1
|
Bandaranayake S, Williamson S, Stewart J, Payne M, Kaur S, Wang Q, Sintchenko V, Pavic A, Lan R. Genomic diversity of Salmonella enterica serovar Typhimurium isolated from chicken processing facilities in New South Wales, Australia. Front Microbiol 2024; 15:1440777. [PMID: 39206360 PMCID: PMC11349623 DOI: 10.3389/fmicb.2024.1440777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Contamination of poultry products by Salmonella enterica serovar Typhimurium (STm) is a major cause of foodborne infections and outbreaks. This study aimed to assess the diversity and antimicrobial resistance (AMR) carriage of STm in three chicken processing plants using genomic sequencing. It also aimed to investigate whether any particular strain types were associated with cases of human illness. Multilevel genome typing (MGT) was used to analyze 379 STm isolates from processed chicken carcasses. The diversity of chicken STm sequence types (STs) increased from MGT1 (2 STs) to MGT9 (257 STs). STs at MGT5 to MGT9 levels that were unique to one processing plant and shared among the processing plants were identified, likely reflecting the diversity of STm at their farm source. Fifteen medium resolution MGT5 STs matched those from human infections in Australia and globally. However, no STs matched between the chicken and human isolates at high resolution levels (MGT8 or MGT9), indicating the two STm populations were phylogenetically related but were unlikely to be directly epidemiologically linked. AMR genes were rare, with only a bla TEM-1 gene carried by a 95 kb IncI1 Alpha plasmid being identified in 20 isolates. In conclusion, subpopulations that were widespread in processing plants and had caused human infections were described using MGT5 STs. In this STM population, AMR was rare with only sporadic resistance to a single drug class observed. The genomic analysis of STm from chicken processing plants in this study provided insights into STm that contaminate meat chickens early in the food production chain.
Collapse
Affiliation(s)
- Samitha Bandaranayake
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Jack Stewart
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- Birling Laboratories, Bringelly, NSW, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology-Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
2
|
Bansal G, Ghanem M, Sears KT, Galen JE, Tennant SM. Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics. EcoSal Plus 2024:eesp00042023. [PMID: 39023252 DOI: 10.1128/ecosalplus.esp-0004-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Salmonella enterica is a diverse species that infects both humans and animals. S. enterica subspecies enterica consists of more than 1,500 serovars. Unlike typhoidal Salmonella serovars which are human host-restricted, non-typhoidal Salmonella (NTS) serovars are associated with foodborne illnesses worldwide and are transmitted via the food chain. Additionally, NTS serovars can cause disease in livestock animals causing significant economic losses. Salmonella is a well-studied model organism that is easy to manipulate and evaluate in animal models of infection. Advances in genetic engineering approaches in recent years have led to the development of Salmonella vaccines for both humans and animals. In this review, we focus on current progress of recombinant live-attenuated Salmonella vaccines, their use as a source of antigens for parenteral vaccines, their use as live-vector vaccines to deliver foreign antigens, and their use as therapeutic cancer vaccines in humans. We also describe development of live-attenuated Salmonella vaccines and live-vector vaccines for use in animals.
Collapse
Affiliation(s)
- Garima Bansal
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mostafa Ghanem
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Khandra T Sears
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James E Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Kim MB, Jung HR, Lee YJ. Emergence of Salmonella Infantis carrying the pESI megaplasmid in commercial farms of five major integrated broiler operations in Korea. Poult Sci 2024; 103:103516. [PMID: 38368739 PMCID: PMC10884471 DOI: 10.1016/j.psj.2024.103516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Considering Salmonella transmission occurs through several routes in integrated broiler operations, control of nontyphoidal Salmonella in commercial farms is essential. This study aimed to compare the distribution of persistent Salmonella serovars in environments and dead chickens between 5 major integrated broiler operations in Korea. The prevalence of Salmonella-positive farms in dust prior to placement by operations was 0 to 25%, but the prevalence in dust and feces at the time of depletion was increased to 16.7 to 41.7% and 16.7 to 66.7%, respectively. Moreover, the prevalence of farms with Salmonella in chickens that died within 1 week old and at 4 to 5 weeks old ranged from 8.3 to 58.3% and 16.7 to 41.7%, respectively. The prevalence of Salmonella enterica serovar Infantis-positive farms in dust prior to placement and in chickens that died within 1 week old was 5.2 and 3.4%, respectively, but the prevalence in dust and feces at the time of depletion and in chickens that died at 4 to 5 weeks old was significantly increased to 27.6, 41.4, and 20.7%, respectively (P < 0.05). Interestingly, the plasmid of emerging S. Infantis (pESI) was only identified in S. Infantis, and the prevalence of multidrug-resistance was significantly higher in pESI-positive S. Infantis (99.2%) than in pESI-negative S. Infantis (6.7%) (P < 0.05). The distribution of pulsotypes between pESI-positive and pESI-negative S. Infantis were varied, but a majority of S. Infantis were clustered only 2 pulsotypes. Moreover, pESI-positive S. Infantis harbored more virulence factors than pESI-negative S. Infantis. This study is the first report on characteristics of S. Infantis carrying the pESI plasmid in commercial broiler farms in Korea.
Collapse
Affiliation(s)
- Min Beom Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye-Ri Jung
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
4
|
Abstract
This review is focused on describing and analyzing means by which Salmonella enterica serotype strains have been genetically modified with the purpose of developing safe, efficacious vaccines to present Salmonella-induced disease in poultry and to prevent Salmonella colonization of poultry to reduce transmission through the food chain in and on eggs and poultry meat. Emphasis is on use of recently developed means to generate defined deletion mutations to eliminate genetic sequences conferring antimicrobial resistance or residual elements that might lead to genetic instability. Problems associated with prior means to develop vaccines are discussed with presentation of various means by which these problems have been lessened, if not eliminated. Practical considerations are also discussed in hope of facilitating means to move lab-proven successful vaccination procedures and vaccine candidates to the marketplace to benefit the poultry industry.
Collapse
Affiliation(s)
- Roy Curtiss
- College of Veterinary Medicine, University of Florida, Gainesville, Florida,
| |
Collapse
|
5
|
Obe T, Boltz T, Kogut M, Ricke SC, Brooks LA, Macklin K, Peterson A. Controlling Salmonella: strategies for feed, the farm, and the processing plant. Poult Sci 2023; 102:103086. [PMID: 37839165 PMCID: PMC10587538 DOI: 10.1016/j.psj.2023.103086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023] Open
Abstract
Controlling Salmonella in poultry is an ongoing food safety measure and while significant progress has been made, there is a need to continue to evaluate different strategies that include understanding Salmonella-poultry interaction, Salmonella-microbiota interactions, Salmonella genetics and response to adverse conditions, and preharvest and postharvest parameters that enable persistence. The purpose of this symposium is to discuss different strategies to consider from feed milling to the farm to the processing environment. This Poultry Science Association symposium paper is divided into 5 different sections that covers 1) immunological aspects of Salmonella control, 2) application of Salmonella genetics for targeted control strategies in poultry production, 3) improving poultry feed hygienics: utilizing feed manufacture techniques and equipment to improve feed hygienics, 4) practical on farm interventions for controlling Salmonella-what works and what may not work, and 5) monitoring and mitigating Salmonella in poultry. These topics elucidate the critical need to establish control strategies that will improve poultry gut health and limit conditions that exposes Salmonella to stress causing alterations to virulence and pathogenicity both at preharvest and postharvest poultry production. This information is relevant to the poultry industry's continued efforts to ensure food safety poultry production.
Collapse
Affiliation(s)
- Tomi Obe
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.
| | - Timothy Boltz
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | - Mike Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | | | - Ken Macklin
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | | |
Collapse
|
6
|
Alves VV, Arantes LCRV, de Barros Moreira Filho AL, da Silva Teixeira M, da Silva EFA, de Mesquita Souza Saraiva M, de Lucena RB, Givisiez PEN, de Oliveira CJB, de Freitas Neto OC. Effect of diets containing commercial bioactive compounds on Salmonella Heidelberg infection in broiler chicks. Braz J Microbiol 2023; 54:571-577. [PMID: 36572822 PMCID: PMC9943816 DOI: 10.1007/s42770-022-00899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Salmonella Heidelberg (SH) is responsible for economic losses in poultry farming and food infections in humans and is a serious public health problem. Recently, there has been an increase in the frequency of isolation of this serotype in batches of broilers raised in Brazil. It is necessary to find new ways to help control this pathogen. The present study aimed to evaluate the effect of diets containing the compound Original XPC, which is a prebiotic-like fermented compound (PFC), and/or Sangrovit, which is a sanguinarine-based phytobiotic (SAN), on SH infection in broiler chicks. For this purpose, SH colonization in the cecum and its invasion into the spleen and liver were evaluated, as were the histopathological changes caused in these organs. The lowest cecal SH counts were observed in birds that ingested SAN, followed by those fed PFC (P < 0.05), with no added effect when the two bioproducts were used together (SAN + PFC). The mean SH and liver spleen counts did not differ between groups (P > 0.05). In general, birds from all groups challenged with SH showed similar macroscopic changes, such as hemorrhagic areas, hepatomegaly, and splenomegaly, such changes being more intense in the infected control group. The microscopic changes observed in the liver included hepatocyte congestion, heterophil infiltration in the sinusoid capillaries, areas of necrosis, and mononuclear inflammation. In the cecum, heterophilic infiltrate and thickening of the lamina propria were observed. In the ileum, the most common changes were congestion and thickening of the lamina propria and atrophy of the villi and crypts. The microscopic changes were less intense in the supplemented birds than the infected control group, and those supplemented with SAN developed the least changes. As ideal conditions for histomorphometric parameters of the ileum, the villus:crypt ratio in birds should be high, the villi should be long, and the crypts should be shallow. In the present study, higher mean heights and villus areas were observed in uninfected control and SAN group birds, and the crypt depth was lower in birds in the negative control group. The lowest villus:crypt ratio was observed in the birds of the infected control group. Although additional studies are needed, the preliminary results of the current investigation indicated that the addition of bioproducts, especially SAN, to the diet of birds helped to control SH infection, reducing its count in the cecum and improving overall and intestinal health.
