1
|
Alaverdyan J, Celina SS, Jirků M, Golovchenko M, Italiya J, Grubhoffer L, Rudenko N, Černý J. A First Look at the Relationship Between Large Herbivore-Induced Landscape Modifications and Ixodes ricinus Tick Abundance in Rewilding Sites. Vector Borne Zoonotic Dis 2024; 24:666-672. [PMID: 38717050 DOI: 10.1089/vbz.2023.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Background: While the influence of landscape and microclimatic conditions on tick populations is well-documented, there remains a gap in more specific data regarding their relationship to rewilding efforts with large herbivore activity. Objective: This pilot study, spanning from 2019 to 2021, explores the effects of naturalistic grazing by large semi-wild ungulates on tick abundance in the Milovice Reserve, Czechia. Methods: Tick collection was observed using flagging techniques at two distinct sites of rewilding area: one grazed, actively utilized by animals involved in the rewilding project, and one ungrazed, left fallow in neighboring areas utilized only by wild animals. Transects, each measuring 150 m in length and 5 m in width (750 m2), were established at these two sampling locations from March to September between 2019 and 2021. To minimize potential bias resulting from tick movement, a 300 m buffer zone separated the two sites. Data analysis employed a generalized estimating equations (GEE) model with negative binomial regression. The study assessed potential variations in tick abundance between selected transects, considering factors such as plant cover seasonality, temperature, and humidity. Results: During the collection periods, we gathered 586 live ticks, with 20% found in grazed areas and 80% in ungrazed areas. Notably, tick abundance was significantly higher in ungrazed areas. Peaks in tick abundance occurred in both grazed and ungrazed areas during spring, particularly in April. However, tick numbers declined more rapidly in grazed areas. Microclimatic variables like temperature and humidity did not significantly impact tick abundance compared to landscape management and seasonal factors. Conclusion: Rewilding efforts, particularly natural grazing by large ungulates, influence tick abundance and distribution. This study provides empirical data on tick ecology in rewilded areas, highlighting the importance of landscape management and environmental factors in tick management and conservation. Trophic rewilding plays a crucial role in shaping ecosystems and tick population dynamics in transformed landscapes.
Collapse
Affiliation(s)
- Johana Alaverdyan
- Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Seyma S Celina
- Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Miloslav Jirků
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia
| | - Marina Golovchenko
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jignesh Italiya
- Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Sciences, University of South Bohemia, České Budějovice, Czechia
| | - Natalie Rudenko
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jiří Černý
- Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
2
|
Izquierdo-Suzán M, Zavala-Guerrero PB, Mendoza H, Portela Salomão R, Vázquez-Pichardo M, Von Thaden JJ, Medellín RA. Mosquito (Diptera: Culicidae) diversity and arbovirus detection across an urban and agricultural landscape. Acta Trop 2024; 257:107321. [PMID: 38972559 DOI: 10.1016/j.actatropica.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Fragmented landscapes in Mexico, characterized by a mix of agricultural, urban, and native vegetation cover, presents unique ecological characteristics that shape the mosquito community composition and mosquito-borne diseases. The extent to which landscape influences mosquito populations and mosquito-borne diseases is still poorly understood. This work assessed the effect of landscape metrics -agriculture, urban, and native vegetation cover- on mosquito diversity and arbovirus presence in fragmented tropical deciduous forests in Central Mexico during 2021. Among the 21 mosquito species across six genera we identified, Culex quinquefasciatus was the most prevalent species, followed by Aedes aegypti, Ae. albopictus, and Ae. epactius. Notably, areas with denser native vegetation cover displayed higher mosquito species richness, which could have an impact on phenomena such as the dilution effect. Zika and dengue virus were detected in 85% of captured species, with first reports of DENV in several Aedes species and ZIKV in multiple Aedes and Culex species. These findings underscore the necessity of expanding arbovirus surveillance beyond Ae. aegypti and advocate for a deeper understanding of vector ecology in fragmented landscapes to adequately address public health strategies.
Collapse
Affiliation(s)
- Mónica Izquierdo-Suzán
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Ciudad Universitaria Coyoacán, CP 04510 CDMX, Mexico; Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria Coyoacán, 04510 Ciudad de México, Mexico.
| | - Paula B Zavala-Guerrero
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de México, Ciudad de México, Mexico
| | - Hugo Mendoza
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria Coyoacán, 04510 Ciudad de México, Mexico
| | - Renato Portela Salomão
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico; Pós-graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brasil
| | - Mauricio Vázquez-Pichardo
- Laboratorios de Arbovirus y Virus Hemorrágicos, Instituto de Diagnóstico y Referencia Epidemiológicoos. Centro Colaborador de la OPS/OMS en arbovirus, Ciudad de México, Mexico
| | - Juan José Von Thaden
- Laboratorio de Planeación Ambiental, Universidad Autónoma Metropolitana- Xochimilco, Ciudad de México, Mexico
| | - Rodrigo A Medellín
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria Coyoacán, 04510 Ciudad de México, Mexico
| |
Collapse
|
3
|
Zhou S, Jin X, Duan M, Zou H, Li M, Marcogliese DJ, Wang G, Li W. Potential effects of host competence and schooling behavior on parasite transmission in a host-pathogen system: a test of the dilution effect. Int J Parasitol 2024:S0020-7519(24)00152-8. [PMID: 39147305 DOI: 10.1016/j.ijpara.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/08/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
High species diversity in a community may reduce the risk of infectious disease, termed the dilution effect. However, the generality of the dilution effect in different disease systems remains controversial as both host competence and behaviors of hosts may play roles in dilution or amplification of disease. Using the goldfish (Carassius auratus)-monogenean ectoparasite (Gyrodactylus kobayashii) system, effects of host competence and schooling behavior on parasite transmission were investigated while holding focal host density constant. Following competency tests of 12 fish species as potential hosts for the parasite, infection by G. kobayashii was determined on fins of goldfish mixed with each of three different species based on their level of host competence, including Prussian carp, Carassius gibelio (low competence), grass carp, Ctenopharyngodon idellus (non-competent), swordtail, Xiphophorus helleri (non-competent), and the four species combined. Compared with mean abundance (85.8 ± 25.1) on goldfish in the control group, the mean abundance on goldfish decreased significantly when paired with 10 Prussian carp (30.0 ± 16.5), but did not differ significantly when paired with 10 swordtail (70.0 ± 22.2), 10 grass carp (116.1 ± 33.2), or the multi-species of three Prussian carp, four grass carp and three swordtail (75.9 ± 30.8) during the 11-day experiment. The parasite was also found on the Prussian carp in the Prussian carp group and the multi-species group at a mean abundance of 7.1 and 10.9, respectively. Video recording showed that the school of goldfish mixed well with the Prussian carp, while they maintained separation from the grass carp and swordtail when mixed together. The distance between goldfish increased, and swimming speed and contact time decreased with the additional of other fish species for all groups. The results suggested that the presence of a low-competence host in sufficient numbers was a necessary condition for a dilution effect due to encounter reduction, and the dilution effect may also be enhanced by changes in schooling behavior of goldfish in the presence of low competence hosts. However, the presence of non-competent hosts did not result in any dilution effect owing to the specialist nature of the parasites and the lack of mixing with schools of goldfish.
Collapse
Affiliation(s)
- Shun Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xiao Jin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Guangdong Ocean University, Zhanjiang, China
| | - Ming Duan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hong Zou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - David J Marcogliese
- St. Andrews Biological Station, Fisheries and Oceans Canada, 125 Marine Science Drive, St. Andrews, New Brunswick, Canada
| | - Guitang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Wenxiang Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
4
|
Inumaru M, Matsumoto N, Nakano Y, Sato T, Tsuda Y, Sato Y. Species Composition and Feeding Behaviors of Vector Mosquitoes of Avian Infectious Diseases at a Wild Bird Rehabilitation Facility in Japan. J Wildl Dis 2024; 60:621-633. [PMID: 38769632 DOI: 10.7589/jwd-d-23-00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/14/2024] [Indexed: 05/22/2024]
Abstract
Although wild bird rehabilitation facilities are important for the conservation of wild species, individuals may be kept within the facilities for long periods, consequently posing a risk for the bird to be infected with pathogens to which they are not naturally exposed. In turn, novel pathogens may be introduced through rescued migratory species. Avian malaria and West Nile fever are important avian diseases transmitted by mosquitoes. To understand the transmission dynamics of such diseases at rehabilitation facilities, the ecology of vector mosquitoes, including species composition, seasonality, and feeding behaviors, were explored. Mosquitoes were collected at a wild bird rehabilitation facility and wildlife sanctuary in Japan from 2019 to 2020 using mouth aspirators, sweep nets, and light traps. A total of 2,819 mosquitoes of 6 species were captured, all of which are potential vectors of avian diseases. Culex pipiens pallens and Cx. pipiens form molestus were the dominant species (82.9% of all collected mosquitoes). Density and seasonality differed between sampling locations, presumably because of differences in mosquito behaviors including feeding preferences and responses to climatic factors. Blood-fed Culex mosquitoes fed solely on birds, and many mosquito species are thought to have fed on birds within the facility. Particularly, Cx. pipiens group probably fed on both rescued and free-living birds. The rehabilitation facility may be an important site for the introduction and spread of pathogens because 1) numerous mosquitoes inhabit the hospital and its surroundings; 2) blood-fed mosquitoes are caught within the hospital; 3) there is direct contact between birds and mosquitoes; 4) both birds within the hospital and wild birds are fed upon. Furthermore, blood-fed Cx. pipiens form molestus were observed in the winter, suggesting that pathogens might be transmitted even during the winter when other mosquito species are inactive.
Collapse
Affiliation(s)
- Mizue Inumaru
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Nana Matsumoto
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Yoshiki Nakano
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Tatsuo Sato
- Gyotoku Nature Conservation Club NPO, 4-22-11 Fukuei, Ichikawa, Chiba 272-0137, Japan
| | - Yoshio Tsuda
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Yukita Sato
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
- Laboratory of Veterinary Parasitology, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
5
|
Middleton J, Cooper I, Rott AS. Tick hazard in the South Downs National Park (UK): species, distribution, key locations for future interventions, site density, habitats. PeerJ 2024; 12:e17483. [PMID: 38881864 PMCID: PMC11179636 DOI: 10.7717/peerj.17483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Background South Downs National Park (SDNP) is UK's most visited National Park, and a focus of tick-borne Lyme disease. The first presumed UK autochthonous cases of tick-borne encephalitis and babesiosis were recorded in 2019-20. SDNP aims to conserve wildlife and encourage recreation, so interventions are needed that reduce hazard without negatively affecting ecosystem health. To be successful these require knowledge of site hazards. Methods British Deer Society members submitted ticks removed from deer. Key potential intervention sites were selected and six 50 m2 transects drag-sampled per site (mostly twice yearly for 2 years). Ticks were identified in-lab (sex, life stage, species), hazard measured as tick presence, density of ticks (all life stages, DOT), and density of nymphs (DON). Sites and habitat types were analysed for association with hazard. Distribution was mapped by combining our results with records from five other sources. Results A total of 87 Ixodes ricinus (all but one adults, 82% F) were removed from 14 deer (10 Dama dama; three Capreolus capreolus; one not recorded; tick burden, 1-35) at 12 locations (commonly woodland). Five key potential intervention sites were identified and drag-sampled 2015-16, collecting 623 ticks (238 on-transects): 53.8% nymphs, 42.5% larvae, 3.7% adults (13 M, 10 F). Ticks were present on-transects at all sites: I. ricinus at three (The Mens (TM); Queen Elizabeth Country Park (QECP); Cowdray Estate (CE)), Haemaphysalis punctata at two (Seven Sisters Country Park (SSCP); Ditchling Beacon Nature Reserve (DBNR)). TM had the highest DOT at 30/300 m2 (DON = 30/300 m2), followed by QECP 22/300 m2 (12/300 m2), CE 8/300 m2 (6/300 m2), and SSCP 1/300 m2 (1/300 m2). For I. ricinus, nymphs predominated in spring, larvae in the second half of summer and early autumn. The overall ranking of site hazard held for DON and DOT from both seasonal sampling periods. DBNR was sampled 2016 only (one adult H. punctata collected). Woodland had significantly greater hazard than downland, but ticks were present at all downland sites. I. ricinus has been identified in 33/37 of SDNPs 10 km2 grid squares, Ixodes hexagonus 10/37, H. punctata 7/37, Dermacentor reticulatus 1/37. Conclusions Mapping shows tick hazard broadly distributed across SDNP. I. ricinus was most common, but H. punctata's seeming range expansion is concerning. Recommendations: management of small heavily visited high hazard plots (QECP); post-visit precaution signage (all sites); repellent impregnated clothing for deerstalkers; flock trials to control H. punctata (SSCP, DBNR). Further research at TM may contribute to knowledge on ecological dynamics underlying infection density and predator re-introduction/protection as public health interventions. Ecological research on H. punctata would aid control. SDNP Authority is ideally placed to link and champion policies to reduce hazard, whilst avoiding or reducing conflict between public health and ecosystem health.
