1
|
Klimczak S, Packi K, Rudek A, Wenclewska S, Kurowski M, Kurczabińska D, Śliwińska A. The Influence of the Protozoan Giardia lamblia on the Modulation of the Immune System and Alterations in Host Glucose and Lipid Metabolism. Int J Mol Sci 2024; 25:8627. [PMID: 39201314 PMCID: PMC11354543 DOI: 10.3390/ijms25168627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Giardia lamblia, the cause of giardiasis, significantly impacts patients with metabolic disorders related to insulin resistance (IR). Both giardiasis and metabolic disorders share elements such as chronic inflammation and intestinal dysbiosis, which substantially affect the metabolic and cytokine profiles of patients. This review discusses the mechanisms of virulence of G. lamblia, its influence on the immune system, and its association with metabolic disorders. The review aims to show how G. lamblia invasion acts on the immune system and the glucose and lipid metabolism. Key findings reveal that G. lamblia infection, by disrupting intestinal permeability, alters microbiota composition and immune responses, potentially impairing metabolic status. Future research should focus on elucidating the specific mechanisms by which G. lamblia influences the metabolism, exploring the long-term consequences of chronic infection, and developing targeted therapeutic strategies that include both parasitic and metabolic aspects. These insights underscore the need for a multidisciplinary approach to the treatment of giardiasis in patients with metabolic disorders.
Collapse
Affiliation(s)
- Sylwia Klimczak
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- AllerGen Center of Personalized Medicine, 97-300 Piotrkow Trybunalski, Poland
| | - Kacper Packi
- AllerGen Center of Personalized Medicine, 97-300 Piotrkow Trybunalski, Poland
| | - Alicja Rudek
- AllerGen Center of Personalized Medicine, 97-300 Piotrkow Trybunalski, Poland
| | - Sylwia Wenclewska
- Diabetology and Internal Medicine Department, Provincial Hospital in Sieradz, 98-200 Sieradz, Poland
| | - Marcin Kurowski
- Department of Immunology and Allergy, Medical University of Lodz, 92-213 Lodz, Poland
| | | | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
| |
Collapse
|
2
|
Higueras C, Sainz Á, García-Sancho M, Rodríguez-Franco F, Rey AI. Faecal Short-Chain, Long-Chain, and Branched-Chain Fatty Acids as Markers of Different Chronic Inflammatory Enteropathies in Dogs. Animals (Basel) 2024; 14:1825. [PMID: 38929444 PMCID: PMC11201139 DOI: 10.3390/ani14121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic inflammatory enteropathies (CIEs) are classified based on treatment trials, and new methods are being sought for earlier differentiation and characterization. Giardia infection (GIA) is one of the first differential diagnoses and may be present in CIE-affected dogs. The aim of this study was to evaluate the faecal characteristics and faecal fatty acid profile (short, medium, long, and branched-chain fatty acids) in dogs with food-responsive enteropathy (FRE), immunosuppressant-responsive enteropathy (IRE), and dogs infected with Giardia compared to healthy control (HC) animals as a potential non-invasive indicator of intestinal health that helps in the differentiation of CIEs. The C16:1n-7 percentage (p = 0.0001) and C16:1n-7/C16:0 ratio (p = 0.0001) served to differentiate between HC, FRE, and IRE. IRE dogs presented lower levels of short-chain fatty acids (∑SCFAs) (p = 0.0008) and acetic acid (C2) (p = 0.0007) compared to the other three groups and lower propionic acid (C3) (p = 0.0022) compared to HCs. IRE and GIA presented higher faecal fat content (p = 0.0080) and ratio of iso/anteiso branched-chain fatty acids (BCFAs) compared to HC and FRE. Correlations between some fatty acids and desaturation indices with the canine inflammatory bowel disease activity index and faecal characteristics were observed, suggesting that these compounds could play an important role in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Cristina Higueras
- Department of Animal Production, Animal Nutrition, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Ángel Sainz
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (Á.S.)
| | - Mercedes García-Sancho
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (Á.S.)
| | - Fernando Rodríguez-Franco
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (Á.S.)
| | - Ana I. Rey
- Department of Animal Production, Animal Nutrition, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
3
|
Gao WW, Zhang S, Zhang TH, Xiao HD, Su N, Tao MF, Wu ZX, Zhang ZD, Zhu XQ, Xie SC. Prevalence and Multilocus Genotyping of Giardia duodenalis in Donkeys in Shanxi Province, North China. Animals (Basel) 2023; 13:3771. [PMID: 38136808 PMCID: PMC10740759 DOI: 10.3390/ani13243771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Giardia duodenalis is a ubiquitous flagellated protozoan, causing significant economic losses to animal husbandry and posing threats to public health. China ranks the world's sixth largest major producer of donkeys, rearing approximately 2.6 million donkeys in 2019, but limited investigation of G. duodenalis prevalence has been conducted in the past, and it is yet to be known whether donkeys in Shanxi Province are infected with G. duodenalis. In the present study, a total of 815 fecal samples collected from donkeys in representative regions of Shanxi Province, North China, were examined for G. duodenalis using nested PCR. Then, the assemblages and multilocus genotypes (MLGs) were examined based on three established loci: namely, β-giardin (bg), triosephosphate isomerase (tpi), and glutamate dehydrogenase (gdh). The overall prevalence of G. duodenalis in donkeys in Shanxi Province was 16.81% (137/815). The region was identified as the main risk factor for the observed difference in G. duodenalis prevalence in donkeys among the three study areas (χ2 = 21.611, p < 0.001). Assemblages A, E, and B were identified, with the latter as the predominant assemblage. Three MLGs (MLG-novel-1 to 3) were formed based on sequence variation among the three loci. The present study reveals the presence of G. duodenalis in donkeys in Shanxi Province, North China, for the first time, which not only enriches the data on the distribution of G. duodenalis in donkeys in China but also provides useful baseline data for planning control strategies against G. duodenalis infection in the sampled areas.
Collapse
Affiliation(s)
- Wen-Wei Gao
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (S.Z.); (T.-H.Z.); (H.-D.X.); (N.S.); (Z.-X.W.); (Z.-D.Z.); (X.-Q.Z.)
| | - Shuo Zhang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (S.Z.); (T.-H.Z.); (H.-D.X.); (N.S.); (Z.-X.W.); (Z.-D.Z.); (X.-Q.Z.)
| | - Tian-Hong Zhang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (S.Z.); (T.-H.Z.); (H.-D.X.); (N.S.); (Z.-X.W.); (Z.-D.Z.); (X.-Q.Z.)
| | - Han-Dan Xiao
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (S.Z.); (T.-H.Z.); (H.-D.X.); (N.S.); (Z.-X.W.); (Z.-D.Z.); (X.-Q.Z.)
| | - Nan Su
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (S.Z.); (T.-H.Z.); (H.-D.X.); (N.S.); (Z.-X.W.); (Z.-D.Z.); (X.-Q.Z.)
| | - Meng-Fan Tao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China;
| | - Ze-Xuan Wu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (S.Z.); (T.-H.Z.); (H.-D.X.); (N.S.); (Z.-X.W.); (Z.-D.Z.); (X.-Q.Z.)
| | - Ze-Dong Zhang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (S.Z.); (T.-H.Z.); (H.-D.X.); (N.S.); (Z.-X.W.); (Z.-D.Z.); (X.-Q.Z.)
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (S.Z.); (T.-H.Z.); (H.-D.X.); (N.S.); (Z.-X.W.); (Z.-D.Z.); (X.-Q.Z.)
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Shi-Chen Xie
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (S.Z.); (T.-H.Z.); (H.-D.X.); (N.S.); (Z.-X.W.); (Z.-D.Z.); (X.-Q.Z.)
| |
Collapse
|
4
|
Suárez-Rico DO, Munguía-Huizar FJ, Cortés-Zárate R, Hernández-Hernández JM, González-Pozos S, Perez-Rangel A, Castillo-Romero A. Repurposing Terfenadine as a Novel Antigiardial Compound. Pharmaceuticals (Basel) 2023; 16:1332. [PMID: 37765140 PMCID: PMC10535608 DOI: 10.3390/ph16091332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Giardia lamblia is a highly infectious protozoan that causes giardiasis, a gastrointestinal disease with short-term and long-lasting symptoms. The currently available drugs for giardiasis treatment have limitations such as side effects and drug resistance, requiring the search for new antigiardial compounds. Drug repurposing has emerged as a promising strategy to expedite the drug development process. In this study, we evaluated the cytotoxic effect of terfenadine on Giardia lamblia trophozoites. Our results showed that terfenadine inhibited the growth and cell viability of Giardia trophozoites in a time-dose-dependent manner. In addition, using scanning electron microscopy, we identified morphological damage; interestingly, an increased number of protrusions on membranes and tubulin dysregulation with concomitant dysregulation of Giardia GiK were observed. Importantly, terfenadine showed low toxicity for Caco-2 cells, a human intestinal cell line. These findings highlight the potential of terfenadine as a repurposed drug for the treatment of giardiasis and warrant further investigation to elucidate its precise mechanism of action and evaluate its efficacy in future research.
Collapse
Affiliation(s)
- Daniel Osmar Suárez-Rico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico;
| | - Francisco Javier Munguía-Huizar
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Mexico; (F.J.M.-H.); (R.C.-Z.)
| | - Rafael Cortés-Zárate
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Mexico; (F.J.M.-H.); (R.C.-Z.)
| | - José Manuel Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de Mexico 07360, Mexico; (J.M.H.-H.); (A.P.-R.)
| | - Sirenia González-Pozos
- Unidad de Microscopía Electrónica LaNSE, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de Mexico 07360, Mexico;
| | - Armando Perez-Rangel
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de Mexico 07360, Mexico; (J.M.H.-H.); (A.P.-R.)
| | - Araceli Castillo-Romero
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Mexico; (F.J.M.-H.); (R.C.-Z.)
| |
Collapse
|
5
|
Faria CP, Ferreira B, Lourenço Á, Guerra I, Melo T, Domingues P, Domingues MDRM, Cruz MT, Sousa MDC. Lipidome of extracellular vesicles from Giardia lamblia. PLoS One 2023; 18:e0291292. [PMID: 37683041 PMCID: PMC10490865 DOI: 10.1371/journal.pone.0291292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Extracellular vesicles (EVs) (exossomes, microvesicles and apoptotic bodies) have been well acknowledged as mediators of intercellular communications in prokaryotes and eukaryotes. Lipids are essential molecular components of EVs but at the moment the knowledge about the lipid composition and the function of lipids in EVs is limited and as for now none lipidomic studies in Giardia EVs was described. Therefore, the focus of the current study was to conduct, for the first time, the characterization of the polar lipidome, namely phospholipid and sphingolipid profiles of G. lamblia trophozoites, microvesicles (MVs) and exosomes, using C18-Liquid Chromatography-Mass Spectrometry (C18-LC-MS) and Tandem Mass Spectrometry (MS/MS). A total of 162 lipid species were identified and semi-quantified, in the trophozoites, or in the MVs and exosomes belonging to 8 lipid classes, including the phospholipid classes phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), cardiolipins (CL), the sphingolipid classes sphingomyelin (SM) and ceramides (Cer), and cholesterol (ST), and 3 lipid subclasses that include lyso PC (LPC), lyso PE (LPE) and lyso PG (LPG), but showing different abundances. This work also identified, for the first time, in G. lamblia trophozoites, the lipid classes CL, Cer and ST and subclasses of LPC, LPE and LPG. Univariate and multivariate analysis showed clear discrimination of lipid profiles between trophozoite, exosomes and MVs. The principal component analysis (PCA) plot of the lipidomics dataset showed clear discrimination between the three groups. Future studies focused on the composition and functional properties of Giardia EVs may prove crucial to understand the role of lipids in host-parasite communication, and to identify new targets that could be exploited to develop novel classes of drugs to treat giardiasis.