Collapse
Affiliation(s)
- Victória Veiga Alves
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Letícia Cury Rocha Veloso Arantes
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | - Mailson da Silva Teixeira
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Eudes Fernando Alves da Silva
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | | | - Ricardo Barbosa de Lucena
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Patrícia Emília Naves Givisiez
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Celso José Bruno de Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Oliveiro Caetano de Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
7
|
Munoz LR, Bailey MA, Krehling JT, Bourassa DV, Hauck R, Pacheco WJ, Chaves-Cordoba B, Chasteen KS, Talorico AA, Escobar C, Pietruska A, Macklin KS. Effects of dietary yeast cell wall supplementation on growth performance, intestinal Campylobacter jejuni colonization, innate immune response, villus height, crypt depth, and slaughter characteristics of broiler chickens inoculated with Campylobacter jejuni at d 21. Poult Sci 2023; 102:102609. [PMID: 36963334 PMCID: PMC10060741 DOI: 10.1016/j.psj.2023.102609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
A study was conducted to assess the effects of a dietary yeast cell wall (YCW) with and without a Campylobacter jejuni (CJ) challenge. A total of 2,240-day-old Ross 708 males were randomly assigned within 8 treatments with a 4 × 2 factorial design, with 4 diets (negative control, positive control, YCW constant dose (400 g/ton), and YCW step-down dose (800/400/200 g/ton in the starter/grower/finisher diets, respectively) and with and without d 21 CJ oral gavage challenge at 5.2 × 107 CFU/mL. At d 0, 14, 28, and 41 body weights and feed consumption were measured to determine performance. At d 14, 28, and 42, 8 jejunal and ileal histology samples per treatment were collected for villi morphology measurements. At d 22 and 28 (1- and 7-days postinoculation), 24 ileal tissue samples per treatment were collected for relative gene expression analysis. At d 42, 24 cecal content samples per treatment were collected for CJ enumeration. Finally, on d 44, 96 birds per treatment were processed to determine carcass yield and 16 carcass rinses per treatment were collected to determine CJ prevalence after processing. Diet or inoculation did not impact broiler performance (P > 0.05). Limited differences were observed in intestinal morphology, and villus height and crypt depth were different only in the ileum at d 42 (P = 0.0280 and P = 0.0162, respectively). At d 1 postinoculation, differences between treatments inoculated with CJ and PBS were observed in the expression of avian beta defensin 10 (AvBD10), interleukin 1ß (IL-1ß), and interleukin 10 (IL-10) (P < 0.05). At d 7 postinoculation, expression of AvBD10, IL-1ß, and IL-10 was similar among all treatments (P > 0.05). At d 42, all birds, regardless the inoculation, had similar levels of CJ recovered from cecal contents (P > 0.05). After processing, carcass yield and CJ prevalence postchilling was similar in all treatments (P > 0.05). Overall, under the conditions of this study, the addition of YCW during a CJ challenge did not have an impact in growth performance, innate immune response, cecal colonization, carcass yield, or CJ prevalence after processing.
Collapse
Affiliation(s)
- Luis R Munoz
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Matthew A Bailey
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - James T Krehling
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Dianna V Bourassa
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Ruediger Hauck
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Wilmer J Pacheco
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | | | - Kaicie S Chasteen
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Aidan A Talorico
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Cesar Escobar
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Andrea Pietruska
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Ken S Macklin
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
8
|
Pelyuntha W, Yafa A, Ngasaman R, Yingkajorn M, Chukiatsiri K, Champoochana N, Vongkamjan K. Oral Administration of a Phage Cocktail to Reduce Salmonella Colonization in Broiler Gastrointestinal Tract-A Pilot Study. Animals (Basel) 2022; 12:ani12223087. [PMID: 36428315 PMCID: PMC9686501 DOI: 10.3390/ani12223087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Salmonella contamination in poultry meat products can lead to serious foodborne illness and economic loss from product recalls. It is crucial to control Salmonella contamination in poultry from farm to fork. Bacteriophages (phages) are viruses of bacteria that offer several advantages, especially their specificity to target bacteria. In our study, three Salmonella phages (vB_SenS_KP001, vB_SenS_KP005, and vB_SenS_WP110) recovered from a broiler farm and wastewater treatment stations showed high lysis ability ranging from 85.7 to 96.4% on over 56 serovars of Salmonella derived from several sources, including livestock and a broiler farm environment. A three-phage cocktail reduced S. Enteritidis and S. Typhimurium, in vitro by 3.9 ± 0.0 and 3.9 ± 0.2 log units at a multiplicity of infection (MOI) of 103 and 3.8 ± 0.4 and 4.1 ± 0.2 log units at MOI of 104 after 6 h post-phage treatment. A developed phage cocktail did not cause phage resistance in Salmonella during phage treatments for three passages. Phages could survive under simulated chicken gastrointestinal conditions in the presence of gastric acid for 2 h (100.0 ± 0.0% survivability), bile salt for 1 h (98.1 ± 1.0% survivability), and intestinal fluid for 4 h (100 ± 0.0% survivability). Each phage was in the phage cocktail at a concentration of up to 9.0 log PFU/mL. These did not cause any cytotoxicity to human fibroblast cells or Caco-2 cells as indicated by the percent of cell viability, which remained nearly 100% as compared with the control during 72 h of co-culture. The phage cocktail was given to broilers raised in commercial conditions at a 9 log PFU/dose for five doses, while naturally occurring Salmonella cells colonized in the gastrointestinal tract of broilers were significantly reduced as suggested by a considerably lower Salmonella prevalence from over 70 to 0% prevalence after four days of phage treatment. Our findings suggest that a phage cocktail is an effective biocontrol agent to reduce Salmonella present in the guts of broilers, which can be applied to improve food safety in broiler production.
Collapse
Affiliation(s)
- Wattana Pelyuntha
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart Univerisity, Chatuchak, Bangkok 10900, Thailand
| | - Ananya Yafa
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart Univerisity, Chatuchak, Bangkok 10900, Thailand
| | - Ruttayaporn Ngasaman
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Kridda Chukiatsiri
- Faculty of Animal Sciences and Technology, Maejo University, Nongharn, Sansai, Chiang Mai 50290, Thailand
| | - Nidanut Champoochana
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Kitiya Vongkamjan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart Univerisity, Chatuchak, Bangkok 10900, Thailand
- Correspondence: or
| |
Collapse
|
9
|
Can Red Yeast ( Sporidiobolus pararoseus) Be Used as a Novel Feed Additive for Mycotoxin Binders in Broiler Chickens? Toxins (Basel) 2022; 14:toxins14100678. [PMID: 36287947 PMCID: PMC9608597 DOI: 10.3390/toxins14100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Mycotoxin-contaminated feeds may negatively affect broiler chickens’ health; hence, a sustainable approach to achieve mycotoxin elimination is necessary. This study aimed to evaluate the efficacy of red yeast (Sporidiobolus pararoseus; RY) as a novel mycotoxin binder in broilers. A total of 1440 one-week-old male broiler chicks were randomly assigned to 12 treatments in a 3 × 4 factorial design. The dietary treatments included three levels of mycotoxin-contaminated diets (0 µg kg−1 (0% of mycotoxin; MT), 50 µg kg−1 (50% MT), and 100 µg kg−1 (100% MT)) and four levels of mycotoxin binders (0.0 and 0.5 g kg−1 commercial binder, and 0.5 and 1.0 g kg−1 RY). Experimental diets were contaminated with aflatoxin B1, zearalenone, ochratoxin A, T-2 toxin, and deoxynivalenol in the basal diet. Furthermore, the parameters including feed intake, body weight, and mortality rate were recorded on a weekly basis. After feeding for 28 days, blood and organ samples were collected randomly to determine the blood biochemistry, relative organ weights, and gut health. The results indicated that mycotoxin-contaminated diets reduced the average daily weight gain (ADG), villus height (VH), and villus height per the crypt depth ratio (VH:CD) of the intestine, as well as the population of Lactobacillus sp. and Bifidobacterium sp. in the cecal (p < 0.05), whereas they increased the mycotoxins concentration in the blood samples and the apoptosis cells (TUNEL positive) in the liver tissue (p < 0.01) of broiler chicken. In contrast, RY-supplemented diets had better ADG values and lower chicken mortality rates (p < 0.05). Moreover, these combinations positively impacted the relative organ weights, blood parameters, bacteria population, intestinal morphology, and pathological changes in the hepatocytes (p < 0.05). In conclusion, RY supplementation effectively alleviated the toxicity that is induced by AFB1 and OTA, mainly, and could potentially be applied as a novel feed additive in the broiler industry.