Collapse
Affiliation(s)
- Jo Middleton
- Ecology and Evolution, School of Life Sciences, University of Sussex, Falmer, United Kingdom
- Department of Primary Care and Public Health, Brighton and Sussex Medical School, University of Sussex, Falmer, United Kingdom
| | - Ian Cooper
- Centre for Precision Health and Translational Medicine; Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Anja S Rott
- Ecology, Conservation and Society Research and Enterprise Group, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
6
|
Thumsová B, Alarcos G, Ayres C, Rosa GM, Bosch J. Relationship between two pathogens in an amphibian community that experienced mass mortalities. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14196. [PMID: 37811718 DOI: 10.1111/cobi.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/28/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Because host species tend to harbor multiple parasitic species, coinfection in a host is common. The chytrid fungus Batrachochytrium dendrobatidis (Bd) and the viruses in the genus Ranavirus (Rv) are responsible for the decline of amphibians worldwide. Despite wide geographical co-occurrence and the serious conservation problem that coinfection with these pathogens could represent, little is known about their possible synergistic interactions and effects in a host community. We investigated the occurrence and associations between these two pathogens in an amphibian community after Rv-driven disease outbreaks were detected in four populations of the Iberian ribbed newt (Pleurodeles waltl) in northwestern Spain. We collected tissue samples from amphibians and fish and estimated Bd and Rv infection loads by qPCR. A few months after the most recent mass mortality event, Rv infection parameters at the affected sites decreased significantly or were lower than such registered at the sites where no outbreaks were recorded. Both pathogens were simultaneously present in almost all sites, but coinfection in a single host was rare. Our findings suggest that the co-occurrence of Bd and Rv does not predict adverse outcomes (e.g., enhanced susceptibility of hosts to one pathogen due to the presence or infection intensity of the other) following an outbreak. Other variables (such as species identity or site) were more important than infection with a pathogen in predicting the infection status and severity of infection with the other pathogen. Our results highlight the importance of host-specific and environmental characteristics in the dynamics of infections, coinfection patterns, and their impacts.
Collapse
Affiliation(s)
- Barbora Thumsová
- Asociación Herpetológica Española (AHE), Madrid, Spain
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
- IMIB-Research Unit of Biodiversity (University of Oviedo, CSIC, Principality of Asturias), Mieres, Spain
| | | | - Cesar Ayres
- Asociación Herpetológica Española (AHE), Madrid, Spain
| | - Gonçalo M Rosa
- Institute of Zoology, Zoological Society of London, London, UK
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Jaime Bosch
- IMIB-Research Unit of Biodiversity (University of Oviedo, CSIC, Principality of Asturias), Mieres, Spain
| |
Collapse
|
7
|
Strauss AT, Hobbie SE, Reich PB, Seabloom EW, Borer ET. The effect of diversity on disease reverses from dilution to amplification in a 22-year biodiversity × N × CO 2 experiment. Sci Rep 2024; 14:10938. [PMID: 38740878 DOI: 10.1038/s41598-024-60725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Plant disease often increases with N, decreases with CO2, and increases as biodiversity is lost (i.e., the dilution effect). Additionally, all these factors can indirectly alter disease by changing host biomass and hence density-dependent disease transmission. Yet over long periods of time as communities undergo compositional changes, these biomass-mediated pathways might fade, intensify, or even reverse in direction. Using a field experiment that has manipulated N, CO2, and species richness for over 20 years, we compared severity of a specialist rust fungus (Puccinia andropogonis) on its grass host (Andropogon gerardii) shortly after the experiment began (1999) and twenty years later (2019). Between these two sampling periods, two decades apart, we found that disease severity consistently increased with N and decreased with CO2. However, the relationship between diversity and disease reversed from a dilution effect in 1999 (more severe disease in monocultures) to an amplification effect in 2019 (more severe disease in mixtures). The best explanation for this reversal centered on host density (i.e., aboveground biomass), which was initially highest in monoculture, but became highest in mixtures two decades later. Thus, the diversity-disease pattern reversed, but disease consistently increased with host biomass. These results highlight the consistency of N and CO2 as drivers of plant disease in the Anthropocene and emphasize the critical role of host biomass-despite potentially variable effects of diversity-for relationships between biodiversity and disease.
Collapse
Affiliation(s)
- Alexander T Strauss
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
- Odum School of Ecology, University of Georgia, Athens, GA, USA.
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
8
|
Savage JDT, Moore CM. How do host population dynamics impact Lyme disease risk dynamics in theoretical models? PLoS One 2024; 19:e0302874. [PMID: 38722910 PMCID: PMC11081252 DOI: 10.1371/journal.pone.0302874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
Lyme disease is the most common wildlife-to-human transmitted disease reported in North America. The study of this disease requires an understanding of the ecology of the complex communities of ticks and host species involved in harboring and transmitting this disease. Much of the ecology of this system is well understood, such as the life cycle of ticks, and how hosts are able to support tick populations and serve as disease reservoirs, but there is much to be explored about how the population dynamics of different host species and communities impact disease risk to humans. In this study, we construct a stage-structured, empirically-informed model with host dynamics to investigate how host population dynamics can affect disease risk to humans. The model describes a tick population and a simplified community of three host species, where primary nymph host populations are made to fluctuate on an annual basis, as commonly observed in host populations. We tested the model under different environmental conditions to examine the effect of environment on the interactions of host dynamics and disease risk. Results show that allowing for host dynamics in the model reduces mean nymphal infection prevalence and increases the maximum annual prevalence of nymphal infection and the density of infected nymphs. Effects of host dynamics on disease measures of nymphal infection prevalence were nonlinear and patterns in the effect of dynamics on amplitude in nymphal infection prevalence varied across environmental conditions. These results highlight the importance of further study of the effect of community dynamics on disease risk. This will involve the construction of further theoretical models and collection of robust field data to inform these models. With a more complete understanding of disease dynamics we can begin to better determine how to predict and manage disease risk using these models.
Collapse
Affiliation(s)
- Joseph D. T. Savage
- Biology Department, Colby College, Waterville, Maine, United States of America
- Department of Geography, Graduate Program in Ecology, Evolution, Environment, and Society, Dartmouth College, Hanover, New Hampshire, United States of America
| | | |
Collapse
|
9
|
Cotes-Perdomo AP, Sánchez-Vialas A, Thomas R, Jenkins A, Uribe JE. New insights into the systematics of the afrotropical Amblyomma marmoreum complex (Acari: Ixodidae) and the genome of a novel Rickettsia africae strain using morphological and metagenomic approaches. Ticks Tick Borne Dis 2024; 15:102323. [PMID: 38387163 DOI: 10.1016/j.ttbdis.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
The Amblyomma marmoreum complex includes afrotropical species, such as Amblyomma sparsum, a three-host tick that parasitizes reptiles, birds, and mammals, and is a recognized vector of Ehrlichia ruminantium. However, the lack of morphological, genetic and ecological data on A. sparsum has caused considerable confusion in its identification. In this study, we used microscopy and metagenomic approaches to analyze A. sparsum ticks collected from a puff adder snake (Bitis arietans) in southwest Senegal (an endemic rickettsioses area) in order to supplement previous morphological descriptions, provide novel genomic data for the A. marmoreum complex, and describe the genome of a novel spotted fever group Rickettsia strain. Based on stereoscope and scanning electron microscopy (SEM) morphological evaluations, we provide high-quality images and new insights about punctation and enameling in the adult male of A. sparsum to facilitate identification for future studies. The metagenomic approach allowed us assembly the complete mitochondrial genome of A. sparsum, as well as the nearly entire chromosome and complete plasmid sequences of a novel Rickettsia africae strain. Phylogenomic analyses demonstrated a close relationship between A. sparsum and Amblyomma nuttalli for the first time and confirmed the position of A. sparsum within the A. marmoreum complex. Our results provide new insights into the systematics of A. sparsum and A. marmoreum complex, as well as the genetic diversity of R. africae in the Afrotropical region. Future studies should consider the possibility that A. sparsum may be a vector for R. africae.
Collapse
Affiliation(s)
- Andrea P Cotes-Perdomo
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern, Norway; Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 2José Gutiérrez Abascal 2, Madrid 28006, Spain
| | - Alberto Sánchez-Vialas
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 2José Gutiérrez Abascal 2, Madrid 28006, Spain
| | - Richard Thomas
- Facultad de Ciencias Veterinarias, Departamento de Ciencia Animal, Universidad de Concepción, Chillán, Chile
| | - Andrew Jenkins
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern, Norway
| | - Juan E Uribe
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 2José Gutiérrez Abascal 2, Madrid 28006, Spain.
| |
Collapse
|
10
|
Boulanger N, Aran D, Maul A, Camara BI, Barthel C, Zaffino M, Lett MC, Schnitzler A, Bauda P. Multiple factors affecting Ixodes ricinus ticks and associated pathogens in European temperate ecosystems (northeastern France). Sci Rep 2024; 14:9391. [PMID: 38658696 DOI: 10.1038/s41598-024-59867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
In Europe, the main vector of tick-borne zoonoses is Ixodes ricinus, which has three life stages. During their development cycle, ticks take three separate blood meals from a wide variety of vertebrate hosts, during which they can acquire and transmit human pathogens such as Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis. In this study conducted in Northeastern France, we studied the importance of soil type, land use, forest stand type, and temporal dynamics on the abundance of ticks and their associated pathogens. Negative binomial regression modeling of the results indicated that limestone-based soils were more favorable to ticks than sandstone-based soils. The highest tick abundance was observed in forests, particularly among coniferous and mixed stands. We identified an effect of habitat time dynamics in forests and in wetlands: recent forests and current wetlands supported more ticks than stable forests and former wetlands, respectively. We observed a close association between tick abundance and the abundance of Cervidae, Leporidae, and birds. The tick-borne pathogens responsible for Lyme borreliosis, anaplasmosis, and hard tick relapsing fever showed specific habitat preferences and associations with specific animal families. Machine learning algorithms identified soil related variables as the best predictors of tick and pathogen abundance.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Université de Strasbourg UR3073: PHAVI: Groupe Borrelia, 67000, Strasbourg, France.
- Centre National de Référence Borrelia, Centre Hospitalier Régional Universitaire, Strasbourg, France.
| | - Delphine Aran
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | - Armand Maul
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | - Baba Issa Camara
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
- Université de Lorraine, LCOMS EA 7306, 57073, Metz, France
| | - Cathy Barthel
- Université de Strasbourg UR3073: PHAVI: Groupe Borrelia, 67000, Strasbourg, France
| | - Marie Zaffino
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | | | - Annick Schnitzler
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
- Museum National d'Histoire Naturelle, UMR 7194 HNHP CNRS/MNHN/UPVD, 75000, Paris, France
| | - Pascale Bauda
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France.
| |
Collapse
|
11
|
Vanwambeke S, Lambin E, Meyfroidt P, Asaaga F, Millins C, Purse B. Land system governance shapes tick-related public and animal health risks. JOURNAL OF LAND USE SCIENCE 2024; 19:78-96. [PMID: 38690402 PMCID: PMC11057406 DOI: 10.1080/1747423x.2024.2330379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/09/2024] [Indexed: 05/02/2024]
Abstract
Land cover and land use have established effects on hazard and exposure to vector-borne diseases. While our understanding of the proximate and distant causes and consequences of land use decisions has evolved, the focus on the proximate effects of landscape on disease ecology remains dominant. We argue that land use governance, viewed through a land system lens, affects tick-borne disease risk. Governance affects land use trajectories and potentially shapes landscapes favourable to ticks or increases contact with ticks by structuring human-land interactions. We illustrate the role of land use legacies, trade-offs in land-use decisions, and social inequities in access to land resources, information and decision-making, with three cases: Kyasanur Forest disease in India, Lyme disease in the Outer Hebrides (Scotland), and tick acaricide resistance in cattle in Ecuador. Land use governance is key to managing the risk of tick-borne diseases, by affecting the hazard and exposure. We propose that land use governance should consider unintended consequences on infectious disease risk.
Collapse
Affiliation(s)
- S.O Vanwambeke
- Université Catholique de Louvain (UCLouvain), Earth and Life Institute (ELI), Earth and Climate Pole (ELIC), Louvain-la-Neuve, Belgium
| | - E.F Lambin
- Université Catholique de Louvain (UCLouvain), Earth and Life Institute (ELI), Earth and Climate Pole (ELIC), Louvain-la-Neuve, Belgium
| | - P Meyfroidt
- Université Catholique de Louvain (UCLouvain), Earth and Life Institute (ELI), Earth and Climate Pole (ELIC), Louvain-la-Neuve, Belgium
- Fonds de la Recherche Scientifique F.R.S.-FNRS, Brussels, Belgium
| | - F.A Asaaga
- UK Centre for Ecology and Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, UK
| | - C Millins
- Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - B.V Purse
- UK Centre for Ecology and Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, UK
| |
Collapse
|
12
|
Meyer M, Melville DW, Baldwin HJ, Wilhelm K, Nkrumah EE, Badu EK, Oppong SK, Schwensow N, Stow A, Vallo P, Corman VM, Tschapka M, Drosten C, Sommer S. Bat species assemblage predicts coronavirus prevalence. Nat Commun 2024; 15:2887. [PMID: 38575573 PMCID: PMC10994947 DOI: 10.1038/s41467-024-46979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
Anthropogenic disturbances and the subsequent loss of biodiversity are altering species abundances and communities. Since species vary in their pathogen competence, spatio-temporal changes in host assemblages may lead to changes in disease dynamics. We explore how longitudinal changes in bat species assemblages affect the disease dynamics of coronaviruses (CoVs) in more than 2300 cave-dwelling bats captured over two years from five caves in Ghana. This reveals uneven CoV infection patterns between closely related species, with the alpha-CoV 229E-like and SARS-related beta-CoV 2b emerging as multi-host pathogens. Prevalence and infection likelihood for both phylogenetically distinct CoVs is influenced by the abundance of competent species and naïve subadults. Broadly, bat species vary in CoV competence, and highly competent species are more common in less diverse communities, leading to increased CoV prevalence in less diverse bat assemblages. In line with the One Health framework, our work supports the notion that biodiversity conservation may be the most proactive measure to prevent the spread of pathogens with zoonotic potential.