Collapse
Affiliation(s)
- Clarissa Perez Faria
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | - Ágata Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês Guerra
- Department of Chemistry, CICECO Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Chemistry, CESAM Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Tânia Melo
- Department of Chemistry, CESAM Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Maria do Rosário Marques Domingues
- Department of Chemistry, CESAM Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Maria do Céu Sousa
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Gaona-López C, Martínez-Vázquez AV, Villalobos-Rocha JC, Juárez-Rendón KJ, Rivera G. Analysis of Giardia lamblia Nucleolus as Drug Target: A Review. Pharmaceuticals (Basel) 2023; 16:1168. [PMID: 37631082 PMCID: PMC10457859 DOI: 10.3390/ph16081168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Giardia lamblia (G. lamblia) is the main causative agent of diarrhea worldwide, affecting children and adults alike; in the former, it can be lethal, and in the latter a strong cause of morbidity. Despite being considered a predominant disease in low-income and developing countries, current migratory flows have caused an increase in giardiasis cases in high-income countries. Currently, there is a wide variety of chemotherapeutic treatments to combat this parasitosis, most of which have potentially serious side effects, such as genotoxic, carcinogenic, and teratogenic. The necessity to create novel treatments and discover new therapeutic targets to fight against this illness is evident. The current review centers around the controversial nucleolus of G. lamblia, providing a historical perspective that traces its apparent absence to the present evidence supporting its existence as a subnuclear compartment in this organism. Additionally, possible examples of ncRNAs and proteins ubiquitous to the nucleolus that can be used as targets of different therapeutic strategies are discussed. Finally, some examples of drugs under research that could be effective against G. lamblia are described.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | | | - Juan Carlos Villalobos-Rocha
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Karina Janett Juárez-Rendón
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.V.M.-V.); (K.J.J.-R.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
7
|
Onuț-Brännström I, Stairs CW, Campos KIA, Thorén MH, Ettema TJG, Keeling PJ, Bass D, Burki F. A Mitosome With Distinct Metabolism in the Uncultured Protist Parasite Paramikrocytos canceri (Rhizaria, Ascetosporea). Genome Biol Evol 2023; 15:7039708. [PMID: 36790104 PMCID: PMC9998036 DOI: 10.1093/gbe/evad022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/13/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Ascetosporea are endoparasites of marine invertebrates that include economically important pathogens of aquaculture species. Owing to their often-minuscule cell sizes, strict intracellular lifestyle, lack of cultured representatives and minimal availability of molecular data, these unicellular parasites remain poorly studied. Here, we sequenced and assembled the genome and transcriptome of Paramikrocytos canceri, an endoparasite isolated from the European edible crab Cancer pagurus. Using bioinformatic predictions, we show that P. canceri likely possesses a mitochondrion-related organelle (MRO) with highly reduced metabolism, resembling the mitosomes of other parasites but with key differences. Like other mitosomes, this MRO is predicted to have reduced metabolic capacity and lack an organellar genome and function in iron-sulfur cluster (ISC) pathway-mediated Fe-S cluster biosynthesis. However, the MRO in P. canceri is uniquely predicted to produce ATP via a partial glycolytic pathway and synthesize phospholipids de novo through the CDP-DAG pathway. Heterologous gene expression confirmed that proteins from the ISC and CDP-DAG pathways retain mitochondrial targeting sequences that are recognized by yeast mitochondria. This represents a unique combination of metabolic pathways in an MRO, including the first reported case of a mitosome-like organelle able to synthesize phospholipids de novo. Some of these phospholipids, such as phosphatidylserine, are vital in other protist endoparasites that invade their host through apoptotic mimicry.
Collapse
Affiliation(s)
- Ioana Onuț-Brännström
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Courtney W Stairs
- Microbiology Research Group, Department of Biology, Lund University, Lund, Sweden
| | | | - Markus Hiltunen Thorén
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, United Kingdom.,Department of Life Sciences, The Natural History Museum, London, United Kingdom.,Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Application of Proteomics to the Study of the Therapeutics and Pathogenicity of Giardia duodenalis. Diagnostics (Basel) 2022; 12:diagnostics12112744. [DOI: 10.3390/diagnostics12112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Giardia duodenalis remains a neglected tropical disease. A key feature of the sustained transmission of Giardia is the ability to form environmentally resistant cysts. For the last 38 years, proteomics has been utilised to study various aspects of the parasite across different life cycle stages. Thirty-one articles have been published in PubMed from 2012 to 2022 related to the proteomics of G. duodenalis. Currently, mass spectrometry with LC-MS/MS and MALDI-TOF/TOF has been commonly utilised in proteomic analyses of Giardia, which enables researchers to determine potential candidates for diagnostic biomarkers as well as vaccine and drug targets, in addition to allowing them to investigate the virulence of giardiasis, the pathogenicity mechanisms of G. duodenalis, and the post-translational modifications of Giardia proteins throughout encystation. Over the last decade, valuable information from proteomics analyses of G. duodenalis has been discovered in terms of the pathogenesis and virulence of Giardia, which may provide guidance for the development of better means with which to prevent and reduce the impacts of giardiasis. Nonetheless, there is room for improving proteomics analyses of G. duodenalis, since genomic sequences for additional assemblages of Giardia have uncovered previously unknown proteins associated with the Giardia proteome. Therefore, this paper aims to review the applications of proteomics for the characterisation of G. duodenalis pathogenicity and the discovery of novel vaccine as well as drug targets, in addition to proposing some general directions for future Giardia proteomic research.
Collapse
|
9
|
Benchimol M, de Souza W. Giardia intestinalis and its Endomembrane System. J Eukaryot Microbiol 2022; 69:e12893. [PMID: 35148450 DOI: 10.1111/jeu.12893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
Giardia intestinalis has unique characteristics, even in the absence of certain organelles. For instance, Golgi and mitochondria are not found. On the other hand, there is a network of peripheral vacuoles (PVs) and mitosomes. The endoplasmic reticulum (ER), nuclear membrane, peroxisomes, and lipid bodies are present. The peripheral vacuole system seems to play several simultaneous roles. It is involved in the endocytic activity of the trophozoite but also has characteristics of early and late endosomes and even lysosomes, establishing a connection with the ER. Some of the PVs contain small vesicles, acting as multivesicular bodies, including the release of exosomes. The mitosomes are surrounded by two membranes, divide during mitosis, and are distributed throughout the cell. They do not contain DNA, enzymes involved in the citric acid cycle, respiratory chain, or ATP synthesis. However, they contain the iron-sulfur complex and transporters as TOM and TIM. Some mitosomes are linked to flagellar axonemes through a fibrillar connection. During encystation, two types of larger cytoplasmic vesicles appear. One originating from the ER contains the cyst wall proteins. Another contains carbohydrates. Both migrate to the cell periphery and fuse with plasma membrane secreting their contents to give rise to the cell wall.
Collapse
Affiliation(s)
- Marlene Benchimol
- Universidade do Grande Rio (UNIGRANRIO), Rio de Janeiro Duque de Caxias, RJ, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro Nacional de Biologia Estrutural e Bioimagens, CENABIO-Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro Nacional de Biologia Estrutural e Bioimagens, CENABIO-Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
High-fat diet increases the severity of Giardia infection in association with low-grade inflammation and gut microbiota dysbiosis. Sci Rep 2021; 11:18842. [PMID: 34552170 PMCID: PMC8458452 DOI: 10.1038/s41598-021-98262-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
Exogenous factors that may influence the pathophysiology of Giardia infection remain incompletely understood. We have investigated the role of dietary fat in the pathogenesis of Giardia infection. Male 3 to 4-week-old C57BL/6 mice were fed either a low fat (LF) or a high fat (HF) diet for 12 days and challenged with G. duodenalis. In infected animals, the trophozoite burden was higher in HF + Giardia mice compared to the LF + Giardia group at day 7 post infection. Fatty acids exerted direct pro-growth effects on Giardia trophozoites. Analysis of disease parameters showed that HF + Giardia mice exhibited more mucosal infiltration by inflammatory cells, decreased villus/crypt ratios, goblet cell hyperplasia, mucus disruption, increased gut motility, and elevated fecal water content compared with LF + Giardia. HF diet-dependent exacerbation of Giardia-induced goblet cell hyperplasia was associated with elevated Atoh1 and Muc2 gene expression. Gut microbiota analysis revealed that the HF diet alone induces a taxonomic shift. HF + Giardia mice exhibited microbiota dysbiosis characterized by an increase of Firmicutes and a decrease of Bacteroidetes and significant changes in α- and β-diversity metrics. Taken together, the findings suggest that a HF diet exacerbates the outcome of Giardia infection. The data demonstrate that elevated dietary fat represents an important exogenous factor promoting the pathophysiology of giardiasis.
Collapse
|
11
|
Abstract
Giardia duodenalis captured the attention of Leeuwenhoek in 1681 while he was examining his own diarrheal stool, but, ironically, it did not really gain attention as a human pathogen until the 1960s, when outbreaks were reported. Key technological advances, including in vitro cultivation, genomic and proteomic databases, and advances in microscopic and molecular approaches, have led to an understanding that this is a eukaryotic organism with a reduced genome rather than a truly premitochondriate eukaryote. This has included the discovery of mitosomes (vestiges of mitochondria), a transport system with many of the features of the Golgi apparatus, and even evidence for a sexual or parasexual cycle. Cell biology approaches have led to a better understanding of how Giardia survives with two nuclei and how it goes through its life cycle as a noninvasive organism in the hostile environment of the lumen of the host intestine. Studies of its immunology and pathogenesis have moved past the general understanding of the importance of the antibody response in controlling infection to determining the key role of the Th17 response. This work has led to understanding of the requirement for a balanced host immune response that avoids the extremes of an excessive response with collateral damage or one that is unable to clear the organism. This understanding is especially important in view of the remarkable ranges of early manifestations, which range from asymptomatic to persistent diarrhea and weight loss, and longer-term sequelae that include growth stunting in children who had no obvious symptoms and a high frequency of postinfectious irritable bowel syndrome (IBS).
