S, Jiang Y. Effects of olive oil on hepatic steatosis and liver enzymes: A systematic review. J Funct Foods 2023; 109:105815. [DOI: 10.1016/j.jff.2023.105815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
8
|
Binou P, Stergiou A, Kosta O, Tentolouris N, Karathanos VT. Positive contribution of hydroxytyrosol-enriched wheat bread to HbA 1c levels, lipid profile, markers of inflammation and body weight in subjects with overweight/obesity and type 2 diabetes mellitus. Eur J Nutr 2023:10.1007/s00394-023-03133-9. [PMID: 37017765 DOI: 10.1007/s00394-023-03133-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 03/09/2023] [Indexed: 04/06/2023]
Abstract
PURPOSE The aim of the present study was to assess the impact of the daily consumption of bread enriched with hydroxytyrosol on HbA1c and blood lipid levels, inflammatory markers and weight loss. METHODS Sixty adults with overweight/obesity and type 2 diabetes mellitus (29 male, 31 female) participated in a 12-week dietary intervention based on the Mediterranean diet and consumed daily 60 g of conventional whole wheat bread (WWB) or whole wheat bread enriched with hydroxytyrosol (HTB). Anthropometric characteristics were measured and venous blood samples were collected at baseline and at the end of the intervention. RESULTS Both groups experienced significant weight loss, body fat and waist circumference decrease (p < 0.001). Nonetheless, a greater body fat mass decrease was observed in the HTB group compared to the WWB group (14.4 ± 1.6 vs 10.2 ± 1.1%, p = 0.038). Significant reductions were also reported in fasting glucose, HbA1c and blood pressure in both groups (p < 0.05). Regarding glucose and HbA1c, greater decreases were observed in the intervention group (101.4 ± 19.9 vs. 123.2 ± 43.4 mg/dL, p = 0.015 and 6.0 ± 0.6 vs. 6.4 ± 0.9%, p = 0.093, respectively). At HTB group, significant reductions in blood lipid, insulin, TNF-αand adiponectin levels (p < 0.05) and a marginally significant reduction in leptin levels (p = 0.081) were also reported. CONCLUSION Enrichment of bread with HT resulted in significant body fat mass reduction and positive effects on fasting glucose, insulin and HbA1c levels. It also contributed to reductions in inflammatory markers and blood lipid levels. Incorporation of HT in staple foods, like bread, may improve their nutritional profile and, in terms of a balanced diet, may contribute to the management of chronic diseases. TRIAL REGISTRATION The study was prospectively registered in clinicaltrials.gov (24th May 2021). CLINICALTRIALS gov Identifier: NCT04899791.
Collapse
Affiliation(s)
- Panagiota Binou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 70 El. Venizelou Ave, 17671, Athens, Greece
| | - Athena Stergiou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 70 El. Venizelou Ave, 17671, Athens, Greece
| | - Ourania Kosta
- 1st Department of Propaedeutic and Internal Medicine, Diabetes Center, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 75 Mikras Asias Str, 11527, Athens, Greece
| | - Nikolaos Tentolouris
- 1st Department of Propaedeutic and Internal Medicine, Diabetes Center, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 75 Mikras Asias Str, 11527, Athens, Greece
| | - Vaios T Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 70 El. Venizelou Ave, 17671, Athens, Greece.
| |
Collapse
|
9
|
Oral Bioavailability and Metabolism of Hydroxytyrosol from Food Supplements. Nutrients 2023; 15:nu15020325. [PMID: 36678196 PMCID: PMC9866489 DOI: 10.3390/nu15020325] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Table olives and olive oils are the main dietary sources of hydroxytyrosol (HT), a natural antioxidant compound that has emerged as a potential aid in protection against cardiovascular risk. Bioavailability studies with olive oils showed that HT is bioavailable from its free form and from conjugated forms such as oleuropein and its aglycone. Still, its low dietary intake, poor bioavailability, and high inter-individual variability after absorption through the gastrointestinal tract hamper its full benefits. In a randomized, controlled, blinded, cross-over study, we investigated the impact of HT metabolism and bioavailability by comparing two olive-derived watery supplements containing different doses of HT (30.58 and 61.48 mg of HT/dosage). Additionally, HT-fortified olive oil was used in the control group. To this aim, plasma and urine samples were evaluated in 12 healthy volunteers following the intake of a single dose of the supplements or fortified olive oil. Blood and urine samples were collected at baseline and at 0.5, 1, 1.5, 2, 4, and 12 h after intake. HT and its metabolites were analyzed using UHPLC-DAD-MS/MS. Pharmacokinetic results showed that dietary HT administered through the food supplements is bioavailable and bioavailability increases with the administered dose. After intake, homovanillic acid, HT-3-O-sulphate, and 3,4-dihydroxyphenylacetic acid are the main metabolites found both in plasma and urine. The maximum concentrations in plasma peaked 30 min after intake. As bioavailability of a compound is a fundamental prerequisite for its effect, these results promise a good potential of both food supplements for protection against oxidative stress and the consequent cardiovascular risk.
Collapse
|
10
|
Zhang Q, Zhang L, Chen C, Li P, Lu B. The gut microbiota-artery axis: A bridge between dietary lipids and atherosclerosis? Prog Lipid Res 2023; 89:101209. [PMID: 36473673 DOI: 10.1016/j.plipres.2022.101209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022]
Abstract
Atherosclerotic cardiovascular disease is one of the major leading global causes of death. Growing evidence has demonstrated that gut microbiota (GM) and its metabolites play a pivotal role in the onset and progression of atherosclerosis (AS), now known as GM-artery axis. There are interactions between dietary lipids and GM, which ultimately affect GM and its metabolites. Given these two aspects, the GM-artery axis may play a mediating role between dietary lipids and AS. Diets rich in saturated fatty acids (SFAs), omega-6 polyunsaturated fatty acids (n-6 PUFAs), industrial trans fatty acids (TFAs), and cholesterol can increase the levels of atherogenic microbes and metabolites, whereas monounsaturated fatty acids (MUFAs), ruminant TFAs, and phytosterols (PS) can increase the levels of antiatherogenic microbes and metabolites. Actually, dietary phosphatidylcholine (PC), sphingomyelin (SM), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been demonstrated to affect AS via the GM-artery axis. Therefore, that GM-artery axis acts as a communication bridge between dietary lipids and AS. Herein, we will describe the molecular mechanism of GM-artery axis in AS and discuss the complex interactions between dietary lipids and GM. In particular, we will highlight the evidence and potential mechanisms of dietary lipids affecting AS via GM-artery axis.
Collapse
Affiliation(s)
- Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Cheng Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Fatima K, Rashid AM, Memon UAA, Fatima SS, Javaid SS, Shahid O, Zehri F, Obaid MA, Ahmad M, Almas T, Minhas AMK. Mediterranean Diet and its Effect on Endothelial Function: A Meta-analysis and Systematic Review. Ir J Med Sci 2023; 192:105-113. [PMID: 35192097 PMCID: PMC9892125 DOI: 10.1007/s11845-022-02944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/01/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Endothelial dysfunction serves as an early marker for the risk of cardiovascular disease (CVD); therefore, it is a site of therapeutic interventions to reduce the risk of CVD. AIMS To examine the effect of the Mediterranean diet (MedDiet), as an intervention, on structural and functional parameters of endothelial function, and how it may reduce the risk of CVD and associated mortality. METHODS Medline database was searched for randomized controlled trials. Random-effects meta-analysis was conducted on 21 independent datasets. Meta-regression and subgroup analysis were performed to assess whether the effect of MedDiet was modified by health status (healthy subjects or with increased CVD risk), type of MedDiet intervention (alone or combined), type of parameter (functional or structural), study design (cross-over or parallel), BMI, age, and study duration. Our study used sample size, mean, and standard deviation of endothelial function measurements for both MedDiet intervention and control in the analyses. RESULTS Inverse relationship between endothelial function and intake of MedDiet was observed (SMD: 0.34; 95% CI: 0.16, 0.52; P = 0.0001). Overall, MedDiet increased FMD by 1.39% (95% CI: 0.47, 2.19; P < 0.001). There was a significant improvement in endothelial function in both healthy patients and in those with an increased risk of CVD. No significant variation was observed in the effects of MedDiet on endothelial function, due to study design or type of intervention. CONCLUSIONS These findings support that MedDiet can reduce the risk of CVD by improving endothelial function.
Collapse
Affiliation(s)
- Kaneez Fatima
- grid.412080.f0000 0000 9363 9292Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Ahmed Mustafa Rashid
- grid.415944.90000 0004 0606 9084Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Usama Abdul Ahad Memon
- grid.415944.90000 0004 0606 9084Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Syeda Sidra Fatima
- grid.412080.f0000 0000 9363 9292Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Sarmad Javaid
- grid.415944.90000 0004 0606 9084Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Omema Shahid
- grid.413093.c0000 0004 0571 5371Department of Medicine, Ziauddin Medical University, Karachi, Pakistan
| | - Fazila Zehri
- grid.412080.f0000 0000 9363 9292Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Adil Obaid
- grid.415944.90000 0004 0606 9084Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Mahlika Ahmad
- grid.413093.c0000 0004 0571 5371Department of Medicine, Ziauddin Medical University, Karachi, Pakistan
| | - Talal Almas
- grid.4912.e0000 0004 0488 7120Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Abdul Mannan Khan Minhas
- grid.414961.f0000 0004 0426 4740Department of Internal Medicine, Forrest General Hospital, Hattiesburg, MS USA
| |
Collapse
|
12
|
Olive Oil in the Mediterranean Diet and Its Biochemical and Molecular Effects on Cardiovascular Health through an Analysis of Genetics and Epigenetics. Int J Mol Sci 2022; 23:ijms232416002. [PMID: 36555645 PMCID: PMC9782563 DOI: 10.3390/ijms232416002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Human nutrition is a relatively new science based on biochemistry and the effects of food constituents. Ancient medicine considered many foods as remedies for physical performance or the treatment of diseases and, since ancient times, especially Greek, Asian and pre-Christian cultures similarly thought that they had beneficial effects on health, while others believed some foods were capable of causing illness. Hippocrates described the food as a form of medicine and stated that a balanced diet could help individuals stay healthy. Understanding molecular nutrition, the interaction between nutrients and DNA, and obtaining specific biomarkers could help formulate a diet in which food is not only a food but also a drug. Therefore, this study aims to analyze the role of the Mediterranean diet and olive oil on cardiovascular risk and to identify their influence from the genetic and epigenetic point of view to understand their possible protective effects.