Collapse
Affiliation(s)
- Magdalena Meyer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany.
| | - Dominik W Melville
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Heather J Baldwin
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Evans Ewald Nkrumah
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ebenezer K Badu
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel Kingsley Oppong
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nina Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Adam Stow
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Peter Vallo
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Victor M Corman
- Charité - Universitätsmedizin Berlin Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Christian Drosten
- Charité - Universitätsmedizin Berlin Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany.
| |
Collapse
|
13
|
Robinson JM, Breed AC, Camargo A, Redvers N, Breed MF. Biodiversity and human health: A scoping review and examples of underrepresented linkages. ENVIRONMENTAL RESEARCH 2024; 246:118115. [PMID: 38199470 DOI: 10.1016/j.envres.2024.118115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/09/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Mounting evidence supports the connections between exposure to environmental typologies(such as green and blue spaces)and human health. However, the mechanistic links that connect biodiversity (the variety of life) and human health, and the extent of supporting evidence remain less clear. Here, we undertook a scoping review to map the links between biodiversity and human health and summarise the levels of associated evidence using an established weight of evidence framework. Distinct from other reviews, we provide additional context regarding the environment-microbiome-health axis, evaluate the environmental buffering pathway (e.g., biodiversity impacts on air pollution), and provide examples of three under- or minimally-represented linkages. The examples are (1) biodiversity and Indigenous Peoples' health, (2) biodiversity and urban social equity, and (3) biodiversity and COVID-19. We observed a moderate level of evidence to support the environmental microbiota-human health pathway and a moderate-high level of evidence to support broader nature pathways (e.g., greenspace) to various health outcomes, from stress reduction to enhanced wellbeing and improved social cohesion. However, studies of broader nature pathways did not typically include specific biodiversity metrics, indicating clear research gaps. Further research is required to understand the connections and causative pathways between biodiversity (e.g., using metrics such as taxonomy, diversity/richness, structure, and function) and health outcomes. There are well-established frameworks to assess the effects of broad classifications of nature on human health. These can assist future research in linking biodiversity metrics to human health outcomes. Our examples of underrepresented linkages highlight the roles of biodiversity and its loss on urban lived experiences, infectious diseases, and Indigenous Peoples' sovereignty and livelihoods. More research and awareness of these socioecological interconnections are needed.
Collapse
Affiliation(s)
- Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia.
| | - Andrew C Breed
- Epidemiology and One Health Section, Department of Agriculture, Water, and the Environment, Canberra, ACT, Australia; School of Veterinary Science, University of Queensland, Gatton, Qld, Australia
| | | | - Nicole Redvers
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
14
|
Johnson PTJ, Stewart Merrill TE, Dean AD, Fenton A. Diverging effects of host density and richness across biological scales drive diversity-disease outcomes. Nat Commun 2024; 15:1937. [PMID: 38431719 PMCID: PMC10908850 DOI: 10.1038/s41467-024-46091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Understanding how biodiversity affects pathogen transmission remains an unresolved question due to the challenges in testing potential mechanisms in natural systems and how these mechanisms vary across biological scales. By quantifying transmission of an entire guild of parasites (larval trematodes) within 902 amphibian host communities, we show that the community-level drivers of infection depend critically on biological scale. At the individual host scale, increases in host richness led to fewer parasites per host for all parasite taxa, with no effect of host or predator densities. At the host community scale, however, the inhibitory effects of richness were counteracted by associated increases in total host density, leading to no overall change in parasite densities. Mechanistically, we find that while average host competence declined with increasing host richness, total community competence remained stable due to additive assembly patterns. These results help reconcile disease-diversity debates by empirically disentangling the roles of alternative ecological drivers of parasite transmission and how such effects depend on biological scale.
Collapse
Affiliation(s)
- Pieter T J Johnson
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Tara E Stewart Merrill
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Coastal and Marine Laboratory, Florida State University, St. Teresa, FL, USA
| | - Andrew D Dean
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andy Fenton
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Ferraguti M, Magallanes S, Mora-Rubio C, Bravo-Barriga D, Marzal A, Hernandez-Caballero I, Aguilera-Sepúlveda P, Llorente F, Pérez-Ramírez E, Guerrero-Carvajal F, Jiménez-Clavero MÁ, Frontera E, Ortiz JA, de Lope F. Implications of migratory and exotic birds and the mosquito community on West Nile virus transmission. Infect Dis (Lond) 2024; 56:206-219. [PMID: 38160682 DOI: 10.1080/23744235.2023.2288614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Vector-borne diseases like West Nile virus (WNV) pose a global health challenge, with rising incidence and distribution. Culex mosquitoes are crucial WNV vectors. Avian species composition and bird community diversity, along with vector communities, influence WNV transmission patterns. However, limited knowledge exists on their impact in southwestern Spain, an area with active WNV circulation in wild birds, mosquitoes, and humans. METHODS To address this, we conducted a comprehensive study investigating the contributions of migratory and exotic bird species to WNV transmission and the influence of mosquito community composition. RESULTS Analysing 1194 serum samples from 44 avian species, we detected WNV antibodies in 32 samples from 11 species, four for the first time in Europe. Migratory birds had higher WNV exposure likelihood than native and exotic species, and higher phylogenetic diversity in bird communities correlated with lower exposure rates. Moreover, in 5859 female mosquitoes belonging to 12 species, we identified WNV competent vectors like Cx. pipiens s.l. and the Univittatus subgroup. Birds with WNV antibodies were positively associated with competent vector abundance, but negatively with overall mosquito species richness. CONCLUSIONS These findings highlight the complex interactions between bird species, their phylogenetics, and mosquito vectors in WNV transmission. Understanding these dynamics will help to implement effective disease control strategies in southwestern Spain.
Collapse
Affiliation(s)
- Martina Ferraguti
- Estación Biológica de Doñana (EBD), CSIC, Departamento de Biología de la Conservación y Cambio Global, Seville, Spain
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sergio Magallanes
- Estación Biológica de Doñana (EBD), CSIC, Departamento de Biología de la Conservación y Cambio Global, Seville, Spain
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carlos Mora-Rubio
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
| | - Daniel Bravo-Barriga
- Universidad de Córdoba, Departamento de Sanidad Animal, Grupo de Investigación en Zoonosis y Sanidad Animal (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Córdoba, Spain
- Universidad de Extremadura, Facultad de Veterinaria, Departamento de Sanidad Animal, Parasitología, Cáceres, Spain
| | - Alfonso Marzal
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
- Universidad Nacional de San Martín, Grupo de Investigaciones en Fauna Silvestre, Tarapoto, Perú
| | - Irene Hernandez-Caballero
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
| | | | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | | | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Eva Frontera
- Universidad Nacional de San Martín, Grupo de Investigaciones en Fauna Silvestre, Tarapoto, Perú
| | | | - Florentino de Lope
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
| |
Collapse
|
16
|
Welsh JE, Markovic M, van der Meer J, Thieltges DW. Non-linear effects of non-host diversity on the removal of free-living infective stages of parasites. Oecologia 2024; 204:339-349. [PMID: 38300256 PMCID: PMC10907414 DOI: 10.1007/s00442-023-05462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/26/2023] [Indexed: 02/02/2024]
Abstract
Among the ecological functions and services of biodiversity is the potential buffering of diseases through dilution effects where increased biodiversity results in a reduction in disease risk for humans and wildlife hosts. Whether such effects are a universal phenomenon is still under intense debate and diversity effects are little studied in cases when non-host organisms remove free-living parasite stages during their transmission from one host to the next by consumption or physical obstruction. Here, we investigated non-host diversity effects on the removal of cercarial stages of trematodes, ubiquitous parasites in aquatic ecosystems. In laboratory experiments using response surface designs, varying both diversity and density at same time, we compared three combinations of two non-hosts at four density levels: predatory crabs that actively remove cercariae from the water column via their mouth parts and gills, filter feeding oysters that passively filter cercariae from the water column while not becoming infected themselves, and seaweed which physically obstructs cercariae. The addition of a second non-host did not generally result in increased parasite removal but neutralised, amplified or reduced the parasite removal exerted by the first non-host, depending on the density and non-host combination. These non-linear non-host diversity effects were probably driven by intra- and interspecific interactions and suggest the need to integrate non-host diversity effects in understanding the links between community diversity and infection risk.
Collapse
Affiliation(s)
- Jennifer E Welsh
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg, The Netherlands
| | - Mirjana Markovic
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg, The Netherlands
| | - Jaap van der Meer
- Wageningen Marine Research, Korringaweg 7, 4401 NT, Yerseke, The Netherlands
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - David W Thieltges
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg, The Netherlands.
- Groningen Institute for Evolutionary Life-Sciences, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
17
|
Bujnoch FM, Reil D, Drewes S, Rosenfeld UM, Ulrich RG, Jacob J, Imholt C. Small mammal community composition impacts bank vole (Clethrionomys glareolus) population dynamics and associated seroprevalence of Puumala orthohantavirus. Integr Zool 2024; 19:52-65. [PMID: 37899277 DOI: 10.1111/1749-4877.12782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Rodents are important reservoirs for zoonotic pathogens that cause diseases in humans. Biodiversity is hypothesized to be closely related to pathogen prevalence through multiple direct and indirect pathways. For example, the presence of non-host species can reduce contact rates of the main reservoir host and thus reduce the risk of transmission ("dilution effect"). In addition, an overlap in ecological niches between two species could lead to increased interspecific competition, potentially limiting host densities and reducing density-dependent pathogen transmission processes. In this study, we investigated the relative impact of population-level regulation of direct and indirect drivers of the prevalence of Puumala orthohantavirus (PUUV) in bank voles (Clethrionomys glareolus) during years with high abundance. We compiled data on small mammal community composition from four regions in Germany between 2010 and 2013. Structural equation modeling revealed a strong seasonality in PUUV control mechanisms in bank voles. The abundance of shrews tended to have a negative relationship with host abundance, and host abundance positively influenced PUUV seroprevalence, while at the same time increasing the abundance of competing non-hosts like the wood mouse (Apodemus sylvaticus) and the yellow-necked field mouse (Apodemus flavicollis) were associated with reduced PUUV seroprevalence in the host. These results indicate that for PUUV in bank voles, dilution is associated with increased interspecific competition. Anthropogenic pressures leading to the decline of Apodemus spp. in a specific habitat could lead to the amplification of mechanisms promoting PUUV transmission within the host populations.
Collapse
Affiliation(s)
- Felicitas Maria Bujnoch
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Münster, Germany
- University of Münster, Institute for Evolution and Biodiversity, Münster, Germany
| | - Daniela Reil
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Münster, Germany
| | - Stephan Drewes
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Ulrike M Rosenfeld
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Münster, Germany
| | - Christian Imholt
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Münster, Germany
| |
Collapse
|
18
|
Chacón RD, Sánchez-Llatas CJ, Diaz Forero AJ, Guimarães MB, Pajuelo SL, Astolfi-Ferreira CS, Ferreira AJP. Evolutionary Analysis of a Parrot Bornavirus 2 Detected in a Sulphur-Crested Cockatoo ( Cacatua galerita) Suggests a South American Ancestor. Animals (Basel) 2023; 14:47. [PMID: 38200778 PMCID: PMC10778322 DOI: 10.3390/ani14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Parrot bornavirus (PaBV) is an RNA virus that causes Proventricular Dilatation Disease (PDD), neurological disorders, and death in Psittaciformes. Its diversity in South America is poorly known. We examined a Cacatua galerita presenting neuropathies, PDD, and oculopathies as the main signs. We detected PaBV through reverse transcription polymerase chain reaction (RT-PCR) and partial sequencing of the nucleoprotein (N) and matrix (M) genes. Maximum likelihood and Bayesian phylogenetic inferences classified it as PaBV-2. The nucleotide identity of the sequenced strain ranged from 88.3% to 90.3% against genotype PaBV-2 and from 80.2% to 84.4% against other genotypes. Selective pressure analysis detected signs of episodic diversifying selection in both the N and M genes. No recombination events were detected. Phylodynamic analysis estimated the time to the most recent common ancestor (TMRCA) as the year 1758 for genotype PaBV-2 and the year 1049 for the Orthobornavirus alphapsittaciforme species. Substitution rates were estimated at 2.73 × 10-4 and 4.08 × 10-4 substitutions per year per site for N and M, respectively. The analysis of population dynamics showed a progressive decline in the effective population size during the last century. Timescale phylogeographic analysis revealed a potential South American ancestor as the origin of genotypes 1, 2, and 8. These results contribute to our knowledge of the evolutionary origin, diversity, and dynamics of PaBVs in South America and the world. Additionally, it highlights the importance of further studies in captive Psittaciformes and the potential impact on endangered wild birds.