Collapse
|
12
|
Multimodal regulation of encystation in Giardia duodenalis revealed by deep proteomics. Int J Parasitol 2021; 51:809-824. [PMID: 34331939 DOI: 10.1016/j.ijpara.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/24/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
Cyst formation in the parasitic protist Giardia duodenalis is critical to its transmission. Existing proteomic data quantifies only 17% of coding genes transcribed during encystation and does not cover the complete process from trophozoite to mature cyst. Using high-resolution mass spectrometry, we have quantified proteomic changes across encystation and compared this with published transcriptomic data. We reproducibly identified 3863 (64.5% of Giardia proteins) and quantified 3382 proteins (56.5% of Giardia proteins) over standard trophozoite growth (TY), during low-bile encystation priming (LB), 16 h into encystation (EC), and at cyst maturation (C). This work provides the first known expanded observation of encystation at the proteomic level and triples the coverage of previous encystation proteomes. One-third (1169 proteins) of the quantified proteome is differentially expressed in the mature cyst relative to the trophozoite, including proteasomal machinery, metabolic pathways, and secretory proteins. Changes in lipid metabolism indicated a shift in lipid species dependency during encystation. Consistent with this, we identified the first, putative lipid transporters in this species, representing the steroidogenic acute regulatory protein-related lipid transfer (StARkin), oxysterol binding protein related protein (ORP/Osh) and glycosphingolipid transfer protein (GLTP) families, and follow their differential expression over cyst formation. Lastly, we undertook correlation analyses of the transcriptome and proteome of trophozoites and cysts, and found evidence of post-transcriptional regulation of key protein classes (RNA binding proteins) and stage-specific genes (encystation markers) implicating translation-repression in encystation. We provide the most extensive proteomic analysis of encystation in Giardia to date and the first known exploration across its complete duration. This work identifies encystation as highly coordinated, involving major changes in proteostasis, metabolism and membrane dynamics, and indicates a potential role for post-transcriptional regulation, mediated through RNA-binding proteins. Together our work provides a valuable resource for Giardia research and the development of transmission-blocking anti-giardials.
Collapse
|
13
|
Riba A, Hassani K, Walker A, van Best N, von Zezschwitz D, Anslinger T, Sillner N, Rosenhain S, Eibach D, Maiga-Ascofaré O, Rolle-Kampczyk U, Basic M, Binz A, Mocek S, Sodeik B, Bauerfeind R, Mohs A, Trautwein C, Kiessling F, May J, Klingenspor M, Gremse F, Schmitt-Kopplin P, Bleich A, Torow N, von Bergen M, Hornef MW. Disturbed gut microbiota and bile homeostasis in Giardia-infected mice contributes to metabolic dysregulation and growth impairment. Sci Transl Med 2021; 12:12/565/eaay7019. [PMID: 33055245 DOI: 10.1126/scitranslmed.aay7019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/06/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
Although infection with the human enteropathogen Giardia lamblia causes self-limited diarrhea in adults, infant populations in endemic areas experience persistent pathogen carriage in the absence of diarrhea. The persistence of this protozoan parasite in infants has been associated with reduced weight gain and linear growth (height-for-age). The mechanisms that support persistent infection and determine the different disease outcomes in the infant host are incompletely understood. Using a neonatal mouse model of persistent G. lamblia infection, we demonstrate that G. lamblia induced bile secretion and used the bile constituent phosphatidylcholine as a substrate for parasite growth. In addition, we show that G. lamblia infection altered the enteric microbiota composition, leading to enhanced bile acid deconjugation and increased expression of fibroblast growth factor 15. This resulted in elevated energy expenditure and dysregulated lipid metabolism with reduced adipose tissue, body weight gain, and growth in the infected mice. Our results indicate that this enteropathogen's modulation of bile acid metabolism and lipid metabolism in the neonatal mouse host led to an altered body composition, suggesting how G. lamblia infection could contribute to growth restriction in infants in endemic areas.
Collapse
Affiliation(s)
- Ambre Riba
- Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
| | - Kasra Hassani
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Niels van Best
- Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany.,Department of Medical Microbiology and NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Dunja von Zezschwitz
- Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
| | - Teresa Anslinger
- Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
| | - Nina Sillner
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,ZIEL Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
| | - Stefanie Rosenhain
- Institute for Experimental Molecular Imaging, University Hospital Aachen, 52074 Aachen, Germany
| | - Daniel Eibach
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | | | - Ulrike Rolle-Kampczyk
- Helmholtz Centre for Environmental Research, Department of Molecular Systems Biology, 04318 Leipzig, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Anne Binz
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Sabine Mocek
- Chair for Molecular Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Rudolf Bauerfeind
- Research Core Unit for Laser Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Antje Mohs
- Medizinische Klinik III, RWTH University Hospital, Aachen, 52074 Aachen, Germany
| | - Christian Trautwein
- Medizinische Klinik III, RWTH University Hospital, Aachen, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital Aachen, 52074 Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.,Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jürgen May
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, University Hospital Aachen, 52074 Aachen, Germany.,Software Tools for Computational Engineering, RWTH Aachen University, 52072 Aachen, Germany.,Gremse-IT GmbH, 52068 Aachen, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,ZIEL Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany.,Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research, Department of Molecular Systems Biology, 04318 Leipzig, Germany.,Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Bruderstrase 34, D-04103 Leipzig, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany.
| |
Collapse
|
14
|
Füssy Z, Vinopalová M, Treitli SC, Pánek T, Smejkalová P, Čepička I, Doležal P, Hampl V. Retortamonads from vertebrate hosts share features of anaerobic metabolism and pre-adaptations to parasitism with diplomonads. Parasitol Int 2021; 82:102308. [PMID: 33626397 PMCID: PMC7985675 DOI: 10.1016/j.parint.2021.102308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 12/17/2022]
Abstract
Although the mitochondria of extant eukaryotes share a single origin, functionally these organelles diversified to a great extent, reflecting lifestyles of the organisms that host them. In anaerobic protists of the group Metamonada, mitochondria are present in reduced forms (also termed hydrogenosomes or mitosomes) and a complete loss of mitochondrion in Monocercomonoides exilis (Metamonada:Preaxostyla) has also been reported. Within metamonads, retortamonads from the gastrointestinal tract of vertebrates form a sister group to parasitic diplomonads (e.g. Giardia and Spironucleus) and have also been hypothesized to completely lack mitochondria. We obtained transcriptomic data from Retortamonas dobelli and R. caviae and searched for enzymes of the core metabolism as well as mitochondrion- and parasitism-related proteins. Our results indicate that retortamonads have a streamlined metabolism lacking pathways for metabolites they are probably capable of obtaining from prey bacteria or their environment, reminiscent of the biochemical arrangement in other metamonads. Retortamonads were surprisingly found do encode homologs of components of Giardia's remarkable ventral disk, as well as homologs of regulatory NEK kinases and secreted lytic enzymes known for involvement in host colonization by Giardia. These can be considered pre-adaptations of these intestinal microorganisms to parasitism. Furthermore, we found traces of the mitochondrial metabolism represented by iron‑sulfur cluster assembly subunits, subunits of mitochondrial translocation and chaperone machinery and, importantly, [FeFe]‑hydrogenases and hydrogenase maturases (HydE, HydF and HydG). Altogether, our results strongly suggest that a remnant mitochondrion is still present.
Collapse
Affiliation(s)
- Zoltán Füssy
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic.
| | - Martina Vinopalová
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | | | - Tomáš Pánek
- Charles University, Faculty of Science, Department of Zoology, Prague, Czech Republic
| | - Pavla Smejkalová
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic; Charles University, Faculty of Science, Department of Parasitology, Prague, Czech Republic
| | - Ivan Čepička
- Charles University, Faculty of Science, Department of Zoology, Prague, Czech Republic
| | - Pavel Doležal
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
15
|
Wu JH, Tung SY, Ho CC, Su LH, Gan SW, Liao JY, Cho CC, Lin BC, Chiu PW, Pan YJ, Kao YY, Liu YC, Sun CH. A myeloid leukemia factor homolog involved in encystation-induced protein metabolism in Giardia lamblia. Biochim Biophys Acta Gen Subj 2021; 1865:129859. [PMID: 33581251 DOI: 10.1016/j.bbagen.2021.129859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Giardia lamblia differentiates into resistant cysts as an established model for dormancy. Myeloid leukemia factor (MLF) proteins are important regulators of cell differentiation. Giardia possesses a MLF homolog which was up-regulated during encystation and localized to unknown cytosolic vesicles named MLF vesicles (MLFVs). METHODS We used double staining for visualization of potential factors with role in protein metabolism pathway and a strategy that employed a deletion mutant, CDK2m3, to test the protein degradation pathway. We also explored whether autophagy or proteasomal degradation are regulators of Giardia encystation by treatment with MG132, rapamycin, or chloroquine. RESULTS Double staining of MLF and ISCU or CWP1 revealed no overlap between their vesicles. The aberrant CDK2m3 colocalized with MLFVs and formed complexes with MLF. MG132 increased the number of CDK2m3-localized vesicles and its protein level. We further found that MLF colocalized and interacted with a FYVE protein and an ATG8-like (ATG8L) protein, which were up-regulated during encystation and their expression induced Giardia encystation. The addition of MG132, rapamycin, or chloroquine, increased their levels and the number of their vesicles, and inhibited the cyst formation. MLF and FYVE were detected in exosomes released from culture. CONCLUSIONS The MLFVs are not mitosomes or encystation-specific vesicles, but are related with degradative pathway for CDK2m3. MLF, FYVE, and ATG8L play a positive role in encystation and function in protein clearance pathway, which is important for encystation and coordinated with Exosomes. GENERAL SIGNIFICANCE MLF, FYVE, and ATG8L may be involved an encystation-induced protein metabolism during Giardia differentiation.
