1
|
Disney AA, Higley MJ. Diverse Spatiotemporal Scales of Cholinergic Signaling in the Neocortex. J Neurosci 2020; 40:720-725. [PMID: 31969490 PMCID: PMC6975298 DOI: 10.1523/jneurosci.1306-19.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
ACh is a signaling molecule in the mammalian CNS, with well-documented influence over cognition and behavior. However, the nature of cholinergic signaling in the brain remains controversial, with ongoing debates focused on the spatial and temporal resolution of ACh activity. Generally, opposing views have embraced a dichotomy between transmission as slow and volume-mediated versus fast and synaptic. Here, we provide the perspective that ACh, like most other neurotransmitters, exhibits both fast and slow modes that are strongly determined by the anatomy of cholinergic fibers, the distribution and the signaling mechanisms of receptor subtypes, and the dynamics of ACh hydrolysis. Current methodological approaches remain limited in their ability to provide detailed analyses of these underlying factors. However, we believe that the continued development of novel technologies in combination with a more nuanced view of cholinergic activity will open critical new avenues to a better understanding of ACh in the brain.Dual Perspectives Companion Paper: Forebrain Cholinergic Signaling: Wired and Phasic, Not Tonic, and Causing Behavior, by Martin Sarter and Cindy Lustig.
Collapse
Affiliation(s)
- Anita A Disney
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, and
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
2
|
Cheng XJ, Gu JX, Pang YP, Liu J, Xu T, Li XR, Hua YZ, Newell KA, Huang XF, Yu Y, Liu Y. Tacrine-Hydrogen Sulfide Donor Hybrid Ameliorates Cognitive Impairment in the Aluminum Chloride Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:3500-3509. [PMID: 31244052 DOI: 10.1021/acschemneuro.9b00120] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by progressive loss of memory and cognitive function, and is associated with the deficiency of synaptic acetylcholine, as well as chronic neuroinflmmation. Tacrine, a potent acetylcholinesterase (AChE) inhibitor, was previously a prescribed clinical therapeutic agent for AD, but it was recently withdrawn because it caused widespread hepatotoxicity. Hydrogen sulfide (H2S) has neuroprotective, hepatoprotective, and anti-inflammatory effects. In this study, we synthesized a new compound, a tacrine-H2S donor hybrid (THS) by introducing H2S-releasing moieties (ACS81) to tacrine. Subsequently, pharmacological and biological evaluations of THS were conducted in the aluminum trichloride (AlCl3)-induced AD mice model. We found that THS (15 mmol/kg) improved cognitive and locomotor activity in AD mice in the step-through test and open field test, respectively. THS showed strong AChE inhibitory activity in the serum and hippocampus of AD mice and induced increased hippocampal H2S levels. Furthermore, THS reduced mRNA expression of the proinflammatory cytokines, TNF-α, IL-6, and IL-1β and increased synapse-associated proteins (synaptophysin and postsynaptic density protein 95) in the hippocampus of AD mice. Importantly, THS, unlike tacrine, did not increase liver transaminases (alanine transaminase and aspartate transaminase) or proinflammatory cytokines, indicating THS is much safer than tacrine. Therefore, the multifunctional effects of this new hybrid compound of tacrine and H2S indicate it is a promising compound for further research into the treatment of AD.
Collapse
Affiliation(s)
- Xiao-jing Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-xue Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi-peng Pang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin-rui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu-zhou Hua
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kelly A. Newell
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
3
|
Colangelo C, Shichkova P, Keller D, Markram H, Ramaswamy S. Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex. Front Neural Circuits 2019; 13:24. [PMID: 31031601 PMCID: PMC6473068 DOI: 10.3389/fncir.2019.00024] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
The neocortex is densely innervated by basal forebrain (BF) cholinergic neurons. Long-range axons of cholinergic neurons regulate higher-order cognitive function and dysfunction in the neocortex by releasing acetylcholine (ACh). ACh release dynamically reconfigures neocortical microcircuitry through differential spatiotemporal actions on cell-types and their synaptic connections. At the cellular level, ACh release controls neuronal excitability and firing rate, by hyperpolarizing or depolarizing target neurons. At the synaptic level, ACh impacts transmission dynamics not only by altering the presynaptic probability of release, but also the magnitude of the postsynaptic response. Despite the crucial role of ACh release in physiology and pathophysiology, a comprehensive understanding of the way it regulates the activity of diverse neocortical cell-types and synaptic connections has remained elusive. This review aims to summarize the state-of-the-art anatomical and physiological data to develop a functional map of the cellular, synaptic and microcircuit effects of ACh in the neocortex of rodents and non-human primates, and to serve as a quantitative reference for those intending to build data-driven computational models on the role of ACh in governing brain states.
Collapse
Affiliation(s)
- Cristina Colangelo
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | | | | | - Srikanth Ramaswamy
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
4
|
Krueger J, Disney AA. Structure and function of dual-source cholinergic modulation in early vision. J Comp Neurol 2018; 527:738-750. [PMID: 30520037 DOI: 10.1002/cne.24590] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Behavioral states such as arousal and attention have profound effects on sensory processing, determining how-even whether-a stimulus is perceived. This state-dependence is believed to arise, at least in part, in response to inputs from subcortical structures that release neuromodulators such as acetylcholine, often nonsynaptically. The mechanisms that underlie the interaction between these nonsynaptic signals and the more point-to-point synaptic cortical circuitry are not well understood. This review highlights the state of the field, with a focus on cholinergic action in early visual processing. Key anatomical and physiological features of both the cholinergic and the visual systems are discussed. Furthermore, presenting evidence of cholinergic modulation in visual thalamus and primary visual cortex, we explore potential functional roles of acetylcholine and its effects on the processing of visual input over the sleep-wake cycle, sensory gain control during wakefulness, and consider evidence for cholinergic support of visual attention.
Collapse
Affiliation(s)
- Juliane Krueger
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Anita A Disney
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
5
|
Shimegi S, Kimura A, Sato A, Aoyama C, Mizuyama R, Tsunoda K, Ueda F, Araki S, Goya R, Sato H. Cholinergic and serotonergic modulation of visual information processing in monkey V1. ACTA ACUST UNITED AC 2016; 110:44-51. [PMID: 27619519 DOI: 10.1016/j.jphysparis.2016.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 11/30/2022]
Abstract
The brain dynamically changes its input-output relationship depending on the behavioral state and context in order to optimize information processing. At the molecular level, cholinergic/monoaminergic transmitters have been extensively studied as key players for the state/context-dependent modulation of brain function. In this paper, we review how cortical visual information processing in the primary visual cortex (V1) of macaque monkey, which has a highly differentiated laminar structure, is optimized by serotonergic and cholinergic systems by examining anatomical and in vivo electrophysiological aspects to highlight their similarities and distinctions. We show that these two systems have a similar layer bias for axonal fiber innervation and receptor distribution. The common target sites are the geniculorecipient layers and geniculocortical fibers, where the appropriate gain control is established through a geniculocortical signal transformation. Both systems exert activity-dependent response gain control across layers, but in a manner consistent with the receptor subtype. The serotonergic receptors 5-HT1B and 5HT2A modulate the contrast-response curve in a manner consistent with bi-directional response gain control, where the sign (facilitation/suppression) is switched according to the firing rate and is complementary to the other. On the other hand, cholinergic nicotinic/muscarinic receptors exert mono-directional response gain control without a sign reversal. Nicotinic receptors increase the response magnitude in a multiplicative manner, while muscarinic receptors exert both suppressive and facilitative effects. We discuss the implications of the two neuromodulator systems in hierarchical visual signal processing in V1 on the basis of the developed laminar structure.
Collapse
Affiliation(s)
- Satoshi Shimegi
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Akihiro Kimura
- Department of Healthcare, Osaka Health Science University, Toyonaka, Osaka 560-0043, Japan
| | - Akinori Sato
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Chisa Aoyama
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ryo Mizuyama
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Keisuke Tsunoda
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Fuyuki Ueda
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sera Araki
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ryoma Goya
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Hiromichi Sato
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
6
|
Lourenço J, Pacioni S, Rebola N, van Woerden GM, Marinelli S, DiGregorio D, Bacci A. Non-associative potentiation of perisomatic inhibition alters the temporal coding of neocortical layer 5 pyramidal neurons. PLoS Biol 2014; 12:e1001903. [PMID: 25003184 PMCID: PMC4086817 DOI: 10.1371/journal.pbio.1001903] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 05/30/2014] [Indexed: 11/19/2022] Open
Abstract
In the neocortex, the coexistence of temporally locked excitation and inhibition governs complex network activity underlying cognitive functions, and is believed to be altered in several brain diseases. Here we show that this equilibrium can be unlocked by increased activity of layer 5 pyramidal neurons of the mouse neocortex. Somatic depolarization or short bursts of action potentials of layer 5 pyramidal neurons induced a selective long-term potentiation of GABAergic synapses (LTPi) without affecting glutamatergic inputs. Remarkably, LTPi was selective for perisomatic inhibition from parvalbumin basket cells, leaving dendritic inhibition intact. It relied on retrograde signaling of nitric oxide, which persistently altered presynaptic GABA release and diffused to inhibitory synapses impinging on adjacent pyramidal neurons. LTPi reduced the time window of synaptic summation and increased the temporal precision of spike generation. Thus, increases in single cortical pyramidal neuron activity can induce an interneuron-selective GABAergic plasticity effectively altering the computation of temporally coded information.