Collapse
|
10
|
Evaluation of Immune Responses and Protective Efficacy of a Novel Live Attenuated Salmonella Enteritidis Vaccine Candidate in Chickens. Vaccines (Basel) 2022; 10:vaccines10091405. [PMID: 36146484 PMCID: PMC9501076 DOI: 10.3390/vaccines10091405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
An ideal vaccine for controlling Salmonella infection in chicken flocks should be safe, inducing both humoral and cellular immunity. Live attenuated vaccines against Salmonella Enteritidis (S. Enteritidis) have been used as a potential control method of Salmonella infection in the poultry industry. However, live attenuated vaccines can persistently infect poultry for long periods and can become virulent revertant strains. In this study, we assessed the immune responses and protective efficacy of a temperature-sensitive attenuated S. Enteritidis mutant as a potential vaccine candidate. In addition, we evaluated the combined vaccine administration methods to maximize both humoral and cellular immune responses in chickens induced by the vaccine candidate. Immune responses and protective efficacy were compared between the Oral/IM group, vaccinated using one oral dose at four weeks old and a booster intramuscular dose at seven weeks old, and the IM/Oral group, vaccinated using one intramuscular dose at four weeks old and a booster oral dose at seven weeks old. The Oral/IM group showed stronger immune responses than those of the IM/Oral group. Spleens from the Oral/IM group showed a promising tendency of reduction of challenged Salmonella compared with those of other groups. Overall, the results indicated that the S. Enteritidis mutant strain is a promising live attenuated vaccine candidate with good efficacy.
Collapse
|
11
|
de Mesquita Souza Saraiva M, Lim K, do Monte DFM, Givisiez PEN, Alves LBR, de Freitas Neto OC, Kariuki S, Júnior AB, de Oliveira CJB, Gebreyes WA. Antimicrobial resistance in the globalized food chain: a One Health perspective applied to the poultry industry. Braz J Microbiol 2022; 53:465-486. [PMID: 34775576 PMCID: PMC8590523 DOI: 10.1007/s42770-021-00635-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance (AMR) remains a major global public health crisis. The food animal industry will face escalating challenges to increase productivity while minimizing AMR, since the global demand for animal protein has been continuously increasing and food animals play a key role in the global food supply, particularly broiler chickens. As chicken products are sources of low-cost, high-quality protein, poultry production is an important economic driver for livelihood and survival in developed and developing regions. The globalization of the food supply, markedly in the poultry industry, is aligned to the globalization of the whole modern society, with an unprecedented exchange of goods and services, and transit of human populations among regions and countries. Considering the increasing threat posed by AMR, human civilization is faced with a complex, multifaceted problem compromising its future. Actions to mitigate antimicrobial resistance are needed in all sectors of the society at the human, animal, and environmental levels. This review discusses the problems associated with antimicrobial resistance in the globalized food chain, using the poultry sector as a model. We cover critical aspects of the emergence and dissemination of antimicrobial resistance in the poultry industry and their implications to public health in a global perspective. Finally, we provide current insights using the multidisciplinary One Health approach to mitigate AMR at the human-animal-environment interface.
Collapse
Affiliation(s)
- Mauro de Mesquita Souza Saraiva
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | - Kelvin Lim
- Veterinary Health Management Branch, National Parks Board, 6 Perahu Road, Singapore, Singapore
| | - Daniel Farias Marinho do Monte
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | - Patrícia Emília Naves Givisiez
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Lucas Bocchini Rodrigues Alves
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | | | - Samuel Kariuki
- Kenya Medical Research Institute, Nairobi, Kenya
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA
| | - Angelo Berchieri Júnior
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | - Celso José Bruno de Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA
| | - Wondwossen Abebe Gebreyes
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA.
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Silva Teixeira MD, Lages DH, Alves VV, Silva Martins NRD, Freitas Neto OCD. Assessment of maternal immunity against Salmonella enterica serovar Heidelberg in progeny of broiler breeders vaccinated with different formulations of bacterins. Avian Pathol 2022; 51:197-205. [PMID: 35130087 DOI: 10.1080/03079457.2022.2039592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Salmonella Heidelberg (SH) has been reported in broiler flocks of many countries. The ability of some SH strains from poultry origin to cause foodborne infections in humans is a concern. Usually infection of broiler flocks by SH occurs in the first days of life. Therefore, control measures should start early post-hatch. One of the strategies is to generate high titers of anti-Salmonella IgY in breeders by using bacterins to provide passive immunity to their progeny. In this study three broiler breeder flocks were submitted to three Salmonella vaccination regimes (two doses of vaccine 1, two doses of vaccine 2 and non-vaccinated). When breeders were 30 and 55 weeks-old, part of their offspring were separated and challenged with a SH strain at three days of age. Dissemination to organs, caecal colonization and faecal excretion of SH were evaluated over 20 days. Chicks from vaccinated 30 week-old breeders presented lower amounts of SH in caecal content at 1, 3 and 6 days-post infection, correlating with high titers of maternal anti-Salmonella IgY in their yolk. In contrast, there were no differences in counts of SH in caecal content of chicks when their parents were 55 weeks-old and titers of IgY were reduced. Amounts of SH in liver and spleen were low and there were no differences among birds over the experiment. Progeny from 30 week-old flock vaccinated with vaccine 1 also showed lower SH faecal shedding than the remaining birds. Apparently, the maternal IgY was associated with reductions in intestinal infection by SH.
Collapse
Affiliation(s)
- Mailson da Silva Teixeira
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Dayse Helena Lages
- Department Veterinary Clinic and Surgery, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Victória Veiga Alves
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Nelson Rodrigo da Silva Martins
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Oliveiro Caetano de Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| |
Collapse
|
13
|
Dos Santos Bersot L, Carbonera NR, Rodrigues Valcanaia CD, Viana C, Nero LA. Multidrug-Resistant and Extended-Spectrum β-Lactamase-Producing Salmonella enterica Serotype Heidelberg Is Widespread in a Poultry Processing Facility in Southern Brazil. J Food Prot 2021; 84:2053-2058. [PMID: 34324677 DOI: 10.4315/jfp-21-140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/16/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study was conducted to characterize the distribution of Salmonella isolates in a poultry processing facility and to identify their antibiotic resistance profiles. Salmonella enterica was detected in 146 samples (66.7%), and 125 isolates were identified as Salmonella Heidelberg (n = 123), Salmonella Abony (n = 1), and Salmonella O:4,5 (n = 1). Salmonella Heidelberg isolates were subjected to XbaI macrorestriction analysis and pulsed-field gel electrophoresis. The 66 pulsotypes obtained were grouped into four major clusters, indicating cross-contamination and persistence of this serotype in the processing facility. Selected S. enterica isolates were characterized by their antibiotic resistance, and most (n = 122, 97.6%) were multidrug resistant. Resistance to third-generation cephalosporins ceftazidime (84 isolates, 67.2%) and cefotaxime and ceftriaxone (91 isolates, 72.8%) was particularly prevalent. Production of extended-spectrum β-lactamases (ESBL) was identified in 24 isolates (19.2%), and ESBL-producing isolates were resistant to at least eight antibiotics. This study revealed the high prevalence of Salmonella Heidelberg in the poultry chain, providing insight into the ecology of this pathogen in this facility. The high prevalence of multidrug-resistant S. enterica is a concern due to the potential consequences for public health. HIGHLIGHTS
Collapse
Affiliation(s)
- Luciano Dos Santos Bersot
- LACOMA - Laboratório de Inspeção e Controle de Qualidade de Alimentos e Água, Universidade Federal do Paraná, Setor Palotina, Departamento de Ciências Veterinárias, Rua Pioneiro, 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil
| | - Neila Rita Carbonera
- LACOMA - Laboratório de Inspeção e Controle de Qualidade de Alimentos e Água, Universidade Federal do Paraná, Setor Palotina, Departamento de Ciências Veterinárias, Rua Pioneiro, 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil
| | - Carolina Dias Rodrigues Valcanaia
- LACOMA - Laboratório de Inspeção e Controle de Qualidade de Alimentos e Água, Universidade Federal do Paraná, Setor Palotina, Departamento de Ciências Veterinárias, Rua Pioneiro, 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil
| | - Cibeli Viana
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Departamento de Veterinária, Avenida PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Departamento de Veterinária, Avenida PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
14
|
van Kuijk SJA, Han Y. Efficacy of a Synergistic Blend of Organic Acids and ß-1,4 Mannobiose on Cecal Salmonella Counts and Growth Performance in Salmonella Challenged Broiler Chickens: A Meta-Analysis. Animals (Basel) 2021; 11:2988. [PMID: 34680007 PMCID: PMC8532667 DOI: 10.3390/ani11102988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022] Open
Abstract
This study aimed at investigating the effect of a functional synergistic feed additive blend, containing organic acids and ß-1,4 mannobiose, on cecal Salmonella counts and growth performance of broiler chickens. A meta-analysis combining 13 individual studies, executed in Salmonella-challenged broilers comparing a control diet with and without the synergistic blend, was performed. Cecal Salmonella colonies and overall growth performance were measured. Raw data from all studies were combined and analyzed using PROC MIXED in SAS, taking the within and between-study variation into account. In the first 14 days post-inoculation (DPI), cecal Salmonella was reduced by 0.429 log CFU/g (p = 0.011, n = 10 comparisons from five studies) when feeding the synergistic blend compared to the control group. During 15-34 DPI, the overall means were not different between treatments (0.069 log CFU/g; p = 0.519, n = 12 comparisons from eight studies). The feed conversion ratio was improved when feeding the synergistic blend compared to the control diet (1.474 vs. 1.482, respectively; p = 0.002). In conclusion, feeding a synergistic blend, containing organic acids and ß-1,4 mannobiose amongst other ingredients, reduced cecal Salmonella counts during the first 14 DPI and improved growth performance of Salmonella challenged broilers compared to a control diet.