Collapse
|
13
|
Effects of camelina oil supplementation on lipid profile and glycemic control: a systematic review and dose‒response meta-analysis of randomized clinical trials. Lipids Health Dis 2022; 21:132. [PMID: 36476379 PMCID: PMC9727906 DOI: 10.1186/s12944-022-01745-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND This systematic review and dose-response meta-analysis of published randomized controlled trials (RCTs) was conducted to determine the effectiveness of camelina oil supplementation (COS) on lipid profiles and glycemic indices. METHODS Relevant RCTs were selected by searching the ISI Web of Science, PubMed, and Scopus databases up to July 1, 2022. RTCs with an intervention duration of less than 2 weeks, without a placebo group, and those that used COS in combination with another supplement were excluded. Weighted mean differences and 95% confidence intervals were pooled by applying a random-effects model, while validated methods examined sensitivity analyses, heterogeneity, and publication bias. RESULTS Seven eligible RCTs, including 428 individuals, were selected. The pooled analysis revealed that COS significantly improved total cholesterol in studies lasting more than 8 weeks and utilizing dosages lower than 30 g/d compared to the placebo group. The results of fractional polynomial modeling indicated that there were nonlinear dose-response relations between the dose of COS and absolute mean differences in low-density cholesterol, high-density cholesterol, and total cholesterol, but not triglycerides. It appears that the greatest effect of COS oil occurs at the dosage of 20 g/day. CONCLUSION The present meta-analysis indicates that COS may reduce cardiovascular disease risk by improving lipid profile markers. Based on the results of this study, COS at dosages lower than 30 g/d may be a beneficial nonpharmacological strategy for lipid control. Further RCTs with longer COS durations are warranted to expand on these results.
Collapse
|
14
|
Preferences for dietary oils and fats in cooking and food preparation methods: a cross-sectional analysis of Australian adults. Br J Nutr 2022:1-11. [PMID: 36458481 DOI: 10.1017/s0007114522003798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Dietary oils and fats contain different fatty acid compositions that are associated with cardiometabolic disease risk. Despite their influence on disease outcomes, the types of dietary oils and fats predominately used in Australian households remain unknown. The aim of this study was to investigate the use of dietary oils and fats in cooking and food preparation in Australia. Adults living in Australia completed a cross-sectional online survey outlining their current household oil and fat use from July to December 2021. The survey was disseminated via social media platforms and included questions about the types of dietary oils and fats used for different cooking methods and the perceived motivators for choosing the main household oil. A total of 1248 participants responded to the survey. Participants were mostly female (91·6 %) aged between 25 and 44 years (56·7 %). The majority of participants (84·5 %) reported using some form of olive oil as their main source of oil for cooking and food preparation. Almost two-thirds of the sample (65·4 %) reported using extra virgin olive oil (EVOO), mainly in raw food preparation (71·5 %) or savoury baking and roasting (58 %). Fewer households reported using rice bran oil (4·6 %), canola oil (4·3 %) and vegetable oil (1·8 %). Almost half of all participants (49·6 %) identified perceived health benefits as the primary motivating factor for their main choice of oil, followed by sensory preference (46·7 %), versatility (10·2 %) and convenience (8·8 %). Australian adults frequently use olive oil, specifically EVOO, as the main oil for cooking and food preparation in the household.
Collapse
|
15
|
KIANI AYSHAKARIM, MEDORI MARIACHIARA, BONETTI GABRIELE, AQUILANTI BARBARA, VELLUTI VALERIA, MATERA GIUSEPPINA, IACONELLI AMERIGO, STUPPIA LIBORIO, CONNELLY STEPHENTHADDEUS, HERBST KARENL, BERTELLI MATTEO. Modern vision of the Mediterranean diet. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E36-E43. [PMID: 36479477 PMCID: PMC9710405 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Mediterranean diet is the most well-known and researched dietary pattern worldwide. It is characterized by the consumption of a wide variety of foods, such as extra-virgin olive oil (EVOO), legumes, cereals, nuts, fruits, vegetables, dairy products, fish, and wine. Many of these foods provide several phytonutrients, among which polyphenols and vitamins play an important role. Data from several studies have strongly established that nutrition is a key factor in promoting a healthy lifestyle and preventing many chronic diseases. In particular, a large number of studies have established the protective effects of the Mediterranean diet against several chronic diseases, among which are diabetes, cardiovascular diseases, cancer, aging disorders, and against overall mortality. Animal and human translational studies have revealed the biological mechanisms regulating the beneficial effects of the traditional Mediterranean diet. Indeed, several studies demonstrated that this nutritional pattern has lipid-lowering, anticancer, antimicrobial, and anti-oxidative effects. Moreover, the Mediterranean diet is considered environmentally sustainable. In this review, we describe the composition of the Mediterranean diet, assess its beneficial effects, and analyze their epigenomic, genomic, metagenomic, and transcriptomic aspects. In the future it will be important to continue exploring the molecular mechanisms through which the Mediterranean diet exerts its protective effects and to standardize its components and serving sizes to understand more precisely its effects on human health.
Collapse
Affiliation(s)
| | - MARIA CHIARA MEDORI
- MAGI’S LAB, Rovereto (TN), Italy
- Correspondence: Maria Chiara Medori, MAGI’S LAB, Rovereto (TN), 38068, Italy. E-mail:
| | | | - BARBARA AQUILANTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - VALERIA VELLUTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - GIUSEPPINA MATERA
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - AMERIGO IACONELLI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - LIBORIO STUPPIA
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - STEPHEN THADDEUS CONNELLY
- San Francisco Veterans Affairs Health Care System, Department of Oral & Maxillofacial Surgery, University of California, San Francisco, CA, USA
| | - KAREN L. HERBST
- Total Lipedema Care, Beverly Hills California and Tucson Arizona, USA
| | - MATTEO BERTELLI
- MAGI EUREGIO, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
16
|
Yang Y, Kong Q, Lim ARQ, Lu S, Zhao H, Guo L, Yuan L, Ma W. Transcriptional regulation of oil biosynthesis in seed plants: Current understanding, applications, and perspectives. PLANT COMMUNICATIONS 2022; 3:100328. [PMID: 35605194 PMCID: PMC9482985 DOI: 10.1016/j.xplc.2022.100328] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Plants produce and accumulate triacylglycerol (TAG) in their seeds as an energy reservoir to support the processes of seed germination and seedling development. Plant seed oils are vital not only for the human diet but also as renewable feedstocks for industrial use. TAG biosynthesis consists of two major steps: de novo fatty acid biosynthesis in the plastids and TAG assembly in the endoplasmic reticulum. The latest advances in unraveling transcriptional regulation have shed light on the molecular mechanisms of plant oil biosynthesis. We summarize recent progress in understanding the regulatory mechanisms of well-characterized and newly discovered transcription factors and other types of regulators that control plant fatty acid biosynthesis. The emerging picture shows that plant oil biosynthesis responds to developmental and environmental cues that stimulate a network of interacting transcriptional activators and repressors, which in turn fine-tune the spatiotemporal regulation of the pathway genes.
Collapse
Affiliation(s)
- Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Audrey R Q Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
17
|
Costa M, Costa V, Lopes M, Paiva-Martins F. A biochemical perspective on the fate of virgin olive oil phenolic compounds in vivo. Crit Rev Food Sci Nutr 2022; 64:1403-1428. [PMID: 36094444 DOI: 10.1080/10408398.2022.2116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The chemistry of the phenolic compounds found in virgin olive oil (VOO) is very complex due, not only to the different classes of polyphenols that can be found in it, but, above all, due to the existence of a very specific phenol class found only in oleaceae plants: the secoiridoids. Searching in the Scopus data base the keywords flavonoid, phenolic acid, lignin and secoiridoid, we can find a number of 148174, 79435, 11326 and 1392 research articles respectively, showing how little is devote to the latter class of compounds. Moreover, in contrast with other classes, that include only phenolic compounds, secoiridoids may include phenolic and non-phenolic compounds, being the articles concerning phenolic secoiridoids much less than the half of the abovementioned articles. Therefore, it is important to clarify the structures of these compounds and their chemistry, as this knowledge will help understand their bioactivity and metabolism studies, usually performed by researchers with a more health science's related background. In this review, all the structures found in many research articles concerning VOO phenolic compounds chemistry and metabolism was gathered, with a special attention devoted to the secoiridoids, the main phenolic compound class found in olives, VOO and olive leaf.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Vânia Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Margarida Lopes
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
18
|
The Impact of Dietary Consumption of Palm Oil and Olive Oil on Lipid Profile and Hepatocyte Injury in Hypercholesterolemic Rats. Pharmaceuticals (Basel) 2022; 15:ph15091103. [PMID: 36145324 PMCID: PMC9502270 DOI: 10.3390/ph15091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022] Open
Abstract
A metabolic disease called hypercholesterolemia is connected to both oxidative damage and inflammation. The goal of the current investigation was to determine if olive oil and palm oil could prevent hypercholesterolemia-induced oxidative stress in the liver of rats fed a high-cholesterol diet (HCD). The experimental mice were given HCD for three months while also receiving 0.5 mL/kg of either palm or olive oil. Serum triglycerides, total cholesterol, LDL cholesterol, vLDL cholesterol, and the atherogenic index all significantly increased in HCD-fed rats, while HDL cholesterol significantly dropped. Additionally, HCD caused a notable rise in proinflammatory cytokines and serum transaminases in liver tissue. Additionally, HCD significantly increased the production of nitric oxide and lipid peroxidation in the liver while decreasing antioxidant enzymes. Treatment with palm and olive oils dramatically reduced the levels of pro-inflammatory cytokines and lipid peroxidation, improved antioxidant defenses, and considerably improved liver function indicators. Additionally, the examined oils dramatically decreased the expression of fatty acid synthase (FAS) in the liver of rats receiving HCD. In conclusion, HCD-fed rats exhibit significant antihyperlipidemic and cholesterol-lowering benefits from palm and olive oils. The improved antioxidant defenses, lower inflammation and lipid peroxidation, and altered hepatic FAS mRNA expression were the main mechanisms by which palm and olive oils produced their advantageous effects.