Collapse
Affiliation(s)
- Joana Lourenço
- European Brain Research Institute, Rome, Italy
- Sorbonne Universités UPMC Univ. Paris 06, UMR S 1127, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
- ICM- Institut du Cerveau et de la Moelle épinière, Paris, France
- * E-mail: (J.L.); (A.B.)
| | | | - Nelson Rebola
- CNRS UMR 3571, Paris, France
- Institut Pasteur, Unit of Dynamic Neuronal Imaging, Paris, France
| | - Geeske M. van Woerden
- European Brain Research Institute, Rome, Italy
- Sorbonne Universités UPMC Univ. Paris 06, UMR S 1127, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
- ICM- Institut du Cerveau et de la Moelle épinière, Paris, France
| | | | - David DiGregorio
- CNRS UMR 3571, Paris, France
- Institut Pasteur, Unit of Dynamic Neuronal Imaging, Paris, France
| | - Alberto Bacci
- European Brain Research Institute, Rome, Italy
- Sorbonne Universités UPMC Univ. Paris 06, UMR S 1127, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
- ICM- Institut du Cerveau et de la Moelle épinière, Paris, France
- * E-mail: (J.L.); (A.B.)
| |
Collapse
|
7
|
Disney AA, Reynolds JH. Expression of m1-type muscarinic acetylcholine receptors by parvalbumin-immunoreactive neurons in the primary visual cortex: a comparative study of rat, guinea pig, ferret, macaque, and human. J Comp Neurol 2014; 522:986-1003. [PMID: 23983014 PMCID: PMC3945972 DOI: 10.1002/cne.23456] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/10/2022]
Abstract
Cholinergic neuromodulation is a candidate mechanism for aspects of arousal and attention in mammals. We have reported previously that cholinergic modulation in the primary visual cortex (V1) of the macaque monkey is strongly targeted toward GABAergic interneurons, and in particular that the vast majority of parvalbumin-immunoreactive (PV) neurons in macaque V1 express the m1-type (pirenzepine-sensitive, Gq-coupled) muscarinic ACh receptor (m1AChR). In contrast, previous physiological data indicates that PV neurons in rats rarely express pirenzepine-sensitive muscarinic AChRs. To examine further this apparent species difference in the cholinergic effectors for the primary visual cortex, we have conducted a comparative study of the expression of m1AChRs by PV neurons in V1 of rats, guinea pigs, ferrets, macaques, and humans. We visualize PV- and mAChR-immunoreactive somata by dual-immunofluorescence confocal microscopy and find that the species differences are profound; the vast majority (>75%) of PV-ir neurons in macaques, humans, and guinea pigs express m1AChRs. In contrast, in rats only ∼25% of the PV population is immunoreactive for m1AChRs. Our data reveal that while they do so much less frequently than in primates, PV neurons in rats do express Gq-coupled muscarinic AChRs, which appear to have gone undetected in the previous in vitro studies. Data such as these are critical in determining the species that represent adequate models for the capacity of the cholinergic system to modulate inhibition in the primate cortex.
Collapse
Affiliation(s)
- Anita A Disney
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, California, 92037
| | | |
Collapse
|
8
|
Muñoz W, Rudy B. Spatiotemporal specificity in cholinergic control of neocortical function. Curr Opin Neurobiol 2014; 26:149-60. [PMID: 24637201 DOI: 10.1016/j.conb.2014.02.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/16/2014] [Accepted: 02/19/2014] [Indexed: 01/01/2023]
Abstract
Cholinergic actions are critical for normal cortical cognitive functions. The release of acetylcholine (ACh) in neocortex and the impact of this neuromodulator on cortical computations exhibit remarkable spatiotemporal precision, as required for the regulation of behavioral processes underlying attention and learning. We discuss how the organization of the cholinergic projections to the cortex and their release properties might contribute to this specificity. We also review recent studies suggesting that the modulatory influences of ACh on the properties of cortical neurons can have the necessary temporal dynamic range, emphasizing evidence of powerful interneuron subtype-specific effects. We discuss areas that require further investigation and point to technical advances in molecular and genetic manipulations that promise to make headway in understanding the neural bases of cholinergic modulation of cortical cognitive operations.
Collapse
Affiliation(s)
- William Muñoz
- NYU Neuroscience Institute, NYU School of Medicine, Smilow Research Building Sixth Floor, 522 First Ave, NY, NY, 10016, United States
| | - Bernardo Rudy
- NYU Neuroscience Institute, NYU School of Medicine, Smilow Research Building Sixth Floor, 522 First Ave, NY, NY, 10016, United States.
| |
Collapse
|
9
|
Disney AA, Aoki C, Hawken MJ. Cholinergic suppression of visual responses in primate V1 is mediated by GABAergic inhibition. J Neurophysiol 2012; 108:1907-23. [PMID: 22786955 DOI: 10.1152/jn.00188.2012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acetylcholine (ACh) has been implicated in selective attention. To understand the local circuit action of ACh, we iontophoresed cholinergic agonists into the primate primary visual cortex (V1) while presenting optimal visual stimuli. Consistent with our previous anatomical studies showing that GABAergic neurons in V1 express ACh receptors to a greater extent than do excitatory neurons, we observed suppressed visual responses in 36% of recorded neurons outside V1's primary thalamorecipient layer (4c). This suppression is blocked by the GABA(A) receptor antagonist gabazine. Within layer 4c, ACh release produces a response gain enhancement (Disney AA, Aoki C, Hawken MJ. Neuron 56: 701-713, 2007); elsewhere, ACh suppresses response gain by strengthening inhibition. Our finding contrasts with the observation that the dominant mechanism of suppression in the neocortex of rats is reduced glutamate release. We propose that in primates, distinct cholinergic receptor subtypes are recruited on specific cell types and in specific lamina to yield opposing modulatory effects that together increase neurons' responsiveness to optimal stimuli without changing tuning width.
Collapse
Affiliation(s)
- Anita A Disney
- Center for Neural Science, New York University, New York, New York, USA.
| | | | | |
Collapse
|
10
|
Guo JD, Hazra R, Dabrowska J, Muly EC, Wess J, Rainnie DG. Presynaptic muscarinic M(2) receptors modulate glutamatergic transmission in the bed nucleus of the stria terminalis. Neuropharmacology 2011; 62:1671-83. [PMID: 22166222 DOI: 10.1016/j.neuropharm.2011.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
Abstract
The anterolateral cell group of the bed nucleus of the stria terminalis (BNST(ALG)) serves as an important relay station in stress circuitry. Limbic inputs to the BNST(ALG) are primarily glutamatergic and activity-dependent changes in this input have been implicated in abnormal behaviors associated with chronic stress and addiction. Significantly, local infusion of acetylcholine (ACh) receptor agonists into the BNST trigger stress-like cardiovascular responses, however, little is known about the effects of these agents on glutamatergic transmission in the BNST(ALG). Here, we show that glutamate- and ACh-containing fibers are found in close association in the BNST(ALG). Moreover, in the presence of the acetylcholinesterase inhibitor, eserine, endogenous ACh release evoked a long-lasting reduction of the amplitude of stimulus-evoked EPSCs. This effect was mimicked by exogenous application of the ACh analog, carbachol, which caused a reversible, dose-dependent, reduction of the evoked EPSC amplitude, and an increase in both the paired-pulse ratio and coefficient of variation, suggesting a presynaptic site of action. Uncoupling of postsynaptic G-proteins with intracellular GDP-β-S, or application of the nicotinic receptor antagonist, tubocurarine, failed to block the carbachol effect. In contrast, the carbachol effect was blocked by prior application of atropine or M(2) receptor-preferring antagonists, and was absent in M(2)/M(4) receptor knockout mice, suggesting that presynaptic M(2) receptors mediate the effect of ACh. Immunoelectron microscopy studies further revealed the presence of M(2) receptors on axon terminals that formed asymmetric synapses with BNST neurons. Our findings suggest that presynaptic M(2) receptors might be an important modulator of the stress circuit and hence a novel target for drug development.