Collapse
Affiliation(s)
- Ruy D. Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (A.J.D.F.); (M.B.G.); (C.S.A.-F.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | - Andrea J. Diaz Forero
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (A.J.D.F.); (M.B.G.); (C.S.A.-F.)
| | - Marta B. Guimarães
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (A.J.D.F.); (M.B.G.); (C.S.A.-F.)
| | - Sarah L. Pajuelo
- Faculty of Biological Sciences, National University of Trujillo, Trujillo 13001, La Libertad, Peru;
| | - Claudete S. Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (A.J.D.F.); (M.B.G.); (C.S.A.-F.)
| | - Antonio J. Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (A.J.D.F.); (M.B.G.); (C.S.A.-F.)
| |
Collapse
|
19
|
Wang G, Burrill HM, Podzikowski LY, Eppinga MB, Zhang F, Zhang J, Schultz PA, Bever JD. Dilution of specialist pathogens drives productivity benefits from diversity in plant mixtures. Nat Commun 2023; 14:8417. [PMID: 38110413 PMCID: PMC10728191 DOI: 10.1038/s41467-023-44253-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
Productivity benefits from diversity can arise when compatible pathogen hosts are buffered by unrelated neighbors, diluting pathogen impacts. However, the generality of pathogen dilution has been controversial and rarely tested within biodiversity manipulations. Here, we test whether soil pathogen dilution generates diversity- productivity relationships using a field biodiversity-manipulation experiment, greenhouse assays, and feedback modeling. We find that the accumulation of specialist pathogens in monocultures decreases host plant yields and that pathogen dilution predicts plant productivity gains derived from diversity. Pathogen specialization predicts the strength of the negative feedback between plant species in greenhouse assays. These feedbacks significantly predict the overyielding measured in the field the following year. This relationship strengthens when accounting for the expected dilution of pathogens in mixtures. Using a feedback model, we corroborate that pathogen dilution drives overyielding. Combined empirical and theoretical evidence indicate that specialist pathogen dilution generates overyielding and suggests that the risk of losing productivity benefits from diversity may be highest where environmental change decouples plant-microbe interactions.
Collapse
Affiliation(s)
- Guangzhou Wang
- State Key Laboratory of Nutrient Use and Management (SKL-NUM), College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, People's Republic of China.
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA.
| | - Haley M Burrill
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
- The Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Laura Y Podzikowski
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Maarten B Eppinga
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management (SKL-NUM), College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Junling Zhang
- State Key Laboratory of Nutrient Use and Management (SKL-NUM), College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Peggy A Schultz
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA
- Environmental Studies Program, University of Kansas, Lawrence, KS, 66045, USA
| | - James D Bever
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA.
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
20
|
Maroli M, Bellomo CM, Coelho RM, Martinez VP, Piña CI, Gómez Villafañe IE. Orthohantavirus Infection in Two Rodent Species that Inhabit Wetlands in Argentina. ECOHEALTH 2023; 20:402-415. [PMID: 38091181 DOI: 10.1007/s10393-023-01661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2023] [Indexed: 02/21/2024]
Abstract
Previous research conducted in central-east region of Argentina recorded potential orthohantavirus host rodents in diverse environments, but no research has focused particularly on islands, the environments that present the greatest risk to humans. For this reason, the aims of this research were to determine the orthohantavirus host in the rodent community focused on islands of Paraná River Delta, central-east region of Argentina, to identify temporal and spatial factors associated with orthohantavirus prevalence variations, to compare the functional traits of seropositive and seronegative rodents, and to explore the association between orthohantavirus prevalence and rodent community characteristics between August 2014 and May 2018. With a trapping effort of 14,600 trap-nights, a total of 348 sigmodontine rodent specimens belonging to seven species were captured 361 times. The overall antibody prevalence was 4.9%. Particularly, 14.9% of Oligoryzomys flavescens and 1.5% of Oxymycterus rufus, mainly reproductively active adult males, had antibodies against orthohantavirus. Even though O. flavescens inhabit all islands, our results suggest spatial heterogeneity in the viral distribution, with two months after periods of low temperature presenting increases in seroprevalence. This could be a response to the increased proportion of adults present in the rodent population. In addition, an association was found between the high seroprevalence and the diversity of the rodent assemblage. We also found 1.5% of O. rufus exposed to orthohantavirus, which shows us that further investigation of the ecology of the virus is needed to answer whether this species act as a spillover or a new competent host.
Collapse
Affiliation(s)
- Malena Maroli
- Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, 3105, Diamante, Entre Ríos, Argentina
| | - Carla M Bellomo
- Instituto Nacional de Enfermedades Infecciosas Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Rocío M Coelho
- Instituto Nacional de Enfermedades Infecciosas Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Valeria P Martinez
- Instituto Nacional de Enfermedades Infecciosas Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Carlos I Piña
- Centro de Investigación Científica y de Transferencia Tecnológica a la Producción-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, 3105, Diamante, Entre Ríos, Argentina
| | - Isabel E Gómez Villafañe
- Instituto de Ecología, Facultad de Ciencias Exactas y Naturales, Genética y Evolución de Buenos Aires (CONICET-UBA), Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
21
|
Hu B, Han S, He H. Effect of epidemic diseases on wild animal conservation. Integr Zool 2023; 18:963-980. [PMID: 37202360 DOI: 10.1111/1749-4877.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Under the background of global species extinction, the impact of epidemic diseases on wild animal protection is increasingly prominent. Here, we review and synthesize the literature on this topic, and discuss the relationship between diseases and biodiversity. Diseases usually reduce species diversity by decreasing or extinction of species populations, but also accelerate species evolution and promote species diversity. At the same time, species diversity can regulate disease outbreaks through dilution or amplification effects. The synergistic effect of human activities and global change is emphasized, which further aggravates the complex relationship between biodiversity and diseases. Finally, we emphasize the importance of active surveillance of wild animal diseases, which can protect wild animals from potential diseases, maintain population size and genetic variation, and reduce the damage of diseases to the balance of the whole ecosystem and human health. Therefore, we suggest that a background survey of wild animal populations and their pathogens should be carried out to assess the impact of potential outbreaks on the population or species level. The mechanism of dilution and amplification effect between species diversity and diseases of wild animals should be further studied to provide a theoretical basis and technical support for human intervention measures to change biodiversity. Most importantly, we should closely combine the protection of wild animals with the establishment of an active surveillance, prevention, and control system for wild animal epidemics, in an effort to achieve a win-win situation between wild animal protection and disease control.
Collapse
Affiliation(s)
- Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Hermanns K, Marklewitz M, Zirkel F, Kopp A, Kramer-Schadt S, Junglen S. Mosquito community composition shapes virus prevalence patterns along anthropogenic disturbance gradients. eLife 2023; 12:e66550. [PMID: 37702388 PMCID: PMC10547478 DOI: 10.7554/elife.66550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/12/2023] [Indexed: 09/14/2023] Open
Abstract
Previously unknown pathogens often emerge from primary ecosystems, but there is little knowledge on the mechanisms of emergence. Most studies analyzing the influence of land-use change on pathogen emergence focus on a single host-pathogen system and often observe contradictory effects. Here, we studied virus diversity and prevalence patterns in natural and disturbed ecosystems using a multi-host and multi-taxa approach. Mosquitoes sampled along a disturbance gradient in Côte d'Ivoire were tested by generic RT-PCR assays established for all major arbovirus and insect-specific virus taxa including novel viruses previously discovered in these samples based on cell culture isolates enabling an unbiased and comprehensive approach. The taxonomic composition of detected viruses was characterized and viral infection rates according to habitat and host were analyzed. We detected 331 viral sequences pertaining to 34 novel and 15 previously identified viruses of the families Flavi-, Rhabdo-, Reo-, Toga-, Mesoni- and Iflaviridae and the order Bunyavirales. Highest host and virus diversity was observed in pristine and intermediately disturbed habitats. The majority of the 49 viruses was detected with low prevalence. However, nine viruses were found frequently across different habitats of which five viruses increased in prevalence towards disturbed habitats, in congruence with the dilution effect hypothesis. These viruses were mainly associated with one specific mosquito species (Culex nebulosus), which increased in relative abundance from pristine (3%) to disturbed habitats (38%). Interestingly, the observed increased prevalence of these five viruses in disturbed habitats was not caused by higher host infection rates but by increased host abundance, an effect tentatively named abundance effect. Our data show that host species composition is critical for virus abundance. Environmental changes that lead to an uneven host community composition and to more individuals of a single species are a key driver of virus emergence.
Collapse
Affiliation(s)
- Kyra Hermanns
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Marco Marklewitz
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Florian Zirkel
- Institute of Virology, University of Bonn Medical CentreBerlinGermany
| | - Anne Kopp
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Stephanie Kramer-Schadt
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institute of Ecology, Technische Universität BerlinBerlinGermany
| | - Sandra Junglen
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
23
|
Millien V, Leo SST, Turney S, Gonzalez A. It's about time: small mammal communities and Lyme disease emergence. Sci Rep 2023; 13:14513. [PMID: 37667029 PMCID: PMC10477272 DOI: 10.1038/s41598-023-41901-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
Theory predicts that biodiversity changes due to climate warming can mediate the rate of disease emergence. The mechanisms linking biodiversity-disease relationships have been described both theoretically and empirically but remain poorly understood. We investigated the relations between host diversity and abundance and Lyme disease risk in southern Quebec, a region where Lyme disease is rapidly emerging. We found that both the abundance of small mammal hosts and the relative abundance of the tick's natural host, the white-footed mouse (Peromyscus leucopus), influenced measures of disease risk in tick vectors (Borrelia burgdorferi infection abundance and prevalence in tick vectors). Our results suggest that the increase in Lyme disease risk is modulated by regional processes involving the abundance and composition of small mammal assemblages. However, the nature and strength of these relationships was dependent both on time and geographic area. The strong effect of P. leucopus abundance on disease risk we report here is of significant concern, as this competent host is predicted to increase in abundance and occurrence in the region, with the northern shift in the range of North American species under climate warming.
Collapse
Affiliation(s)
- V Millien
- Redpath Museum, McGill University, Montréal, QC, H3A 0C4, Canada.
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada.
| | - S S T Leo
- Redpath Museum, McGill University, Montréal, QC, H3A 0C4, Canada
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada
| | - S Turney
- Redpath Museum, McGill University, Montréal, QC, H3A 0C4, Canada
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada
| | - A Gonzalez
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada
| |
Collapse
|
24
|
Ma Y, Kalantari Z, Destouni G. Infectious Disease Sensitivity to Climate and Other Driver-Pressure Changes: Research Effort and Gaps for Lyme Disease and Cryptosporidiosis. GEOHEALTH 2023; 7:e2022GH000760. [PMID: 37303696 PMCID: PMC10251199 DOI: 10.1029/2022gh000760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
Climate sensitivity of infectious diseases is discussed in many studies. A quantitative basis for distinguishing and predicting the disease impacts of climate and other environmental and anthropogenic driver-pressure changes, however, is often lacking. To assess research effort and identify possible key gaps that can guide further research, we here apply a scoping review approach to two widespread infectious diseases: Lyme disease (LD) as a vector-borne and cryptosporidiosis as a water-borne disease. Based on the emerging publication data, we further structure and quantitatively assess the driver-pressure foci and interlinkages considered in the published research so far. This shows important research gaps for the roles of rarely investigated water-related and socioeconomic factors for LD, and land-related factors for cryptosporidiosis. For both diseases, the interactions of host and parasite communities with climate and other driver-pressure factors are understudied, as are also important world regions relative to the disease geographies; in particular, Asia and Africa emerge as main geographic gaps for LD and cryptosporidiosis research, respectively. The scoping approach developed and gaps identified in this study should be useful for further assessment and guidance of research on infectious disease sensitivity to climate and other environmental and anthropogenic changes around the world.