Collapse
|
19
|
Qiao Z, Kong Q, Tee WT, Lim ARQ, Teo MX, Olieric V, Low PM, Yang Y, Qian G, Ma W, Gao YG. Molecular basis of the key regulator WRINKLED1 in plant oil biosynthesis. SCIENCE ADVANCES 2022; 8:eabq1211. [PMID: 36001661 PMCID: PMC9401623 DOI: 10.1126/sciadv.abq1211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/08/2022] [Indexed: 05/20/2023]
Abstract
Vegetable oils are not only major components of human diet but also vital for industrial applications. WRINKLED1 (WRI1) is a pivotal transcription factor governing plant oil biosynthesis, but the underlying DNA-binding mechanism remains incompletely understood. Here, we resolved the structure of Arabidopsis WRI1 (AtWRI1) with its cognate double-stranded DNA (dsDNA), revealing two antiparallel β sheets in the tandem AP2 domains that intercalate into the adjacent major grooves of dsDNA to determine the sequence recognition specificity. We showed that AtWRI1 represented a previously unidentified structural fold and DNA-binding mode. Mutations of the key residues interacting with DNA element affected its binding affinity and oil biosynthesis when these variants were transiently expressed in tobacco leaves. Seed oil content was enhanced in stable transgenic wri1-1 expressing an AtWRI1 variant (W74R). Together, our findings offer a structural basis explaining WRI1 recognition and binding of DNA and suggest an alternative strategy to increase oil yield in crops through WRI1 bioengineering.
Collapse
Affiliation(s)
- Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Wan Ting Tee
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Audrey R. Q. Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Miao Xuan Teo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pui Man Low
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Guoliang Qian
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Corresponding author. (Y.-G.G.); (W.M.)
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
- Corresponding author. (Y.-G.G.); (W.M.)
| |
Collapse
|
20
|
Al-Asmari KM, Altayb HN, Al-Attar AM, Qahl SH, Al-Thobaiti SA, Abu Zeid IM. Arabica coffee and olive oils mitigate malathion-induced nephrotoxicity in rat: In silico, immunohistochemical and biochemical evaluation. Saudi J Biol Sci 2022; 29:103307. [PMID: 35602869 PMCID: PMC9120970 DOI: 10.1016/j.sjbs.2022.103307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022] Open
|
21
|
He P, Yu L, Tian F, Zhang H, Chen W, Zhai Q. Dietary Patterns and Gut Microbiota: The Crucial Actors in Inflammatory Bowel Disease. Adv Nutr 2022; 13:1628-1651. [PMID: 35348593 PMCID: PMC9526834 DOI: 10.1093/advances/nmac029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
It is widely believed that diet and the gut microbiota are strongly related to the occurrence and progression of inflammatory bowel disease (IBD), but the effects of the interaction between dietary patterns and the gut microbiota on IBD have not been well elucidated. In this article, we aim to explore the complex relation between dietary patterns, gut microbiota, and IBD. We first comprehensively summarized the dietary patterns associated with IBD and found that dietary patterns can modulate the occurrence and progression of IBD through various signaling pathways, including mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs), signal transducer and activator of transcription 3 (STAT3), and NF-κB. Besides, the gut microbiota performs a vital role in the progression of IBD, which can affect the expression of IBD susceptibility genes, such as dual oxidase 2 (DUOX2) and APOA-1 , the intestinal barrier (in particular, the expression of tight junction proteins), immune function (especially the homeostasis between effector and regulatory T cells) and the physiological metabolism, in particular, SCFAs, bile acids (BAs), and tryptophan metabolism. Finally, we reviewed the current knowledge on the interaction between dietary patterns and the gut microbiota in IBD and found that dietary patterns modulate the onset and progression of IBD, which is partly attributed to the regulation of the gut microbiota (especially SCFAs-producing bacteria and Escherichia coli). Faecalibacteria as "microbiomarkers" of IBD could be used as a target for dietary interventions to alleviate IBD. A comprehensive understanding of the interplay between dietary intake, gut microbiota, and IBD will facilitate the development of personalized dietary strategies based on the regulation of the gut microbiota in IBD and expedite the era of precision nutritional interventions for IBD.
Collapse
Affiliation(s)
- Pandi He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China,Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | | |
Collapse
|
22
|
Lim ARQ, Kong Q, Singh SK, Guo L, Yuan L, Ma W. Sunflower WRINKLED1 Plays a Key Role in Transcriptional Regulation of Oil Biosynthesis. Int J Mol Sci 2022; 23:ijms23063054. [PMID: 35328473 PMCID: PMC8951541 DOI: 10.3390/ijms23063054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Sunflower (Helianthus annuus) is one of the most important oilseed crops worldwide. However, the transcriptional regulation underlying oil accumulation in sunflower is not fully understood. WRINKLED1 (WRI1) is an essential transcription factor governing oil accumulation in plant cells. Here, we identify and characterize a sunflower ortholog of WRI1 (HaWRI1), which is highly expressed in developing seeds. Transient production of HaWRI1 stimulated substantial oil accumulation in Nicotiana benthamiana leaves. Dual-luciferase reporter assay, electrophoretic mobility shift assay, fatty acid quantification, and gene expression analysis demonstrate that HaWRI1 acts as a pivotal transcription factor controlling the expression of genes involved in late glycolysis and fatty acid biosynthesis. HaWRI1 directly binds to the cis-element, AW-box, in the promoter of biotin carboxyl carrier protein isoform 2 (BCCP2). In addition, we characterize an 80 amino-acid C-terminal domain of HaWRI1 that is crucial for transactivation. Moreover, seed-specific overexpression of HaWRI1 in Arabidopsis plants leads to enhanced seed oil content as well as upregulation of the genes involved in fatty acid biosynthesis. Taken together, our work demonstrates that HaWRI1 plays a pivotal role in the transcriptional control of seed oil accumulation, providing a potential target for bioengineering sunflower oil yield improvement.
Collapse
Affiliation(s)
- Audrey R. Q. Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (A.R.Q.L.); (Q.K.)
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (A.R.Q.L.); (Q.K.)
| | - Sanjay K. Singh
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; (S.K.S.); (L.Y.)
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; (S.K.S.); (L.Y.)
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (A.R.Q.L.); (Q.K.)
- Correspondence:
| |
Collapse
|
23
|
Akram M, Ansari R, Akhter N, Ademola Otekunrin O, Zafar S, Ishaque M, Munir N, Sciarra L, My G, Gianvito Matarrese E, Palamà Z, Riaz M. The Impact of Olive Oil and Mediterranean Diet on the Prevention of Cardiovascular Diseases. OLIVE OIL - NEW PERSPECTIVES AND APPLICATIONS 2022. [DOI: 10.5772/intechopen.97146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The Mediterranean diet has a lot of health benefits but especially because it lowers the incidence of cardiovascular diseases. It has been shown that food components, certain nutrients and the pattern of the diet lowers the risk of several diseases such as diabetes, certain cancers, obesity, respiratory disorders, mental health and cognitive decline, bone diseases (osteoarthritis), healthy aging and quality of life among more others. It has been concluded from studying the mechanism responsible for lowering these risks that food combinations, food nutrients, presence of non-nutritive substances, lifestyles habits and the cooking techniques all together make the Mediterranean dietary pattern into a tool that can not only prevent but can also be used as a way of treatment for these medical ailments. As part of the essential dietary fat, consumption of extra virgin olive oil is the main feature of Mediterranean diet. Olive oil is noted to have anti-bacterial characteristics, involved in improving the endothelial function in young females, and is hypothesized to have epigenetic effects interplay offering protection from cancers due to the presence of beneficial monounsaturated fats. The presence of antioxidants contributes to the inflammation protecting properties of the olive oil. Olive oil has high quantities of antioxidants and offers numerous benefits for cardiovascular health, such as protection of LDL from oxidation and lowering of the high blood pressure as well as offers protection from diabetes mellitus. The Mediterranean diet and the Olive oil consumption also have a fundamental impact in secondary prevention, such as in patients with atrial fibrillation that underwent catheter ablation.
Collapse
|
24
|
Gea-González A, Hernández-García S, Henarejos-Escudero P, Martínez-Rodríguez P, García-Carmona F, Gandía-Herrero F. Polyphenols from traditional Chinese medicine and Mediterranean diet are effective against Aβ toxicity in vitro and in vivo in Caenorhabditis elegans. Food Funct 2022; 13:1206-1217. [PMID: 35018947 DOI: 10.1039/d1fo02147h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potential of naturally occurring polyphenols as nutraceuticals to prevent and/or treat Alzheimer's disease is studied. Five structurally related flavones and four tyrosols were tested in vitro in human amyloid-β peptide aggregation assays. The most promising compounds were two flavones, scutellarein and baicalein, and two tyrosols hydroxytyrosol and hydroxytyrosol acetate. These compounds caused a dose-dependent reduction of Aβ-peptide aggregation up to 90% for the flavones and 100% for the tyrosols, at concentrations of 83.3 μM and 33.3 mM, respectively. The IC50 value obtained for scutellarein was 22.5 μM, and was slightly higher for baicalein, 25.9 μM, while for hydroxytyrosol and hydroxytyrosol acetate they were 0.57 mM and 0.62 mM. Given these results, the compounds were selected to conduct in vivo assays with the Caenorhabditis elegans animal model of Alzheimer's disease. The amyloid anti-aggregation ability of these polyphenols was demonstrated in in vivo aggregation assays in which 1 mM hydroxytyrosol reduced the amyloid plaques in the mutant strain CL2331 by 43%. The neuroprotective effect was evaluated in chemotaxis experiments carried out with transgenic strain CL2355 that expresses the human amyloid-β peptide in the neurons. The chemotaxis index was improved by 240% when the neuron-impaired animals were treated with 1 mM hydroxytyrosol. The results indicate that the four molecules would be viable candidates to develop nutraceuticals that interfere in amyloid-β peptide aggregation and, consequently, prevent and/or treat Alzheimer's disease.