Collapse
Affiliation(s)
- Ji-Dong Guo
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
11
|
Preferential localization of muscarinic M1 receptor on dendritic shaft and spine of cortical pyramidal cells and its anatomical evidence for volume transmission. J Neurosci 2010; 30:4408-18. [PMID: 20335477 DOI: 10.1523/jneurosci.5719-09.2010] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acetylcholine (ACh) plays important roles for higher brain functions, including arousal, attention, and cognition. These effects are mediated largely by muscarinic acetylcholine receptors (mAChRs). However, it remains inconclusive whether the mode of ACh-mAChR signaling is synaptic, so-called "wired," transmission mediated by ACh released into the synaptic cleft, or nonsynaptic, so-called "volume," transmission by ambient ACh. To address this issue, we examined cellular and subcellular distribution of M(1), the most predominant mAChR subtype in the cerebral cortex and hippocampus, and pursued its anatomical relationship with cholinergic varicosities in these regions of adult mice. M(1) was highly expressed in glutamatergic pyramidal neurons, whereas it was low or undetectable in various GABAergic interneuron subtypes. M(1) was preferentially distributed on the extrasynaptic membrane of pyramidal cell dendrites and spines. Cholinergic varicosities often made direct contact to pyramidal cell dendrites and synapses. At such contact sites, however, synapse-like specialization was infrequent, and no particular accumulation was found at around contact sites for both M(1) and presynpatic active zone protein Bassoon. These features contrasted with those of the glutamatergic system, in which AMPA receptor GluA2 and metabotropic receptor mGluR5 were recruited to the synaptic or perisynaptic membrane, respectively, and Bassoon was highly accumulated in the presynaptic terminals. These results suggest that M(1) is so positioned to sense ambient ACh released from cholinergic varicosities at variable distances, and to enhance the synaptic efficacy and excitability of pyramidal cells. These molecular-anatomical arrangements will provide the evidence for volume transmission, at least in M(1)-mediated cortical cholinergic signaling.
Collapse
|
12
|
Sartucci F, Borghetti D, Bocci T, Murri L, Orsini P, Porciatti V, Origlia N, Domenici L. Dysfunction of the magnocellular stream in Alzheimer's disease evaluated by pattern electroretinograms and visual evoked potentials. Brain Res Bull 2010; 82:169-76. [PMID: 20385208 DOI: 10.1016/j.brainresbull.2010.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 03/07/2010] [Accepted: 04/01/2010] [Indexed: 01/26/2023]
Abstract
BACKGROUND Visuo-spatial disturbances could represent a clinical feature of early stage Alzheimer's disease (AD). The magnocellular (M) pathway has anatomo-physiological characteristic which make it more suitable for detecting form, motion and depth compared with parvocellular one (P). OBJECTIVE Aim of our study was to evaluate specific visual subsystem involvement in a group of AD patients, recording isoluminant chromatic and luminance pattern electroretinograms and pattern visual evoked potentials. MATERIAL AND METHODS data were obtained from 15 AD patients (9 females and 6 males, mean age+/-1SD: 77.6+/-4.01 years) not yet undergoing any treatment, and from 10 age-matched healthy controls. Diagnosis of probable AD was clinically and neuroradiologically established. PERGs were recorded monocularly in response to equiluminant red-green (R-G), blue-yellow (B-Y) and luminance yellow-black (Y-Bk) horizontal square gratings of 0.3c/deg and 90% contrast, reversed at 1Hz. VEPs were recorded in response to full-field (14 deg) equiluminant chromatic R-G, B-Y and luminance Y-Bk sinusoidal gratings of 2c/deg, presented in onset (300ms)-offset (700ms) mode, at the contrast levels of 90%. RESULTS All data were retrieved in terms of peak-amplitude and latency and assessed using the Student's t-test for paired data. Temporal differences of PERGs and VEPs, evoked by Y-Bk grating in AD patients compared with controls, suggest a specific impairment of the magnocellular stream. CONCLUSIONS Our study support the hypothesis that the impairment of the PERGs and VEPs arising from the magnocellular streams of visual processing may indicate a primary dysfunction of the M-pathways in AD.
Collapse
Affiliation(s)
- F Sartucci
- Department of Neuroscience, Unit of Neurology, Pisa University Medical School, Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Dotigny F, Ben Amor A, Burke M, Vaucher E. Neuromodulatory role of acetylcholine in visually-induced cortical activation: Behavioral and neuroanatomical correlates. Neuroscience 2008; 154:1607-18. [DOI: 10.1016/j.neuroscience.2008.04.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
|
14
|
Disney AA, Aoki C, Hawken MJ. Gain modulation by nicotine in macaque v1. Neuron 2008; 56:701-13. [PMID: 18031686 DOI: 10.1016/j.neuron.2007.09.034] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 07/17/2007] [Accepted: 09/25/2007] [Indexed: 12/31/2022]
Abstract
Acetylcholine is a ubiquitous cortical neuromodulator implicated in cognition. In order to understand the potential for acetylcholine to play a role in visual attention, we studied nicotinic acetylcholine receptor (nAChR) localization and function in area V1 of the macaque. We found nAChRs presynaptically at thalamic synapses onto excitatory, but not inhibitory, neurons in the primary thalamorecipient layer 4c. Furthermore, consistent with the release enhancement suggested by this localization, we discovered that nicotine increases responsiveness and lowers contrast threshold in layer 4c neurons. We also found that nAChRs are expressed by GABAergic interneurons in V1 but rarely by pyramidal neurons, and that nicotine suppresses visual responses outside layer 4c. All sensory systems incorporate gain control mechanisms, or processes which dynamically alter input/output relationships. We demonstrate that at the site of thalamic input to visual cortex, the effect of this nAChR-mediated gain is an enhancement of the detection of visual stimuli.
Collapse
Affiliation(s)
- Anita A Disney
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| | | | | |
Collapse
|
15
|
Abstract
The neocortex is an ultracomplex, six-layered structure that develops from the dorsal palliai sector of the telencephalic hemispheres (Figs. 2.24, 2.25, 11.1). All mammals, including monotremes and marsupials, possess a neocortex, but in reptiles, i.e. the ancestors of mammals, only a three-layered neocortical primordium is present [509, 511]. The term neocortex refers to its late phylogenetic appearance, in comparison to the “palaeocortical” olfactory cortex and the “archicortical” hippocampal cortex, both of which are present in all amniotes [509].
Collapse
|
16
|
Disney AA, Domakonda KV, Aoki C. Differential expression of muscarinic acetylcholine receptors across excitatory and inhibitory cells in visual cortical areas V1 and V2 of the macaque monkey. J Comp Neurol 2006; 499:49-63. [PMID: 16958109 DOI: 10.1002/cne.21096] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cholinergic neuromodulation, a candidate mechanism for aspects of attention, is complex and is not well understood. Because structure constrains function, quantitative anatomy is an invaluable tool for reducing such a challenging problem. Our goal was to determine the extent to which m1 and m2 muscarinic acetylcholine receptors (mAChRs) are expressed by inhibitory vs. excitatory neurons in the early visual cortex. To this end, V1 and V2 of macaque monkeys were immunofluorescently labelled for gamma-aminobutyric acid (GABA) and either m1 or m2 mAChRs. Among the GABA-immunoreactive (ir) neurons, 61% in V1 and 63% in V2 were m1 AChR-ir, whereas 28% in V1 and 43% in V2 were m2 AChR-ir. In V1, both mAChRs were expressed by fewer than 10% of excitatory neurons. However, in V2, the population of mAChR-ir excitatory neurons was at least double that observed in V1. We also examined m1 and m2 AChR immunoreactivity in layers 2 and 3 of area V1 under the electron microscope and found evidence that GABAergic neurons localize mAChRs to the soma, whereas glutamatergic neurons expressed mAChRs more strongly in dendrites. Axon and terminal labelling was generally weak. These data represent the first quantitative anatomical study of m1 and m2 AChR expression in the cortex of any species. In addition, the increased expression in excitatory neurons across the V1/V2 border may provide a neural basis for the observation that attentional effects gain strength up through the visual pathway from area V1 through V2 to V4 and beyond.