Collapse
Affiliation(s)
- Jui-Hsuan Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Szu-Yu Tung
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chun-Che Ho
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Li-Hsin Su
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Soo-Wah Gan
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Jo-Yu Liao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chao-Cheng Cho
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Bo-Chi Lin
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Pei-Wei Chiu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Jiao Pan
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Yun Kao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Chen Liu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chin-Hung Sun
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC.
| |
Collapse
|
16
|
Khedr SI, Mokhamer EHM, Hassan AA, El-Feki AS, Elkhodary GM, El-Gerbed MS. Psidium guajava Linn leaf ethanolic extract: In vivo giardicidal potential with ultrastructural damage, anti-inflammatory and antioxidant effects. Saudi J Biol Sci 2021; 28:427-439. [PMID: 33424326 PMCID: PMC7783632 DOI: 10.1016/j.sjbs.2020.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 12/03/2022] Open
Abstract
Introduction and aim Considering the magnitude of giardiasis problem, the side-effects of the used anti-giardia drugs and the resistance posed against them, the current study aimed to evaluate the in-vivo giardicidal effect of Psidium guajava leaf extract (PGLE). Methods For fulfilling this aim, five Swiss-albino mice groups were included; GI: non-infected, GII: Giardia-infected and non-treated, GIII: Giardia-infected and metronidazole-treated, GIV: Giardia-infected and PGLE-treated, and GV: Giardia-infected and treated with both metronidazole and PGLE. Treatment efficacy was assessed via; Giardia cyst viability and trophozoite count, trophozoite electron microscopic ultrastructure, duodenal histopathological scoring, immunohistochemistry for TNF-α and duodenal scanning electron microscopy. Moreover, mice serum liver enzymes, total bilirubin, albumin, lipid profile including; total cholesterol, HDL, LDL and triglycerides were assessed. Additionally, hepatic oxidative stress markers including; malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH) and superoxide dismutase (SOD) were measured. Results Results showed that PGLE whether alone or combined with metronidazole has induced significant trophozoite count reduction and major architectural changes. Duodenal histological improvement, and local protective anti-inflammatory effect were confirmed. PGLE has also helped in healing of Giardia-induced gut atrophy. Thus, offered a comprehensive therapy for both the pathogen and the resultant pathological sequalae. Serum markers showed favorable hepatoprotective effect. Total cholesterol, LDL and triglycerides levels were less in PGLE-treated group than in metronidazole-treated group. Hepatic oxidative stress markers revealed the promising extract antioxidant effect. This study highlights, the promising in-vivo giardicidal PGLE activity, that was comparable to metronidazole, thus, the extract would be an ideal strongly recommended treatment for giardiasis. When combined with metronidazole, the extract potentiated its therapeutic effect. Besides, having hepatoprotective, anti-inflammatory, and antioxidant properties, the extract can combat the major side effects of metronidazole therapy.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Duodenal ultrastructure
- G. lamblia, Giardia lamblia
- GSH, reduced glutathione
- Giardia lamblia
- H&E, hematoxylin and eosin
- HDL, high-density lipoproteins
- LDL, low-density lipoproteins
- MDA, malondialdehyde
- MNZ, metronidazole
- NO, nitric oxide
- Nitric oxide
- PGLE, Psidium guajava Linn. leaf extract
- Psidium guajava leaf extract
- ROS, reactive oxygen species
- SEM, scanning electron microscopy
- SOD, superoxide dismutase enzyme
- Superoxide dismutase
- TEM, transmission electron microscopy
- TNF-α, tumor necrosis factor-alpha
- Tumor necrosis factor-α
Collapse
Affiliation(s)
- Safaa I. Khedr
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Corresponding author at: Medical Parasitology Department, El Mowasah Medical and Educational Complex, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | | | - Amal A.A. Hassan
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Asmaa S. El-Feki
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Gihan M. Elkhodary
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | | |
Collapse
|
17
|
Ochoa-Maganda VY, Rangel-Castañeda IA, Suárez-Rico DO, Cortés-Zárate R, Hernández-Hernández JM, Pérez-Rangel A, Chiquete-Félix N, León-Ávila G, González-Pozos S, Gaona-Bernal J, Castillo-Romero A. Antigiardial Activity of Acetylsalicylic Acid Is Associated with Overexpression of HSP70 and Membrane Transporters. Pharmaceuticals (Basel) 2020; 13:ph13120440. [PMID: 33287104 PMCID: PMC7761642 DOI: 10.3390/ph13120440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Giardia lamblia is a flagellated protozoan responsible for giardiasis, a worldwide diarrheal disease. The adverse effects of the pharmacological treatments and the appearance of drug resistance have increased the rate of therapeutic failures. In the search for alternative therapeutics, drug repositioning has become a popular strategy. Acetylsalicylic acid (ASA) exhibits diverse biological activities through multiple mechanisms. However, the full spectrum of its activities is incompletely understood. In this study we show that ASA displayed direct antigiardial activity and affected the adhesion and growth of trophozoites in a time-dose-dependent manner. Electron microscopy images revealed remarkable morphological alterations in the membrane, ventral disk, and caudal region. Using mass spectrometry and real-time quantitative reverse transcription (qRT-PCR), we identified that ASA induced the overexpression of heat shock protein 70 (HSP70). ASA also showed a significant increase of five ATP-binding cassette (ABC) transporters (giABC, giABCP, giMDRP, giMRPL and giMDRAP1). Additionally, we found low toxicity on Caco-2 cells. Taken together, these results suggest an important role of HSPs and ABC drug transporters in contributing to stress tolerance and protecting cells from ASA-induced stress.
Collapse
Affiliation(s)
- Verónica Yadira Ochoa-Maganda
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara, Jalisco 44340, Mexico; (V.Y.O.-M.); (D.O.S.-R.)
| | - Itzia Azucena Rangel-Castañeda
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico; (I.A.R.-C.); (J.M.H.-H.); (A.P.-R.)
| | - Daniel Osmar Suárez-Rico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara, Jalisco 44340, Mexico; (V.Y.O.-M.); (D.O.S.-R.)
| | - Rafael Cortés-Zárate
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara, Jalisco 44340, Mexico; (R.C.-Z.); (J.G.-B.)
| | - José Manuel Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico; (I.A.R.-C.); (J.M.H.-H.); (A.P.-R.)
| | - Armando Pérez-Rangel
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico; (I.A.R.-C.); (J.M.H.-H.); (A.P.-R.)
| | - Natalia Chiquete-Félix
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Gloria León-Ávila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, IPN, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico;
| | - Sirenia González-Pozos
- Unidad de Microscopía Electrónica LaNSE, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico;
| | - Jorge Gaona-Bernal
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara, Jalisco 44340, Mexico; (R.C.-Z.); (J.G.-B.)
| | - Araceli Castillo-Romero
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara, Jalisco 44340, Mexico; (R.C.-Z.); (J.G.-B.)
- Correspondence: ; Tel.: +52-1-331-058-5200
| |
Collapse
|
18
|
Drug resistance in Giardia: Mechanisms and alternative treatments for Giardiasis. ADVANCES IN PARASITOLOGY 2020; 107:201-282. [PMID: 32122530 DOI: 10.1016/bs.apar.2019.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of chemotherapeutic drugs is the main resource against clinical giardiasis due to the lack of approved vaccines. Resistance of G. duodenalis to the most used drugs to treat giardiasis, metronidazole and albendazole, is a clinical issue of growing concern and yet unknown impact, respectively. In the search of new drugs, the completion of the Giardia genome project and the use of biochemical, molecular and bioinformatics tools allowed the identification of ligands/inhibitors for about one tenth of ≈150 potential drug targets in this parasite. Further, the synthesis of second generation nitroimidazoles and benzimidazoles along with high-throughput technologies have allowed not only to define overall mechanisms of resistance to metronidazole but to screen libraries of repurposed drugs and new pharmacophores, thereby increasing the known arsenal of anti-giardial compounds to some hundreds, with most demonstrating activity against metronidazole or albendazole-resistant Giardia. In particular, cysteine-modifying agents which include omeprazole, disulfiram, allicin and auranofin outstand due to their pleiotropic activity based on the extensive repertoire of thiol-containing proteins and the microaerophilic metabolism of this parasite. Other promising agents derived from higher organisms including phytochemicals, lactoferrin and propolis as well as probiotic bacteria/fungi have also demonstrated significant potential for therapeutic and prophylactic purposes in giardiasis. In this context the present chapter offers a comprehensive review of the current knowledge, including commonly prescribed drugs, causes of therapeutic failures, drug resistance mechanisms, strategies for the discovery of new agents and alternative drug therapies.
Collapse
|
19
|
Lipids Are the Preferred Substrate of the Protist Naegleria gruberi, Relative of a Human Brain Pathogen. Cell Rep 2019; 25:537-543.e3. [PMID: 30332635 PMCID: PMC6205838 DOI: 10.1016/j.celrep.2018.09.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/22/2018] [Accepted: 09/16/2018] [Indexed: 11/24/2022] Open
Abstract
Naegleria gruberi is a free-living non-pathogenic amoeboflagellate and relative of Naegleria fowleri, a deadly pathogen causing primary amoebic meningoencephalitis (PAM). A genomic analysis of N. gruberi exists, but physiological evidence for its core energy metabolism or in vivo growth substrates is lacking. Here, we show that N. gruberi trophozoites need oxygen for normal functioning and growth and that they shun both glucose and amino acids as growth substrates. Trophozoite growth depends mainly upon lipid oxidation via a mitochondrial branched respiratory chain, both ends of which require oxygen as final electron acceptor. Growing N. gruberi trophozoites thus have a strictly aerobic energy metabolism with a marked substrate preference for the oxidation of fatty acids. Analyses of N. fowleri genome data and comparison with those of N. gruberi indicate that N. fowleri has the same type of metabolism. Specialization to oxygen-dependent lipid breakdown represents an additional metabolic strategy in protists. Naegleria gruberi is a strict aerobe and needs oxygen for normal functioning and growth Unique among protists, N. gruberi prefers lipids over glucose as an energy source Lipid breakdown proceeds via a branched respiratory chain, both ends using oxygen N. fowleri, the fatal human brain amoeba, is predicted to have the same food preference
Collapse
|
20
|
Emery-Corbin SJ, Grüttner J, Svärd S. Transcriptomic and proteomic analyses of Giardia intestinalis: Intestinal epithelial cell interactions. ADVANCES IN PARASITOLOGY 2019; 107:139-171. [PMID: 32122528 DOI: 10.1016/bs.apar.2019.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Giardia intestinalis is a unicellular protozoan parasite that infects the small intestines of humans and animals. Giardiasis, the disease caused by the parasite, occurs globally across socioeconomic boundaries but is mainly endemic in developing countries and particularly within young children, where pronounced effects manifests in a failure to thrive condition. The molecular pathogenesis of Giardia has been studied using in vitro models of human and rat intestinal epithelial cells (IECs) and parasites from the two major human genotypes or assemblages (A and B). High-quality, genome sequencing of representative isolates from assemblages A (WB) and B (GS) has enabled exploration of these host-parasite models using 'omics' technologies, allowing deep and quantitative analyses of global gene expression changes in IECs and parasites during their interactions, cross-talk and competition. These include a major up-regulation of immune-related genes in the IECs early after the start of interactions, as well as competition between host cells and parasites for nutrients like sugars, amino acids and lipids, which is also reflected in their secretome interactions. Unique parasite proteins dominate these interactions, with many major up-regulated genes being either hypothetical proteins or members of Giardia-specific gene families like the high-cysteine-rich membrane proteins (HCMPs), variable surface proteins (VSPs), alpha-giardins and cysteine proteases. Furthermore, these proteins also dominate in the secretomes, suggesting that they are important virulence factors in Giardia and crucial molecular effectors at the host-parasite interface.