Collapse
Affiliation(s)
- Adriana Gea-González
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Pedro Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
25
|
Wang Y, Dai Y, Tian T, Zhang J, Xie W, Pan D, Xu D, Lu Y, Wang S, Xia H, Sun G. The Effects of Dietary Pattern on Metabolic Syndrome in Jiangsu Province of China: Based on a Nutrition and Diet Investigation Project in Jiangsu Province. Nutrients 2021; 13:nu13124451. [PMID: 34960003 PMCID: PMC8708757 DOI: 10.3390/nu13124451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome, a complex group of metabolic disorders of energy use and storage, is considered as an important determinant risk factor for many cardiovascular diseases. This study aimed to examine the association between metabolic syndrome (MetS) and dietary pattern among adults in Jiangsu Province of China. Data were from three rounds of cross–sectional nutrition and diet investigation projects in Jiangsu Province of China, which were conducted in 2002, 2007, and 2014 by Jiangsu Provincial Center for Disease Control and Prevention. A total of 13,944 participants with complete food frequency questionnaire (FFQ) were eventually included in this study after further data screening. The 2009 Joint Interim Statement for China was used to define metabolic syndrome. Three distinct dietary patterns were identified by factor analysis: the modern dietary pattern (rich in pork, poultry, vegetables, seafood, pastry food, other animal meats, fruits, milk and its products, soft drink, whole grains, nuts, and seeds, but low in wheat), vegetable oils/condiments/soy products dietary pattern (rich in vegetable oils, other condiments, salt, soy products, and fruits and low in dry legumes), and modern high–wheat dietary pattern (rich in wheat, tubers, fruits, and other animal meats, but low in rice). Higher intake of the modern dietary pattern and modern high–wheat dietary pattern were positively associated with metabolic syndrome in both unadjusted and adjusted models by genders, whereas higher intake of the vegetable oils/condiments/soy products dietary pattern had a negative relationship with metabolic syndrome in both unadjusted and adjusted models by genders (p < 0.05). Our study recommends reducing the consumption of animal meat products, especially processed meat products, and replacing animal oils with vegetable oils as the main supply of daily oils. Furthermore, more prospective and experimental studies are needed to confirm the relationship between dietary patterns and metabolic syndrome.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.W.); (Y.D.); (D.P.); (D.X.); (Y.L.); (S.W.); (H.X.)
| | - Yue Dai
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.W.); (Y.D.); (D.P.); (D.X.); (Y.L.); (S.W.); (H.X.)
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (T.T.); (J.Z.); (W.X.)
| | - Ting Tian
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (T.T.); (J.Z.); (W.X.)
| | - Jingxian Zhang
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (T.T.); (J.Z.); (W.X.)
| | - Wei Xie
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (T.T.); (J.Z.); (W.X.)
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.W.); (Y.D.); (D.P.); (D.X.); (Y.L.); (S.W.); (H.X.)
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.W.); (Y.D.); (D.P.); (D.X.); (Y.L.); (S.W.); (H.X.)
| | - Yifei Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.W.); (Y.D.); (D.P.); (D.X.); (Y.L.); (S.W.); (H.X.)
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.W.); (Y.D.); (D.P.); (D.X.); (Y.L.); (S.W.); (H.X.)
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.W.); (Y.D.); (D.P.); (D.X.); (Y.L.); (S.W.); (H.X.)
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.W.); (Y.D.); (D.P.); (D.X.); (Y.L.); (S.W.); (H.X.)
- Correspondence: ; Tel./Fax: +86-25-83272567
| |
Collapse
|
26
|
Probiotic bacteria and plant-based matrices: An association with improved health-promoting features. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
27
|
Dominguez LJ, Veronese N, Vernuccio L, Catanese G, Inzerillo F, Salemi G, Barbagallo M. Nutrition, Physical Activity, and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients 2021; 13:nu13114080. [PMID: 34836334 PMCID: PMC8624903 DOI: 10.3390/nu13114080] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple factors combined are currently recognized as contributors to cognitive decline. The main independent risk factor for cognitive impairment and dementia is advanced age followed by other determinants such as genetic, socioeconomic, and environmental factors, including nutrition and physical activity. In the next decades, a rise in dementia cases is expected due largely to the aging of the world population. There are no hitherto effective pharmaceutical therapies to treat age-associated cognitive impairment and dementia, which underscores the crucial role of prevention. A relationship among diet, physical activity, and other lifestyle factors with cognitive function has been intensively studied with mounting evidence supporting the role of these determinants in the development of cognitive decline and dementia, which is a chief cause of disability globally. Several dietary patterns, foods, and nutrients have been investigated in this regard, with some encouraging and other disappointing results. This review presents the current evidence for the effects of dietary patterns, dietary components, some supplements, physical activity, sleep patterns, and social engagement on the prevention or delay of the onset of age-related cognitive decline and dementia.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
- Correspondence: ; +39-0916554828
| | - Nicola Veronese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Laura Vernuccio
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppina Catanese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Flora Inzerillo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy;
- UOC of Neurology, University Hospital “Paolo Giaccone”, 90100 Palermo, Italy
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| |
Collapse
|
28
|
Alleviation of Malathion Toxicity Effect by Coffea arabica L. Oil and Olea europaea L. Oil on Lipid Profile: Physiological and In Silico Study. PLANTS 2021; 10:plants10112314. [PMID: 34834675 PMCID: PMC8619699 DOI: 10.3390/plants10112314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022]
Abstract
The community health plans commonly use malathion (MAL), an organophosphate pesticide (OP), to eliminate pathogenic insects. The objective of the present research is to evaluate the consequences of Coffea arabica L. oil and Olea europaea L. oil on MAL-intoxicated male rats. Six equal groups of animals were used for conducting this study (n = 10). Animals in group one were designated as control, animals belonging to group two were exposed to MAL in the measure of hundred mg per kg BW (body weight) for forty-nine days (seven weeks), rats in the third and fourth groups were administered with 400 mg/kg BW of Coffea arabica L. and Olea europaea L. oils, respectively, and the same amount of MAL as given to the second group. Groups five and six were administered with the same amount of Coffea arabica L. oil and Olea europaea L. oil as given to group three. Exposure of rats to 100 mg/kg body weight of MAL resulted in statistical alteration of the serum lipid profile. A marked decline was noticed in the severe changes of these blood parameters when MAL-intoxicated rats were treated with Coffea arabica L. oil and Olea europaea L. oil. Two compounds from Coffea arabica L. oil (Chlorogenic acid) and Olea europaea L. oil (Oleuropein) demonstrated good interaction with xanthine oxidase (XO) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) enzymes that are associated with cholesterol production. The present study indicated that Coffea arabica L. oil and Olea europaea L. oil could be considered prospective and potential healing agents against metabolic conditions induced by MAL.
Collapse
|
29
|
Santos-Buelga C, González-Manzano S, González-Paramás AM. Wine, Polyphenols, and Mediterranean Diets. What Else Is There to Say? Molecules 2021; 26:5537. [PMID: 34577008 PMCID: PMC8468969 DOI: 10.3390/molecules26185537] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
A considerable amount of literature has been published claiming the cardiovascular benefits of moderate (red) wine drinking, which has been considered a distinguishing trait of the Mediterranean diet. Indeed, red wine contains relevant amounts of polyphenols, for which evidence of their biological activity and positive health effects are abundant; however, it is also well-known that alcohol, even at a low level of intake, may have severe consequences for health. Among others, it is directly related to a number of non-communicable diseases, like liver cirrhosis or diverse types of cancer. The IARC classifies alcohol as a Group 1 carcinogen, causally associated with the development of cancers of the upper digestive tract and liver, and, with sufficient evidence, can be positively associated with colorectum and female breast cancer. In these circumstances, it is tricky, if not irresponsible, to spread any message on the benefits of moderate wine drinking, about which no actual consensus exists. It should be further considered that other hallmarks of the Mediterranean diet are the richness in virgin olive oil, fruits, grains, and vegetables, which are also good sources of polyphenols and other phytochemicals, and lack the risks of wine. All of these aspects are reviewed in this article.
Collapse
Affiliation(s)
- Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, E-37007 Salamanca, Spain; (S.G.-M.); (A.M.G.-P.)
| | | | | |
Collapse
|
30
|
Sánchez-Calvo B, Cassina A, Mastrogiovanni M, Santos M, Trias E, Kelley EE, Rubbo H, Trostchansky A. Olive oil-derived nitro-fatty acids: protection of mitochondrial function in non-alcoholic fatty liver disease. J Nutr Biochem 2021; 94:108646. [PMID: 33838229 PMCID: PMC8197755 DOI: 10.1016/j.jnutbio.2021.108646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/28/2020] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive liver fat deposition in the absence of significant alcohol intake. Since extra virgin olive oil (EVOO) reduces fat accumulation, we analyzed the involvement of nitro-fatty acids (NO2-FA) on the beneficial effects of EVOO consumption on NAFLD. Nitro-fatty acids formation was observed during digestion in mice supplemented with EVOO and nitrite. Mice fed with a high-fat diet (HF) presented lower plasma NO2-FA levels than normal chow, and circulating concentrations recovered when the HF diet was supplemented with 10% EVOO plus nitrite. Under NO2-FA formation conditions, liver hemoxygenase-1 expression significantly increased while decreased body weight and fat liver accumulation. Mitochondrial dysfunction plays a central role in the pathogenesis of NAFLD while NO2-FA has been shown to protect from mitochondrial oxidative damage. Accordingly, an improvement of respiratory indexes was observed when mice were supplemented with both EVOO plus nitrite. Liver mitochondrial complexes II and V activities were greater in mice with EVOO supplementation and further improved in the presence of nitrite. Overall, our results strongly suggest a positive correlation between NO2-OA formation from EVOO and the observed improvement of mitochondrial function in NAFLD. The formation of NO2-FA can account for the health benefits associated with EVOO consumption.
Collapse
Affiliation(s)
- Beatriz Sánchez-Calvo
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Departamento de Nutrición Básica, Escuela de Nutrición, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mariela Santos
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University, United States
| | - Homero Rubbo
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
31
|
Cao G, Hong Y, Wu H, Chen Z, Lu M, Cai Z. Visual authentication of edible vegetable oil and used cooking oil using MALDI imaging mass spectrometry. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Sánchez R, Bahamonde C, Sanz C, Pérez AG. Identification and Functional Characterization of Genes Encoding Phenylacetaldehyde Reductases That Catalyze the Last Step in the Biosynthesis of Hydroxytyrosol in Olive. PLANTS 2021; 10:plants10071268. [PMID: 34206363 PMCID: PMC8309162 DOI: 10.3390/plants10071268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/12/2023]
Abstract
Hydroxytyrosol derivatives are the most important phenolic components in virgin olive oil due to their well-demonstrated biological activities. In this regard, two phenyl acetaldehyde reductase genes, OePAR1.1 and OePAR1.2, involved in hydroxytyrosol synthesis, have been identified from an olive transcriptome. Both genes were synthesized and expressed in Escherichia coli, and their encoded proteins were purified. The recombinant enzymes display high substrate specificity for 2,4-dihydroxyphenylacetaldehyde (3,4-DHPAA) to form hydroxytyrosol. The reaction catalyzed by OePAR constitutes the second, and last, biochemical step in the formation of hydroxytyrosol from the amino acid L-3,4-dihydroxyphenylalanine (L-DOPA) in olive. OePAR1.1 and OePAR1.2 enzymes exhibit high thermal stability, similar pH optima (pH 6.5), and high affinity for 3,4-DHPAA (apparent Km 0.6 and 0.8 µmol min−1 mg−1, respectively). However, OePAR1.2 exhibited higher specific activity and higher expression levels in all the olive cultivars under study. The expression analyses indicate that both OePAR1.1 and OePAR1.2 genes are temporally regulated in a cultivar-dependent manner. The information provided here could be of interest for olive breeding programs searching for new olive genotypes with the capacity to produce oils with higher levels of hydroxytyrosol derivatives.