Collapse
Affiliation(s)
- Anita A Disney
- Center for Neural Science, New York University, New York, New York 10003, USA.
| | | | | |
Collapse
|
17
|
Hur EE, Zaborszky L. Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization study [corrected]. J Comp Neurol 2005; 483:351-73. [PMID: 15682395 DOI: 10.1002/cne.20444] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamate transmission is critical for controlling cortical activity, but the specific contribution of the different isoforms of vesicular glutamate transporters in subcortical pathways to the neocortex is largely unknown. To determine the distribution and neocortical projections of vesicular glutamate transporter2 (Vglut2)-containing neurons, we used in situ hybridization and injections of the retrograde tracer Fluoro-Gold into the medial prefrontal and primary somatosensory cortices. The thalamus contains the majority of Vglut2 cells projecting to the neocortex (approximately 90% for the medial prefrontal cortex and 96% for the primary somatosensory cortex) followed by the hypothalamus and basal forebrain, the claustrum, and the brainstem. There are significantly more Vglut2 neurons projecting to the medial prefrontal cortex than to the primary somatosensory cortex. The medial prefrontal cortex also receives a higher percentage of Vglut2 projection from the hypothalamus than the primary somatosensory cortex. About 50% of thalamic Vglut2 projection to the medial prefrontal cortex and as much as 80% of the thalamic projection to primary somatosensory cortex originate in various relay thalamic nuclei. The remainder arise from different midline and intralaminar nuclei traditionally thought to provide nonspecific or diffuse projection to the cortex. The extrathalamic Vglut2 corticopetal projections, together with the thalamic intralaminar-midline Vglut2 corticopetal projections, may participate in diffuse activation of the neocortex.
Collapse
Affiliation(s)
- Elizabeth E Hur
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, USA
| | | |
Collapse
|
18
|
Polidori C, Zeng YC, Zaccheo D, Amenta F. Age-related changes in the visual cortex: a review. Arch Gerontol Geriatr 2005; 17:145-64. [PMID: 15374315 DOI: 10.1016/0167-4943(93)90047-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/1993] [Revised: 09/16/1993] [Accepted: 09/17/1993] [Indexed: 11/26/2022]
Abstract
The main age related changes in visual cortex are reviewed. The visual cortex (occipital cortex, areas 17-19) undergoes a variety of anatomical, biochemical and functional changes with aging. From a morphological point of view the visual cortex loses nerve cells mainly in the last period of life. From a biochemical point of view cholinergic, serotonergic, and GABAergic neurotransmissions seem to be the most remarkably affected. In terms of functional correlates, a decline of several activities of the visual cortex has been documented in the elderly. Due to the importance of visual cortex in the realization of visual function, the influence of aging on this cerebrocortical area requires a more detailed analysis.
Collapse
Affiliation(s)
- C Polidori
- Sezione di Anatomia Umana, Istituto di Farmacologia, Università di Camerino, Via Scalzino 5, 62032 Camerino, Italy
| | | | | | | |
Collapse
|
19
|
Fournier GN, Semba K, Rasmusson DD. Modality- and region-specific acetylcholine release in the rat neocortex. Neuroscience 2004; 126:257-62. [PMID: 15207343 DOI: 10.1016/j.neuroscience.2004.04.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2004] [Indexed: 11/29/2022]
Abstract
The basal forebrain is the major source of acetylcholine in the neocortex, and this projection has been variously described as either diffuse or highly specific. We used in vivo microdialysis to examine this discrepancy by collecting acetylcholine release simultaneously from visual, somatosensory and prefrontal cortical areas. Urethane-anesthetized rats were presented with visual and somatosensory stimulation in counter-balanced order and acetylcholine was measured using HPLC. Evoked acetylcholine release was modality-specific, i.e. visual stimulation evoked a large (75%) increase from visual cortex and little (24%) change from the somatosensory area whereas skin stimulation had the opposite effect. No increase was apparent in prefrontal cortex with either stimulation protocol. This experiment extends early studies using cortical cups to collect acetylcholine, and is consistent with the concept of functional specificity within the cholinergic basal forebrain with respect to both its sensory inputs and projections to the neocortex. This functional specificity within the cholinergic basal forebrain might be utilized in the modulation of different cortical regions during selective attention and plasticity.
Collapse
Affiliation(s)
- G N Fournier
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, NS, Canada B3H 1X5
| | | | | |
Collapse
|
20
|
Abstract
Acetylcholine is involved in a variety of brain functions. In the visual cortex, the pattern of cholinergic innervation varies considerably across different mammalian species and across different cortical layers within the same species. The physiological effects of acetylcholine in the visual cortex display complex responses, which are likely due to cholinergic receptor subtype composition in cytoplasm membrane as well as interaction with other transmitter systems within the local neural circuitry. The functional role of acetylcholine in visual cortex is believed to improve the signal-to-noise ratio of cortical neurons during visual information processing. Available evidence suggests that acetylcholine is also involved in experience-dependent visual cortex plasticity. At the level of synaptic transmission, activation of muscarinic receptors has been shown to play a permissive role in visual cortex plasticity. Among the muscarinic receptor subtypes, the M(1) receptor seems to make a predominant contribution towards modifications of neural circuitry. The signal transduction cascade of the cholinergic pathway may act synergistically with that of the NMDA receptor pathway, whose activation is a prerequisite for cortical plasticity.
Collapse
Affiliation(s)
- Qiang Gu
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
21
|
Golmayo L, Nuñez A, Zaborszky L. Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience 2003; 119:597-609. [PMID: 12770572 DOI: 10.1016/s0306-4522(03)00031-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prefrontal cortex (PFC) receives input from sensory neocortical regions and sends projections to the basal forebrain (BF). The present study tested the possibility that pathways from sensory cortical regions via the PFC-BF and from the BF back to specific sensory cortical areas could modulate sensory responses. Two prefrontal areas that responded to stimulation of the primary somatosensory and visual cortices were delineated: an area encompassing the rostral part of the cingulate cortex that responded to visual cortex stimulation, and a region dorso-lateral to the first in the precentral-motor association area that reacted to somatosensory cortex stimulation. Moreover, BF neurons responded to PFC electrical stimulation. They were located in the ventral pallidum, substantia innominata and the horizontal limb of the diagonal-band areas. Of the responsive BF neurons 42% reacted only to stimulation of 'visually-responsive,' 33% responded only to the 'somatosensory-responsive' prefrontal sites and the remaining neurons reacted to both prefrontal cortical areas. The effect of BF and PFC stimulations on somatosensory and visual-evoked potentials was tested. BF stimulation increased the amplitude of both sensory-evoked potentials. However, stimulation of the 'somatosensory-responsive' prefrontal area increased only somatosensory-evoked potentials while 'visually-responsive' prefrontal-area stimulation increased only visual-evoked potentials. Atropine blocked both facilitatory effects. The proposed cortico-prefronto-basalo-cortical circuitry may have an important role in cortical plasticity and selective attention.
Collapse
Affiliation(s)
- L Golmayo
- Department of Morphology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | | | | |
Collapse
|
22
|
Alpha7 nicotinic acetylcholine receptors occur at postsynaptic densities of AMPA receptor-positive and -negative excitatory synapses in rat sensory cortex. J Neurosci 2002. [PMID: 12077196 DOI: 10.1523/jneurosci.22-12-05001.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDA receptor (NMDAR) activation requires concurrent membrane depolarization, and glutamatergic synapses lacking AMPA receptors (AMPARs) are often considered "silent" in the absence of another source of membrane depolarization. During the second postnatal week, NMDA currents can be enhanced in rat auditory cortex through activation of the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). Electrophysiological results support a mainly presynaptic role for alpha7nAChR at these synapses. However, immunocytochemical evidence that alpha7nAChR is prevalent at postsynaptic sites of glutamatergic synapses in hippocampus and neocortex, along with emerging electrophysiological evidence for postsynaptic nicotinic currents in neocortex and hippocampus, has prompted speculation that alpha7nAChR allows for activation of NMDAR postsynaptically at synapses lacking AMPAR. Here we used dual immunolabeling and electron microscopy to examine the distribution of alpha7nAChR relative to AMPAR (GluR1, GluR2, and GluR3 subunits combined) at excitatory synapses in somatosensory cortex of adult and 1-week-old rats. alpha7nAChR occurred discretely over most of the thick postsynaptic densities in all cortical layers of both age groups. AMPAR immunoreactivity was also detectable at most synapses; its distribution was independent of that of alpha7nAChR. In both age groups, approximately one-quarter of asymmetrical synapses were alpha7nAChR positive and AMPAR negative. The variability of postsynaptic alpha7nAChR labeling density was greater at postnatal day (PD) 7 than in adulthood, and PD 7 neuropil contained a subset of small AMPA receptor-negative synapses with a high density of alpha7nAChR immunoreactivity. These observations support the idea that acetylcholine receptors can aid in activating glutamatergic synapses and work together with AMPA receptors to mediate postsynaptic excitation throughout life.