Collapse
Affiliation(s)
| | - Yanming Han
- Trouw Nutrition R&D, Stationsstraat 77, 3811 MH Amersfoort, The Netherlands
| |
Collapse
|
15
|
Pineda MR, Byrd JA, Genovese KJ, Farnell YZ, Zhao D, Wang X, Milby AC, Farnell MB. Evaluation of Sodium Bisulfate on Reducing Salmonella Heidelberg Biofilm and Colonization in Broiler Crops and Ceca. Microorganisms 2021; 9:microorganisms9102047. [PMID: 34683366 PMCID: PMC8540007 DOI: 10.3390/microorganisms9102047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
Salmonella Heidelberg (SH) on contaminated poultry causes economic and health risks to producers and consumers. We hypothesized that sodium bisulfate (SBS) would decrease SH biofilm on polyvinyl chloride (PVC) coupons and decrease the horizontal transfer of SH in broilers. Experiment 1: Salmonella Heidelberg biofilm was cultured with PVC coupons, which were treated with SBS at a pH of 3.5 for 10 min, 8 h, and 24 h. Experiment 2: Nine replicate pens per treatment were divided between two rooms. A seeder contact model was used to mimic a natural infection environment. Treatments consisted of tap water or sodium bisulfate in water at a pH of 3.5. Salmonella Heidelberg incidence and enumeration were measured in crops and ceca. Sodium bisulfate significantly reduced biofilm by 2.16 and 1.04 logs when treated for 8 and 24 h, respectively. Crop colonization was significantly decreased in trials 1 and 2 by 0.29 and 0.23 logs, respectively. Crop pH was significantly decreased in trial 2. Ceca colonization was significantly decreased in trial 1 by 0.39 logs. The results from the present study suggest that SBS may be administered to drinking water to decrease SH gut colonization and to reduce biofilm.
Collapse
Affiliation(s)
- Megan Rose Pineda
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (M.R.P.); (Y.Z.F.); (D.Z.); (X.W.); (A.C.M.)
| | - James Allen Byrd
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX 77845, USA; (J.A.B.); (K.J.G.)
| | - Kenneth James Genovese
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX 77845, USA; (J.A.B.); (K.J.G.)
| | - Yuhua Zhang Farnell
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (M.R.P.); (Y.Z.F.); (D.Z.); (X.W.); (A.C.M.)
| | - Dan Zhao
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (M.R.P.); (Y.Z.F.); (D.Z.); (X.W.); (A.C.M.)
| | - Xi Wang
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (M.R.P.); (Y.Z.F.); (D.Z.); (X.W.); (A.C.M.)
| | - Allison Claire Milby
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (M.R.P.); (Y.Z.F.); (D.Z.); (X.W.); (A.C.M.)
| | - Morgan Brian Farnell
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (M.R.P.); (Y.Z.F.); (D.Z.); (X.W.); (A.C.M.)
- Correspondence: ; Tel.: +1-(979)-847-7363
| |
Collapse
|
16
|
Hofacre CL, Rosales AG, Costa MD, Cookson K, Schaeffer J, Jones MK. Immunity and Protection Provided by Live Modified Vaccines Against Paratyphoid Salmonella in Poultry-An Applied Perspective. Avian Dis 2021; 65:295-302. [PMID: 34412461 DOI: 10.1637/aviandiseases-d-20-00126] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/18/2021] [Indexed: 11/05/2022]
Abstract
Several serotypes of non-host-specific or paratyphoid Salmonella have been linked with contamination of poultry meat, and eggs, resulting in foodborne outbreaks in humans. Vaccination of poultry against paratyphoid Salmonella is a frequent strategy used to reduce the levels of infection and transmission, which ultimately can lead to lower rates of human infections. Live vaccines have been developed and used in poultry immediately after hatching as a result of their ability to colonize the gut, stimulate a mucosal immune response, induce a competitive inhibitory effect against homologous wild strains, and reduce colonization and excretion of Salmonella. Furthermore, vaccines can competitively exclude some heterologous strains of Salmonella from colonizing the gastrointestinal tract when young poultry are immunologically immature. In addition, various studies have suggested that booster vaccination with live vaccines a few weeks after initial vaccination is essential to increase the level of protection and achieve better cross-protective immunity. Vaccination of breeders, broilers, layers, and turkeys with modified live Salmonella vaccines is a common intervention that has become an important component in poultry companies' multistep prevention programs to meet increasingly demanding customer and regulatory food safety requirements. Both live and inactivated vaccines play a critical role in a comprehensive control program for chicken and turkey breeders and commercial layers. This review examines the response and protection conferred by live modified vaccines against non-host-specific Salmonella that can be considered for the design and implementation of vaccination strategies in poultry.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthew K Jones
- Southern Poultry Research Group, Inc., Watkinsville, GA 30677
| |
Collapse
|
17
|
Golden CE, Rothrock MJ, Mishra A. Mapping foodborne pathogen contamination throughout the conventional and alternative poultry supply chains. Poult Sci 2021; 100:101157. [PMID: 34089937 PMCID: PMC8182426 DOI: 10.1016/j.psj.2021.101157] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Recently, there has been a consumer push for natural and organic food products. This has caused alternative poultry production, such as organic, pasture, and free-range systems, to grow in popularity. Due to the stricter rearing practices of alternative poultry production systems, different types of levels of microbiological risks might be present for these systems when compared to conventional production systems. Both conventional and alternative production systems have complex supply chains that present many different opportunities for flocks of birds or poultry meat to be contaminated with foodborne pathogens. As such, it is important to understand the risks involved during each step of production. The purpose of this review is to detail the potential routes of foodborne pathogen transmission throughout the conventional and alternative supply chains, with a special emphasis on the differences in risk between the two management systems, and to identify gaps in knowledge that could assist, if addressed, in poultry risk-based decision making.
Collapse
Affiliation(s)
- Chase E Golden
- Department of Food Science and Technology, University of Georgia, 100 Cedar St., Athens, GA, USA
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, USA
| | - Abhinav Mishra
- Department of Food Science and Technology, University of Georgia, 100 Cedar St., Athens, GA, USA.
| |
Collapse
|
18
|
Evaluation of a modified live Salmonella typhimurium vaccination efficacy against Salmonella enterica serovar Infantis in broiler chickens at processing age. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Course CE, Boerlin P, Slavic D, Vaillancourt JP, Guerin MT. Factors associated with Salmonella enterica and Escherichia coli during downtime in commercial broiler chicken barns in Ontario. Poult Sci 2021; 100:101065. [PMID: 33765489 PMCID: PMC8008170 DOI: 10.1016/j.psj.2021.101065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 11/22/2022] Open
Abstract
Salmonella enterica and Escherichia coli are bacteria of concern to veterinary public health and poultry health. Our research aimed to determine the factors associated with S. enterica and E. coli in commercial broiler chicken barns during the rest period between flocks to identify the best methods of sanitation for bacterial load reduction. This involved collecting samples from September 2015 to July 2016 from the floors of 36 barns before sanitation (baseline) and at 2 time intervals after sanitation, followed by microbiological and molecular analysis. A priori variables of interest included sanitation procedure (dry cleaning, wet cleaning, disinfection), sampling point (baseline, 2 d after sanitation, 6 d after sanitation), and flooring type (concrete, wood). The odds of detecting S. enterica were higher on wooden floors that were wet-cleaned than on concrete floors that were dry-cleaned, lower in the winter and spring than in the fall, and lower when samples were collected 2 d and 6 d after sanitation than at baseline. For E. coli, the concentration was higher on wooden floors than on concrete floors and in the summer than in the fall, and it was lower in postsanitation samples from disinfected barns than in presanitation samples from dry-cleaned barns and in the winter than in the fall. Among E. coli isolates, factors associated with the presence of qacEΔ1, a gene associated with resistance to quaternary ammonium compounds, included sanitation procedure, flooring type, cycle length, and the number of times per yr the barn is disinfected. Our findings highlight the importance of cleaning after litter removal, although the sanitation procedure chosen might differ depending on which pathogen is present and causing disease issues; dry cleaning appears to be preferable for S. enterica control, especially in barns with wooden floors, whereas disinfection appears to be preferable for E. coli reduction.
Collapse
Affiliation(s)
- Chelsea E Course
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | - Patrick Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Durda Slavic
- Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada N1H 6R8
| | - Jean-Pierre Vaillancourt
- Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada J2S 2M2
| | - Michele T Guerin
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
20
|
Ricke SC, Dittoe DK, Richardson KE. Formic Acid as an Antimicrobial for Poultry Production: A Review. Front Vet Sci 2020; 7:563. [PMID: 33088825 PMCID: PMC7494846 DOI: 10.3389/fvets.2020.00563] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Organic acids continue to receive considerable attention as feed additives for animal production. Most of the emphasis to date has focused on food safety aspects, particularly on lowering the incidence of foodborne pathogens in poultry and other livestock. Several organic acids are currently either being examined or are already being implemented in commercial settings. Among the several organic acids that have been studied extensively, is formic acid. Formic acid has been added to poultry diets as a means to limit Salmonella spp. and other foodborne pathogens both in the feed and potentially in the gastrointestinal tract once consumed. As more becomes known about the efficacy and impact formic acid has on both the host and foodborne pathogens, it is clear that the presence of formic acid can trigger certain pathways in Salmonella spp. This response may become more complex when formic acid enters the gastrointestinal tract and interacts not only with Salmonella spp. that has colonized the gastrointestinal tract but the indigenous microbial community as well. This review will cover current findings and prospects for further research on the poultry microbiome and feeds treated with formic acid.