Collapse
|
33
|
Cellular Antioxidant Effects and Bioavailability of Food Supplements Rich in Hydroxytyrosol. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present study evaluates the effect of olive (Olea europaea L.) vegetation water on human cells regarding its antioxidant properties and radical scavenger bioactivities. To this aim, two food supplements containing concentrated olive water in combination with 6% lemon juice or 70% grape juice, respectively, were assessed in different oxidation assays. From the investigated polyphenols, hydroxytyrosol, present in olives and in a lesser extent in grapes, was found to be the most abundant in both formulations, followed by tyrosol and oleuropein for the olive-derived concentrate with lemon juice, and by proanthocyanidins and tyrosol for the olive concentrate with grape juice. Cellular studies suggest that both formulations are effective antioxidants. In particular, the combination of olive and grape extracts showed a remarkable superoxides-, hydroxyl radicals-, and hydrogen peroxides-scavenging activity, while the formulation containing 94% olive concentrate wasmore potent in protecting the cells against lipoxidation. Both products showed a significant and similar effect in preventing advanced glycation end products’ (AGEs) formation. In addition, preliminary data indicate that hydroxytyrosol is absorbed into the human body when administered via these hydrophilic matrices, as confirmed by the urinary excretion of free hydroxytyrosol. Since the availability of phytochemicals largely depends on the vehicle in which they are solved, these findings are of relevance and contribute to supporting the healthful effects here assessed in a cellular environment.
Collapse
|
34
|
Mass spectrometry investigation of nucleoside adducts of fatty acid hydroperoxides from oxidation of linolenic and linoleic acids. J Chromatogr A 2021; 1649:462236. [PMID: 34038777 DOI: 10.1016/j.chroma.2021.462236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
The widespread presence of lipid hydroperoxides in foodstuffs and biological samples has aroused great attentions in recent years, while it remains challenging for analysis of the fragility of O - O bond linkage of peroxides. In this present study, we explored the utility of electrospray ionization mass spectrometry (ESI-MS) for characterization of two fatty acid hydroperoxides from oxidation of linoleic acid and α-linolenic acid, which are the essential fatty acids abundant in many seeds and vegetable oils. The results indicated that in-source fragmentation occurred in the detection of the two fatty acid hydroperoxides in both positive and negative ion modes, which yielded characteristic fragments for ESI-MS analysis. In addition, the genotoxicity of fatty acid hydroperoxides for generation of nucleoside adducts was investigated. It was found that a variety of nucleoside adducts were formed from the reactions of fatty acid hydroperoxides and nucleosides. Furthermore, the decomposition products of the fatty acid hydroperoxides were determined, which provided evidence to elucidate the reaction mechanism for formation of nucleoside adducts.
Collapse
|
35
|
The Effect of Antioxidant and Anti-Inflammatory Capacity of Diet on Psoriasis and Psoriatic Arthritis Phenotype: Nutrition as Therapeutic Tool? Antioxidants (Basel) 2021; 10:antiox10020157. [PMID: 33499118 PMCID: PMC7912156 DOI: 10.3390/antiox10020157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation and increased oxidative stress are contributing factors to many non-communicable diseases. A growing body of evidence indicates that dietary nutrients can activate the immune system and may lead to the overproduction of pro-inflammatory cytokines. Fatty acids as macronutrients are key players for immunomodulation, with n-3 polyunsaturated fatty acids having the most beneficial effect, while polyphenols and carotenoids seem to be the most promising antioxidants. Psoriasis is a chronic, immune-mediated inflammatory disease with multifactorial etiology. Obesity is a major risk factor for psoriasis, which leads to worse clinical outcomes. Weight loss interventions and, generally, dietary regimens such as gluten-free and Mediterranean diet or supplement use may potentially improve psoriasis’ natural course and response to therapy. However, data about more sophisticated nutritional patterns, such as ketogenic, very low-carb or specific macro- and micro-nutrient substitution, are scarce. This review aims to present the effect of strictly structured dietary nutrients, that are known to affect glucose/lipid metabolism and insulin responses, on chronic inflammation and immunity, and to discuss the utility of nutritional regimens as possible therapeutic tools for psoriasis and psoriatic arthritis.
Collapse
|
36
|
Oliverio M, Nardi M, Di Gioia ML, Costanzo P, Bonacci S, Mancuso S, Procopio A. Semi-synthesis as a tool for broadening the health applications of bioactive olive secoiridoids: a critical review. Nat Prod Rep 2020; 38:444-469. [PMID: 33300916 DOI: 10.1039/d0np00084a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: 2005 up to 2020Olive bioactive secoiridoids are recognized as natural antioxidants with multiple beneficial effects on human health. Nevertheless, the study of their biological activity has also disclosed some critical aspects associated with their application. Firstly, only a few of them can be extracted in large amounts from their natural matrix, namely olive leaves, drupes, oil and olive mill wastewater. Secondly, their application as preventive agents and drugs is limited by their low membrane permeability. Thirdly, the study of their biological fate after administration is complicated by the absence of pure analytical standards. Accordingly, efficient synthetic methods to obtain natural and non-natural bioactive phenol derivatives have been developed. Among them, semi-synthetic protocols represent efficient and economical alternatives to total synthesis, combining efficient extraction protocols with efficient catalytic conversions to achieve reasonable amounts of active molecules. The aim of this review is to summarize the semi-synthetic protocols published in the last fifteen years, covering 2005 up to 2020, which can produce natural olive bioactive phenols scarcely available by extractive procedures, and new biophenol derivatives with enhanced biological activity. Moreover, the semi-synthetic protocols to produce olive bioactive phenol derivatives as analytical standards are also discussed. A critical analysis of the advantages offered by semi-synthesis compared to classical extraction methods or total synthesis protocols is also performed.
Collapse
Affiliation(s)
- Manuela Oliverio
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Pichierri M, Pino G, Peluso AM, Guido G. The interplay between health claim type and individual regulatory focus in determining consumers’ intentions toward extra-virgin olive oil. Food Res Int 2020; 136:109467. [DOI: 10.1016/j.foodres.2020.109467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
|
38
|
Pham LB, Wang B, Zisu B, Truong T, Adhikari B. Microencapsulation of flaxseed oil using polyphenol-adducted flaxseed protein isolate-flaxseed gum complex coacervates. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105944] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Cedó L, Fernández-Castillejo S, Rubió L, Metso J, Santos D, Muñoz-Aguayo D, Rivas-Urbina A, Tondo M, Méndez-Lara KA, Farràs M, Jauhiainen M, Motilva MJ, Fitó M, Blanco-Vaca F, Solà R, Escolà-Gil JC. Phenol-Enriched Virgin Olive Oil Promotes Macrophage-Specific Reverse Cholesterol Transport In Vivo. Biomedicines 2020; 8:E266. [PMID: 32756328 PMCID: PMC7460104 DOI: 10.3390/biomedicines8080266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
The intake of olive oil (OO) enriched with phenolic compounds (PCs) promotes ex vivo HDL-mediated macrophage cholesterol efflux in humans. We aimed to determine the effects of PC-enriched virgin OO on reverse cholesterol transport (RevCT) from macrophages to feces in vivo. Female C57BL/6 mice were given intragastric doses of refined OO (ROO) and a functional unrefined virgin OO enriched with its own PC (FVOO) for 14 days. Our experiments included two independent groups of mice that received intragastric doses of the phenolic extract (PE) used to prepare the FVOO and the vehicle solution (saline), as control, for 14 days. FVOO intake led to a significant increase in serum HDL cholesterol and its ability to induce macrophage cholesterol efflux in vitro when compared with ROO group. This was concomitant with the enhanced macrophage-derived [3H]cholesterol transport to feces in vivo. PE intake per se also increased HDL cholesterol levels and significantly promoted in vivo macrophage-to-feces RevCT rate when compared with saline group. PE upregulated the expression of the main macrophage transporter involved in macrophage cholesterol efflux, the ATP binding cassettea1. Our data provide direct evidence of the crucial role of OO PCs in the induction of macrophage-specific RevCT in vivo.
Collapse
Affiliation(s)
- Lídia Cedó
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Sara Fernández-Castillejo
- Surgery Department-Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Faculty of Medicine and Health Sciences-Medicine, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.F.-C.); (L.R.); (R.S.)
- Fundació EURECAT—Centre Tecnològic de Nutrició i Salut, 43204 Reus, Spain
| | - Laura Rubió
- Surgery Department-Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Faculty of Medicine and Health Sciences-Medicine, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.F.-C.); (L.R.); (R.S.)
- Food Technology Department, Universitat de Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Jari Metso
- Minerva Foundation Institute for Medical Research and National Institute for Health and Welfare, Genomics and Biomarkers Unit, 00290 Helsinki, Finland; (J.M.); (M.J.)
| | - David Santos
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Daniel Muñoz-Aguayo
- IMIM Hospital del Mar Medical Research Institute, Grup de Risc Cardiovascular i Nutrició, 08003 Barcelona, Spain; (D.M.-A.); (M.F.)
- CIBER of Physiopathology of Obesity and Nutrition CIBEROBN, Grup de Risc Cardiovascular i Nutrició, 28029 Madrid, Spain
| | - Andrea Rivas-Urbina
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Mireia Tondo
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
| | - Karen Alejandra Méndez-Lara
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Marta Farràs
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research and National Institute for Health and Welfare, Genomics and Biomarkers Unit, 00290 Helsinki, Finland; (J.M.); (M.J.)
| | - Maria-José Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV (CSIC-Universidad de La Rioja-Gobierno de La Rioja), Finca “La Grajera”, 26007 Logroño, La Rioja, Spain;
| | - Montserrat Fitó
- IMIM Hospital del Mar Medical Research Institute, Grup de Risc Cardiovascular i Nutrició, 08003 Barcelona, Spain; (D.M.-A.); (M.F.)