Collapse
|
23
|
Turrini P, Casu MA, Wong TP, De Koninck Y, Ribeiro-da-Silva A, Cuello AC. Cholinergic nerve terminals establish classical synapses in the rat cerebral cortex: synaptic pattern and age-related atrophy. Neuroscience 2002; 105:277-85. [PMID: 11672595 DOI: 10.1016/s0306-4522(01)00172-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study addresses the issue of whether cholinergic varicosities in the cerebral cortex establish 'classical synapses' or whether they communicate with their targets non-synaptically by 'volume transmission'. Most recent studies in the neocortex have suggested that acetylcholine acts non-synaptically, however in the present study we provide ultrastructural evidence that suggests synaptic mechanisms prevail. This conclusion is based upon our ultrastructural observations that cholinergic boutons--as revealed by immunoreactivity for the specific cholinergic market, vesicular acetylcholine transporter--establish a high percentage of classical synapses in layer V of the rat parietal cortex. Furthermore, the combination of this approach with the intracellular labeling of large pyramidal neurons on slice preparations revealed significant incidences of cholinergic contacts abutting preferentially on dendritic shafts. Finally, we have gathered information suggesting that cholinergic boutons undergo atrophy with aging which could be related to the well-known cholinergic and cognitive decline. These results illustrate that the cholinergic terminations in the neocortex establish proper synaptic connections and that they experience important age-dependent atrophy.
Collapse
Affiliation(s)
- P Turrini
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Erisir A, Levey AI, Aoki C. Muscarinic receptor M(2) in cat visual cortex: laminar distribution, relationship to gamma-aminobutyric acidergic neurons, and effect of cingulate lesions. J Comp Neurol 2001; 441:168-85. [PMID: 11745643 DOI: 10.1002/cne.1405] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Acetylcholine can have diverse effects on visual cortical neurons as a result of variations in postsynaptic receptor subtypes as well as the types of neurons and subcellular sites targeted. This study examines the cellular basis for cholinergic activation in visual cortex via M(2) type muscarinic receptors in gamma-aminobutyric acid (GABA)-ergic and non-GABAergic cells, using immunocytochemical techniques. At light microscopic resolution, M(2) immunoreactivity (-ir) was seen in all layers except area and sublayer specific bands in layer 4. Subcellularly, M(2)-ir occurred in both dendrites and terminals that form symmetric and asymmetric junctions. Layers 5 and 6 were characterized by axosomatic contacts that displayed labeling in the presynaptic component, and layer 6 displayed perikaryal postsynaptic staining, suggesting that corticofugal output neurons may be modulated particularly strongly via M(2). Infragranular layers differed from the supragranular layers in that more labeled profiles were axonal than dendritic, indicating a dominant presynaptic effect by acetylcholine via M(2) there. Unilateral cingulate cortex cuts caused reduction of cholinergic and noradrenergic fibers in the lesioned hemisphere at light microscopic resolution; at electron microscopic resolution, the synapse density and axonal M(2) labeling were reduced, suggesting that M(2) was localized presynaptically on extrathalamic modulatory inputs. Dual labeling with GABA in visual cortex layer 5 showed that half of M(2)-labeled dendrites originated from GABAergic neurons. Given that only one-fifth of all cortical dendritic profiles are GABAergic, this prevalence of dual labeling indicates an enrichment of M(2) within GABAergic dendrites and, thus, implicates abundant postsynaptic action on GABAergic neurons via M(2). In contrast, only one-tenth of M(2)-labeled terminals originated from GABAergic neurons, suggesting that the presynaptic action of acetylcholine via M(2) receptors would be more selective for non-GABAergic terminals.
Collapse
Affiliation(s)
- A Erisir
- Department of Psychology, University of Virginia, 102 Gilmer Hall, Charlottesville, VA 22904, USA.
| | | | | |
Collapse
|
25
|
Li R, Nishijo H, Wang Q, Uwano T, Tamura R, Ohtani O, Ono T. Light and electron microscopic study of cholinergic and noradrenergic elements in the basolateral nucleus of the rat amygdala: evidence for interactions between the two systems. J Comp Neurol 2001; 439:411-25. [PMID: 11596063 DOI: 10.1002/cne.1359] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pharmacological studies have suggested that the cholinergic (ACh) and noradrenergic (NA) systems in the amygdala (AM) play an important role in learning and memory storage and that the two systems interact to modulate memory storage. To obtain anatomical evidence for the interaction, the organization of the ACh and NA fibers in rat AM was investigated by immunocytochemistry for choline acetyltransferase (ChAT) and dopamine-beta-hydroxylase (DBH) in conjunction with light, confocal laser scanning, and electron microscopy (LM, CLSM, and TEM, respectively). LM showed that the ChAT immunoreactivity was densest in the basolateral nucleus (BL), whereas the DBH immunoreactivity was densest in the posterior BL. CLSM demonstrated that the ChAT-immunoreactive profiles in the BL were frequently located in juxtaposition to the DBH-immunoreactive axons. The TEM observations were as follows: The majority of the synapses formed by ChAT-immunoreactive terminals were symmetric, but DBH-immunoreactive axons formed both asymmetric and symmetric synapses. The ChAT-immunoreactive terminals usually established the symmetric synaptic contacts with the DBH-immunoreactive terminals and varicosities. The DBH-immunoreactive terminals formed the asymmetric synapses with the ChAT-immunoreactive dendrites of the intrinsic neurons within the AM. The results provide anatomical substrates for mnemonic functions of the ACh and NA systems and for the interactions between the two systems in the AM.
Collapse
Affiliation(s)
- R Li
- Department of Physiology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-0194, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Descarries L, Mechawar N. Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. PROGRESS IN BRAIN RESEARCH 2001; 125:27-47. [PMID: 11098652 DOI: 10.1016/s0079-6123(00)25005-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- L Descarries
- Département de pathologie, Centre de recherche en sciences neurologiques, Faculté de médecine, Université de Montréal, Canada.
| | | |
Collapse
|
27
|
Cruikshank SJ, Weinberger NM. In vivo Hebbian and basal forebrain stimulation treatment in morphologically identified auditory cortical cells. Brain Res 2001; 891:78-93. [PMID: 11164811 DOI: 10.1016/s0006-8993(00)03197-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study concerns the interactions of local pre/postsynaptic covariance and activity of the cortically-projecting cholinergic basal forebrain, in physiological plasticity of auditory cortex. Specifically, a tone that activated presynaptic inputs to a recorded auditory cortical neuron was repeatedly paired with a combination of two stimuli: (1) local juxtacellular current that excited the recorded cell and (2) basal forebrain stimulation which desynchronized the cortical EEG. In addition, the recorded neurons were filled with biocytin for morphological examination. The hypothesis tested was that the combined treatment would cause increased potentiation of responses to the paired tone, relative to similar conditioning treatments involving either postsynaptic excitation alone or basal forebrain stimulation alone. In contrast, there was no net increase in plasticity and indeed the combined treatment appears to have decreased plasticity below that previously found for either treatment alone. Several alternate interpretations of these results are discussed.
Collapse
Affiliation(s)
- S J Cruikshank
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, CA 92717, USA
| | | |
Collapse
|
28
|
Abstract
This review examines the role of acetylcholine in synaptic plasticity in archi-, paleo- and neocortex. Studies using microiontophoretic application of acetylcholine in vivo and in vitro and electrical stimulation of the basal forebrain have demonstrated that ACh can produce long-lasting increases in neural responsiveness. This evidence comes mainly from models of heterosynaptic facilitation in which acetylcholine produces a strengthening of a second, noncholinergic synaptic input onto the same neuron. The argument that the basal forebrain cholinergic system is essential in some models of plasticity is supported by studies that have selectively lesioned the cholinergic basal forebrain. This review will examine the mechanisms whereby acetylcholine might induce synaptic plasticity. It will also consider the neural circuitry implicated in these studies, namely the pathways that are susceptible to cholinergic plasticity and the neural regulation of the cholinergic system.
Collapse
Affiliation(s)
- D D Rasmusson
- Department of Physiology and Biophysics, Dalhousie University, NS, B3H 4H7, Halifax, Canada.
| |
Collapse
|
29
|
Semba K. Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav Brain Res 2000; 115:117-41. [PMID: 11000416 DOI: 10.1016/s0166-4328(00)00254-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies over the last decade have shown that the basal forebrain (BF) consists of more than its cholinergic neurons. The BF also contains non-cholinergic neurons, including gamma-aminobutyric acid-ergic neurons which co-distribute and co-project with the cholinergic neurons. Both types of neuron project, in variable proportions, to the cerebral cortex, hippocampus, thalamus, amygdala, and olfactory bulb, whereas descending projections to the posterior hypothalamus and brainstem nuclei are predominantly non-cholinergic. Some of the cholinergic and non-cholinergic projection neurons contain neuropeptides such as galanin, nitric oxide synthase, and possibly glutamate. To understand better the function of the BF, the organization of the multiple ascending and descending projections of BF neurons is reviewed along with their neurochemical heterogeneity, and possible functions of individual pathways are discussed. It is proposed that BF neurons belong to multiple systems with distinct cognitive, motivational, emotional, motor, and regulatory functions, and that through these pathways, the BF plays a role in controlling both cognitive and non-cognitive aspects of vigilance.