Collapse
Affiliation(s)
- Y. Ma
- Department of Physical GeographyStockholm UniversityStockholmSweden
| | - Z. Kalantari
- Department of Physical GeographyStockholm UniversityStockholmSweden
- Department of Sustainable DevelopmentEnvironmental Science and Engineering (SEED)KTH Royal Institute of TechnologyStockholmSweden
| | - G. Destouni
- Department of Physical GeographyStockholm UniversityStockholmSweden
| |
Collapse
|
25
|
Hanthanan Arachchilage K, Hussaini MY, Cogan NG, Cortez MH. Exploring how ecological and epidemiological processes shape multi-host disease dynamics using global sensitivity analysis. J Math Biol 2023; 86:83. [PMID: 37154947 DOI: 10.1007/s00285-023-01912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/24/2022] [Accepted: 03/31/2023] [Indexed: 05/10/2023]
Abstract
We use global sensitivity analysis (specifically, Partial Rank Correlation Coefficients) to explore the roles of ecological and epidemiological processes in shaping the temporal dynamics of a parameterized SIR-type model of two host species and an environmentally transmitted pathogen. We compute the sensitivities of disease prevalence in each host species to model parameters. Sensitivity rankings are calculated, interpreted biologically, and contrasted for cases where the pathogen is introduced into a disease-free community and cases where a second host species is introduced into an endemic single-host community. In some cases the magnitudes and dynamics of the sensitivities can be predicted only by knowing the host species' characteristics (i.e., their competitive abilities and disease competence) whereas in other cases they can be predicted by factors independent of the species' characteristics (specifically, intraspecific versus interspecific processes or a species' roles of invader versus resident). For example, when a pathogen is initially introduced into a disease-free community, disease prevalence in both hosts is more sensitive to the burst size of the first host than the second host. In comparison, disease prevalence in each host is more sensitive to its own infection rate than the infection rate of the other host species. In total, this study illustrates that global sensitivity analysis can provide useful insight into how ecological and epidemiological processes shape disease dynamics and how those effects vary across time and system conditions. Our results show that sensitivity analysis can provide quantification and direction when exploring biological hypotheses.
Collapse
Affiliation(s)
| | - Mohammed Y Hussaini
- Department of Mathematics, Florida State University, Tallahassee, Fl, 32306, USA
| | - N G Cogan
- Department of Mathematics, Florida State University, Tallahassee, Fl, 32306, USA
| | - Michael H Cortez
- Department of Biological Science, Florida State University, Tallahassee, Fl, 32306, USA.
| |
Collapse
|
26
|
Liu X, Xiao Y, Lin Z, Wang X, Hu K, Liu M, Zhao Y, Qi Y, Zhou S. Spatial scale-dependent dilution effects of biodiversity on plant diseases in grasslands. Ecology 2023; 104:e3944. [PMID: 36477908 DOI: 10.1002/ecy.3944] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
The rapid biodiversity losses of the Anthropocene have motivated ecologists to understand how biodiversity affects infectious diseases. Spatial scale is thought to moderate negative biodiversity-disease relationships (i.e., dilution effects) in zoonotic diseases, whereas evidence from plant communities for an effect of scale remains limited, especially at local scales where the mechanisms (e.g., encounter reduction) underlying dilution effects actually work. Here, we tested how spatial scale affects the direction and magnitude of biodiversity-disease relationships. We utilized a 10-year-old nitrogen addition experiment in a Tibetan alpine meadow, with 0, 5, 10, and 15 g/m2 nitrogen addition treatments. Within the treatment plots, we arranged a total of 216 quadrats (of either 0.125 × 0.125 m, 0.25 × 0.25 m or 0.5 × 0.5 m size) to test how the sample area affects the relationship between plant species richness and foliar fungal disease severity. We found that the dilution effects were stronger in the 0.125 × 0.125 m and 0.25 × 0.25 m quadrats, compared with 0.5 × 0.5 m quadrats. There was a significant interaction between species richness and nitrogen addition in the 0.125 × 0.125 m and 0.25 × 0.25 m quadrats, indicating that a dilution effect was more easily observed under higher levels of nitrogen addition. Based on multigroup structural equation models, we found that even accounting for the direct impact of nitrogen addition (i.e., "nitrogen-disease hypothesis"), the dilution effect still worked at the 0.125 × 0.125 m scale. Overall, these findings suggest that spatial scale directly determines the occurrence of dilution effects, and can partly explain the observed variation in biodiversity-disease relationships in grasslands. Next-generation frameworks for predicting infectious diseases under rapid biodiversity loss scenarios need to incorporate spatial information.
Collapse
Affiliation(s)
- Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yao Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ziyuan Lin
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xingxing Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Kui Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Mu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yimin Zhao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Yanwen Qi
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Shurong Zhou
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| |
Collapse
|
27
|
How to use natural history collections to resurrect information on historical parasite abundances. J Helminthol 2023; 97:e6. [PMID: 36633512 DOI: 10.1017/s0022149x2200075x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many of the most contentious questions that concern the ecology of helminths could be resolved with data on helminth abundance over the past few decades or centuries, but unfortunately these data are rare. A new sub-discipline - the historical ecology of parasitism - is resurrecting long-term data on the abundance of parasites, an advancement facilitated by the use of biological natural history collections. Because the world's museums hold billions of suitable specimens collected over more than a century, these potential parasitological datasets are broad in scope and finely resolved in taxonomic, temporal and spatial dimensions. Here, we set out best practices for the extraction of parasitological information from natural history collections, including how to conceive of a project, how to select specimens, how to engage curators and receive permission for proposed projects, standard operating protocols for dissections and how to manage data. Our hope is that other helminthologists will use this paper as a reference to expand their own research programmes along the dimension of time.
Collapse
|
28
|
Loh EH, Nava A, Murray KA, Olival KJ, Guimarães M, Shimabukuro J, Zambrana-Torrelio C, Fonseca FR, de Oliveira DBL, Campos ACDA, Durigon EL, Ferreira F, Struebig MJ, Daszak P. Prevalence of bat viruses associated with land-use change in the Atlantic Forest, Brazil. Front Cell Infect Microbiol 2022; 12:921950. [PMID: 36569210 PMCID: PMC9780684 DOI: 10.3389/fcimb.2022.921950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/28/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Bats are critical to maintaining healthy ecosystems and many species are threatened primarily due to global habitat loss. Bats are also important hosts of a range of viruses, several of which have had significant impacts on global public health. The emergence of these viruses has been associated with land-use change and decreased host species richness. Yet, few studies have assessed how bat communities and the viruses they host alter with land-use change, particularly in highly biodiverse sites. Methods In this study, we investigate the effects of deforestation on bat host species richness and diversity, and viral prevalence and richness across five forested sites and three nearby deforested sites in the interior Atlantic Forest of southern Brazil. Nested-PCR and qPCR were used to amplify and detect viral genetic sequence from six viral families (corona-, adeno-, herpes-, hanta-, paramyxo-, and astro-viridae) in 944 blood, saliva and rectal samples collected from 335 bats. Results We found that deforested sites had a less diverse bat community than forested sites, but higher viral prevalence and richness after controlling for confounding factors. Viral detection was more likely in juvenile males located in deforested sites. Interestingly, we also found a significant effect of host bat species on viral prevalence indicating that viral taxa were detected more frequently in some species than others. In particular, viruses from the Coronaviridae family were detected more frequently in generalist species compared to specialist species. Discussion Our findings suggest that deforestation may drive changes in the ecosystem which reduce bat host diversity while increasing the abundance of generalist species which host a wider range of viruses.
Collapse
Affiliation(s)
- Elizabeth H. Loh
- Division of Natural Sciences and Mathematics, Transylvania University, Lexington, KY, United States,Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom,*Correspondence: Elizabeth H. Loh, ; Alessandra Nava,
| | - Alessandra Nava
- Instituto Leônidas e Maria Deane – Fiocruz Amazônia, Manaus, Amazonas, Brazil,*Correspondence: Elizabeth H. Loh, ; Alessandra Nava,
| | - Kris A. Murray
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | | | - Moisés Guimarães
- Departamento de Recursos Naturais, Faculdade de Ciências Agronomicas, Universidade Estadual Paulista, Botucatu, Brazil
| | - Juliana Shimabukuro
- Departamento de Medicina Veterinária Preventiva e Saúde Animal da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Zambrana-Torrelio
- Department of Environmental Science and Policy, George Mason University, Fairfax VA, United States
| | - Fernanda R. Fonseca
- Instituto Leônidas e Maria Deane – Fiocruz Amazônia, Manaus, Amazonas, Brazil
| | | | | | - Edison L. Durigon
- Departamento de Microbiologia, Instituto de Ciências Biomédicas-II, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Ferreira
- Departamento de Medicina Veterinária Preventiva e Saúde Animal da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, São Paulo, Brazil
| | - Matthew J. Struebig
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom
| | | |
Collapse
|
29
|
Tran T, Prusinski MA, White JL, Falco RC, Kokas J, Vinci V, Gall WK, Tober KJ, Haight J, Oliver J, Sporn LA, Meehan L, Banker E, Backenson PB, Jensen ST, Brisson D. Predicting spatio-temporal population patterns of Borrelia burgdorferi, the Lyme disease pathogen. J Appl Ecol 2022; 59:2779-2789. [PMID: 36632519 PMCID: PMC9826398 DOI: 10.1111/1365-2664.14274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 07/23/2022] [Indexed: 01/14/2023]
Abstract
The causative bacterium of Lyme disease, Borrelia burgdorferi, expanded from an undetected human pathogen into the etiologic agent of the most common vector-borne disease in the United States over the last several decades. Systematic field collections of the tick vector reveal increases in the geographic range and prevalence of B. burgdorferi-infected ticks that coincided with increases in human Lyme disease incidence across New York State.We investigate the impact of environmental features on the population dynamics of B. burgdorferi. Analytical models developed using field collections of nearly 19,000 nymphal Ixodes scapularis and spatially and temporally explicit environmental features accurately explained the variation in the nymphal infection prevalence of B. burgdorferi across space and time.Importantly, the model identified environmental features reflecting landscape ecology, vertebrate hosts, climatic metrics, climate anomalies and surveillance efforts that can be used to predict the biogeographical patterns of B. burgdorferi-infected ticks into future years and in previously unsampled areas.Forecasting the distribution and prevalence of a pathogen at fine geographic scales offers a powerful strategy to mitigate a serious public health threat. Synthesis and applications. A decade of environmental and tick data was collected to create a model that accurately predicts the infection prevalence of Borrelia burgdorferi over space and time. This predictive model can be extrapolated to create a high-resolution risk map of the Lyme disease pathogen for future years that offers an inexpensive approach to improve both ecological management and public health strategies to mitigate disease risk.
Collapse
Affiliation(s)
- Tam Tran
- Biology DepartmentUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Melissa A. Prusinski
- New York State Department of Health (NYSDOH)Bureau of Communicable Disease ControlAlbanyNYUSA
| | - Jennifer L. White
- New York State Department of Health (NYSDOH)Bureau of Communicable Disease ControlAlbanyNYUSA
| | | | - John Kokas
- NYSDOHFordham University Louis Calder CenterArmonkNYUSA
| | - Vanessa Vinci
- NYSDOHFordham University Louis Calder CenterArmonkNYUSA
| | - Wayne K. Gall
- US Department of AgricultureAnimal & Plant Health Inspection ServiceBuffaloNYUSA
| | - Keith J. Tober
- US Department of AgricultureAnimal & Plant Health Inspection ServiceBuffaloNYUSA
| | - Jamie Haight
- NYSDOHBureau of Communicable Disease ControlFalconerNYUSA
| | | | - Lee Ann Sporn
- Paul Smith's CollegeNatural Sciences DivisionPaul SmithsNYUSA
| | - Lisa Meehan
- NYSDOHDivision of Environmental Health SciencesAlbanyNYUSA
| | - Elyse Banker
- NYSDOHDivision of Infectious DiseaseGuilderlandNYUSA
| | - P. Bryon Backenson
- New York State Department of Health (NYSDOH)Bureau of Communicable Disease ControlAlbanyNYUSA
| | - Shane T. Jensen
- Wharton Business SchoolUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Dustin Brisson
- Biology DepartmentUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
30
|
Host selection and forage ratio in West Nile virus-transmitting Culex mosquitoes: Challenges and knowledge gaps. PLoS Negl Trop Dis 2022; 16:e0010819. [PMID: 36301825 PMCID: PMC9612463 DOI: 10.1371/journal.pntd.0010819] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND To date, no specific therapy or vaccination is available for West Nile virus (WNV) infections in humans; preventive strategies represent the only possibility to control transmission. To focus these strategies, detailed knowledge of the virus dynamics is of paramount importance. However, several aspects of WNV transmission are still unclear, especially regarding the role of potential vertebrate host species. Whereas mosquitoes' intrinsic characteristics cause them to favour certain hosts (host preference), absolute selection is impossible in natural settings. Conversely, the selection carried out among available hosts and influenced from hosts' availability and other ecological/environmental factors is defined as host selection. METHODOLOGY/PRINCIPAL FINDINGS In July 2022, we searched PubMed database for original articles exploring host selection among WNV-transmitting Culex mosquitoes, the main WNV vector. We considered only original field studies estimating and reporting forage ratio. This index results from the ratio between the proportion of blood meals taken by mosquitoes on potential host species and the hosts' relative abundance. From the originally retrieved 585 articles, 9 matched the inclusion criteria and were included in this review. All but one of the included studies were conducted in the Americas, six in the United States, and one each in Mexico and Colombia. The remaining study was conducted in Italy. American Robin, Northern Cardinal, and House Finch were the most significantly preferred birds in the Americas, Common Blackbird in Italy. CONCLUSIONS/SIGNIFICANCE Although ornithophilic, all observed WNV-transmitting mosquitoes presented opportunistic feeding behaviour. All the observed species showed potential to act as bridges for zoonotic diseases, feeding also on humans. All the observed mosquitoes presented host selection patterns and did not feed on hosts as expected by chance alone. The articles observe different species of mosquitoes in different environments. In addition, the way the relative host abundance was determined differed. Finally, this review is not systematic. Therefore, the translation of our results to different settings should be conducted cautiously.