- CIBER of Physiopathology of Obesity and Nutrition CIBEROBN, Grup de Risc Cardiovascular i Nutrició, 28029 Madrid, Spain
| | - Francisco Blanco-Vaca
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Rosa Solà
- Surgery Department-Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Faculty of Medicine and Health Sciences-Medicine, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.F.-C.); (L.R.); (R.S.)
- Fundació EURECAT—Centre Tecnològic de Nutrició i Salut, 43204 Reus, Spain
- Hospital Universitari Sant Joan de Reus HUSJR, NFOC-Salut, 43204 Reus, Spain
| | - Joan Carles Escolà-Gil
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| |
Collapse
|
40
|
Shramko VS, Polonskaya YV, Kashtanova EV, Stakhneva EM, Ragino YI. The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders. Biomolecules 2020; 10:E1127. [PMID: 32751513 PMCID: PMC7464661 DOI: 10.3390/biom10081127] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
This review presents existing evidence of the influence of saturated and unsaturated fatty acids on cardiovascular diseases (CVD). Data are discussed regarding the roles of the most relevant fatty acids, such as myristic (C14:0), palmitic (C16:0), stearic (C18:0), palmitoleic (C16:1), oleic (C18:1), linoleic (C18:2), α-linolenic (C18:3, ω-3), γ-linolenic (C18:3, ω-6), arachidonic (C20:4), eicosapentaenoic (C20:5), docosahexaenoic (C22:6), and docosapentaenoic (C22:5) acid. The accumulated knowledge has expanded the understanding of the involvement of fatty acids in metabolic processes, thereby enabling the transition from basic exploratory studies to practical issues of application of these biomolecules to CVD treatment. In the future, these findings are expected to facilitate the interpretation and prognosis of changes in metabolic lipid aberrations in CVD.
Collapse
Affiliation(s)
| | | | | | - Ekaterina M. Stakhneva
- Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Research Institute of Internal and Preventive Medicine, 630089 Novosibirsk, Russia; (V.S.S.); (Y.V.P.); (E.V.K.); (Y.I.R.)
| | | |
Collapse
|
41
|
Farràs M, Martinez-Gili L, Portune K, Arranz S, Frost G, Tondo M, Blanco-Vaca F. Modulation of the Gut Microbiota by Olive Oil Phenolic Compounds: Implications for Lipid Metabolism, Immune System, and Obesity. Nutrients 2020; 12:nu12082200. [PMID: 32718098 PMCID: PMC7468985 DOI: 10.3390/nu12082200] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
There is extensive information of the beneficial effects of virgin olive oil (VOO), especially on cardiovascular diseases. Some VOO healthy properties have been attributed to their phenolic-compounds (PCs). The aim of this review is to present updated data on the effects of olive oil (OO) PCs on the gut microbiota, lipid metabolism, immune system, and obesity, as well as on the crosstalk among them. We summarize experiments and clinical trials which assessed the specific effects of the olive oil phenolic-compounds (OOPCs) without the synergy with OO-fats. Several studies have demonstrated that OOPC consumption increases Bacteroidetes and/or reduces the Firmicutes/Bacteroidetes ratio, which have both been related to atheroprotection. OOPCs also increase certain beneficial bacteria and gut-bacteria diversity which can be therapeutic for lipid-immune disorders and obesity. Furthermore, some of the mechanisms implicated in the crosstalk between OOPCs and these disorders include antimicrobial-activity, cholesterol microbial metabolism, and metabolites produced by bacteria. Specifically, OOPCs modulate short-chain fatty-acids produced by gut-microbiota, which can affect cholesterol metabolism and the immune system, and may play a role in weight gain through promoting satiety. Since data in humans are scarce, there is a necessity for more clinical trials designed to assess the specific role of the OOPCs in this crosstalk.
Collapse
Affiliation(s)
- Marta Farràs
- Institut de Recerca de l’Hospital Santa Creu i Sant Pau, Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain;
- Correspondence: ; Tel.: +34-935537595
| | - Laura Martinez-Gili
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Kevin Portune
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, AstondoBidea, Edificio 609, 48160 Derio, Spain; (K.P.); (S.A.)
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, AstondoBidea, Edificio 609, 48160 Derio, Spain; (K.P.); (S.A.)
| | - Gary Frost
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Mireia Tondo
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain;
| | - Francisco Blanco-Vaca
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain;
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
42
|
Kaličanin D, Brčić L, Ljubetić K, Barić A, Gračan S, Brekalo M, Torlak Lovrić V, Kolčić I, Polašek O, Zemunik T, Punda A, Boraska Perica V. Differences in food consumption between patients with Hashimoto's thyroiditis and healthy individuals. Sci Rep 2020; 10:10670. [PMID: 32606353 PMCID: PMC7327046 DOI: 10.1038/s41598-020-67719-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Food is considered as important environmental factor that plays a role in development of Hashimoto's thyroiditis (HT). The goal of our study was to identify food groups, assessed by food frequency questionnaire, that differ in consumption frequency between 491 patients with HT and 433 controls. We also analysed association of food groups with the wealth of HT-related clinical traits and symptoms. We found significantly increased consumption of animal fat (OR 1.55, p < 0.0001) and processed meat (OR 1.16, p = 0.0012) in HT cases, whereas controls consumed significantly more frequently red meat (OR 0.80, p < 0.0001), non-alcoholic beverages (OR 0.82, p < 0.0001), whole grains (OR 0.82, p < 0.0001) and plant oil (OR 0.87, p < 0.0001). We also observed association of plant oil consumption with increased triiodothyronine levels in HT patients (β = 0.07, p < 0.0001), and, association of olive oil consumption with decreased systolic blood pressure (β = − 0.16, p = 0.001) in HT patients on levothyroxine (LT4) therapy. Analysis of food consumption between HT patients with and without LT4 therapy suggest that patients do not tend to modify their diet upon HT diagnosis in our population. Our study may be of relevance to nutritionists, nutritional therapists and clinicians involved in developing dietary recommendations for HT patients.
Collapse
Affiliation(s)
- Dean Kaličanin
- Department of Medical Biology, University of Split School of Medicine, Soltanska 2, 21000, Split, Croatia
| | - Luka Brčić
- Department of Medical Biology, University of Split School of Medicine, Soltanska 2, 21000, Split, Croatia
| | - Katija Ljubetić
- Department of Clinical Nutrition, Faculty of Health Studies, University of Rijeka, 51000, Rijeka, Croatia
| | - Ana Barić
- Department of Nuclear Medicine, University Hospital Split, 21000, Split, Croatia
| | - Sanda Gračan
- Department of Nuclear Medicine, University Hospital Split, 21000, Split, Croatia
| | - Marko Brekalo
- Department of Nuclear Medicine, University Hospital Split, 21000, Split, Croatia
| | - Vesela Torlak Lovrić
- Department of Nuclear Medicine, University Hospital Split, 21000, Split, Croatia
| | - Ivana Kolčić
- Department of Public Health, University of Split School of Medicine, 21000, Split, Croatia
| | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, 21000, Split, Croatia
| | - Tatijana Zemunik
- Department of Medical Biology, University of Split School of Medicine, Soltanska 2, 21000, Split, Croatia
| | - Ante Punda
- Department of Nuclear Medicine, University Hospital Split, 21000, Split, Croatia
| | - Vesna Boraska Perica
- Department of Medical Biology, University of Split School of Medicine, Soltanska 2, 21000, Split, Croatia.
| |
Collapse
|
43
|
A Mixture of Algae and Extra Virgin Olive Oils Attenuates the Cardiometabolic Alterations Associated with Aging in Male Wistar Rats. Antioxidants (Basel) 2020; 9:antiox9060483. [PMID: 32503213 PMCID: PMC7346162 DOI: 10.3390/antiox9060483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Aging is one of the major risk factors for suffering cardiovascular and metabolic diseases. Due to the increase in life expectancy, there is a strong interest in the search for anti-aging strategies to treat and prevent these aging-induced disorders. Both omega 3 polyunsaturated fatty acids (ω-3 PUFA) and extra virgin olive oil (EVOO) exert numerous metabolic and cardiovascular benefits in the elderly. In addition, EVOO constitutes an interesting ingredient to stabilize ω-3 PUFA and decrease their oxidation process due to its high content in antioxidant compounds. ω-3 PUFA are commonly obtained from fish. However, more ecological and sustainable sources, such as algae oil (AO) can also be used. In this study, we aimed to study the possible beneficial effect of an oil mixture composed by EVOO (75%) and AO (25%) rich in ω-3 PUFA (35% docosahexaenoic acid (DHA) and 20% eicosapentaenoic acid (EPA)) on the cardiometabolic alterations associated with aging. For this purpose; young (three months old) and old (24 months old) male Wistar rats were treated with vehicle or with the oil mixture (2.5 mL/kg) for 21 days. Treatment with the oil mixture prevented the aging-induced increase in the serum levels of saturated fatty acids (SFA) and the aging-induced decrease in the serum concentrations of mono-unsaturated fatty acids (MUFA). Old treated rats showed increased serum concentrations of EPA and DHA and decreased HOMA-IR index and circulating levels of total cholesterol, insulin and IL-6. Treatment with the oil mixture increased the mRNA levels of antioxidant and insulin sensitivity-related enzymes, as well as reduced the gene expression of pro-inflammatory markers in the liver and in cardiac and aortic tissues. In addition, the treatment also prevented the aging-induced endothelial dysfunction and vascular insulin resistance through activation of the PI3K/Akt pathway. Moreover, aortic rings from old rats treated with the oil mixture showed a decreased response to the vasoconstrictor AngII. In conclusion, treatment with a mixture of EVOO and AO improves the lipid profile, insulin sensitivity and vascular function in aged rats and decreases aging-induced inflammation and oxidative stress in the liver, and in the cardiovascular system. Thus, it could be an interesting strategy to deal with cardiometabolic alterations associated with aging.