Collapse
Affiliation(s)
- K Semba
- Department of Anatomy and Neurobiology, Dalhousie University, B3H 4H7, Halifax, NS, Canada.
| |
Collapse
|
30
|
Sachdev RN, Egli M, Stonecypher M, Wiley RG, Ebner FF. Enhancement of cortical plasticity by behavioral training in acetylcholine-depleted adult rats. J Neurophysiol 2000; 84:1971-81. [PMID: 11024090 DOI: 10.1152/jn.2000.84.4.1971] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trimming all whiskers except two on one side of an adult rat's face results in cortical plasticity in which the spared whiskers, D2 and one D-row surround whisker (either D1 or D3), evoked responses containing more spikes than the response evoked by the cut whisker (called whisker pairing plasticity). Previously we have reported that acetylcholine (ACh) depletion in cortex prevents surround D-row whisker plasticity from developing within the barrel cortex. In this study we examined whether the animal's active use of its two intact whiskers can restore some aspects of plasticity in the ACh-depleted cortex. To achieve this goal, ACh was depleted from barrel field cortex, and 14 days after the depletion surgery, whiskers were trimmed and animals were trained on a whisker-dependent gap crossing task. After 7 days of training, animals were anesthetized with urethan and prepared for single-unit recording. Training the ACh-depleted, whisker-paired animals resulted in a significant enhancement of responses to paired surround whiskers: the D-paired whisker-evoked response contained more spikes than the D-cut evoked response. We conclude that training whisker paired rats has a positive impact on response properties of neurons in S1 cortex, even in ACh-depleted animals.
Collapse
Affiliation(s)
- R N Sachdev
- Department of Psychology, Vanderbilt University, Nashville 37240, Tennessee, USA
| | | | | | | | | |
Collapse
|
31
|
Aoki C, Wu K, Elste A, Len GW, Lin SY, McAuliffe G, Black IB. Localization of brain-derived neurotrophic factor and TrkB receptors to postsynaptic densities of adult rat cerebral cortex. J Neurosci Res 2000; 59:454-63. [PMID: 10679783 DOI: 10.1002/(sici)1097-4547(20000201)59:3<454::aid-jnr21>3.0.co;2-h] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although neurotrophins are critical for neuronal survival and differentiation, recent studies suggest that they also regulate synaptic plasticity. Brain-derived neurotrophic factor (BDNF) rapidly increases synaptic transmission in hippocampal neurons, and enhances long-term potentiation (LTP), a cellular and molecular model of learning and memory. Loci and precise mechanisms of BDNF action remain to be defined: evidence supports both pre- and postsynaptic sites of action. To help elucidate the synaptic mechanisms of BDNF action, we used antisera directed against the extracellular and intracellular domains of trkB receptors, anti-trkBout and anti-trkBin, respectively, to localize the receptors in relation to synapses. Synaptic localization of BDNF was examined in parallel using anti-BDNF antisera. By light microscopy, trkBin and trkBout immunoreactivities were localized to hippocampal neurons and all layers of the overlying visual cortex. Immunoelectron microscopic analysis of the cerebral cortex revealed that trkB and BDNF localize discretely to postsynaptic densities (PSD) of axo-spinous asymmetric synaptic junctions, that are the morphological correlates of excitatory, glutamatergic synapses. TrkB immunoreactivity was also detected in the nucleoplasm by light and electron microscopy. Western blot analysis indicated that both anti-trkBout and anti-trkBin antisera react with a protein band in the PSD corresponding to the molecular weight expected for trkB; however, molecular species distinct from that for trkB were recognized in the nuclear fraction by both anti-trkBin and anti-trkBout antisera, indicating that the nuclear immunoreactivity, seen by immunocytochemistry, reflects cross-reactivity with proteins closely related to, but distinct from, trkB. The PSD localization of both BDNF and trkB supports the contention that this receptor/ligand pair participates in postsynaptic plasticity.
Collapse
Affiliation(s)
- C Aoki
- Center for Neural Science, New York University, New York
| | | | | | | | | | | | | |
Collapse
|
32
|
Grkovic I, Edwards SL, Murphy SM, Anderson CR. Chemically distinct preganglionic inputs to iris-projecting postganglionic neurons in the rat: A light and electron microscopic study. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991004)412:4<606::aid-cne3>3.0.co;2-q] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Winer JA, Sally SL, Larue DT, Kelly JB. Origins of medial geniculate body projections to physiologically defined zones of rat primary auditory cortex. Hear Res 1999; 130:42-61. [PMID: 10320098 DOI: 10.1016/s0378-5955(98)00217-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Medial geniculate body neurons projecting to physiologically identified subregions of rat primary auditory cortex (area 41, Te1) were labeled with horseradish peroxidase in adult rats. The goals were to determine the type(s) of projection neuron and the spatial arrangement of these cells with respect to thalamic subdivisions. Maps of best frequency were made with single neuron or unit cluster extracellular recording at depths of 500-800 microm, which correspond to layers III-IV in Nissl preparations. Tracer injections were made in different cortical isofrequency regions (2, 11, 22, or 38 kHz, respectively). Labeled neurons were plotted on representative sections upon which the architectonic subdivisions were drawn independently. Most of the cells of origin lay in the ventral division in every experiment. Injections at low frequencies labeled bands of neurons laterally in the ventral division; progressively more rostral deposits at higher frequencies labeled bands or clusters more medially in the ventral division, and through most of its caudo-rostral extent. Medial division labeling was variable. Labeled cells were always in the lateral half of the nucleus and were often scattered. There were few labeled cells in the dorsal division. Seven types of thalamocortical neuron were identified: ventral division cells had a tufted branching pattern, while medial division neurons have heterogeneous shapes and sizes and were larger. Dorsal division neurons had a radiate branching pattern. The size range of labeled neurons spanned that of Nissl stained neuronal somata. Area 41 may receive two types of thalamic projection: ventral division input is strongly convergent, highly topographic, spatially focal, and restricted to one type of neuron only, while the medial division projection is more divergent, coarsely topographical, involves multiple cortical areas, and has several varieties of projection neuron. Despite species differences in local circuitry, many facets of thalamocortical organization are conserved in phylogeny.
Collapse
Affiliation(s)
- J A Winer
- Department of Molecular and Cell Biology, University of California at Berkeley, 94720-3200, USA.
| | | | | | | |
Collapse
|
34
|
Ouchi Y, Kakiuchi T, Okada H, Nishiyama S, Tsukada H. The effect of aniracetam on cerebral glucose metabolism in rats after lesioning of the basal forebrain measured by PET. J Neurol Sci 1999; 164:7-12. [PMID: 10385041 DOI: 10.1016/s0022-510x(99)00036-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To evaluate the effect of aniracetam, a potent modulator of the glutamatergic and cholinergic systems, on the altered cerebral glucose metabolism after lesioning of the basal forebrain, we measured the cerebral metabolic rate of glucose (CMRGlc) with positron emission tomography and the choline acetyltransferase (ChAT) activity in the frontal cortex of the lesioned rats after treating them with aniracetam. Continuous administration of aniracetam for 7 days after the surgery prevented CMRGlc reduction in the frontal cortex ipsilateral to the lesion while the lesioned rats without aniracetam showed significant CMRGlc reduction in the frontal cortex. The level of CMRGlc in the lesion-side basal forebrain was lower in all rats regardless of the aniracetam treatment. Biochemical studies showed that aniracetam did not alter the reduction in the frontal ChAT activity. These results showed that aniracetam prevents glucose metabolic reduction in the cholinergically denervated frontal cortex with little effect on the cortical cholinergic system. The present study suggested that a neurotransmitter system other than the cholinergic system, e.g. the glutamatergic system, plays a central role in the cortical metabolic recovery after lesioning of the basal forebrain.
Collapse
Affiliation(s)
- Y Ouchi
- Positron Medical Center, Hamamatsu Medical Center, Hamakita, Japan
| | | | | | | | | |
Collapse
|
35
|
Sachdev RN, Lu SM, Wiley RG, Ebner FF. Role of the basal forebrain cholinergic projection in somatosensory cortical plasticity. J Neurophysiol 1998; 79:3216-28. [PMID: 9636120 DOI: 10.1152/jn.1998.79.6.3216] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Trimming all but two whiskers in adult rats produces a predictable change in cortical cell-evoked responses characterized by increased responsiveness to the two intact whiskers and decreased responsiveness to the trimmed whiskers. This type of synaptic plasticity in rat somatic sensory cortex, called "whisker pairing plasticity," first appears in cells above and below the layer IV barrels. These are also the cortical layers that receive the densest cholinergic inputs from the nucleus basalis. The present study assesses whether the cholinergic inputs to cortex have a role in regulating whisker pairing plasticity. To do this, cholinergic basal forebrain fibers were eliminated using an immunotoxin specific for these fibers. A monoclonal antibody to the low-affinity nerve growth factor receptor 192 IgG, conjugated to the cytotoxin saporin, was injected into cortex to eliminate cholinergic fibers in the barrel field. The immunotoxin reduces acetylcholine esterase (AChE)-positive fibers in S1 cortex by >90% by 3 wk after injection. Sham-depleted animals in which either saporin alone or saporin unconjugated to 192 IgG is injected into the cortex produces no decrease in AChE-positive fibers in cortex. Sham-depleted animals show the expected plasticity in barrel column neurons. In contrast, no plasticity develops in the ACh-depleted, 7-day whisker-paired animals. These results support the conclusion that the basal forebrain cholinergic projection to cortex is an important facilitator of synaptic plasticity in mature cortex.