Collapse
|
31
|
Dimas Martins A, ten Bosch Q, Heesterbeek JAP. Exploring the influence of competition on arbovirus invasion risk in communities. PLoS One 2022; 17:e0275687. [PMID: 36223367 PMCID: PMC9555654 DOI: 10.1371/journal.pone.0275687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Arbovirus outbreaks in communities are affected by how vectors, hosts and non-competent species interact. In this study, we investigate how ecological interactions between species and epidemiological processes influence the invasion potential of a vector-borne disease. We use an eco-epidemiological model to explore the basic reproduction number R0 for a range of interaction strengths in key processes, using West Nile virus infection to parameterize the model. We focus our analysis on intra and interspecific competition between vectors and between hosts, as well as competition with non-competent species. We show that such ecological competition has non-linear effects on R0 and can greatly impact invasion risk. The presence of multiple competing vector species results in lower values for R0 while host competition leads to the highest values of risk of disease invasion. These effects can be understood in terms of how the competitive pressures influence the vector-to-host ratio, which has a positive relationship with R0. We also show numerical examples of how vector feeding preferences become more relevant in high competition conditions between hosts. Under certain conditions, non-competent hosts, which can lead to a dilution effect for the pathogen, can have an amplification effect if they compete strongly with the competent hosts, hence facilitating pathogen invasion in the community.
Collapse
Affiliation(s)
- Afonso Dimas Martins
- Department of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands,* E-mail:
| | - Quirine ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | - J. A. P. Heesterbeek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
32
|
Ma Z(S, Zhang YP. Ecology of Human Medical Enterprises: From Disease Ecology of Zoonoses, Cancer Ecology Through to Medical Ecology of Human Microbiomes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In nature, the interaction between pathogens and their hosts is only one of a handful of interaction relationships between species, including parasitism, predation, competition, symbiosis, commensalism, and among others. From a non-anthropocentric view, parasitism has relatively fewer essential differences from the other relationships; but from an anthropocentric view, parasitism and predation against humans and their well-beings and belongings are frequently related to heinous diseases. Specifically, treating (managing) diseases of humans, crops and forests, pets, livestock, and wildlife constitute the so-termed medical enterprises (sciences and technologies) humans endeavor in biomedicine and clinical medicine, veterinary, plant protection, and wildlife conservation. In recent years, the significance of ecological science to medicines has received rising attentions, and the emergence and pandemic of COVID-19 appear accelerating the trend. The facts that diseases are simply one of the fundamental ecological relationships in nature, and the study of the relationships between species and their environment is a core mission of ecology highlight the critical importance of ecological science. Nevertheless, current studies on the ecology of medical enterprises are highly fragmented. Here, we (i) conceptually overview the fields of disease ecology of wildlife, cancer ecology and evolution, medical ecology of human microbiome-associated diseases and infectious diseases, and integrated pest management of crops and forests, across major medical enterprises. (ii) Explore the necessity and feasibility for a unified medical ecology that spans biomedicine, clinical medicine, veterinary, crop (forest and wildlife) protection, and biodiversity conservation. (iii) Suggest that a unified medical ecology of human diseases is both necessary and feasible, but laissez-faire terminologies in other human medical enterprises may be preferred. (iv) Suggest that the evo-eco paradigm for cancer research can play a similar role of evo-devo in evolutionary developmental biology. (v) Summarized 40 key ecological principles/theories in current disease-, cancer-, and medical-ecology literatures. (vi) Identified key cross-disciplinary discovery fields for medical/disease ecology in coming decade including bioinformatics and computational ecology, single cell ecology, theoretical ecology, complexity science, and the integrated studies of ecology and evolution. Finally, deep understanding of medical ecology is of obvious importance for the safety of human beings and perhaps for all living things on the planet.
Collapse
|
33
|
Vinson JE, Gottdenker NL, Chaves LF, Kaul RB, Kramer AM, Drake JM, Hall RJ. Land reversion and zoonotic spillover risk. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220582. [PMID: 35706674 PMCID: PMC9174719 DOI: 10.1098/rsos.220582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 05/03/2023]
Abstract
Deforestation alters wildlife communities and modifies human-wildlife interactions, often increasing zoonotic spillover potential. When deforested land reverts to forest, species composition differences between primary and regenerating (secondary) forest could alter spillover risk trajectory. We develop a mathematical model of land-use change, where habitats differ in their relative spillover risk, to understand how land reversion influences spillover risk. We apply this framework to scenarios where spillover risk is higher in deforested land than mature forest, reflecting higher relative abundance of highly competent species and/or increased human-wildlife encounters, and where regenerating forest has either very low or high spillover risk. We find the forest regeneration rate, the spillover risk of regenerating forest relative to deforested land, and how rapidly regenerating forest regains attributes of mature forest determine landscape-level spillover risk. When regenerating forest has a much lower spillover risk than deforested land, reversion lowers cumulative spillover risk, but instaneous spillover risk peaks earlier. However, when spillover risk is high in regenerating and cleared habitats, landscape-level spillover risk remains high, especially when cleared land is rapidly abandoned then slowly regenerates to mature forest. These results suggest that proactive wildlife management and awareness of human exposure risk in regenerating forests could be important tools for spillover mitigation.
Collapse
Affiliation(s)
- John E. Vinson
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Nicole L. Gottdenker
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Luis Fernando Chaves
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Apartado Postal 0816-15 02593, Panamá, República de Panamá
| | - RajReni B. Kaul
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Andrew M. Kramer
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - John M. Drake
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Richard J. Hall
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
34
|
Su M, Jiang Z, Hui C. How Multiple Interaction Types Affect Disease Spread and Dilution in Ecological Networks. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.862986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological communities are composed of different functional guilds that are engaging in multiple types of biotic interactions. We explore how ecological networks fare when confronting infectious diseases according to density-dependent (DD) and frequency-dependent (FD) transmission modes. Our model shows that network compositions can dictate both disease spreading and the relationship between disease and community diversity (including species richness and Shannon’s diversity) as depicted in the dilution effect. The disease becomes more prevalent within communities harboring more mutualistic interactions, generating a positive relationship between disease prevalence and community diversity (i.e., an amplification effect). By contrast, in communities with a fixed proportion of mutualistic interactions, higher diversity from the balance of competition and predation can impede disease prevalence (i.e., the dilution effect). Within-species disease prevalence increases linearly with a species’ degree centrality. These patterns of disease transmission and the diversity-disease relationship hold for both transmission modes. Our analyses highlight the complex effects of interaction compositions in ecological networks on infectious disease dynamics and further advance the debate on the dilution effect of host diversity on disease prevalence.
Collapse
|
35
|
Bourdin A, Bord S, Durand J, Galon C, Moutailler S, Scherer-Lorenzen M, Jactel H. Forest Diversity Reduces the Prevalence of Pathogens Transmitted by the Tick Ixodes ricinus. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.891908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tick-borne diseases represent the majority of vector-borne human diseases in Europe, with Ixodes ricinus, mostly present in forests, as the main vector. Studies show that vertebrate hosts diversification would decrease the prevalence of these pathogens. However, it is not well known whether habitat diversity can have similar impact on ticks and their infection rates. We measured the presence and abundance of different stages of I. ricinus, and the prevalence of associated pathogens in a large-scale forest experiment in which we manipulated tree diversity and moisture level. We showed that larval abundance was influenced by tree species identity, with larvae being more present in pine plots than in oak plots, while nymph abundance increased with canopy tree density. The proportion of Borrelia burgdorferi s.l.-infected nymphs decreased with increasing tree diversity. Our findings suggest that tree overstorey composition, structure and diversity, can affect tick abundance and pathogen prevalence. They support the idea that forest habitats may have “diluting” or “amplifying” effects on tick-borne diseases with direct relevance for human health.
Collapse
|
36
|
Occhibove F, Kenobi K, Swain M, Risley C. An eco-epidemiological modeling approach to investigate dilution effect in two different tick-borne pathosystems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2550. [PMID: 35092122 PMCID: PMC9286340 DOI: 10.1002/eap.2550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 05/05/2023]
Abstract
Disease (re)emergence appears to be driven by biodiversity decline and environmental change. As a result, it is increasingly important to study host-pathogen interactions within the context of their ecology and evolution. The dilution effect is the concept that higher biodiversity decreases pathogen transmission. It has been observed especially in zoonotic vector-borne pathosystems, yet evidence against it has been found. In particular, it is still debated how the community (dis)assembly assumptions and the degree of generalism of vectors and pathogens affect the direction of the biodiversity-pathogen transmission relationship. The aim of this study was to use empirical data and mechanistic models to investigate dilution mechanisms in two rodent-tick-pathogen systems differing in their vector degree of generalism. A community was assembled to include ecological interactions that expand from purely additive to purely substitutive. Such systems are excellent candidates to analyze the link between vector ecology, community (dis)assembly dynamics, and pathogen transmission. To base our mechanistic models on empirical data, rodent live-trapping, including tick sampling, was conducted in Wales across two seasons for three consecutive years. We have developed a deterministic single-vector, multi-host compartmental model that includes ecological relationships with non-host species, uniquely integrating theoretical and observational approaches. To describe pathogen transmission across a gradient of community diversity, the model was populated with parameters describing five different scenarios differing in ecological complexity; each based around one of the pathosystems: Ixodes ricinus (generalist tick)-Borrelia burgdorferi and I. trianguliceps (small mammals specialist tick)-Babesia microti. The results suggested that community composition and interspecific dynamics affected pathogen transmission with different dilution outcomes depending on the vector degree of generalism. The model provides evidence that dilution and amplification effects are not mutually exclusive in the same community but depend on vector ecology and the epidemiological output considered (i.e., the "risk" of interest). In our scenarios, more functionally diverse communities resulted in fewer infectious rodents, supporting the dilution effect. In the pathosystem with generalist vector we identified a hump shaped relationship between diversity and infections in hosts, while for that characterized by specialist tick, this relationship was more complex and more dependent upon specific parameter values.
Collapse
Affiliation(s)
- Flavia Occhibove
- IBERS, Aberystwyth UniversityAberystwythUK
- UK Centre for Ecology & HydrologyWallingfordUK
| | - Kim Kenobi
- Department of MathematicsAberystwyth UniversityAberystwythUK
| | | | | |
Collapse
|
37
|
Combs MA, Kache PA, VanAcker MC, Gregory N, Plimpton LD, Tufts DM, Fernandez MP, Diuk-Wasser MA. Socio-ecological drivers of multiple zoonotic hazards in highly urbanized cities. GLOBAL CHANGE BIOLOGY 2022; 28:1705-1724. [PMID: 34889003 DOI: 10.1111/gcb.16033] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/14/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
The ongoing COVID-19 pandemic is a stark reminder of the devastating consequences of pathogen spillover from wildlife to human hosts, particularly in densely populated urban centers. Prevention of future zoonotic disease is contingent on informed surveillance for known and novel threats across diverse human-wildlife interfaces. Cities are a key venue for potential spillover events because of the presence of zoonotic pathogens transmitted by hosts and vectors living in close proximity to dense human settlements. Effectively identifying and managing zoonotic hazards requires understanding the socio-ecological processes driving hazard distribution and pathogen prevalence in dynamic and heterogeneous urban landscapes. Despite increasing awareness of the human health impacts of zoonotic hazards, the integration of an eco-epidemiological perspective into public health management plans remains limited. Here we discuss how landscape patterns, abiotic conditions, and biotic interactions influence zoonotic hazards across highly urbanized cities (HUCs) in temperate climates to promote their efficient and effective management by a multi-sectoral coalition of public health stakeholders. We describe how to interpret both direct and indirect ecological processes, incorporate spatial scale, and evaluate networks of connectivity specific to different zoonotic hazards to promote biologically-informed and targeted decision-making. Using New York City, USA as a case study, we identify major zoonotic threats, apply knowledge of relevant ecological factors, and highlight opportunities and challenges for research and intervention. We aim to broaden the toolbox of urban public health stakeholders by providing ecologically-informed, practical guidance for the evaluation and management of zoonotic hazards.
Collapse
Affiliation(s)
- Matthew A Combs
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Pallavi A Kache
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Meredith C VanAcker
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Nichar Gregory
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Laura D Plimpton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Danielle M Tufts
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- Infectious Diseases and Microbiology Department, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria P Fernandez
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| |
Collapse
|
38
|
Espira LM, Brouwer AF, Han BA, Foufopoulos J, Eisenberg JNS. Dilution of Epidemic Potential of Environmentally Transmitted Infectious Diseases for Species with Partially Overlapping Habitats. Am Nat 2022; 199:E43-E56. [PMID: 35077275 PMCID: PMC9136953 DOI: 10.1086/717413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
AbstractSpecies diversity may play an important role in the modulation of pathogen transmission through the dilution effect. Infectious disease models can help elucidate mechanisms that may underlie this effect. While many modeling studies have assumed direct host-to-host transmission, many pathogens are transmitted through the environment. We present a mathematical modeling analysis exploring conditions under which we observe the dilution effect in systems with environmental transmission where host species interact through fully or partially overlapping habitats. We measure the strength of the dilution effect by the relative decrease in the basic reproduction number of two-species assemblages compared with that of a focal host species. We find that a dilution effect is most likely when the pathogen is environmentally persistent (frequency-dependent-like transmission). The magnitude of this effect is strongest when the species with the greater epidemic potential is relatively slow to pick up pathogens in the environment (density-dependent transmission) and the species with the lesser epidemic potential is efficient at picking up pathogens (frequency-dependent transmission). These findings suggest that measurable factors, including pathogen persistence and the host's relative efficiency of pathogen pickup, can guide predictions of when biodiversity might lead to a dilution effect and may thus give concrete direction to future ecological work.