Collapse
Affiliation(s)
- Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Jana Grüttner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
21
|
Lalle M, Fiorillo A. The protein 14-3-3: A functionally versatile molecule in Giardia duodenalis. ADVANCES IN PARASITOLOGY 2019; 106:51-103. [PMID: 31630760 DOI: 10.1016/bs.apar.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Giardia duodenalis is a cosmopolitan zoonotic protozoan parasite causing giardiasis, one of the most common diarrhoeal diseases in human and animals. Beyond its public health relevance, Giardia represents a valuable and fascinating model microorganism. The deep-branching phylogenetic position of Giardia, its simple life cycle and its minimalistic genomic and cellular organization provide a unique opportunity to define basal and "ancestral" eukaryotic functions. The eukaryotic 14-3-3 protein family represents a distinct example of phosphoserine/phosphothreonine-binding proteins. The extended network of protein-protein interactions established by 14-3-3 proteins place them at the crossroad of multiple signalling pathways that regulate physiological and pathological cellular processes. Despite the remarkable insight on 14-3-3 protein in different organisms, from yeast to humans, so far little attention was given to the study of this protein in protozoan parasites. However, in the last years, research efforts have provided evidences on unique properties of the single 14-3-3 protein of Giardia and on its association in key aspects of Giardia life cycle. In the first part of this chapter, a general overview of the features commonly shared among 14-3-3 proteins in different organisms (i.e. structure, target recognition, mode of action and regulatory mechanisms) is included. The second part focus on the current knowledge on the biochemistry and biology of the Giardia 14-3-3 protein and on the possibility to use this protein as target to propose new strategies for developing innovative antigiardial therapy.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious Diseases, European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy.
| | - Annarita Fiorillo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Luscher A, Fröhlich F, Barisch C, Littlewood C, Metcalfe J, Leuba F, Palma A, Pirruccello M, Cesareni G, Stagi M, Walther TC, Soldati T, De Camilli P, Swan LE. Lowe syndrome-linked endocytic adaptors direct membrane cycling kinetics with OCRL in Dictyostelium discoideum. Mol Biol Cell 2019; 30:2268-2282. [PMID: 31216233 PMCID: PMC6743453 DOI: 10.1091/mbc.e18-08-0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 04/17/2019] [Accepted: 06/10/2019] [Indexed: 11/23/2022] Open
Abstract
Mutations of the inositol 5-phosphatase OCRL cause Lowe syndrome (LS), characterized by congenital cataract, low IQ, and defective kidney proximal tubule resorption. A key subset of LS mutants abolishes OCRL's interactions with endocytic adaptors containing F&H peptide motifs. Converging unbiased methods examining human peptides and the unicellular phagocytic organism Dictyostelium discoideum reveal that, like OCRL, the Dictyostelium OCRL orthologue Dd5P4 binds two proteins closely related to the F&H proteins APPL1 and Ses1/2 (also referred to as IPIP27A/B). In addition, a novel conserved F&H interactor was identified, GxcU (in Dictyostelium) and the Cdc42-GEF FGD1-related F-actin binding protein (Frabin) (in human cells). Examining these proteins in D. discoideum, we find that, like OCRL, Dd5P4 acts at well-conserved and physically distinct endocytic stations. Dd5P4 functions in coordination with F&H proteins to control membrane deformation at multiple stages of endocytosis and suppresses GxcU-mediated activity during fluid-phase micropinocytosis. We also reveal that OCRL/Dd5P4 acts at the contractile vacuole, an exocytic osmoregulatory organelle. We propose F&H peptide-containing proteins may be key modifiers of LS phenotypes.
Collapse
Affiliation(s)
- Alexandre Luscher
- Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Geneva-4, Switzerland
| | - Florian Fröhlich
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Department of Genetics and Complex Diseases, Harvard School of Public Health, and Department of Cell Biology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115
| | - Caroline Barisch
- Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Geneva-4, Switzerland
| | - Clare Littlewood
- Department of Cellular and Molecular Physiology, University of Liverpool, L69 3BX Liverpool, United Kingdom
| | - Joe Metcalfe
- Department of Cellular and Molecular Physiology, University of Liverpool, L69 3BX Liverpool, United Kingdom
| | - Florence Leuba
- Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Geneva-4, Switzerland
| | - Anita Palma
- Department of Biology, University of Rome, 00133 Rome, Italy
| | - Michelle Pirruccello
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Gianni Cesareni
- Department of Biology, University of Rome, 00133 Rome, Italy
| | - Massimiliano Stagi
- Department of Cellular and Molecular Physiology, University of Liverpool, L69 3BX Liverpool, United Kingdom
| | - Tobias C. Walther
- Department of Genetics and Complex Diseases, Harvard School of Public Health, and Department of Cell Biology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Geneva-4, Switzerland
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Laura E. Swan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
- Department of Cellular and Molecular Physiology, University of Liverpool, L69 3BX Liverpool, United Kingdom
| |
Collapse
|
23
|
Duarte TT, Ellis CC, Grajeda BI, De Chatterjee A, Almeida IC, Das S. A Targeted Mass Spectrometric Analysis Reveals the Presence of a Reduced but Dynamic Sphingolipid Metabolic Pathway in an Ancient Protozoan, Giardia lamblia. Front Cell Infect Microbiol 2019; 9:245. [PMID: 31396488 PMCID: PMC6668603 DOI: 10.3389/fcimb.2019.00245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Giardia lamblia, a single-celled eukaryote, colonizes and thrives in the small intestine of humans. Because of its compact and reduced genome, Giardia has adapted a “minimalistic” life style, as it becomes dependent on available resources of the small intestine. Because Giardia expresses fewer sphingolipid (SL) genes—and glycosphingolipids are critical for encystation—we investigated the SL metabolic cycle in this parasite. A tandem mass spectrometry (MS/MS) analysis reveals that major SLs in Giardia include sphingomyelins, sphingoid bases, ceramides, and glycosylceramides. Many of these lipids are obtained by Giardia from the growth medium, remodeled at their fatty acyl chains and end up in the spent medium. For instance, ceramide-1-phosphate, a proinflammatory molecule that is not present in the culture medium, is generated from sphingosine (abundant in the culture medium) possibly by remodeling reactions. It is then subsequently released into the spent medium. Thus, the secretion of ceramide-1-phospate and other SL derivatives by Giardia could be associated with inflammatory bowel disease observed in acute giardiasis. Additionally, we found that the levels of SLs increase in encysting Giardia and are differentially regulated throughout the encystation cycle. We propose that SL metabolism is important for this parasite and, could serve as potential targets for developing novel anti-giardial agents.
Collapse
Affiliation(s)
- Trevor T Duarte
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Cameron C Ellis
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Brian I Grajeda
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Atasi De Chatterjee
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Igor C Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States.,Infectious Disease and Immunology Cluster, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Siddhartha Das
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States.,Infectious Disease and Immunology Cluster, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
24
|
Emery SJ, Baker L, Ansell BRE, Mirzaei M, Haynes PA, McConville MJ, Svärd SG, Jex AR. Differential protein expression and post-translational modifications in metronidazole-resistant Giardia duodenalis. Gigascience 2018; 7:4931738. [PMID: 29688452 PMCID: PMC5913674 DOI: 10.1093/gigascience/giy024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/06/2018] [Indexed: 01/20/2023] Open
Abstract
Background Metronidazole (Mtz) is the frontline drug treatment for multiple anaerobic pathogens, including the gastrointestinal protist, Giardia duodenalis. However, treatment failure is common and linked to in vivo drug resistance. In Giardia, in vitro drug-resistant lines allow controlled experimental interrogation of resistance mechanisms in isogenic cultures. However, resistance-associated changes are inconsistent between lines, phenotypic data are incomplete, and resistance is rarely genetically fixed, highlighted by reversion to sensitivity after drug selection ceases or via passage through the life cycle. Comprehensive quantitative approaches are required to resolve isolate variability, fully define Mtz resistance phenotypes, and explore the role of post-translational modifications therein. Findings We performed quantitative proteomics to describe differentially expressed proteins in 3 seminal Mtz-resistant lines compared to their isogenic, Mtz-susceptible, parental line. We also probed changes in post-translational modifications including protein acetylation, methylation, ubiquitination, and phosphorylation via immunoblotting. We quantified more than 1,000 proteins in each genotype, recording substantial genotypic variation in differentially expressed proteins between isotypes. Our data confirm substantial changes in the antioxidant network, glycolysis, and electron transport and indicate links between protein acetylation and Mtz resistance, including cross-resistance to deacetylase inhibitor trichostatin A in Mtz-resistant lines. Finally, we performed the first controlled, longitudinal study of Mtz resistance stability, monitoring lines after cessation of drug selection, revealing isolate-dependent phenotypic plasticity. Conclusions Our data demonstrate understanding that Mtz resistance must be broadened to post-transcriptional and post-translational responses and that Mtz resistance is polygenic, driven by isolate-dependent variation, and is correlated with changes in protein acetylation networks.
Collapse
Affiliation(s)
- Samantha J Emery
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Louise Baker
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Brendan R E Ansell
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Mehdi Mirzaei
- Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, North Ryde, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Paul A Haynes
- Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, North Ryde, NSW, Australia
| | - Malcom J McConville
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Aaron R Jex
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Membrane-Associated Proteins in Giardia lamblia. Genes (Basel) 2018; 9:genes9080404. [PMID: 30103435 PMCID: PMC6115752 DOI: 10.3390/genes9080404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/01/2023] Open
Abstract
The manner in which membrane-associated proteins interact with the membrane defines their subcellular fate and function. This interaction relies on the characteristics of the proteins, their journey after synthesis, and their interaction with other proteins or enzymes. Understanding these properties may help to define the function of a protein and also the role of an organelle. In the case of microorganisms like protozoa parasites, it may help to understand singular features that will eventually lead to the design of parasite-specific drugs. The protozoa parasite Giardia lamblia is an example of a widespread parasite that has been infecting humans and animals from ancestral times, adjusting itself to the changes of the environment inside and outside the host. Several membrane-associated proteins have been posted in the genome database GiardiaDB, although only a few of them have been characterized. This review discusses the data regarding membrane-associated proteins in relationship with lipids and specific organelles and their implication in the discovery of anti-giardial therapies.
Collapse
|
26
|
Ma'ayeh SY, Knörr L, Sköld K, Garnham A, Ansell BRE, Jex AR, Svärd SG. Responses of the Differentiated Intestinal Epithelial Cell Line Caco-2 to Infection With the Giardia intestinalis GS Isolate. Front Cell Infect Microbiol 2018; 8:244. [PMID: 30062089 PMCID: PMC6055019 DOI: 10.3389/fcimb.2018.00244] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Giardia intestinalis is a parasitic protist that causes diarrhea in humans, affecting mainly children of the developing world, elderly and immunocompromised individuals. Humans are infected by two major Giardia assemblages (i.e. genetic subtypes), A and B, with the latter being the most common. So far, there is little information on molecular or cellular changes during infections with assemblage B. Here, we used RNA sequencing to study transcriptional changes in Caco-2 intestinal epithelial cells (IECs) co-incubated with assemblage B (GS isolate) trophozoites for 1.5, 3, and 4.5 h. We aimed to identify early molecular events associated with the establishment of infection and followed cellular protein changes up to 10 h. IEC transcriptomes showed a dominance of immediate early response genes which was sustained across all time points. Transcription of inflammatory cytokines (e.g., cxcl1-3, ccl2, 1l1a, and il1b) peaked at 1.5 and 3 h of infection. Compared to co-incubation with assemblage A Giardia, we identified the induction of novel cytokines (cxcl8, cxcl10, csf1, cx3cl1, il12a, il11) and showed that inflammatory signaling is mediated by Erk1/2 phosphorylation (mitogen activated protein kinase, MAPK), nuclear factor kappa B (NFκB) and adaptor protein-1 (AP-1). We also showed that GS trophozoites attenuate P38 (MAPK) phosphorylation in IECs. Low amounts of IL-8, CXCL1 and CCL20 proteins were measured in the interaction medium, which was attributed to cytokine degradation by trophozoite secreted proteases. Based on the transcriptome, the decay of cytokines mRNA mediated by zinc finger protein 36 might be another mechanism controlling cytokine levels at later time points. IEC transcriptomes suggested homeostatic responses to counter oxidative stress, glucose starvation, and disturbances in amino acid and lipid metabolism. A large group of differentially transcribed genes were associated with cell cycle arrest and induction of apoptosis, which was validated at protein level. IEC transcriptomes also suggested changes in tight junction's integrity, microvilli structure and the extracellular mucin layer. This is the first study to illuminate transcriptional and protein regulatory events underlying IECs responses and pathogenesis during Giardia assemblage B infection. It highlights differences compared to assemblage A infections which might account for the differences observed in human infections with the two assemblages.