Collapse
Affiliation(s)
- Steven C. Ricke
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Dana K. Dittoe
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | | |
Collapse
|
21
|
Bonato M, Borges LL, Ingberman M, Fávaro C, Mesa D, Caron LF, Beirão BC. Effects of yeast cell wall on immunity, microbiota, and intestinal integrity of Salmonella-infected broilers. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Abdollahi MR, Zaefarian F, Hall L, Jendza JA. Feed acidification and steam-conditioning temperature influence nutrient utilization in broiler chickens fed wheat-based diets. Poult Sci 2020; 99:5037-5046. [PMID: 32988540 PMCID: PMC7598303 DOI: 10.1016/j.psj.2020.06.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/07/2020] [Accepted: 06/20/2020] [Indexed: 12/28/2022] Open
Abstract
Two experiments were conducted to examine the effects of conditioning temperature (CT) and the interactive influence of feed acidification (FA) and CT on the performance, coefficient of apparent ileal digestibility (CAID) of nitrogen (N), starch, fat calcium (Ca) and phosphorus (P), and AME in broilers. In both experiments, each treatment was randomly allocated to 6 cages (8 birds per cage) and fed from 1 to 21 D posthatch. In experiment 1, the effect of CT was evaluated using a wheat-based diet at 3 CT: unconditioned, conditioned at 60°C or 90°C. All the diets by-passed the pellet press and collected in mash form. Birds fed the diet conditioned at 90°C consumed more (P < 0.05) feed and tended (P = 0.087) to have higher feed per gain (F:G) than those fed the unconditioned diet but similar to those fed the diet conditioned at 60°C. A tendency was noted for CT to affect the CAID of N (P = 0.071) and starch (P = 0.093), with reduced digestibility values in the diet conditioned at 90°C. Conditioning at 90°C resulted in lower (P < 0.05) AME. In experiment 2, three inclusions of an acidifier (0.0, 7.0, and 10 g/kg) and 2 CT of 60°C and 90°C were evaluated in a 3 × 2 factorial arrangement of treatments using pelleted diets. Neither the main effects nor the interaction between acidifier addition and CT was significant for weight gain, feed intake, and F:G. The FA increased (P < 0.05) the CAID of N, fat, and P at both inclusion levels and of starch at 10 g/kg. Conditioning at 90°C reduced (P < 0.05) the CAID of starch, fat, and Ca, regardless of FA level. Overall, the present data showed that the application of high CT for broiler feed manufacture can impair nutrient utilization and, consequently the feed efficiency in broilers. Feed acidification imparts some benefits to nutrient digestibility in broilers fed pelleted wheat-based diets.
Collapse
Affiliation(s)
- M R Abdollahi
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand.
| | - F Zaefarian
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - L Hall
- BASF Australia Ltd., Southbank, VIC 3006, Australia
| | - J A Jendza
- BASF Corporation, Florham Park, NJ 07932, USA
| |
Collapse
|
23
|
Golden CE, Mishra A. Prevalence of Salmonella and Campylobacter spp. in Alternative and Conventionally Produced Chicken in the United States: A Systematic Review and Meta-Analysis. J Food Prot 2020; 83:1181-1197. [PMID: 32294168 DOI: 10.4315/jfp-19-538] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT The burden of foodborne illness linked to the consumption of contaminated broiler meat is high in the United States. With the increase in popularity of alternative poultry rearing and production systems, it is important to identify the differences in food safety risks presented by alternative systems compared with conventional methods. Although many studies have been conducted that surveyed foodborne pathogen prevalence along the broiler supply chain, a systematic overview of all of the results is lacking. In the current study, a systematic review and meta-analysis were conducted to quantify the differences in prevalence of Salmonella and Campylobacter spp. in farm environment, rehang, prechill, postchill, and retail samples between conventional and alternative production systems. A systematic search of Web of Science and PubMed databases was conducted to identify eligible studies. Studies were then evaluated by inclusion criteria, and the included studies were qualitatively and quantitatively analyzed. In total, 137 trials from 72 studies were used in the final meta-analysis. Meta-analysis models were individually constructed for subgroups that were determined by sample type, pathogen, and production type. All subgroups possessed high amounts of heterogeneity (I2 > 75%). For environmental sample subgroups, Campylobacter prevalence was estimated to be 15.8 and 52.8% for conventional and alternative samples, respectively. Similar prevalence estimates for both production types were observed for Salmonella environmental samples and all retail samples. For conventional samples, Campylobacter and Salmonella prevalence was highest in prechill samples followed by rehang and postchill samples, respectively. The results herein will be useful in future quantitative microbial risk assessments for characterizing the differences in foodborne illness risks presented by different broiler production systems. HIGHLIGHTS
Collapse
Affiliation(s)
- Chase E Golden
- Department of Food Science and Technology, University of Georgia, 100 Cedar Street, Athens, Georgia 30602, USA (ORCID: https://orcid.org/0000-0001-9214-0745 [A.M.])
| | - Abhinav Mishra
- Department of Food Science and Technology, University of Georgia, 100 Cedar Street, Athens, Georgia 30602, USA (ORCID: https://orcid.org/0000-0001-9214-0745 [A.M.])
| |
Collapse
|
24
|
Aljumaah MR, Alkhulaifi MM, Abudabos AM, Alabdullatifb A, El-Mubarak AH, Al Suliman AR, Stanley D. Organic acid blend supplementation increases butyrate and acetate production in Salmonella enterica serovar Typhimurium challenged broilers. PLoS One 2020; 15:e0232831. [PMID: 32497096 PMCID: PMC7272039 DOI: 10.1371/journal.pone.0232831] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
The burden of enteric pathogens in poultry is growing after the ban of antibiotic use in animal production. Organic acids gained attention as a possible alternative to antibiotics due to their antimicrobial activities, improved nutrient metabolism and performance. The current study was conducted to evaluate the effectiveness of organic acid blend on broilers cecal microbiota, histomorphometric measurements, and short-chain fatty acid production in Salmonella enterica serovar Typhimurium challenge model. Birds were divided into four treatments, including a negative control, positive control challenged with S. Typhimurium, group supplemented with an organic acid blend, and birds supplemented with organic acid blend and Salmonella challenged. Results illustrate significant differences in feed conversion ratios and production efficiency factor between treatment groups, however, the influence of organic acid supplement was marginal. Organic acid blend significantly increased cecal acetic and butyric acids concentrations when compared to unsupplemented groups and resulted in minor alterations of intestinal bacterial communities.
Collapse
Affiliation(s)
- Mashael R Aljumaah
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alaeldein M Abudabos
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alabdullatifb
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Aarif H El-Mubarak
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Gezira, Medani, Sudan
| | - Ali R Al Suliman
- King Abulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia
| |
Collapse
|
25
|
Lin CH, Huang JF, Sun YF, Adams PJ, Lin JH, Robertson ID. Detection of chicken carcasses contaminated with Salmonella enterica serovar in the abattoir environment of Taiwan. Int J Food Microbiol 2020; 325:108640. [PMID: 32344254 DOI: 10.1016/j.ijfoodmicro.2020.108640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 11/26/2022]
Abstract
Although a nation-wide microbiological screening program of chicken carcasses after chilling in Taiwanese chicken abattoirs has been undertaken since 2006, little is known regarding the potential sources of the Salmonella during the slaughter process. The present study provides data on the detection and serotypes of Salmonella isolated from broilers during processing and from the environment in six abattoirs in Taiwan. Overall, Salmonella were detected in 156 of 622 samples (25.1%; 95% CI: 21.7-28.7) collected. The prevalence of Salmonella varied between sampling sites with 5.8, 17.6, 31.3 and 35.5% of cloacal swabs, environmental samples prior to processing, environmental samples during processing and carcass rinse fluid, respectively, being positive (χ2 = 51.3, p < 0.0001). A total of 15 serotypes were identified from the 156 Salmonella isolates with S. Albany (41.7%) S. Schwarzengrund (20.5%), S. Kentucky (12.8%) and S. Tennessee (5.1%) being the most commonly isolated serotypes. Characterization of 156 isolates by Pulse Field Gel Electrophoresis (PFGE) identified 50 PFGE types. Typing confirmed the presence of the same PFGE type at multiple stages during processing including plucking, evisceration, chilling and post-chilling. The abattoir environment and intestinal contents of chickens are important sources of Salmonella in broiler chicken abattoirs, with the same PFGE types detected at different stages of processing both before and during slaughtering. It is concluded that Salmonella isolates present in the environment and intestinal contents of processed birds survived in the abattoir environment resulting in subsequent carcass contamination along the processing chain including plucking, evisceration, chilling and post-chilling.