Collapse
Affiliation(s)
- Leon M. Espira
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109
| | - Andrew F. Brouwer
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109
| | - Barbara A. Han
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545
| | - Johannes Foufopoulos
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109
| | | |
Collapse
|
39
|
Kocher A, Cornuault J, Gantier JC, Manzi S, Chavy A, Girod R, Dusfour I, Forget PM, Ginouves M, Prévot G, Guégan JF, Bañuls AL, de Thoisy B, Murienne J. Biodiversity and vector-borne diseases: host dilution and vector amplification occur simultaneously for Amazonian leishmaniases. Mol Ecol 2022; 32:1817-1831. [PMID: 35000240 DOI: 10.1111/mec.16341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Changes in biodiversity may impact infectious disease transmission through multiple mechanisms. We explored the impact of biodiversity changes on the transmission of Amazonian leishmaniases, a group of wild zoonoses transmitted by phlebotomine sand flies (Psychodidae), which represent an important health burden in a region where biodiversity is both rich and threatened. Using molecular analyses of sand fly pools and blood-fed dipterans, we characterized the disease system in forest sites in French Guiana undergoing different levels of human-induced disturbance. We show that the prevalence of Leishmania parasites in sand flies correlates positively with the relative abundance of mammal species known as Leishmania reservoirs. In addition, Leishmania reservoirs tend to dominate in less diverse mammal communities, in accordance with the dilution effect hypothesis. This results in a negative relationship between Leishmania prevalence and mammal diversity. On the other hand, higher mammal diversity is associated with higher sand fly density, possibly because more diverse mammal communities harbor higher biomass and more abundant feeding resources for sand flies, although more research is needed to identify the factors that shape sand fly communities. As a consequence of these antagonistic effects, decreased mammal diversity comes with an increase of parasite prevalence in sand flies, but has no detectable impact on the density of infected sand flies. These results represent additional evidence that biodiversity changes may simultaneously dilute and amplify vector-borne disease transmission through different mechanisms that need to be better understood before drawing generalities on the biodiversity-disease relationship.
Collapse
Affiliation(s)
- Arthur Kocher
- Laboratoire Évolution et Diversité Biologique (UMR5174 EDB) - CNRS, IRD, Université Toulouse III Paul Sabatier - Toulouse, France.,MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.,Institut Pasteur de la Guyane, Cayenne, France.,Transmission, Infection, Diversification & Evolution Group, Max-Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
| | - Josselin Cornuault
- Real Jardín Botánico CSIC, Plaza Murillo 2, 28014, Madrid, Spain.,ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Jean-Charles Gantier
- Laboratoire des Identifications Fongiques et Entomo-parasitologiques, Mennecy, France
| | - Sophie Manzi
- Laboratoire Évolution et Diversité Biologique (UMR5174 EDB) - CNRS, IRD, Université Toulouse III Paul Sabatier - Toulouse, France
| | - Agathe Chavy
- Institut Pasteur de la Guyane, Cayenne, France.,TBIP, Université de Guyane, 97300, Cayenne, France
| | | | | | - Pierre-Michel Forget
- Muséum National d'Histoire Naturelle, UMR-7179 MECADEV (Mécanismes Adaptatifs et Evolution), MNHN-CNRS, Brunoy, France
| | - Marine Ginouves
- TBIP, Université de Guyane, 97300, Cayenne, France.,Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR9017-CIIL Centre d'Infection et d'Immunité de Lille, 59000, Lille, France
| | - Ghislaine Prévot
- TBIP, Université de Guyane, 97300, Cayenne, France.,Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR9017-CIIL Centre d'Infection et d'Immunité de Lille, 59000, Lille, France
| | - Jean-François Guégan
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.,INRAE, Cirad, Université de Montpellier, UMR ASTRE, Montpellier, France
| | | | - Benoit de Thoisy
- Institut Pasteur de la Guyane, Cayenne, France.,Association Kwata, Cayenne, French Guiana
| | - Jérôme Murienne
- Laboratoire Évolution et Diversité Biologique (UMR5174 EDB) - CNRS, IRD, Université Toulouse III Paul Sabatier - Toulouse, France
| |
Collapse
|
40
|
Destoumieux-Garzón D, Matthies-Wiesler F, Bierne N, Binot A, Boissier J, Devouge A, Garric J, Gruetzmacher K, Grunau C, Guégan JF, Hurtrez-Boussès S, Huss A, Morand S, Palmer C, Sarigiannis D, Vermeulen R, Barouki R. Getting out of crises: Environmental, social-ecological and evolutionary research is needed to avoid future risks of pandemics. ENVIRONMENT INTERNATIONAL 2022; 158:106915. [PMID: 34634622 PMCID: PMC8500703 DOI: 10.1016/j.envint.2021.106915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 05/05/2023]
Abstract
The implementation of One Health/EcoHealth/Planetary Health approaches has been identified as key (i) to address the strong interconnections between risk for pandemics, climate change and biodiversity loss and (ii) to develop and implement solutions to these interlinked crises. As a response to the multiple calls from scientists on that subject, we have here proposed seven long-term research questions regarding COVID-19 and emerging infectious diseases (EIDs) that are based on effective integration of environmental, ecological, evolutionary, and social sciences to better anticipate and mitigate EIDs. Research needs cover the social ecology of infectious disease agents, their evolution, the determinants of susceptibility of humans and animals to infections, and the human and ecological factors accelerating infectious disease emergence. For comprehensive investigation, they include the development of nature-based solutions to interlinked global planetary crises, addressing ethical and philosophical questions regarding the relationship of humans to nature and regarding transformative changes to safeguard the environment and human health. In support of this research, we propose the implementation of innovative multidisciplinary facilities embedded in social ecosystems locally: ecological health observatories and living laboratories. This work was carried out in the frame of the European Community project HERA (www.HERAresearchEU.eu), which aims to set priorities for an environment, climate and health research agenda in the European Union by adopting a systemic approach in the face of global environmental change.
Collapse
Affiliation(s)
| | - Franziska Matthies-Wiesler
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Germany.
| | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Aurélie Binot
- Animals, health, Territories, Risks and Ecosystem (ASTRE), University of Montpellier, Agricultural Research for Development (CIRAD), National Research Institute for Agriculture, Food and the Environment (INRAE), Montpellier, France
| | - Jérôme Boissier
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | | | - Jeanne Garric
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR Riverly, F-69625 Villeurbanne, France
| | - Kim Gruetzmacher
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin Germany
| | - Christoph Grunau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Jean-François Guégan
- Animals, health, Territories, Risks and Ecosystem (ASTRE), University of Montpellier, Agricultural Research for Development (CIRAD), National Research Institute for Agriculture, Food and the Environment (INRAE), Montpellier, France; MIVEGEC, Univ Montpellier, IRD, CNRS, Montpellier, France
| | - Sylvie Hurtrez-Boussès
- MIVEGEC, Univ Montpellier, IRD, CNRS, Montpellier, France; Département de Biologie-Ecologie, Faculté des Sciences, Univ Montpellier, Montpellier, France
| | | | - Serge Morand
- Centre National de la Recherche Scientifique - UMR ASTRE, CIRAD, INRAE - Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Clare Palmer
- Department of Philosophy, YMCA Building, Texas A&M University, College Station, TX 77843, USA
| | - Denis Sarigiannis
- Aristotle University of Thessaloniki, Thessaloniki 54164, Greece; University School for Advanced Study IUSS, Pavia, Italy
| | | | | |
Collapse
|
41
|
Doherty JF, Poulin R. Come with me if you want to live: sympatric parasites follow different transmission routes through aquatic host communities. Int J Parasitol 2021; 52:293-303. [PMID: 34973954 DOI: 10.1016/j.ijpara.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022]
Abstract
Community composition, including the relative density of each host species, plays a vital role in the transmission of parasites or disease in freshwater ecosystems. Whereas some host species can effectively transmit parasites, others can act as dead ends (non-viable transmission routes), accumulating large numbers of parasites throughout their life, thus becoming important sinks for parasite populations. Although population sinks have been identified in certain host-parasite systems, robust field estimates of the proportions of parasites that are lost to these hosts are lacking. Here, we quantified the distribution of encysted larval hairworms (phylum Nematomorpha), common parasites in lotic ecosystems, in two subalpine stream communities of New Zealand. With parasite and host population densities calculated per m2, we identified which host species most likely contributed to the transmission of three sympatric hairworm morphotypes identified in both streams, and which species acted as population sinks. We also tested for seasonal patterns and peaks in the abundance of each morphotype in the two communities over the sampling season. Finally, we tested whether hosts emerging from the streams had comparable abundances of hairworm morphotypes throughout the sampling period. For each morphotype, different key sets of host species harboured more hairworms on average (abundance) than others, depending on the stream. For one morphotype in particular, two species of hosts were found to be important population sinks that inhibited over a third of these parasites from completing their life cycle. We also observed a clear peak in abundance for another hairworm morphotype during summer. Our data suggest that hosts emerging from the streams matched their aquatic counterparts with respect to hairworm abundance, indicating no infection-dependent reduction in emergence success. Our findings suggest that, depending on relative community composition, sympatric parasites follow different host transmission pathways, some of which lead to dead ends that potentially impact overall infection dynamics. In turn, this information can help us understand the spread or emergence of disease in both freshwater and terrestrial environments, since hairworms infect terrestrial arthropods to complete their life cycle.
Collapse
Affiliation(s)
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
42
|
De Baets K, Huntley JW, Scarponi D, Klompmaker AA, Skawina A. Phanerozoic parasitism and marine metazoan diversity: dilution versus amplification. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200366. [PMID: 34538136 PMCID: PMC8450635 DOI: 10.1098/rstb.2020.0366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Growing evidence suggests that biodiversity mediates parasite prevalence. We have compiled the first global database on occurrences and prevalence of marine parasitism throughout the Phanerozoic and assess the relationship with biodiversity to test if there is support for amplification or dilution of parasitism at the macroevolutionary scale. Median prevalence values by era are 5% for the Paleozoic, 4% for the Mesozoic, and a significant increase to 10% for the Cenozoic. We calculated period-level shareholder quorum sub-sampled (SQS) estimates of mean sampled diversity, three-timer (3T) origination rates, and 3T extinction rates for the most abundant host clades in the Paleobiology Database to compare to both occurrences of parasitism and the more informative parasite prevalence values. Generalized linear models (GLMs) of parasite occurrences and SQS diversity measures support both the amplification (all taxa pooled, crinoids and blastoids, and molluscs) and dilution hypotheses (arthropods, cnidarians, and bivalves). GLMs of prevalence and SQS diversity measures support the amplification hypothesis (all taxa pooled and molluscs). Though likely scale-dependent, parasitism has increased through the Phanerozoic and clear patterns primarily support the amplification of parasitism with biodiversity in the history of life. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.
Collapse
Affiliation(s)
- Kenneth De Baets
- GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-University Erlangen-Nürnberg, Loewenichstraße 28, 91054 Erlangen, Germany
| | - John Warren Huntley
- Department of Geological Sciences, University of Missouri, 101 Geological Sciences Building, Columbia, MO 65211, USA
| | - Daniele Scarponi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, University of Bologna, Piazza di Porta San Donato 1, 40131 Bologna, Italy
| | - Adiël A Klompmaker
- Department of Museum Research and Collections and Alabama Museum of Natural History, University of Alabama, Box 870340, Tuscaloosa, AL 35487, USA
| | - Aleksandra Skawina
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warszawa, Poland
| |
Collapse
|
43
|
Glidden CK, Nova N, Kain MP, Lagerstrom KM, Skinner EB, Mandle L, Sokolow SH, Plowright RK, Dirzo R, De Leo GA, Mordecai EA. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Curr Biol 2021; 31:R1342-R1361. [PMID: 34637744 PMCID: PMC9255562 DOI: 10.1016/j.cub.2021.08.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human-mediated changes to natural ecosystems have consequences for both ecosystem and human health. Historically, efforts to preserve or restore 'biodiversity' can seem to be in opposition to human interests. However, the integration of biodiversity conservation and public health has gained significant traction in recent years, and new efforts to identify solutions that benefit both environmental and human health are ongoing. At the forefront of these efforts is an attempt to clarify ways in which biodiversity conservation can help reduce the risk of zoonotic spillover of pathogens from wild animals, sparking epidemics and pandemics in humans and livestock. However, our understanding of the mechanisms by which biodiversity change influences the spillover process is incomplete, limiting the application of integrated strategies aimed at achieving positive outcomes for both conservation and disease management. Here, we review the literature, considering a broad scope of biodiversity dimensions, to identify cases where zoonotic pathogen spillover is mechanistically linked to changes in biodiversity. By reframing the discussion around biodiversity and disease using mechanistic evidence - while encompassing multiple aspects of biodiversity including functional diversity, landscape diversity, phenological diversity, and interaction diversity - we work toward general principles that can guide future research and more effectively integrate the related goals of biodiversity conservation and spillover prevention. We conclude by summarizing how these principles could be used to integrate the goal of spillover prevention into ongoing biodiversity conservation initiatives.