Collapse
Affiliation(s)
- Showgy Y Ma'ayeh
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Livia Knörr
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Karin Sköld
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Alexandra Garnham
- Population Health & Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Brendan R E Ansell
- Population Health & Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC, Australia
| | - Aaron R Jex
- Population Health & Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC, Australia
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Allain T, Chaouch S, Thomas M, Vallée I, Buret AG, Langella P, Grellier P, Polack B, Bermúdez-Humarán LG, Florent I. Bile-Salt-Hydrolases from the Probiotic Strain Lactobacillus johnsonii La1 Mediate Anti-giardial Activity in Vitro and in Vivo. Front Microbiol 2018; 8:2707. [PMID: 29472895 PMCID: PMC5810305 DOI: 10.3389/fmicb.2017.02707] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/29/2017] [Indexed: 01/10/2023] Open
Abstract
Giardia duodenalis (syn. G. lamblia, G. intestinalis) is the protozoan parasite responsible for giardiasis, the most common and widely spread intestinal parasitic disease worldwide, affecting both humans and animals. After cysts ingestion (through either contaminated food or water), Giardia excysts in the upper intestinal tract to release replicating trophozoites that are responsible for the production of symptoms. In the gut, Giardia cohabits with the host's microbiota, and several studies have revealed the importance of this gut ecosystem and/or some probiotic bacteria in providing protection against G. duodenalis infection through mechanisms that remain incompletely understood. Recent findings suggest that Bile-Salt-Hydrolase (BSH)-like activities from the probiotic strain of Lactobacillus johnsonii La1 may contribute to the anti-giardial activity displayed by this strain. Here, we cloned and expressed each of the three bsh genes present in the L. johnsonii La1 genome to study their enzymatic and biological properties. While BSH47 and BSH56 were expressed as recombinant active enzymes, no significant enzymatic activity was detected with BSH12. In vitro assays allowed determining the substrate specificities of both BSH47 and BSH56, which were different. Modeling of these BSHs indicated a strong conservation of their 3-D structures despite low conservation of their primary structures. Both recombinant enzymes were able to mediate anti-giardial biological activity against Giardia trophozoites in vitro. Moreover, BSH47 exerted significant anti-giardial effects when tested in a murine model of giardiasis. These results shed new light on the mechanism, whereby active BSH derived from the probiotic strain Lactobacillus johnsonii La1 may yield anti-giardial effects in vitro and in vivo. These findings pave the way toward novel approaches for the treatment of this widely spread but neglected infectious disease, both in human and in veterinary medicine.
Collapse
Affiliation(s)
- Thibault Allain
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Jouy-en-Josas, France.,UMR7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne-Universités, Paris, France
| | - Soraya Chaouch
- UMR7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne-Universités, Paris, France
| | - Myriam Thomas
- JRU BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Isabelle Vallée
- JRU BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - André G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Philippe Langella
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Jouy-en-Josas, France
| | - Philippe Grellier
- UMR7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne-Universités, Paris, France
| | - Bruno Polack
- JRU BIPAR, Ecole Nationale Vétérinaire d'Alfort, ANSES, INRA, Université Paris-Est, Maisons-Alfort, France
| | - Luis G Bermúdez-Humarán
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Jouy-en-Josas, France
| | - Isabelle Florent
- UMR7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne-Universités, Paris, France
| |
Collapse
|
28
|
Ma’ayeh SY, Liu J, Peirasmaki D, Hörnaeus K, Bergström Lind S, Grabherr M, Bergquist J, Svärd SG. Characterization of the Giardia intestinalis secretome during interaction with human intestinal epithelial cells: The impact on host cells. PLoS Negl Trop Dis 2017; 11:e0006120. [PMID: 29228011 PMCID: PMC5739509 DOI: 10.1371/journal.pntd.0006120] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/21/2017] [Accepted: 11/17/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Giardia intestinalis is a non-invasive protozoan parasite that causes giardiasis in humans, the most common form of parasite-induced diarrhea. Disease mechanisms are not completely defined and very few virulence factors are known. METHODOLOGY To identify putative virulence factors and elucidate mechanistic pathways leading to disease, we have used proteomics to identify the major excretory-secretory products (ESPs) when Giardia trophozoites of WB and GS isolates (assemblages A and B, respectively) interact with intestinal epithelial cells (IECs) in vitro. FINDINGS The main parts of the IEC and parasite secretomes are constitutively released proteins, the majority of which are associated with metabolism but several proteins are released in response to their interaction (87 and 41 WB and GS proteins, respectively, 76 and 45 human proteins in response to the respective isolates). In parasitized IECs, the secretome profile indicated effects on the cell actin cytoskeleton and the induction of immune responses whereas that of Giardia showed anti-oxidation, proteolysis (protease-associated) and induction of encystation responses. The Giardia secretome also contained immunodominant and glycosylated proteins as well as new candidate virulence factors and assemblage-specific differences were identified. A minor part of Giardia ESPs had signal peptides (29% for both isolates) and extracellular vesicles were detected in the ESPs fractions, suggesting alternative secretory pathways. Microscopic analyses showed ESPs binding to IECs and partial internalization. Parasite ESPs reduced ERK1/2 and P38 phosphorylation and NF-κB nuclear translocation. Giardia ESPs altered gene expression in IECs, with a transcriptional profile indicating recruitment of immune cells via chemokines, disturbances in glucose homeostasis, cholesterol and lipid metabolism, cell cycle and induction of apoptosis. CONCLUSIONS This is the first study identifying Giardia ESPs and evaluating their effects on IECs. It highlights the importance of host and parasite ESPs during interactions and reveals the intricate cellular responses that can explain disease mechanisms and attenuated inflammatory responses during giardiasis.
Collapse
Affiliation(s)
- Showgy Y. Ma’ayeh
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Jingyi Liu
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Katarina Hörnaeus
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Manfred Grabherr
- Department of Medical Biochemsitry and Microbiology, BMC, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
29
|
Giardia's primitive GPL biosynthesis pathways with parasitic adaptation 'patches': implications for Giardia's evolutionary history and for finding targets against Giardiasis. Sci Rep 2017; 7:9507. [PMID: 28842650 PMCID: PMC5573378 DOI: 10.1038/s41598-017-10054-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/02/2017] [Indexed: 11/23/2022] Open
Abstract
Giardia is a worldwide spread protozoan parasite colonizing in small intestines of vertebrates, causing Giardiasis. The controversy about whether it is an extremely primitive eukaryote or just a highly evolved parasite has become a fetter to its uses as a model for both evolutionary and parasitological studies for years. Glycerophospholipid (GPL) synthesis is a conserved essential cellular process, and thus may retain some original features reflecting its evolutionary position, and this process should also have undergone parasitic adaptation to suit Giardia’s dietary lipid-rich environment. Thus, GPL synthesis pathways may be a perfect object to examine the controversy over Giardia. Here, we first clarified Giardia’s previously confusing GPL synthesis by re-identifying a reliable set of GPL synthesis genes/enzymes. Then using phylogenetic and comparative genomic analyses, we revealed that these pathways turn out to be evolutionarily primitive ones, but with many secondary parasitic adaptation ‘patches’ including gene loss, rapid evolution, product relocation, and horizontal gene transfer. Therefore, modern Giardia should be a mosaic of ‘primary primitivity’ and ‘secondary parasitic adaptability’, and to make a distinction between the two categories of features would restart the studies of eukaryotic evolution and parasitic adaptation using Giardia as a model system.
Collapse
|
30
|
Barash NR, Maloney JG, Singer SM, Dawson SC. Giardia Alters Commensal Microbial Diversity throughout the Murine Gut. Infect Immun 2017; 85:e00948-16. [PMID: 28396324 PMCID: PMC5442636 DOI: 10.1128/iai.00948-16] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/26/2017] [Indexed: 12/17/2022] Open
Abstract
Giardia lamblia is the most frequently identified protozoan cause of intestinal infection. Over 200 million people are estimated to have acute or chronic giardiasis, with infection rates approaching 90% in areas where Giardia is endemic. Despite its significance in global health, the mechanisms of pathogenesis associated with giardiasis remain unclear, as the parasite neither produces a known toxin nor induces a robust inflammatory response. Giardia colonization and proliferation in the small intestine of the host may, however, disrupt the ecological homeostasis of gastrointestinal commensal microbes and contribute to diarrheal disease associated with giardiasis. To evaluate the impact of Giardia infection on the host microbiota, we used culture-independent methods to quantify shifts in the diversity of commensal microbes throughout the gastrointestinal tract in mice infected with Giardia We discovered that Giardia's colonization of the small intestine causes a systemic dysbiosis of aerobic and anaerobic commensal bacteria. Specifically, Giardia colonization is typified by both expansions in aerobic Proteobacteria and decreases in anaerobic Firmicutes and Melainabacteria in the murine foregut and hindgut. Based on these shifts, we created a quantitative index of murine Giardia-induced microbial dysbiosis. This index increased at all gut regions during the duration of infection, including both the proximal small intestine and the colon. Giardiasis could be an ecological disease, and the observed dysbiosis may be mediated directly via the parasite's unique anaerobic fermentative metabolism or indirectly via parasite induction of gut inflammation. This systemic alteration of murine gut commensal diversity may be the cause or the consequence of inflammatory and metabolic changes throughout the gut. Shifts in the commensal microbiota may explain observed variations in giardiasis between hosts with respect to host pathology, degree of parasite colonization, infection initiation, and eventual clearance.