Collapse
Affiliation(s)
- Chih-Hsien Lin
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia 6150, Australia; Bureau of Animal and Plant Health Inspection and Quarantine, Council of Agriculture, Taipei City 10070, Taiwan.
| | - Jing-Fang Huang
- Animal Technology Laboratories, Agricultural Technology Research Institute, Miaoli County 35053, Taiwan
| | - Yu-Fen Sun
- Animal Technology Laboratories, Agricultural Technology Research Institute, Miaoli County 35053, Taiwan
| | - Peter J Adams
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia 6150, Australia; Department of Primary Industries and Regional Development, Western Australia 6151, Australia
| | - Jiunn-Horng Lin
- Animal Technology Laboratories, Agricultural Technology Research Institute, Miaoli County 35053, Taiwan
| | - Ian D Robertson
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
26
|
Dame-Korevaar A, Fischer EAJ, van der Goot J, Stegeman A, Mevius D. Transmission routes of ESBL/pAmpC producing bacteria in the broiler production pyramid, a literature review. Prev Vet Med 2018; 162:136-150. [PMID: 30621893 DOI: 10.1016/j.prevetmed.2018.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
Plasmid mediated Extended Spectrum Beta-Lactamase and AmpC Beta-Lactamase (ESBL/pAmpC) producing bacteria are resistant to beta-lactam antimicrobials and are widespread in humans, the environment and animals. Animals, especially broilers, are an important reservoir of ESBL/pAmpC producing bacteria. To control ESBL/pAmpC prevalence in broilers, transmission within the entire broiler production pyramid should be considered. This study, including 103 articles originating from two electronic databases, searched for evidence for possible routes of transmission of ESBL/pAmpC producing bacteria in the broiler production pyramid. Possible routes of transmission were categorised as 1) vertical between generations, 2) at hatcheries, 3) horizontal on farm, and 4) horizontal between farms and via the environment of farms. This review presents indications for transmission of ESBL/pAmpC producing bacteria for each of these routes. However, the lack of quantitative results in the literature did not allow an estimation of the relative contribution or magnitude of the different routes. Future research should be specifically targeted towards such information as it is crucial to guide reduction strategies for the spread of ESBL/pAmpC producing bacteria in the broiler production chain.
Collapse
Affiliation(s)
- Anita Dame-Korevaar
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Egil A J Fischer
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jeanet van der Goot
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Arjan Stegeman
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Dik Mevius
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, the Netherlands; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
27
|
Vermeulen K, Verspreet J, Courtin CM, Haesebrouck F, Baeyen S, Haegeman A, Ducatelle R, Van Immerseel F. Reduced-Particle-Size Wheat Bran Is Efficiently Colonized by a Lactic Acid-Producing Community and Reduces Levels of Enterobacteriaceae in the Cecal Microbiota of Broilers. Appl Environ Microbiol 2018; 84:e01343-18. [PMID: 30143505 PMCID: PMC6193378 DOI: 10.1128/aem.01343-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/24/2018] [Indexed: 01/16/2023] Open
Abstract
In the present study, we investigated whether reducing the particle size of wheat bran affects the colonizing microbial community using batch fermentations with cecal inocula from seven different chickens. We also investigated the effect of in-feed administration of regular wheat bran (WB; 1,690 μm) and wheat bran with reduced particle size (WB280; 280 μm) on the cecal microbial community composition of broilers. During batch fermentation, WB280 was colonized by a lactic acid-producing community (Bifidobacteriaceae and Lactobacillaceae) and by Lachnospiraceae that contain lactic acid-consuming butyric acid-producing species. The relative abundances of the Enterobacteriaceae decreased in the particle-associated communities for both WB and WB280 compared to that of the control. In addition, the community attached to wheat bran was enriched in xylan-degrading bacteria. When administered as a feed additive to broilers, WB280 significantly increased the richness of the cecal microbiota and the abundance of bacteria containing the butyryl-coenzyme A (CoA):acetate CoA-transferase gene, a key gene involved in bacterial butyrate production, while decreasing the abundances of Enterobacteriaceae family members in the ceca. Particle size reduction of wheat bran thus resulted in the colonization of the bran particles by a very specific lactic acid- and butyric acid-producing community and can be used to steer toward beneficial microbial shifts. This can potentially increase the resilience against pathogens and increase animal performance when the reduced-particle-size wheat bran is administered as a feed additive to broilers.IMPORTANCE Prebiotic dietary fibers are known to improve the gastrointestinal health of both humans and animals in many different ways. They can increase the bulking capacity, improve transit times, and, depending on the fiber, even stimulate the growth and activity of resident beneficial bacteria. Wheat bran is a readily available by-product of flour processing and is a highly concentrated source of (in)soluble dietary fiber. The intake of fiber-rich diets has been associated with increased Firmicutes and decreased Proteobacteria numbers. Here, we show that applying only 1% of a relatively simple substrate which was technically modified using relatively simple techniques reduces the concentration of Enterobacteriaceae This could imply that in future intervention studies, one should take the particle size of dietary fibers into account.
Collapse
Affiliation(s)
- Karen Vermeulen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joran Verspreet
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Steve Baeyen
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Merelbeke, Belgium
| | - Annelies Haegeman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
28
|
Adhikari P, Cosby DE, Cox NA, Franca MS, Williams SM, Gogal RM, Ritz CW, Kim WK. Effect of dietary fructooligosaccharide supplementation on internal organs Salmonella colonization, immune response, ileal morphology, and ileal immunohistochemistry in laying hens challenged with Salmonella enteritidis. Poult Sci 2018; 97:2525-2533. [PMID: 29669131 DOI: 10.3382/ps/pey101] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/08/2018] [Indexed: 01/20/2023] Open
Abstract
A study was conducted to evaluate the efficacy of fructooligosaccharides (FOS) in controlling the infection of Salmonella Enteritidis (SE) in White Leghorns. A total of 30 laying hens (white leghorns W-36) were challenged both orally and cloacally with approximately 108 colony-forming units of nalidxic acid resistant SE (SENAR) and divided into 3 treatments: 1) SENAR challenged + 0.0% FOS, 2) SENAR challenged + 0.5% FOS (Nutraflora), and 3) SENAR challenged + 1.0% FOS. SENAR recovery via fecal shedding was measured at 3- and 6-d post-infection (dpi), whereas in the ceca and internal organs, SENAR recovery was measured at 7-d post-infection. In the first experiment, there was a 1.0 log10 and a 1.3 log10 reduction in cecal SENAR by supplementation of FOS at 0.5 and 1.0%, respectively. In the second experiment, there was a 0.6 log10 and a 0.8 log10 reduction in cecal SENAR by supplementation of FOS at 0.5 and 1.0%, respectively. Fecal shedding was significantly lower in 1.0% FOS supplemented groups compared to SENAR challenge 0.0% FOS. There was no significant difference among the 3 treatments on SENAR recovery in liver with gall bladder and ovaries. However, the frequency of positive SENAR in the ovaries (10 to 40%) in SENAR challenge 0.0% FOS was significantly lower than liver with gall bladder (60 to 80%) in both experiments. There was a significant upregulation of toll-like receptor-4 in 1.0% FOS and interferon gamma in both 0.5 and 1.0% FOS. Histologic measurements of ileal villi height and crypt depth were similar across all treatments. Immunohistochemistry analyses of ileal samples showed that immunoglobulin A positive cells increased as FOS concentration increased reaching significance at 1.0% as well as altered cytokine gene expression in the ileum. Further, FOS supplementation also reduced cecal SENAR and feces SENAR levels. Collectively, the results suggest that dietary supplementation with FOS may impair SE pathogenesis while modulating humoral immunity within the gut-associated lymphoid tissue.
Collapse
Affiliation(s)
- Pratima Adhikari
- Department of Poultry Science, Mississippi State University, Starkville, Mississippi, 39762, USA
| | - Douglas E Cosby
- USDA, ARS, The U.S. National Poultry Research Center, Athens, GA 30605, USA
| | - Nelson A Cox
- USDA, ARS, The U.S. National Poultry Research Center, Athens, GA 30605, USA
| | - Monique S Franca
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Susan M Williams
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Robert M Gogal
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Casey W Ritz
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
29
|
Shang Y, Kumar S, Thippareddi H, Kim WK. Effect of Dietary Fructooligosaccharide (FOS) Supplementation on Ileal Microbiota in Broiler Chickens. Poult Sci 2018; 97:3622-3634. [DOI: 10.3382/ps/pey131] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
|
30
|
Dittoe DK, Ricke SC, Kiess AS. Organic Acids and Potential for Modifying the Avian Gastrointestinal Tract and Reducing Pathogens and Disease. Front Vet Sci 2018; 5:216. [PMID: 30238011 PMCID: PMC6136276 DOI: 10.3389/fvets.2018.00216] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/16/2018] [Indexed: 11/21/2022] Open
Abstract
Recently, antibiotics have been withdrawn from some poultry diets; leaving the birds at risk for increased incidence of dysbacteriosis and disease. Furthermore, mortalities occurring from disease contribute between 10 to 20% of production cost in developed countries. Currently, numerous feed supplements are being proposed as effective antibiotic alternatives in poultry diets, such as prebiotics, probiotics, acidic compounds, competitive exclusion products, herbs, essential oils, and bacteriophages. However, acidic compounds consisting of organic acids show promise as antibiotic alternatives. Organic acids have demonstrated the capability to enhance poultry performance by altering the pH of the gastrointestinal tract (GIT) and consequently changing the composition of the microbiome. In addition, organic acids, by altering the composition of the microbiome, protect poultry from pH-sensitive pathogens. Protection is further provided to poultry by the ability of organic acids to potentially enhance the morphology and physiology of the GIT and the immune system. Thus, the objective of the current review is to provide an understanding of the effects organic acids have on the microbiome of poultry and the effect those changes have on the prevalence of pathogens and diseases in poultry. From data reviewed, it can be concluded that the efficacy of organic acids on shifting microbiome composition is limited to the time of administration, the composition of the organic acid product, and the current health conditions of poultry.