Collapse
|
44
|
Corrêa TAF, Quintanilha BJ, Norde MM, Pinhel MADS, Nonino CB, Rogero MM. Nutritional genomics, inflammation and obesity. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2020; 64:205-222. [PMID: 32555987 PMCID: PMC10522224 DOI: 10.20945/2359-3997000000255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/13/2020] [Indexed: 11/23/2022]
Abstract
The Human Genome Project has significantly broadened our understanding of the molecular aspects regulating the homeostasis and the pathophysiology of different clinical conditions. Consequently, the field of nutrition has been strongly influenced by such improvements in knowledge - especially for determining how nutrients act at the molecular level in different conditions, such as obesity, type 2 diabetes, cardiovascular disease, and cancer. In this manner, characterizing how the genome influences the diet and vice-versa provides insights about the molecular mechanisms involved in chronic inflammation-related diseases. Therefore, the present review aims to discuss the potential application of Nutritional Genomics to modulate obesity-related inflammatory responses. Arch Endocrinol Metab. 2020;64(3):205-22.
Collapse
Affiliation(s)
- Telma Angelina Faraldo Corrêa
- Departamento de Alimentos e Nutrição ExperimentalFaculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloSPBrasil Departamento de Alimentos e Nutrição Experimental , Faculdade de Ciências Farmacêuticas , Universidade de São Paulo (USP), São Paulo , SP , Brasil
- Centro de Pesquisa em AlimentosCentros de Pesquisa, Inovação e DifusãoFundação de Amparo à Pesquisa do Estado de São PauloSão PauloSPBrasil Centro de Pesquisa em Alimentos (FoRC), Centros de Pesquisa, Inovação e Difusão (Cepid), Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp), São Paulo , SP , Brasil
| | - Bruna Jardim Quintanilha
- Centro de Pesquisa em AlimentosCentros de Pesquisa, Inovação e DifusãoFundação de Amparo à Pesquisa do Estado de São PauloSão PauloSPBrasil Centro de Pesquisa em Alimentos (FoRC), Centros de Pesquisa, Inovação e Difusão (Cepid), Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp), São Paulo , SP , Brasil
- Departamento de NutriçãoFaculdade de Saúde PúblicaUniversidade de São PauloSão PauloSPBrasil Laboratório de Genômica Nutricional e Inflamação, Departamento de Nutrição , Faculdade de Saúde Pública , Universidade de São Paulo (USP), São Paulo , SP , Brasil
| | - Marina Maintinguer Norde
- Departamento de NutriçãoFaculdade de Saúde PúblicaUniversidade de São PauloSão PauloSPBrasil Laboratório de Genômica Nutricional e Inflamação, Departamento de Nutrição , Faculdade de Saúde Pública , Universidade de São Paulo (USP), São Paulo , SP , Brasil
| | - Marcela Augusta de Souza Pinhel
- Departamento de Medicina InternaFaculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSPBrasil Departamento de Medicina Interna , Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo (USP), Ribeirão Preto , SP , Brasil
- Departamento de Ciências da SaúdeFaculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSPBrasil Departamento de Ciências da Saúde , Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo (USP), Ribeirão Preto , SP , Brasil
| | - Carla Barbosa Nonino
- Departamento de Medicina InternaFaculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSPBrasil Departamento de Medicina Interna , Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo (USP), Ribeirão Preto , SP , Brasil
- Departamento de Ciências da SaúdeFaculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSPBrasil Departamento de Ciências da Saúde , Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo (USP), Ribeirão Preto , SP , Brasil
| | - Marcelo Macedo Rogero
- Centro de Pesquisa em AlimentosCentros de Pesquisa, Inovação e DifusãoFundação de Amparo à Pesquisa do Estado de São PauloSão PauloSPBrasil Centro de Pesquisa em Alimentos (FoRC), Centros de Pesquisa, Inovação e Difusão (Cepid), Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp), São Paulo , SP , Brasil
- Departamento de NutriçãoFaculdade de Saúde PúblicaUniversidade de São PauloSão PauloSPBrasil Laboratório de Genômica Nutricional e Inflamação, Departamento de Nutrição , Faculdade de Saúde Pública , Universidade de São Paulo (USP), São Paulo , SP , Brasil
| |
Collapse
|
45
|
Rus A, Molina F, Martínez-Ramírez MJ, Aguilar-Ferrándiz ME, Carmona R, del Moral ML. Effects of Olive Oil Consumption on Cardiovascular Risk Factors in Patients with Fibromyalgia. Nutrients 2020; 12:nu12040918. [PMID: 32230754 PMCID: PMC7231107 DOI: 10.3390/nu12040918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
We have recently reported that patients with fibromyalgia (FM) may be at increased risk for cardiovascular disease. Olive oil reportedly has cardioprotective effects. We examined the influence of olive oil consumption on cardiovascular risk factors in FM. This preliminary study was performed on blood samples of women with FM who consumed 50 mL of organic olive oil daily for 3 weeks. Patients were randomized into two groups: 15 women ingested extra virgin olive oil (EVOO) and 15 refined olive oil (ROO). Cardiovascular risk markers were measured at baseline (pre measure) and after consumption of olive oil (post measure). Red blood cell count and erythrocyte sedimentation rate (ESR; both p < 0.05) declined significantly post-treatment in the EVOO group. Consumption of ROO increased mean platelet volume and reduced platelet distribution width (PDW), neutrophil-to-lymphocyte ratio, ESR and fibrinogen (all p < 0.05). Significant differences were found in pre–post change between the EVOO and ROO groups for cortisol and PDW (both p < 0.05). Our results have shown that consumption of olive oil may have antithrombotic and antiinflammatory properties in patients with FM, thereby improving a number of cardiovascular risk markers. Both EVOO and ROO may be useful as adjuvants for the prevention and/or treatment of cardiovascular disorders in these patients.
Collapse
Affiliation(s)
- Alma Rus
- Department of Cell Biology, University of Granada, Avenida de la Fuentenueva, s/n, 18071 Granada, Spain; (A.R.); (R.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain;
| | - Francisco Molina
- Department of Health Science, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain;
- Correspondence: ; Tel.: +34-953-213654
| | | | - María Encarnación Aguilar-Ferrándiz
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain;
- Department of Physical Therapy, University of Granada, Avenida de la Ilustración, 60, 18016 Granada, Spain
| | - Ramón Carmona
- Department of Cell Biology, University of Granada, Avenida de la Fuentenueva, s/n, 18071 Granada, Spain; (A.R.); (R.C.)
| | - María Luisa del Moral
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain;
| |
Collapse
|
46
|
Bukhari IA, Mohamed OY, Almotrefi AA, Sheikh BY, Nayel O, Vohra F, Afzal S. Cardioprotective Effect of Olive Oil Against Ischemia Reperfusion-induced Cardiac Arrhythmia in Isolated Diabetic Rat Heart. Cureus 2020; 12:e7095. [PMID: 32231891 PMCID: PMC7098416 DOI: 10.7759/cureus.7095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Olive oil is rich in monounsaturated fatty acids and has been reported for a variety of beneficial cardiovascular effects, including blood pressure lowering, anti-platelet, anti-diabetic, and anti-inflammatory effects. Diabetes is a major risk factor for cardiac dysfunctions, and olive oil prevents diabetes-induced adverse myocardial remodeling. Objective The study aimed to evaluate the effects of olive oil against streptozotocin-induced cardiac dysfunction in animal models of diabetes and ischemia and reperfusion (I/R)-induced cardiac arrhythmias. Methods Diabetes was induced in male rats with a single intraperitoneal injection of streptozotocin (60 mg/kg i.p), rats were treated for five, 15, or 56 days with olive oil (1 ml/kg p.o). Control animals received saline. Blood glucose and body weight were monitored every two weeks. At the end of the treatment, rats were sacrificed and hearts were isolated for mounting on Langedorff’s apparatus. The effect of olive oil on oxidative stress and histopathological changes in the cardiac tissues were studied. Results The initial blood glucose and body weight were not significantly different in the control and olive-treated animals. Streptozotocin (60 mg/kg i.p) caused a significant increase in the blood glucose of animals as compared to saline-treated animals. The control, saline-treated diabetic animals exhibited a 100% incidence of I/R-induced ventricular fibrillation, which was reduced to 0% with olive oil treatment. The protective effects of olive oil were evident after 15 and 56 days of treatment. Diltiazem, a calcium channel blocker (1 µm/L) showed similar results and protected the I/R-induced cardiac disorders. The cardiac tissues isolated from diabetic rats exhibited marked pathological changes in the cardiomyocytes, including decreased glutathione (GSH) and increased oxidative stress (malondialdehyde; MDA). Pretreatment of animals with olive oil (1 ml/kg p.o) increased GSH and decreased MDA levels. Olive oil also improved the diabetic-induced histopathological changes in the cardiomyocytes. Conclusion Olive oil possesses cardiac protective properties against I/R-induced cardiac arrhythmias in rats. It attenuated oxidative stress and diabetes-induced histopathological changes in cardiac tissues. The observed cardiac protectiveness of olive oil in the present investigation may be related to its antioxidant potential.
Collapse
Affiliation(s)
- Ishfaq A Bukhari
- Pharmacology, College of Medicine, King Saud University, Riyadh, SAU
| | - Osama Y Mohamed
- Pharmacology, College of Medicine, King Saud University, Riyadh, SAU
| | | | - Bassem Y Sheikh
- Neurosurgery, College of Medicine, Taibah University, Almadinah Almunawara, Madinah, SAU
| | - Omnia Nayel
- Pharmacology, College of Medicine, University of Alexandria, Alexandria, EGY
| | - Fahim Vohra
- Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, SAU
| | - Sibtain Afzal
- Allergy and Immunology, College of Medicine, King Saud University, Riyadh, SAU
| |
Collapse
|
47
|
Bordoni L, Fedeli D, Fiorini D, Gabbianelli R. Extra Virgin Olive Oil and Nigella sativa Oil Produced in Central Italy: A Comparison of the Nutrigenomic Effects of Two Mediterranean Oils in a Low-Grade Inflammation Model. Antioxidants (Basel) 2019; 9:E20. [PMID: 31878334 PMCID: PMC7022781 DOI: 10.3390/antiox9010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Extra virgin olive (EVO) oil and Nigella sativa (NG) oil are two well-known Mediterranean foods whose consumption has been associated with beneficial effects on human health. This study investigates the nutrigenomic properties of two high quality EVO and NG oils in an in vitro model of low-grade inflammation of human macrophages (THP-1 cells). The aim was to assess whether these healthy foods could modulate inflammation through antioxidant and epigenetic mechanisms. When THP-1 cells were co-exposed to both lipopolysaccharides (LPS)-induced inflammation and oils, both EVO and NG oils displayed anti-inflammatory activity. Both oils were able to restore normal expression levels of DNMT3A and HDAC1 (but not DNMT3B), which were altered under inflammatory conditions. Moreover, EVO oil was able to prevent the increase in TET2 expression and reduce global DNA methylation that were measured in inflamed cells. Due to its antioxidant properties, EVO oil was particularly efficient in restoring normal levels of membrane fluidity, which, on the contrary, were reduced in the presence of inflammation. In conclusion, these data support the hypothesis that these Mediterranean oils could play a major role in the modulation of low-grade inflammation and metabolic syndrome prevention. However, NS oil seems to be more efficient in the control of proinflammatory cytokines, whereas EVO oil better helps to counteract redox imbalance. Further studies that elucidate the nutrigenomic properties of local produce might help to promote regional the production and consumption of high-quality food, which could also help the population to maintain and promote health.