Collapse
Affiliation(s)
- N R Barash
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, California, USA
| | - J G Maloney
- Departments of Biology and Microbiology & Immunology, Georgetown University, Washington, DC, USA
| | - S M Singer
- Departments of Biology and Microbiology & Immunology, Georgetown University, Washington, DC, USA
| | - S C Dawson
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, California, USA
| |
Collapse
|
31
|
Pham JK, Nosala C, Scott EY, Nguyen KF, Hagen KD, Starcevich HN, Dawson SC. Transcriptomic Profiling of High-Density Giardia Foci Encysting in the Murine Proximal Intestine. Front Cell Infect Microbiol 2017; 7:227. [PMID: 28620589 PMCID: PMC5450421 DOI: 10.3389/fcimb.2017.00227] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Giardia is a highly prevalent, understudied protistan parasite causing significant diarrheal disease worldwide. Its life cycle consists of two stages: infectious cysts ingested from contaminated food or water sources, and motile trophozoites that colonize and attach to the gut epithelium, later encysting to form new cysts that are excreted into the environment. Current understanding of parasite physiology in the host is largely inferred from transcriptomic studies using Giardia grown axenically or in co-culture with mammalian cell lines. The dearth of information about the diversity of host-parasite interactions occurring within distinct regions of the gastrointestinal tract has been exacerbated by a lack of methods to directly and non-invasively interrogate disease progression and parasite physiology in live animal hosts. By visualizing Giardia infections in the mouse gastrointestinal tract using bioluminescent imaging (BLI) of tagged parasites, we recently showed that parasites colonize the gut in high-density foci. Encystation is initiated in these foci throughout the entire course of infection, yet how the physiology of parasites within high-density foci in the host gut differs from that of cells in laboratory culture is unclear. Here we use BLI to precisely select parasite samples from high-density foci in the proximal intestine to interrogate in vivo Giardia gene expression in the host. Relative to axenic culture, we noted significantly higher expression (>10-fold) of oxidative stress, membrane transporter, and metabolic and structural genes associated with encystation in the high-density foci. These differences in gene expression within parasite foci in the host may reflect physiological changes associated with high-density growth in localized regions of the gut. We also identified and verified six novel cyst-specific proteins, including new components of the cyst wall that were highly expressed in these foci. Our in vivo transcriptome data support an emerging view that parasites encyst early in localized regions in the gut, possibly as a consequence of nutrient limitation, and also impact local metabolism and physiology.
Collapse
Affiliation(s)
- Jonathan K Pham
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Christopher Nosala
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Erica Y Scott
- Department of Animal Science, University of California, DavisDavis, CA, United States
| | - Kristofer F Nguyen
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Kari D Hagen
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Hannah N Starcevich
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| |
Collapse
|
32
|
Giardia intestinalis mitosomes undergo synchronized fission but not fusion and are constitutively associated with the endoplasmic reticulum. BMC Biol 2017; 15:27. [PMID: 28372543 DOI: 10.1186/s12915-017-0361-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondria of opisthokonts undergo permanent fission and fusion throughout the cell cycle. Here, we investigated the dynamics of the mitosomes, the simplest forms of mitochondria, in the anaerobic protist parasite Giardia intestinalis, a member of the Excavata supergroup of eukaryotes. The mitosomes have abandoned typical mitochondrial traits such as the mitochondrial genome and aerobic respiration and their single role known to date is the formation of iron-sulfur clusters. RESULTS In live experiments, no fusion events were observed between the mitosomes in G. intestinalis. Moreover, the organelles were highly prone to becoming heterogeneous. This suggests that fusion is either much less frequent or even absent in mitosome dynamics. Unlike in mitochondria, division of the mitosomes was absolutely synchronized and limited to mitosis. The association of the nuclear and the mitosomal division persisted during the encystation of the parasite. During the segregation of the divided mitosomes, the subset of the organelles between two G. intestinalis nuclei had a prominent role. Surprisingly, the sole dynamin-related protein of the parasite seemed not to be involved in mitosomal division. However, throughout the cell cycle, mitosomes associated with the endoplasmic reticulum (ER), although none of the known ER-tethering complexes was present. Instead, the ER-mitosome interface was occupied by the lipid metabolism enzyme long-chain acyl-CoA synthetase 4. CONCLUSIONS This study provides the first report on the dynamics of mitosomes. We show that together with the loss of metabolic complexity of mitochondria, mitosomes of G. intestinalis have uniquely streamlined their dynamics by harmonizing their division with mitosis. We propose that this might be a strategy of G. intestinalis to maintain a stable number of organelles during cell propagation. The lack of mitosomal fusion may also be related to the secondary reduction of the organelles. However, as there are currently no reports on mitochondrial fusion in the whole Excavata supergroup, it is possible that the absence of mitochondrial fusion is an ancestral trait common to all excavates.
Collapse
|
33
|
Robles-Martinez L, Mendez TL, Apodaca J, Das S. Glucosylceramide transferase in Giardia preferentially catalyzes the synthesis of galactosylceramide during encystation. Mol Biochem Parasitol 2016; 211:75-83. [PMID: 27840079 DOI: 10.1016/j.molbiopara.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/06/2016] [Accepted: 11/09/2016] [Indexed: 11/27/2022]
Abstract
The stage differentiation from trophozoite to cyst (i.e., encystation) is an essential step for Giardia to survive outside its human host and spread the infection via the fecal-oral route. We have previously shown that Giardia expresses glucosylceramide transferase 1 (GlcT1) enzyme, the activity of which is elevated during encystation. We have also reported that blocking the activity of gGlcT1 interferes with the biogenesis of encystation-specific vesicles (ESVs) and cyst viability in Giardia. To further understand the role of this enzyme and how it regulates encystation, we overexpressed, knocked down, and rescued the giardial GlcT1 (gGlcT1) gene and measured its enzymatic activity in live parasites as well as in isolated membrane fractions using NBD-ceramide and UDP-glucose or UDP-galactose. We observed that gGlcT1 is able to catalyze the synthesis of both glucosylceramide (GlcCer) and galactosylceramide (GalCer), however the synthesis of GalCer is 2-3 fold higher than of GlcCer. Although both activities follow Michaelis-Menten kinetics, the bindings of UDP-glucose and UDP-galactose with the enzyme appear to be non-competitive and independent of each other. The modulation of gGlcT1 synthesis concomitantly influenced the expression cyst-wall protein (CWP) and overall encystation. We propose that gGlcT1 is a unique enzyme and that Giardia uses this enzyme to synthesize both GlcCer and GalCer to facilitate the process of encystation/cyst production.
Collapse
Affiliation(s)
- Leobarda Robles-Martinez
- Infectious Disease and Immunology Cluster, Border Biomedical Research Center (BBRC), University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥.,Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥
| | - Tavis L Mendez
- Infectious Disease and Immunology Cluster, Border Biomedical Research Center (BBRC), University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥.,Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥
| | - Jennifer Apodaca
- Infectious Disease and Immunology Cluster, Border Biomedical Research Center (BBRC), University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥.,Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥
| | - Siddhartha Das
- Infectious Disease and Immunology Cluster, Border Biomedical Research Center (BBRC), University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥.,Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥
| |
Collapse
|
34
|
Einarsson E, Troell K, Hoeppner MP, Grabherr M, Ribacke U, Svärd SG. Coordinated Changes in Gene Expression Throughout Encystation of Giardia intestinalis. PLoS Negl Trop Dis 2016; 10:e0004571. [PMID: 27015092 PMCID: PMC4807828 DOI: 10.1371/journal.pntd.0004571] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/03/2016] [Indexed: 12/29/2022] Open
Abstract
Differentiation into infectious cysts through the process of encystation is crucial for transmission and survival of the intestinal protozoan parasite Giardia intestinalis. Hitherto the majority of studies have focused on the early events, leaving late encystation poorly defined. In order to further study encystation, focusing on the later events, we developed a new encystation protocol that generates a higher yield of mature cysts compared to standard methods. Transcriptome changes during the entire differentiation from trophozoites to cysts were thereafter studied using RNA sequencing (RNA-seq). A high level of periodicity was observed for up- and down-regulated genes, both at the level of the entire transcriptome and putative regulators. This suggests the trajectory of differentiation to be coordinated through developmentally linked gene regulatory activities. Our study identifies a core of 13 genes that are consistently up-regulated during initial encystation. Of these, two constitute previously uncharacterized proteins that we were able to localize to a new type of encystation-specific vesicles. Interestingly, the largest transcriptional changes were seen in the late phase of encystation with the majority of the highly up-regulated genes encoding hypothetical proteins. Several of these were epitope-tagged and localized to further characterize these previously unknown genetic components of encystation and possibly excystation. Finally, we also detected a switch of variant specific surface proteins (VSPs) in the late phase of encystation. This occurred at the same time as nuclear division and DNA replication, suggesting a potential link between the processes. The intestinal protozoan parasite Giardia intestinalis and many other medically important protozoan parasites must encyst and form infective cysts in order to transmit to new hosts. Encystation efficiency is in that way connected to efficiency of transmission. We have developed new in vitro differentiation protocols and made the first RNA-seq based gene expression study of the complete Giardia encystation process. Our data provides a road map of Giardia encystation and a starting point from where it is possible to further explore important processes occurring during encystation. Information about this vital process for survival in the environment of this and other cyst forming parasites can be used in the development of new types of interventions.
Collapse
Affiliation(s)
- Elin Einarsson
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Karin Troell
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Marc P. Hoeppner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Christian-Albrechts-University of Kiel, Institute of Clinical Molecular Biology, Kiel, Germany
| | - Manfred Grabherr
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ulf Ribacke
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
35
|
Morada M, Lee S, Gunther-Cummins L, Weiss LM, Widmer G, Tzipori S, Yarlett N. Continuous culture of Cryptosporidium parvum using hollow fiber technology. Int J Parasitol 2015; 46:21-9. [PMID: 26341006 DOI: 10.1016/j.ijpara.2015.07.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 02/08/2023]
Abstract
Diarrheal disease is a leading cause of pediatric death in economically low resource countries. Cryptosporidium spp. are the second largest member of this group and the only member for which no treatment exists. One of the handicaps to developing chemotherapy is the lack of a reproducible long-term culture method permitting in vitro drug screening beyond 48 h. We have adapted the well-established hollow fiber technology to provide an environment that mimics the gut by delivering nutrients and oxygen from the basal layer upwards while allowing separate redox and nutrient control of the lumen for parasite development. Using this technique, oocyst production was maintained for >6 months, producing approximately 1×10(8)oocysts ml(-1)day(-1), compared with 48 h with a yield of 1×10(6)oocysts ml(-1) in two-dimensional cultures. Oocysts, after 4 and 20 weeks in culture, produced a chronic infection in a TCR-α-deficient mouse model. In vivo infectivity of oocysts was confirmed using oocysts from a 6 week culture in a dexamethasone immunosuppressed mouse model.