Collapse
Affiliation(s)
- Dana K. Dittoe
- Department of Food Science and Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Department of Food Science and Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Aaron S. Kiess
- Department of Poultry Science, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
31
|
Shang Y, Kim WK. Roles of Fructooligosaccharides and Phytase in Broiler
Chickens: Review. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ijps.2017.16.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Goodarzi Boroojeni F, Svihus B, Graf von Reichenbach H, Zentek J. The effects of hydrothermal processing on feed hygiene, nutrient availability, intestinal microbiota and morphology in poultry—A review. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Shang Y, Regassa A, Kim JH, Kim WK. The effect of dietary fructooligosaccharide supplementation on growth performance, intestinal morphology, and immune responses in broiler chickens challenged with Salmonella Enteritidis lipopolysaccharides. Poult Sci 2015; 94:2887-97. [DOI: 10.3382/ps/pev275] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/22/2015] [Indexed: 12/17/2022] Open
|
34
|
Khan SH, Iqbal J. Recent advances in the role of organic acids in poultry nutrition. JOURNAL OF APPLIED ANIMAL RESEARCH 2015. [DOI: 10.1080/09712119.2015.1079527] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
de Barros Moreira Filho AL, de Oliveira CJB, de Oliveira HB, Campos DB, Guerra RR, Costa FGP, Givisiez PEN. High Incubation Temperature and Threonine Dietary Level Improve Ileum Response Against Post-Hatch Salmonella Enteritidis Inoculation in Broiler Chicks. PLoS One 2015; 10:e0131474. [PMID: 26131553 PMCID: PMC4488937 DOI: 10.1371/journal.pone.0131474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/01/2015] [Indexed: 12/24/2022] Open
Abstract
This study assessed the effect of both embryonic thermal manipulation and dietary threonine level on the response of broilers inoculated with Salmonella Enteritidis, considering bacterial counts in the cecal contents, intestinal morphology, mucin and heat shock protein 70 gene expression, body weight and weight gain. Thermal manipulation was used from 11 days of incubation until hatch, defining three treatments: standard (37.7°C), continuous high temperature (38.7°C) and continuous low temperature (36.7°C). After hatch, chicks were distributed according to a 3x2+1 factorial arrangement (three temperatures and two threonine levels and one sham-inoculated control). At two days of age, all chicks were inoculated with Salmonella Enteritidis, except for the sham-inoculated control group. There was no interaction between the factors on any analyses. High temperature during incubation was able to reduce colonization by Salmonella Enteritidis in the first days, reducing both Salmonella counts and the number of positive birds. It also increased mucin expression and decreased Hsp70 expression compared with other inoculated groups. High temperature during incubation and high threonine level act independently to reduce the negative effects associated to Salmonella Enteritidis infection on intestinal morphology and performance, with results similar to sham-inoculated birds. The findings open new perspectives for practical strategies towards the pre-harvest Salmonella control in the poultry industry.
Collapse
Affiliation(s)
| | - Celso José Bruno de Oliveira
- Department of Animal Science, Center of Agrarian Sciences, Federal University of Paraiba (UFPB), Areia, PB, Brazil
| | - Heraldo Bezerra de Oliveira
- Department of Animal Science, Center of Agrarian Sciences, Federal University of Paraiba (UFPB), Areia, PB, Brazil
| | - Danila Barreiro Campos
- Department of Veterinary Sciences, Center of Agrarian Sciences, Federal University of Paraiba (UFPB), Areia, PB, Brazil
| | - Ricardo Romão Guerra
- Department of Veterinary Sciences, Center of Agrarian Sciences, Federal University of Paraiba (UFPB), Areia, PB, Brazil
| | | | - Patricia Emília Naves Givisiez
- Department of Animal Science, Center of Agrarian Sciences, Federal University of Paraiba (UFPB), Areia, PB, Brazil
- * E-mail:
| |
Collapse
|
36
|
Harimurti S, Hadisaputro W. Probiotics in Poultry. BENEFICIAL MICROORGANISMS IN AGRICULTURE, AQUACULTURE AND OTHER AREAS 2015. [DOI: 10.1007/978-3-319-23183-9_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Goodarzi Boroojeni F, Vahjen W, Mader A, Knorr F, Ruhnke I, Röhe I, Hafeez A, Villodre C, Männer K, Zentek J. The effects of different thermal treatments and organic acid levels in feed on microbial composition and activity in gastrointestinal tract of broilers. Poult Sci 2014; 93:1440-52. [DOI: 10.3382/ps.2013-03763] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Goodarzi Boroojeni F, Mader A, Knorr F, Ruhnke I, Röhe I, Hafeez A, Männer K, Zentek J. The effects of different thermal treatments and organic acid levels on nutrient digestibility in broilers. Poult Sci 2014; 93:1159-71. [DOI: 10.3382/ps.2013-03563] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Cerisuelo A, Marín C, Sánchez-Vizcaíno F, Gómez EA, de la Fuente JM, Durán R, Fernández C. The impact of a specific blend of essential oil components and sodium butyrate in feed on growth performance and Salmonella counts in experimentally challenged broilers. Poult Sci 2014; 93:599-606. [PMID: 24604853 DOI: 10.3382/ps.2013-03528] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Essential oils (EO) and short-chain fatty acids have potential antimicrobial activity in broilers. This study aimed to investigate the effect of a specific blend of EO and a combination of this blend of EO with sodium-butyrate on growth performance and Salmonella colonization in broilers. A total of 480 one-day-old male broilers were distributed into 5 treatments (8 pens per treatment and 12 birds per pen) and reared during 42 d in experimental conditions. Dietary treatments consisted of the addition of different doses of EO (0 mg/kg, control; 50 mg/kg, EO50 and 100 mg/kg, EO100) or a combination of EO with 1 g/kg of sodium-butyrate (B; EO50 + B, EOB50 and EO100 + B, EOB100) to a basal diet. All birds were orally infected with 10(8) cfu of Salmonella Enteritidis on d 7 of study. Individual BW and feed intake per pen were measured at arrival and on a weekly basis. The prevalence and enumeration of Salmonella in feces was determined per treatment at 72 h postinfection and on d 23 and 37 of study. At slaughter, cecal content and liver samples from 16 birds per treatment were cultured for Salmonella and cecal pH was measured. No differences were observed on growth performance among treatments. All fecal samples analyzed were positive for Salmonella from d 10 to the end of the rearing period. At slaughter, Salmonella contamination (positive samples) in cecum was lower in birds fed EOB50 compared with the other treatments (P < 0.05), whereas birds fed the control diet showed the highest colonization rates. The pH of the cecal content was not different among treatments. Thus, EO or its combination with sodium-butyrate did not affect growth performance. However, a clear effectiveness of these products was observed in Salmonella control, especially when low doses of EO were combined with sodium-butyrate (EOB50).
Collapse
Affiliation(s)
- A Cerisuelo
- Centro de Investigación y Tecnología Animal (CITA), Instituto Valenciano de Investigaciones Agrarias (IVIA), 12400 Segorbe, Castellón, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Amado IR, Vázquez JA, Fuciños P, Méndez J, Pastrana L. Optimization of Antimicrobial Combined Effect of Organic Acids and Temperature on Foodborne Salmonella and Escherichia coli in Cattle Feed by Response Surface Methodology. Foodborne Pathog Dis 2013; 10:1030-6. [DOI: 10.1089/fpd.2013.1559] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Isabel Rodríguez Amado
- Departamento de Química Analítica y Alimentaria, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas-IIM (CSIC), Vigo, Pontevedra, Spain
| | - Jose Antonio Vázquez
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas-IIM (CSIC), Vigo, Pontevedra, Spain
| | - Pablo Fuciños
- Departamento de Química Analítica y Alimentaria, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas-IIM (CSIC), Vigo, Pontevedra, Spain
| | - Jesús Méndez
- Cooperativas Orensanas Sociedad Cooperativa Ltda (COREN), Polígono San Ciprián de Viñas, Ourense, Spain
| | - Lorenzo Pastrana
- Departamento de Química Analítica y Alimentaria, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
41
|
Santos EG, Costa FGP, Silva JHV, Martins TDD, Figueiredo-Lima DF, Macari M, Oliveira CJB, Givisiez PEN. Protective effect of mannan oligosaccharides against early colonization by Salmonella Enteritidis in chicks is improved by higher dietary threonine levels. J Appl Microbiol 2013; 114:1158-65. [PMID: 23279100 DOI: 10.1111/jam.12108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/08/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022]
Abstract
AIMS To evaluate mannan oligosaccharide (MOS) and threonine effects on performance, small intestine morphology and Salmonella spp. counts in Salmonella Enteritidis-challenged birds. METHODS AND RESULTS One-day-old chicks (1d) were distributed into five treatments: nonchallenged animals fed basal diet (RB-0), animals fed basal diet and infected with Salmonella Enteritidis (RB-I), animals fed high level of threonine and infected (HT-I), birds fed basal diet with MOS and infected (MOS-I), birds fed high level of threonine and MOS and infected (HT+MOS-I). Birds were inoculated at 2d with Salmonella Enteritidis, except RB-0 birds. Chicks fed higher dietary threonine and MOS showed performance similar to RB-0 and intestinal morphology recovery at 8 dpi. Salmonella counts and the number of Salmonella-positive animals were lower in HT+MOS-I compared with other challenged groups. CONCLUSION Mannan oligosaccharides and threonine act synergistically, resulting in improved intestinal environment and recovery after Salmonella inoculation. SIGNIFICANCE AND IMPACT OF THE STUDY Nutritional approaches may be useful to prevent Salmonella infection in the first week and putative carcass contamination at slaughter. This is the first report on the possible synergistic effect of mannan oligosaccharides and threonine, and further studies should be performed including performance, microbiota evaluation, composition of intestinal mucins and immune assessment.