Collapse
Affiliation(s)
- R N Sachdev
- Institute for Developmental Neuroscience, Vanderbilt University, Nashville, Tennessee 37203, USA
| | | | | | | |
Collapse
|
36
|
Mrzljak L, Levey AI, Belcher S, Goldman-Rakic P. Localization of the m2 muscarinic acetylcholine receptor protein and mRNA in cortical neurons of the normal and cholinergically deafferented rhesus monkey. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980105)390:1<112::aid-cne10>3.0.co;2-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Abstract
Recent immunoelectron microscopic studies have revealed a low frequency of synaptic membrane differentiations on ACh (ChAT-immunostained) axon terminals (boutons or varicosities) in adult rat cerebral cortex, hippocampus and neostriatum, suggesting that, besides synaptic transmission, diffuse transmission by ACh prevails in many regions of the CNS. Cytological analysis of the immediate micro-environment of these ACh terminals, as well as currently available immunocytochemical data on the cellular and subcellular distribution of ACh receptors, is congruent with this view. At least in brain regions densely innervated by ACh neurons, a further aspect of the diffuse transmission paradigm is envisaged: the existence of an ambient level of ACh in the extracellular space, to which all tissue elements would be permanently exposed. Recent experimental data on the various molecular forms of AChE and their presumptive role at the neuromuscular junction support this hypothesis. As in the peripheral nervous system, degradation of ACh by the prevalent G4 form of AChE in the CNS would primarily serve to keep the extrasynaptic, ambient level of ACh within physiological limits, rather than totally eliminate ACh from synaptic clefts. Long-lasting and widespread electrophysiological effects imputable to ACh in the CNS might be explained in this manner. The notions of diffuse transmission and of an ambient level of ACh in the CNS could also be of clinical relevance, in accounting for the production and nature of certain cholinergic deficits and the efficacy of substitution therapies.
Collapse
Affiliation(s)
- L Descarries
- Département de physiologie, Faculté de médecine, Université de Montréal, QC, Canada.
| | | | | |
Collapse
|
38
|
Abstract
Electrophysiological evidence at a cellular level and in vivo macroelectrode recordings converge in indicating a degree of specificity of acetylcholine action in vision. Acetylcholine (ACh) function is also thought to play a significant role in memory, learning and other cognitive processes. In this respect, ACh action is suggested to serve in both sensory and cognitive processes. The pharmacological blocking of brain muscarinic transmission has been proposed as a model of geriatric memory impairment and Alzheimer's dementia. Visual electrophysiological testing is deemed of diagnostic specificity for this disease. ACh brain neurotransmission, however, mostly contributes to the modulation of nonspecific aspects of cognition, such as arousal or attention. Alzheimer's dementia results from complex neuron alterations [which also affect muscarinic receptors among other (sub)cellular structures] rather than simply reflecting ACh impoverishment. A substantial loss of retinal ganglion cells is documented in patients with Alzheimer's disease and is consistent with electrophysiological observations. However, it is unclear to what extent the dysfunction of the visual system observable in Alzheimer's dementia is qualitatively different from that occurring spontaneously during aging. The dissimilarities between the effect of acute muscarinic blocking (e.g. by scopolamine) and dementia outnumber the similarities. Accordingly, the conventional ACh agonist-antagonist model of dementia now appears questionable, and replacement treatment with compounds enhancing ACh function proved disappointing. It is suggested that (nonspecific) ACh action becomes function-specific, as determined by the architecture of local brain circuits in which it is involved.
Collapse
Affiliation(s)
- L Nobili
- Department of Motor Sciences and Rehabilitation-Neurophysiopathology, University of Genoa, Italy
| | | |
Collapse
|
39
|
Smiley JF, Morrell F, Mesulam MM. Cholinergic synapses in human cerebral cortex: an ultrastructural study in serial sections. Exp Neurol 1997; 144:361-8. [PMID: 9168836 DOI: 10.1006/exnr.1997.6413] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cholinergic axons in the human cerebral cortex were analyzed by electron microscopy. Choline acetyltransferase (ChAT) immunoreactivity was used to identify cholinergic axons in samples of anterior temporal lobe removed at surgery. A systematic survey of labeled axon varicosities, visualized in complete serial sections, showed that 67% of all varicosities formed identifiable synaptic specializations. These synapses were usually symmetric and quite small, often present in only one to two serial sections. However, an occasional synapse was asymmetric and larger, seen in five to seven serial sections. The postsynaptic processes at cholinergic synapses were often identified as spiny dendrites or spines. The existence of cholinergic axons in the human cerebral cortex has been demonstrated in numerous studies. Our findings provide the first ultrastructural evidence that these axons make synaptic contact with cortical neurons in the human brain.
Collapse
Affiliation(s)
- J F Smiley
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
40
|
Aoki C, Rhee J, Lubin M, Dawson TM. NMDA-R1 subunit of the cerebral cortex co-localizes with neuronal nitric oxide synthase at pre- and postsynaptic sites and in spines. Brain Res 1997; 750:25-40. [PMID: 9098526 DOI: 10.1016/s0006-8993(96)01147-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The majority of nitric oxide's (NO) physiologic and pathologic actions in the brain has been linked to NMDA receptor activation. In order to determine how the NO-synthesizing enzyme within brain, neuronal NO synthase (nNOS), and NMDA receptors are functionally linked, previous studies have used in situ hybridization techniques in combination with light microscopic immunocytochemistry to show that the two are expressed within single neurons. However, this light microscopic finding does not guarantee that NMDA receptors are distributed sufficiently close to nNOS within single neurons to allow direct interaction of the two. Thus, in this study, dual immuno-electron microscopy was performed to determine whether nNOS and NMDA receptors co-exist within fine neuronal processes. We show that nNOS and the obligatory subunit of functional NMDA receptors, i.e. the NMDA-R1, co-exist within dendritic shafts, spines and terminals of the adult rat visual cortex. Axon terminals form asymmetric synaptic junctions with the dually labeled dendrites, suggesting that the presynaptic terminals release glutamate. Axons and dendrites expressing one without the other also are detected. These results indicate that it is possible for the generation of NO to be temporally coordinated with glutamatergic synaptic transmission at axo-dendritic and axo-axonic junctions and that NO may be generated independently of glutamatergic synaptic transmission. Together, our observations point to a greater complexity than previously recognized for glutamatergic neurotransmission, based on the joint versus independent actions of NO relative to NMDA receptors at pre- versus postsynaptic sites.
Collapse
Affiliation(s)
- C Aoki
- Center for Neural Science, New York University, NY 10003, USA.
| | | | | | | |
Collapse
|
41
|
Aoki C. Postnatal changes in the laminar and subcellular distribution of NMDA-R1 subunits in the cat visual cortex as revealed by immuno-electron microscopy. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 98:41-59. [PMID: 9027403 DOI: 10.1016/s0165-3806(96)00160-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although it is recognized that nearly all synapses in the cerebral cortex form postnatally, little is known about the emergence of molecules necessary to render these synapses functional. This study visualized the emergence of synaptically localized NMDA receptors by immuno-electron microscopic labeling of the receptor's obligatory subunit, NMDA-R1, in the developing cat visual cortex. Prior to eye-opening (postnatal day 2-10), NMDA-R1 immunoreactivity is already present within dendritic and growth cones, even though these profiles are devoid of synaptic specializations. This indicates that synthesis and incorporation of NMDA-R1 into plasma membranes are independent of form vision. During the next 2-3 weeks, i.e., preceding the onset of the critical period for ocular dominance plasticity (around the fourth week), NMDA-R1 immunoreactivity changes from a diffuse distribution within dendrites to a more discrete aggregation over postsynaptic densities of axo-spinous junctions. Such clustering of NMDA-R1 at synapses may be a prerequisite for stabilization and strengthening of synapses activated by visual stimulation during the critical period. Furthermore, only during the first several weeks, intensely NMDA-R1-immunoreactive neurons are present in the infragranular layers and the white matter. Enrichment of NMDA-R1 in the deep-layer neurons may reflect the neurons' supportive role in the development of cortical circuitry, serving as transient synaptic targets for geniculate and cortico-cortical afferents while these afferents 'wait' in the infragranular for their ultimate, life-long target neurons to become receptive in the upper layers.