Collapse
Affiliation(s)
- Mary Morada
- Haskins Laboratories, and Department of Chemistry and Physical Sciences, Pace University, New York, USA
| | - Sangun Lee
- Cummings School of Veterinary Medicine, Tufts University, N. Grafton, MA, USA
| | | | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Giovanni Widmer
- Cummings School of Veterinary Medicine, Tufts University, N. Grafton, MA, USA
| | - Saul Tzipori
- Cummings School of Veterinary Medicine, Tufts University, N. Grafton, MA, USA
| | - Nigel Yarlett
- Haskins Laboratories, and Department of Chemistry and Physical Sciences, Pace University, New York, USA.
| |
Collapse
|
36
|
Sphingolipids, Lipid Rafts, and Giardial Encystation: The Show Must Go On. CURRENT TROPICAL MEDICINE REPORTS 2015; 2:136-143. [PMID: 26587369 DOI: 10.1007/s40475-015-0052-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sphingolipids are sphingosine-based phospholipids, which are present in the plasma and endomembranes of many eukaryotic cells. These lipids are involved in various cellular functions, including cell growth, differentiation, and apoptosis. In addition, sphingolipid and cholesterol-enriched membrane microdomains (also called "lipid rafts") contain a set of proteins and lipids, which take part in the signaling process in response to intra- or extracellular stimuli. Recent findings suggest that sphingolipids, especially glucosylceramide, play a critical role in inducing encystation and maintaining the cyst viability in Giardia. Similarly, the assembly/disassembly of lipid rafts modulates the encystation and cyst production of this ubiquitous enteric parasite. In this review article, we discuss the overall progress in the field and examine whether sphingolipids and lipid rafts can be used as novel targets for designing therapies to control infection by Giardia, which is rampant in developing countries, where children are especially vulnerable.
Collapse
|
37
|
Lalle M, Camerini S, Cecchetti S, Finelli R, Sferra G, Müller J, Ricci G, Pozio E. The FAD-dependent glycerol-3-phosphate dehydrogenase of Giardia duodenalis: an unconventional enzyme that interacts with the g14-3-3 and it is a target of the antitumoral compound NBDHEX. Front Microbiol 2015; 6:544. [PMID: 26082764 PMCID: PMC4450592 DOI: 10.3389/fmicb.2015.00544] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/17/2015] [Indexed: 12/18/2022] Open
Abstract
The flagellated protozoan Giardia duodenalis is a worldwide parasite causing giardiasis, an acute and chronic diarrheal disease. Metabolism in G. duodenalis has a limited complexity thus making metabolic enzymes ideal targets for drug development. However, only few metabolic pathways (i.e., carbohydrates) have been described so far. Recently, the parasite homolog of the mitochondrial-like glycerol-3-phosphate dehydrogenase (gG3PD) has been identified among the interactors of the g14-3-3 protein. G3PD is involved in glycolysis, electron transport, glycerophospholipids metabolism, and hyperosmotic stress response, and is emerging as promising target in tumor treatment. In this work, we demonstrate that gG3PD is a functional flavoenzyme able to convert glycerol-3-phosphate into dihydroxyacetone phosphate and that its activity and the intracellular glycerol level increase during encystation. Taking advantage of co-immunoprecipitation assays and deletion mutants, we provide evidence that gG3PD and g14-3-3 interact at the trophozoite stage, the intracellular localization of gG3PD is stage dependent and it partially co-localizes with mitosomes during cyst development. Finally, we demonstrate that the gG3PD activity is affected by the antitumoral compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol, that results more effective in vitro at killing G. duodenalis trophozoites than the reference drug metronidazole. Overall, our results highlight the involvement of gG3PD in processes crucial for the parasite survival thus proposing this enzyme as target for novel antigiardial interventions.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Serena Camerini
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Serena Cecchetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Renata Finelli
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Gabriella Sferra
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern Bern, Switzerland
| | - Giorgio Ricci
- Department of Sciences and Chemical Technologies, University of Rome "Tor Vergata" Rome, Italy
| | - Edoardo Pozio
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| |
Collapse
|
38
|
The assembly of GM1 glycolipid- and cholesterol-enriched raft-like membrane microdomains is important for giardial encystation. Infect Immun 2015; 83:2030-42. [PMID: 25733521 DOI: 10.1128/iai.03118-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/22/2015] [Indexed: 12/12/2022] Open
Abstract
Although encystation (or cyst formation) is an important step of the life cycle of Giardia, the cellular events that trigger encystation are poorly understood. Because membrane microdomains are involved in inducing growth and differentiation in many eukaryotes, we wondered if these raft-like domains are assembled by this parasite and participate in the encystation process. Since the GM1 ganglioside is a major constituent of mammalian lipid rafts (LRs) and known to react with cholera toxin B (CTXB), we used Alexa Fluor-conjugated CTXB and GM1 antibodies to detect giardial LRs. Raft-like structures in trophozoites are located in the plasma membranes and on the periphery of ventral discs. In cysts, however, they are localized in the membranes beneath the cyst wall. Nystatin and filipin III, two cholesterol-binding agents, and oseltamivir (Tamiflu), a viral neuraminidase inhibitor, disassembled the microdomains, as evidenced by reduced staining of trophozoites with CTXB and GM1 antibodies. GM1- and cholesterol-enriched LRs were isolated from Giardia by density gradient centrifugation and found to be sensitive to nystatin and oseltamivir. The involvement of LRs in encystation could be supported by the observation that raft inhibitors interrupted the biogenesis of encystation-specific vesicles and cyst production. Furthermore, culturing of trophozoites in dialyzed medium containing fetal bovine serum (which is low in cholesterol) reduced raft assembly and encystation, which could be rescued by adding cholesterol from the outside. Our results suggest that Giardia is able to form GM1- and cholesterol-enriched lipid rafts and these raft domains are important for encystation.
Collapse
|
39
|
Comparative biochemistry of Giardia, Hexamita and Spironucleus: Enigmatic diplomonads. Mol Biochem Parasitol 2014; 197:43-9. [DOI: 10.1016/j.molbiopara.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/30/2022]
|
40
|
Hahn J, Seeber F, Kolodziej H, Ignatius R, Laue M, Aebischer T, Klotz C. High sensitivity of Giardia duodenalis to tetrahydrolipstatin (orlistat) in vitro. PLoS One 2013; 8:e71597. [PMID: 23977083 PMCID: PMC3747212 DOI: 10.1371/journal.pone.0071597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/06/2013] [Indexed: 11/18/2022] Open
Abstract
Giardiasis, a gastrointestinal disease caused by Giardia duodenalis, is currently treated mainly with nitroimidazoles, primarily metronidazole (MTZ). Treatment failure rates of up to 20 percent reflect the compelling need for alternative treatment options. Here, we investigated whether orlistat, a drug approved to treat obesity, represents a potential therapeutic agent against giardiasis. We compared the growth inhibitory effects of orlistat and MTZ on a long-term in vitro culture adapted G. duodenalis strain, WB-C6, and on a new isolate, 14-03/F7, from a patient refractory to MTZ treatment using a resazurin assay. The giardiacidal concentration of the drugs and their combined in vitro efficacy was determined by median-effect analysis. Morphological changes after treatment were analysed by light and electron microscopy. Orlistat inhibited the in vitro growth of G. duodenalis at low micromolar concentrations, with isolate 14-03/F7 (IC5024h = 2.8 µM) being more sensitive than WB-C6 (IC5024h = 6.2 µM). The effect was significantly more potent compared to MTZ (IC5024h = 4.3 µM and 11.0 µM, respectively) and led to specific undulated morphological alterations on the parasite surface. The giardiacidal concentration of orlistat was >14 µM for 14-03/F7 and >43 µM for WB-C6, respectively. Importantly, the combination of both drugs revealed no interaction on their inhibitory effects. We demonstrate that orlistat is a potent inhibitor of G. duodenalis growth in vitro and kills parasites at concentrations achievable in the gut by approved treatment regimens for obesity. We therefore propose to investigate orlistat in controlled clinical studies as a new drug in giardiasis.
Collapse
Affiliation(s)
- Juliane Hahn
- Institute of Pharmacy, Pharmaceutical Biology, Freie Universität Berlin, Berlin, Germany
| | - Frank Seeber
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch-Institut, Berlin, Germany
| | - Herbert Kolodziej
- Institute of Pharmacy, Pharmaceutical Biology, Freie Universität Berlin, Berlin, Germany
| | - Ralf Ignatius
- Institute of Tropical Medicine and International Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Laue
- Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Toni Aebischer
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch-Institut, Berlin, Germany
| | - Christian Klotz
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch-Institut, Berlin, Germany
- * E-mail:
| |
Collapse
|
41
|
Mendez TL, De Chatterjee A, Duarte TT, Gazos-Lopes F, Robles-Martinez L, Roy D, Sun J, Maldonado RA, Roychowdhury S, Almeida IC, Das S. Glucosylceramide transferase activity is critical for encystation and viable cyst production by an intestinal protozoan, Giardia lamblia. J Biol Chem 2013; 288:16747-16760. [PMID: 23589290 DOI: 10.1074/jbc.m112.438416] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The production of viable cysts by Giardia is essential for its survival in the environment and for spreading the infection via contaminated food and water. The hallmark of cyst production (also known as encystation) is the biogenesis of encystation-specific vesicles (ESVs) that transport cyst wall proteins to the plasma membrane of the trophozoite before laying down the protective cyst wall. However, the molecules that regulate ESV biogenesis and maintain cyst viability have never before been identified. Here, we report that giardial glucosylceramide transferase-1 (gGlcT1), an enzyme of sphingolipid biosynthesis, plays a key role in ESV biogenesis and maintaining cyst viability. We find that overexpression of this enzyme induced the formation of aggregated/enlarged ESVs and generated clustered cysts with reduced viability. The silencing of gGlcT1 synthesis by antisense morpholino oligonucleotide abolished ESV production and generated mostly nonviable cysts. Interestingly, when gGlcT1-overexpressed Giardia was transfected with anti-gGlcT1 morpholino, the enzyme activity, vesicle biogenesis, and cyst viability returned to normal, suggesting that the regulated expression of gGlcT1 is important for encystation and viable cyst production. Furthermore, the overexpression of gGlcT1 increased the influx of membrane lipids and fatty acids without altering the fluidity of plasma membranes, indicating that the expression of gGlcT1 activity is linked to lipid internalization and maintaining the overall lipid balance in this parasite. Taken together, our results suggest that gGlcT1 is a key player of ESV biogenesis and cyst viability and therefore could be targeted for developing new anti-giardial therapies.
Collapse
Affiliation(s)
- Tavis L Mendez
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Atasi De Chatterjee
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Trevor T Duarte
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Felipe Gazos-Lopes
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Leobarda Robles-Martinez
- From Infectious Disease and Immunology; Neuroscience and Metabolic Disorder Clusters, Border Biomedical Research Center, El Paso, Texas 79968-5808
| | - Debarshi Roy
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Jianjun Sun
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Rosa A Maldonado
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Sukla Roychowdhury
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808; Neuroscience and Metabolic Disorder Clusters, Border Biomedical Research Center, El Paso, Texas 79968-5808
| | - Igor C Almeida
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Siddhartha Das
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808.
| |
Collapse
|
42
|
Abstract
In this review, the current status of genomic and proteomic research on Giardia is examined in terms of evolutionary biology, phylogenetic relationships and taxonomy. The review also describes how characterising genetic variation in Giardia from numerous hosts and endemic areas has provided a better understanding of life cycle patterns, transmission and the epidemiology of Giardia infections in humans, domestic animals and wildlife. Some progress has been made in relating genomic information to the phenotype of Giardia, and as a consequence, new information has been obtained on aspects of developmental biology and the host-parasite relationship. However, deficiencies remain in our understanding of pathogenesis and host specificity, highlighting the limitations of currently available genomic datasets.
Collapse
|