Collapse
Affiliation(s)
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Morgan P Kain
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA
| | | | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD 4222, Australia
| | - Lisa Mandle
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Susanne H Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Giulio A De Leo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
44
|
Cuenca PR, Key S, Jumail A, Surendra H, Ferguson HM, Drakeley CJ, Fornace K. Epidemiology of the zoonotic malaria Plasmodium knowlesi in changing landscapes. ADVANCES IN PARASITOLOGY 2021; 113:225-286. [PMID: 34620384 DOI: 10.1016/bs.apar.2021.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Within the past two decades, incidence of human cases of the zoonotic malaria Plasmodium knowlesi has increased markedly. P. knowlesi is now the most common cause of human malaria in Malaysia and threatens to undermine malaria control programmes across Southeast Asia. The emergence of zoonotic malaria corresponds to a period of rapid deforestation within this region. These environmental changes impact the distribution and behaviour of the simian hosts, mosquito vector species and human populations, creating new opportunities for P. knowlesi transmission. Here, we review how landscape changes can drive zoonotic disease emergence, examine the extent and causes of these changes across Southeast and identify how these mechanisms may be impacting P. knowlesi dynamics. We review the current spatial epidemiology of reported P. knowlesi infections in people and assess how these demographic and environmental changes may lead to changes in transmission patterns. Finally, we identify opportunities to improve P. knowlesi surveillance and develop targeted ecological interventions within these landscapes.
Collapse
Affiliation(s)
- Pablo Ruiz Cuenca
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Stephanie Key
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Henry Surendra
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia; Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
45
|
Abbott KC, Eppinga MB, Umbanhowar J, Baudena M, Bever JD. Microbiome influence on host community dynamics: Conceptual integration of microbiome feedback with classical host-microbe theory. Ecol Lett 2021; 24:2796-2811. [PMID: 34608730 PMCID: PMC9292004 DOI: 10.1111/ele.13891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023]
Abstract
Microbiomes have profound effects on host fitness, yet we struggle to understand the implications for host ecology. Microbiome influence on host ecology has been investigated using two independent frameworks. Classical ecological theory powerfully represents mechanistic interactions predicting environmental dependence of microbiome effects on host ecology, but these models are notoriously difficult to evaluate empirically. Alternatively, host-microbiome feedback theory represents impacts of microbiome dynamics on host fitness as simple net effects that are easily amenable to experimental evaluation. The feedback framework enabled rapid progress in understanding microbiomes' impacts on plant ecology, and can also be applied to animal hosts. We conceptually integrate these two frameworks by deriving expressions for net feedback in terms of mechanistic model parameters. This generates a precise mapping between net feedback theory and classic population modelling, thereby merging mechanistic understanding with experimental tractability, a necessary step for building a predictive understanding of microbiome influence on host ecology.
Collapse
Affiliation(s)
| | - Maarten B Eppinga
- University of Zurich, Zurich, Switzerland.,Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | | | - Mara Baudena
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.,National Research Council of Italy, Institute of Atmospheric Sciences, and Climate (CNR-ISAC), Torino, Italy
| | | |
Collapse
|
46
|
Wang YXG, Matson KD, Santini L, Visconti P, Hilbers JP, Huijbregts MAJ, Xu Y, Prins HHT, Allen T, Huang ZYX, de Boer WF. Mammal assemblage composition predicts global patterns in emerging infectious disease risk. GLOBAL CHANGE BIOLOGY 2021; 27:4995-5007. [PMID: 34214237 PMCID: PMC8518613 DOI: 10.1111/gcb.15784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
As a source of emerging infectious diseases, wildlife assemblages (and related spatial patterns) must be quantitatively assessed to help identify high-risk locations. Previous assessments have largely focussed on the distributions of individual species; however, transmission dynamics are expected to depend on assemblage composition. Moreover, disease-diversity relationships have mainly been studied in the context of species loss, but assemblage composition and disease risk (e.g. infection prevalence in wildlife assemblages) can change without extinction. Based on the predicted distributions and abundances of 4466 mammal species, we estimated global patterns of disease risk through the calculation of the community-level basic reproductive ratio R0, an index of invasion potential, persistence, and maximum prevalence of a pathogen in a wildlife assemblage. For density-dependent diseases, we found that, in addition to tropical areas which are commonly viewed as infectious disease hotspots, northern temperate latitudes included high-risk areas. We also forecasted the effects of climate change and habitat loss from 2015 to 2035. Over this period, many local assemblages showed no net loss of species richness, but the assemblage composition (i.e. the mix of species and their abundances) changed considerably. Simultaneously, most areas experienced a decreased risk of density-dependent diseases but an increased risk of frequency-dependent diseases. We further explored the factors driving these changes in disease risk. Our results suggest that biodiversity and changes therein jointly influence disease risk. Understanding these changes and their drivers and ultimately identifying emerging infectious disease hotspots can help health officials prioritize resource distribution.
Collapse
Affiliation(s)
- Yingying X. G. Wang
- Wildlife Ecology and Conservation GroupWageningen University and ResearchWageningenThe Netherlands
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Kevin D. Matson
- Wildlife Ecology and Conservation GroupWageningen University and ResearchWageningenThe Netherlands
| | - Luca Santini
- Department of Biology and Biotechnologies “Charles Darwin”Sapienza University of RomeRomeItaly
- Institute of Research on Terrestrial Ecosystems (CNR‐IRET)National Research CouncilMonterotondo (Rome)Italy
- Department of Environmental ScienceRadboud UniversityNijmegenThe Netherlands
| | - Piero Visconti
- International Institute for Applied System AnalysisLaxenburgAustria
- Institute of ZoologyZoological Society of LondonLondonUK
| | - Jelle P. Hilbers
- Department of Environmental ScienceRadboud UniversityNijmegenThe Netherlands
| | | | - Yanjie Xu
- Wildlife Ecology and Conservation GroupWageningen University and ResearchWageningenThe Netherlands
- The Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - Herbert H. T. Prins
- Wildlife Ecology and Conservation GroupWageningen University and ResearchWageningenThe Netherlands
- Department of Animal SciencesWageningen University and ResearchWageningenThe Netherlands
| | | | - Zheng Y. X. Huang
- Wildlife Ecology and Conservation GroupWageningen University and ResearchWageningenThe Netherlands
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Willem F. de Boer
- Wildlife Ecology and Conservation GroupWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
47
|
McIntire KM, Chappell KM, Juliano SA. How do noncompetent hosts cause dilution of parasitism? Testing hypotheses for native and invasive mosquitoes. Ecology 2021; 102:e03452. [PMID: 34165788 PMCID: PMC8487931 DOI: 10.1002/ecy.3452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/08/2021] [Accepted: 04/05/2021] [Indexed: 11/08/2022]
Abstract
Parasite dilution occurs in varied systems, via multiple potential mechanisms. We used laboratory manipulation and field surveys to test for invader-induced parasite dilution via two specific mechanisms: host-host competition and encounter reduction. In the laboratory, single Aedes triseriatus larvae were exposed to one of eight combinations of: parasitic Ascogregarina barretti, +/-1 cohabiting Aedes albopictus larva during parasite exposure, and +/-1 cohabiting A. albopictus larva after infectious parasite removal. Larval infection intensity (predicted to decrease via dilution by encounter reduction) was not significantly affected by A. albopictus. Adult infection prevalence and intensity (predicted to decrease via dilution by host-host competition) were significantly greater with A. albopictus, suggesting parasite amplification by interspecific competition, an effect potentially mediated by competition increasing A. triseriatus development time. In the field, we tested for effects of potential dilution host abundances on prevalence and abundance of A. barretti in A. triseriatus larvae. Piecewise path analysis yielded no evidence of host-host competition impacting parasitism in the field, but instead indicated a significant direct negative effect of Aedes spp. abundance on parasite abundance in A. triseriatus, which is consistent with dilution via encounter reduction in the field, but only in tree holes, not in man-made containers. Our results are consistent with the hypothesis that a noncompetent invader can alter the native host-parasite relationship, but our laboratory and field data yield differing results. This difference is likely due to laboratory experiment testing for per capita effects of dilution hosts on parasitism, but field analysis testing for effects of dilution host abundance on parasitism. Individually, host-host competition with the invader amplifies, rather than dilutes, parasite success. In contrast, our path analysis is consistent with the hypothesis that dilution of parasitism results from increased abundance of noncompetent hosts in the field.
Collapse
Affiliation(s)
- Kristina M McIntire
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790-4120, USA
| | - Kasie M Chappell
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790-4120, USA
| | - Steven A Juliano
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790-4120, USA
| |
Collapse
|
48
|
Diuk-Wasser MA, VanAcker MC, Fernandez MP. Impact of Land Use Changes and Habitat Fragmentation on the Eco-epidemiology of Tick-Borne Diseases. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1546-1564. [PMID: 33095859 DOI: 10.1093/jme/tjaa209] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The incidence of tick-borne diseases has increased in recent decades and accounts for the majority of vector-borne disease cases in temperate areas of Europe, North America, and Asia. This emergence has been attributed to multiple and interactive drivers including changes in climate, land use, abundance of key hosts, and people's behaviors affecting the probability of human exposure to infected ticks. In this forum paper, we focus on how land use changes have shaped the eco-epidemiology of Ixodes scapularis-borne pathogens, in particular the Lyme disease spirochete Borrelia burgdorferi sensu stricto in the eastern United States. We use this as a model system, addressing other tick-borne disease systems as needed to illustrate patterns or processes. We first examine how land use interacts with abiotic conditions (microclimate) and biotic factors (e.g., host community composition) to influence the enzootic hazard, measured as the density of host-seeking I. scapularis nymphs infected with B. burgdorferi s.s. We then review the evidence of how specific landscape configuration, in particular forest fragmentation, influences the enzootic hazard and disease risk across spatial scales and urbanization levels. We emphasize the need for a dynamic understanding of landscapes based on tick and pathogen host movement and habitat use in relation to human resource provisioning. We propose a coupled natural-human systems framework for tick-borne diseases that accounts for the multiple interactions, nonlinearities and feedbacks in the system and conclude with a call for standardization of methodology and terminology to help integrate studies conducted at multiple scales.
Collapse
Affiliation(s)
- Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York
| | - Meredith C VanAcker
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York
| | - Maria P Fernandez
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York
| |
Collapse
|
49
|
Tsao JI, Hamer SA, Han S, Sidge JL, Hickling GJ. The Contribution of Wildlife Hosts to the Rise of Ticks and Tick-Borne Diseases in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1565-1587. [PMID: 33885784 DOI: 10.1093/jme/tjab047] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 05/09/2023]
Abstract
Wildlife vertebrate hosts are integral to enzootic cycles of tick-borne pathogens, and in some cases have played key roles in the recent rise of ticks and tick-borne diseases in North America. In this forum article, we highlight roles that wildlife hosts play in the maintenance and transmission of zoonotic, companion animal, livestock, and wildlife tick-borne pathogens. We begin by illustrating how wildlife contribute directly and indirectly to the increase and geographic expansion of ticks and their associated pathogens. Wildlife provide blood meals for tick growth and reproduction; serve as pathogen reservoirs; and can disperse ticks and pathogens-either through natural movement (e.g., avian migration) or through human-facilitated movement (e.g., wildlife translocations and trade). We then discuss opportunities to manage tick-borne disease through actions directed at wildlife hosts. To conclude, we highlight key gaps in our understanding of the ecology of tick-host interactions, emphasizing that wildlife host communities are themselves a very dynamic component of tick-pathogen-host systems and therefore complicate management of tick-borne diseases, and should be taken into account when considering host-targeted approaches. Effective management of wildlife to reduce tick-borne disease risk further requires consideration of the 'human dimensions' of wildlife management. This includes understanding the public's diverse views and values about wildlife and wildlife impacts-including the perceived role of wildlife in fostering tick-borne diseases. Public health agencies should capitalize on the expertise of wildlife agencies when developing strategies to reduce tick-borne disease risks.
Collapse
Affiliation(s)
- Jean I Tsao
- Department of Fisheries and Wildlife, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, and Schubot Center for Avian Health, Department of Veterinary Pathology, Texas A&M University, College Station, TX, USA
| | - Seungeun Han
- Department of Disease Control and Epidemiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Jennifer L Sidge
- Michigan Department of Agriculture and Rural Development, Lansing, MI, USA
| | - Graham J Hickling
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
50
|
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2021. [PMID: 33622992 PMCID: PMC7371965 DOI: 10.1007/s12041-020-01225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease-mediated extinctions and wildlife epidemics. We then focus on elucidating how host–parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
|