Collapse
Affiliation(s)
- Laura Bordoni
- School of Pharmacy, Unit of Molecular Biology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Donatella Fedeli
- School of Pharmacy, Unit of Molecular Biology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, Via Sant'Agostino, 62032 Camerino, MC, Italy
| | - Rosita Gabbianelli
- School of Pharmacy, Unit of Molecular Biology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| |
Collapse
|
48
|
Cobo-Cuenca AI, Garrido-Miguel M, Soriano-Cano A, Ferri-Morales A, Martínez-Vizcaíno V, Martín-Espinosa NM. Adherence to the Mediterranean Diet and Its Association with Body Composition and Physical Fitness in Spanish University Students. Nutrients 2019; 11:E2830. [PMID: 31752296 PMCID: PMC6893793 DOI: 10.3390/nu11112830] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
The aims of this study were to assess the association of adherence to the Mediterranean diet (MD) with physical fitness and body composition in Spanish university students and to determine the ability to predict the MD adherence of each Mediterranean Diet Adherence Screener (MEDAS) item. A cross-sectional study was performed involving 310 first-year university students. Adherence to the MD was evaluated with MEDAS-14 items. Anthropometric variables, body composition, and physical fitness were assessed. Muscle strength was determined based on handgrip strength and the standing long jump test. Cardiorespiratory fitness (CRF) was measured using the Course-Navette test. Only 24% of the university students had good adherence to the MD. The ANCOVA models showed a significant difference between participants with high adherence to the MD and those with medium and low adherence in CRF (p = 0.017) and dynamometry (p = 0.005). Logistic binary regression showed that consuming >2 vegetables/day (OR = 20.1; CI: 10.1-30.1; p < 0.001), using olive oil (OR = 10.6; CI: 1.4-19.8; p = 0.021), consuming <3 commercial sweets/week (OR = 10.1; IC: 5.1-19.7; p < 0.001), and consuming ≥3 fruits/day (OR = 8.8; CI: 4.9-15.7; p < 0.001) were the items most associated with high adherence to the MD. In conclusion, a high level of adherence to the MD is associated with high-level muscular fitness and CRF in Spanish university students.
Collapse
Affiliation(s)
- Ana Isabel Cobo-Cuenca
- Grupo Interdisciplinar en Cuidados IMCU, Universidad de Castilla la Mancha, 45071 Toledo, Spain;
| | - Miriam Garrido-Miguel
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain; (A.S.-C.); (A.F.-M.); (V.M.-V.)
| | - Alba Soriano-Cano
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain; (A.S.-C.); (A.F.-M.); (V.M.-V.)
| | - Asunción Ferri-Morales
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain; (A.S.-C.); (A.F.-M.); (V.M.-V.)
| | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain; (A.S.-C.); (A.F.-M.); (V.M.-V.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, 1101 Talca, Chile
| | | |
Collapse
|
49
|
Boronat A, Mateus J, Soldevila-Domenech N, Guerra M, Rodríguez-Morató J, Varon C, Muñoz D, Barbosa F, Morales JC, Gaedigk A, Langohr K, Covas MI, Pérez-Mañá C, Fitó M, Tyndale RF, de la Torre R. Cardiovascular benefits of tyrosol and its endogenous conversion into hydroxytyrosol in humans. A randomized, controlled trial. Free Radic Biol Med 2019; 143:471-481. [PMID: 31479717 DOI: 10.1016/j.freeradbiomed.2019.08.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/18/2019] [Accepted: 08/30/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The simple phenol hydroxytyrosol (OHTyr) has been associated with the beneficial health effects of extra virgin olive oil. Pre-clinical studies have identified Tyr hydroxylation, mediated by cytochrome P450 isoforms CYP2A6 and CYP2D6, as an additional source of OHTyr. AIM We aimed to (i) confirm Tyr to OHTyr bioconversion in vivo in humans, (ii) assess the cardiovascular benefits of this bioconversion, and (iii) determine their interaction with a polygenic activity score (PAS) from CYP2A6 and CYP2D6 genotypes. METHODS Randomized, crossover, controlled study. Individuals at cardiovascular risk (n = 33) received: white wine (WW) (females 1, males 2 standard drinks/day), WW plus Tyr capsules (WW + Tyr) (25 mg Tyr capsule, one per WW drink), and water (control) ad libitum. Participants were classified by a PAS as low versus normal activity metabolizers. RESULTS OHTyr recovery following WW + Tyr was higher than after other interventions (P < 0.05). Low PAS individuals had lower OHTyr/Tyr ratios compared to individuals with normal PAS. WW + Tyr improved endothelial function, increased plasma HDL-cholesterol and antithrombin IIII, and decreased plasma homocysteine, endothelin 1, and CD40L, P65/RELA, and CFH gene expression in peripheral blood mononuclear cells (p < 0.05). Combining Tyr capsule(s) with WW abolished the increase in iNOS, eNOS, VEGFA, and CHF expressions promoted by WW (p < 0.05). CONCLUSIONS Tyr, and its partial biotransformation into OHTyr, promoted cardiovascular health-related benefits in humans after dietary doses of Tyr. The study design allowed the health effects of individual phenols to be singled out from the dietary matrix in which they are naturally found.
Collapse
Affiliation(s)
- Anna Boronat
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003, Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003, Barcelona, Spain
| | - Julian Mateus
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Natalia Soldevila-Domenech
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003, Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003, Barcelona, Spain
| | - Mercè Guerra
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003, Barcelona, Spain
| | - Jose Rodríguez-Morató
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003, Barcelona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Carlota Varon
- Department of Pharmacy, Vall d'Hebron Barcelona Hospital Campus, Passeig de Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Daniel Muñoz
- Cardiovascular Risk and Nutrition Research Group, IMIM (Hospital del Mar Research Institute), Dr. Aiguader 88, 08003, Barcelona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Francina Barbosa
- CAP Barceloneta, Parc Sanitari Rovira Virgili, Passeig Marítim, 25 08003, Barcelona, Spain
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Andreas Gaedigk
- Children's Mercy Kansas City, Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, and University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Klaus Langohr
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003, Barcelona, Spain; Department of Statistics and Operations Research, Polytechnic University of Catalonia, Barcelona, Spain
| | - Maria-Isabel Covas
- Cardiovascular Risk and Nutrition Research Group, IMIM (Hospital del Mar Research Institute), Dr. Aiguader 88, 08003, Barcelona, Spain; NUPROAS Handesbolag (NUPROAS HB), Nacka, Sweden
| | - Clara Pérez-Mañá
- School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Montserrat Fitó
- Cardiovascular Risk and Nutrition Research Group, IMIM (Hospital del Mar Research Institute), Dr. Aiguader 88, 08003, Barcelona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Pharmacology & Toxicology, and Psychiatry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003, Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003, Barcelona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), Monforte de Lemos 3-5, 28029, Madrid, Spain.
| |
Collapse
|
50
|
Scoditti E, Carpi S, Massaro M, Pellegrino M, Polini B, Carluccio MA, Wabitsch M, Verri T, Nieri P, De Caterina R. Hydroxytyrosol Modulates Adipocyte Gene and miRNA Expression Under Inflammatory Condition. Nutrients 2019; 11:nu11102493. [PMID: 31627295 PMCID: PMC6836288 DOI: 10.3390/nu11102493] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation of the adipose tissue (AT) is a major contributor to obesity-associated cardiometabolic complications. The olive oil polyphenol hydroxytyrosol (HT) contributes to Mediterranean diet cardiometabolic benefits through mechanisms still partially unknown. We investigated HT (1 and 10 μmol/L) effects on gene expression (mRNA and microRNA) related to inflammation induced by 10 ng/mL tumor necrosis factor (TNF)-α in human Simpson–Golabi–Behmel Syndrome (SGBS) adipocytes. At real-time PCR, HT significantly inhibited TNF-α-induced mRNA levels, of monocyte chemoattractant protein-1, C-X-C Motif Ligand-10, interleukin (IL)-1β, IL-6, vascular endothelial growth factor, plasminogen activator inhibitor-1, cyclooxygenase-2, macrophage colony-stimulating factor, matrix metalloproteinase-2, Cu/Zn superoxide dismutase-1, and glutathione peroxidase, as well as surface expression of intercellular adhesion molecule-1, and reverted the TNF-α-mediated inhibition of endothelial nitric oxide synthase, peroxisome proliferator-activated receptor coactivator-1α, and glucose transporter-4. We found similar effects in adipocytes stimulated by macrophage-conditioned media. Accordingly, HT significantly counteracted miR-155-5p, miR-34a-5p, and let-7c-5p expression in both cells and exosomes, and prevented NF-κB activation and production of reactive oxygen species. HT can therefore modulate adipocyte gene expression profile through mechanisms involving a reduction of oxidative stress and NF-κB inhibition. By such mechanisms, HT may blunt macrophage recruitment and improve AT inflammation, preventing the deregulation of pathways involved in obesity-related diseases.
Collapse
Affiliation(s)
- Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy.
| | - Sara Carpi
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy.
| | - Mariangela Pellegrino
- Laboratory of Applied Physiology, Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, 73100 Lecce, Italy.
| | - Beatrice Polini
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity, Department of Pediatrics and Adolescent Medicine, University of Ulm, 89075 Ulm, Germany.
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, 73100 Lecce, Italy.
| | - Paola Nieri
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | |
Collapse
|