Collapse
Affiliation(s)
- E G Santos
- Programa de Pós-Graduação em Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, PB, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Anim Feed Sci Technol 2013. [DOI: 10.1016/j.anifeedsci.2012.10.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Effect of the commercial product Lumance™, a combination of partly esterified organic acids and plant extracts, on the productive performance of broiler chickens. JOURNAL OF APPLIED ANIMAL NUTRITION 2013. [DOI: 10.1017/jan.2014.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryThe present study was conducted to determine the effect of dietary supplementation of organic acids combined with synergistic components, using a commercial product Lumance™ (Innovad NV, Belgium) containing esterified butyrins, propionic acid and sorbic acid, with medium chain fatty acids (capric, caprylic, and lauric acid) and plant extracts, on the productive performance and mortality of growing broiler chickens. A total of 492, one day old broiler chicks (Ross 308) were randomly allocated to four experimental treatments either with an unsupplemented control or 0.05, 0.1 or 0.15% organic acid mixture in a pelleted corn/soyabean meal diet, which were offered ad libitum until 35 days of age. Results showed that birds in the 0.1% supplemented diet group gave significantly higher (P < 0.05) body weights during the first two weeks of age and increased weight gain during the first three weeks of age. The inclusion had no effect on broiler mortality.
Collapse
|
44
|
Totton SC, Farrar AM, Wilkins W, Bucher O, Waddell LA, Wilhelm BJ, McEwen SA, Rajić A. The effectiveness of selected feed and water additives for reducing Salmonella spp. of public health importance in broiler chickens: A systematic review, meta-analysis, and meta-regression approach. Prev Vet Med 2012; 106:197-213. [DOI: 10.1016/j.prevetmed.2012.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 04/27/2012] [Accepted: 07/02/2012] [Indexed: 11/16/2022]
|
45
|
Makaya PV, Matope G, Pfukenyi DM. Distribution of Salmonella serovars and antimicrobial susceptibility of Salmonella Enteritidis from poultry in Zimbabwe. Avian Pathol 2012; 41:221-6. [PMID: 22515540 DOI: 10.1080/03079457.2012.667558] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A study was carried out to determine the distribution and antimicrobial susceptibility profiles of Salmonella serovars from chickens from large-scale commercial (LSC), small-scale commercial (SSC), and rural free-range (RFR) farms of Zimbabwe. Pooled cloacal swabs were collected for culture and isolation of Salmonella spp. A chi-square test was used to assess distribution differences of salmonellas among the farming sectors. Approximately 10% (283/2833) of the swabs were positive for Salmonella enterica, with only subspecies enterica (98.6%) and arizonae (1.4%) being detected. The prevalence of S. enterica varied significantly (P<0.05) among areas, with Harare (27.8%) and Buhera (1.3%) recording the highest and the least prevalence, respectively. S. enterica was only isolated from LSC and SSC farms, with the former having a significantly (P<0.001; χ(2)=155.3) higher prevalence than the latter. S. arizonae was only isolated from the SSC farms while none were obtained from the RFR farms. The serovars isolated were Salmonella Enteritidis (72.8%), Group C (20.1%), Group B (4.2%), Salmonella Typhimurium (1.1%) and Salmonella Gallinarum (0.4%). S. Enteritidis predominated in the urban/periurban areas. Approximately 26% (53/206) of S. Enteritidis isolates were resistant to one or more antimicrobial agents. Resistance to tetracycline was the most common, while no resistance was detected for furazolidone, neomycin and trimethoprim-sulfamethoxazole. There were 12.1% multi-drug-resistant S. Enteritidis isolates, and the resistance to ampicillin/kanamycin was predominant. The identification of multi-drug-resistant S. Enteritidis is of public health concern. Thus, stringent control of S. Enteritidis will reduce the public health risk of human salmonellosis.
Collapse
Affiliation(s)
- P V Makaya
- Central Veterinary Laboratory, Department of Veterinary Technical Services, Causeway, Harare, Zimbabwe
| | | | | |
Collapse
|
46
|
Osés S, Luning P, Jacxsens L, Santillana S, Jaime I, Rovira J. Food safety management system performance in the lamb chain. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Amerah AM, Mathis G, Hofacre CL. Effect of xylanase and a blend of essential oils on performance and Salmonella colonization of broiler chickens challenged with Salmonella Heidelberg. Poult Sci 2012; 91:943-7. [PMID: 22399734 DOI: 10.3382/ps.2011-01922] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present experiment examined the influence of xylanase supplementation and a blend of essential oils (EO; cinnamaldehyde and thymol) on performance and Salmonella horizontal transmission in broiler chickens challenged with Salmonella. Two thousand 1-d-old broiler chicks were randomly assigned to 5 dietary treatments (8 pens/treatment of 50 male broilers each). Four dietary treatments were challenged with Salmonella: 1) control, 2) basal diets supplemented with EO, 3) basal diet supplemented with xylanase (2,000 U/kg of feed), and 4) basal diet supplemented with a combination of EO and xylanase (2,000 U/kg of feed). One treatment served as an unchallenged control and was not supplemented with either additive. Broiler starter and finisher diets, based on wheat and soybean meal, were formulated, pelleted, and fed ad libitum. At d 1, before placement, half of the birds from each pen were tagged and dosed with Salmonella enterica serovar Heidelberg (5 × 10(5) cfu/mL). On d 42, 5 random untagged birds from each pen were killed and their ceca removed and tested for Salmonella. Performance data were analyzed as a completely randomized design using GLM. The frequency of positive Salmonella in the untagged birds was compared between treatments by using a chi-squared test of homogeneity. Challenging the birds with Salmonella had no effect (P > 0.05) on any of the measured performance parameters. Xylanase and EO supplementation improved (P < 0.05) the 42-d BW gain and feed efficiency, with no effect (P > 0.05) on feed intake, compared with that of the control treatment. Xylanase supplementation improved (P < 0.05) BW gain and feed efficiency compared with the results of EO supplementation. The combination treatment of xylanase and EO numerically improved BW gain and feed efficiency compared with the xylanase treatment. Xylanase and EO supplementation reduced (P < 0.05) the incidence of horizontal transmission of Salmonella infection between birds by 61 and 77%, respectively, compared with the control. The results of the current study suggested that dietary addition of EO and xylanase could improve broiler performance and contribute to food safety by lowering the incidence of horizontal transmission of Salmonella infection.
Collapse
Affiliation(s)
- A M Amerah
- Danisco Animal Nutrition, Marlborough, SN8 1XN UK.
| | | | | |
Collapse
|
48
|
Totton SC, Farrar AM, Wilkins W, Bucher O, Waddell LA, Wilhelm BJ, McEwen SA, Rajić A. A systematic review and meta-analysis of the effectiveness of biosecurity and vaccination in reducing Salmonella spp. in broiler chickens. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Doyle MP, Erickson MC. Opportunities for mitigating pathogen contamination during on-farm food production. Int J Food Microbiol 2012; 152:54-74. [DOI: 10.1016/j.ijfoodmicro.2011.02.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/03/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
|
50
|
Evaluating interventions againstSalmonellain broiler chickens: applying synthesis research in support of quantitative exposure assessment. Epidemiol Infect 2011; 140:925-45. [DOI: 10.1017/s0950268811001373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
SUMMARYA scoping study and systematic review-meta-analyses (SR-MAs) were conducted to evaluate the effectiveness of various interventions forSalmonellain broiler chicken, from grow-out farm to secondary processing. The resulting information was used to inform a quantitative exposure assessment (QEA) comparing various control options within the context of broiler chicken production in Ontario, Canada. Multiple scenarios, including use of two separate on-farm interventions (CF3 competitive exclusion culture and a 2% lactose water additive), a package of processing interventions (a sodium hydroxide scald water disinfectant, a chlorinated post-evisceration spray, a trisodium phosphate pre-chill spray and chlorinated immersion chilling) a package consisting of these farm and processing interventions and a hypothetical scenario (reductions in between-flock prevalence and post-transport concentration), were simulated and compared to a baseline scenario. The package of on-farm and processing interventions was the most effective in achieving relative reductions (compared to baseline with no interventions) in the concentration and prevalence ofSalmonellaby the end of chilling ranging from 89·94% to 99·87% and 43·88% to 87·78%, respectively. Contaminated carcasses entering defeathering, reductions in concentration due to scalding and post-evisceration washing, and the potential for cross-contamination during chilling had the largest influence on the model outcomes under the current assumptions. Scoping study provided a transparent process for mapping out and selecting promising interventions, while SR-MA was useful for generating more precise and robust intervention effect estimates for QEA. Realization of the full potential of these methods was hampered by low methodological soundness and reporting of primary research in this area.
Collapse
|