Collapse
Affiliation(s)
- C Aoki
- Center for Neural Science and Biology Department, New York University, NY 10003, USA.
| |
Collapse
|
42
|
Woolf NJ. Global and serial neurons form A hierarchically arranged interface proposed to underlie memory and cognition. Neuroscience 1996; 74:625-51. [PMID: 8884762 DOI: 10.1016/0306-4522(96)00163-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It is hypothesized that the cholinergic and monoaminergic neurons of the brain from a global network. What is meant by a global network is that these neurons operate as a unified whole, generating widespread patterns of activity in concert with particular electroencephalographic states, moods and cognitive gestalts. Apart from cholinergic and monoaminergic global systems, most other mammalian neurons relay sensory information about the external and internal milieu to serially ordered loci. These "serial" neurons are neurochemically distinct from global neurons and commonly use small molecule amino acid neurotransmitters such as glutamate or aspartate. Viewing the circuitry of the mammalian brain within the global-serial dichotomy leads to a number of novel interpretations and predictions. Global systems seem to be capable of transforming incoming sensory data into cognitive-related activity patterns. A comparative examination of global and serial systems anatomy, development and physiology reveals how global systems might turn sensation into mentation. An important step in this process is the permanent encoding of memory. Global neurons are particularly plastic, as are the neurons receiving global inputs. Global afferents appear to be capable of reorganizing synapses on recipient serial cells, thus leading to enhanced responding to a signal, in a particular context and state of arousal.
Collapse
Affiliation(s)
- N J Woolf
- Department of Psychology, University of California, Los Angeles 90095-1563, USA
| |
Collapse
|
43
|
Avendaño C, Umbriaco D, Dykes RW, Descarries L. Acetylcholine innervation of sensory and motor neocortical areas in adult cat: a choline acetyltransferase immunohistochemical study. J Chem Neuroanat 1996; 11:113-30. [PMID: 8877599 DOI: 10.1016/0891-0618(96)00132-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Light microscopic choline acetyltransferase (ChAT) immunocytochemistry was used to examine the distribution of the acetylcholine innervation in primary motor (4 gamma) and sensory (3a, 3b, 41 and 17) cortical areas of adult cat. In every area, scattered immuno-reactive cell bodies were present and a relatively dense meshwork of ChAT immunoreactive axons pervaded the whole cortical thickness. These axons were generally thin and bore innumerable varicosities of different sizes. A few thicker and smoother fibers and occasional clusters of unusually large varicosities were also visible. Overall, area 17 was less densely innervated than the other areas. In each area, layer I showed the densest innervation. Innervation of underlying layers was rather uniform in area 17, but patterned in other areas. In areas 4 gamma and 3a, layers II, upper III and V showed preferential innervation. Innervation of layer IV was the strongest in areas 3b and 41. Area 3a was transitional between 4 gamma and 3b. Except in area 17, the laminar pattern of acetylcholinesterase staining was consistent with that of ChAT. In the light of current data on the distribution of this cortical innervation in different species, and of its presumed ultrastructural features, it appears likely that such regional and laminar features subtend widespread, modulatory roles of ACh.
Collapse
Affiliation(s)
- C Avendaño
- Departamento de Morfología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| | | | | | | |
Collapse
|
44
|
Mrzljak L, Levey AI, Rakic P. Selective expression of m2 muscarinic receptor in the parvocellular channel of the primate visual cortex. Proc Natl Acad Sci U S A 1996; 93:7337-40. [PMID: 8692994 PMCID: PMC38985 DOI: 10.1073/pnas.93.14.7337] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Visual information in primates is relayed from the dorsal lateral geniculate nucleus to the cerebral cortex by three parallel neuronal channels designated the parvocellular, magnocellular, and interlaminar pathways. Here we report that m2 muscarinic acetylcholine receptor in the macaque monkey visual cortex is selectively associated with synaptic circuits subserving the function of only one of these channels. The m2 receptor protein is enriched both in layer IV axons originating from parvocellular layers of the dorsal lateral geniculate nucleus and in cytochrome oxidase poor interblob compartments in layers II and III, which are linked with the parvocellular pathway. In these compartments, m2 receptors appear to be heteroreceptors, i.e., they are associated predominantly with asymmetric, noncholinergic synapses, suggesting a selective role in the modulation of excitatory neurotransmission through the parvocellular visual channel.
Collapse
Affiliation(s)
- L Mrzljak
- Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | |
Collapse
|
45
|
Mrzljak L, Pappy M, Leranth C, Goldman-Rakic PS. Cholinergic synaptic circuitry in the macaque prefrontal cortex. J Comp Neurol 1995; 357:603-17. [PMID: 7673486 DOI: 10.1002/cne.903570409] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Surprisingly little is known about the synaptic architecture of the cholinergic innervation in the primate cerebral cortex in spite of its acknowledged relevance to cognitive processing and Alzheimer's disease. To address this knowledge gap, we examined serially sectioned cholinergic axons in supra- and infragranular layers of the macaque prefrontal cortex by using an antibody against the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT). The tissue bound antibody was visualized with both immunoperoxidase and silver-enhanced diaminobenzidine sulfide (SEDS) techniques. Both methods revealed that cholinergic axons make synapses in all cortical layers and that these synapses are exclusively symmetric. Cholinergic axons formed synapses primarily on dendritic shafts (70.5%), dendritic spines (25%), and, to a lesser extent, cell bodies (4.5%). Both pyramidal neurons and cells exhibiting the morphological features of GABAergic cells were targets of the cholinergic innervation. Some spiny dendritic shafts received multiple, closely spaced synapses, suggesting that a subset of pyramidal neurons may be subject to a particularly strong cholinergic influence. Analysis of synaptic incidence of cholinergic profiles in the supragranular layers of the prefrontal cortex by the SEDS technique revealed that definitive synaptic junctions were formed by 44% of the cholinergic boutons. An unexpected finding was that cholinergic boutons were frequently apposed to spines and small dendrites without making any visible synaptic specializations. These same spines and dendrites often received asymmetric synapses, presumably of thalamocortical or corticocortical origin. Present ultrastructural findings suggest that acetylcholine may have a dual modulatory effect in the neocortex: one through classical synaptic junctions on dendritic shafts and spines, and the other through nonsynaptic appositions in close vicinity to asymmetric synapses. Further physiological studies are necessary to test the hypothesis of the nonsynaptic release of acetylcholine in the cortex.
Collapse
Affiliation(s)
- L Mrzljak
- Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
46
|
Pinault D. Backpropagation of action potentials generated at ectopic axonal loci: hypothesis that axon terminals integrate local environmental signals. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1995; 21:42-92. [PMID: 8547954 DOI: 10.1016/0165-0173(95)00004-m] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review deals with the fascinating complexity of presynaptic axon terminals that are characterized by a high degree of functional distinctiveness. In vertebrate and invertebrate neurons, all-or-none APs can take off not only from the axon hillock, but also from ectopic axonal loci including terminals. Invertebrate neurons display EAPs, for instance alternating with somatic APs, during survival functions. In vertebrate, EAPs have been recorded in the peripheral and central nervous systems in time relationship with physiological or pathological neuronal activities. In motor or sensory axon, EAP generation may be the cause of motor dysfunctioning or sensory perceptions and pain respectively. Locomotion is associated with rhythmic depolarizations of the presynaptic axonal membrane of primary afferents, which are ridden by robust EAP bursts. In central axons lying within an epileptic tissue EAP discharges, coinciding with paroxysmal ECoG waves, get longer as somatic discharges get shorter during seizure progression. Once invaded by an orthodromic burst, an ectopic axonal locus can display an EAP after discharge. Such loci can also fire during hyperpolarization or the postinhibitory excitatory period of the parent somata, but not during their tonic excitation. Neurons are thus endowed with electrophysiological intrinsic properties making possible the alternate discharges of somatic APs and EAPs. In invertebrate and vertebrate neurons, ectopic axonal loci fire while the parent somata stop firing, further suggesting that axon terminal networks are unique and individual functional entities. The functional importance of EAPs in the nervous systems is, however, not yet well understood. Ectopically generated axonal APs propagate backwards and forwards along the axon, thus acting as a retrograde and anterograde signal. In invertebrate neurons, somatically and ectopically generated APs cannot have the same effect on the postsynaptic membrane. As suggested by studies related to the dorsal root reflex, EAPs may not only be implied in the presynaptic modulation of transmitter release but also contribute significantly during their backpropagation to a powerful control (collision process) of incoming volleys. From experimental data related to epileptiform activities it is proposed that EAPs, once orthodromically conducted, might potentiate synapses, initiate, spread or maintain epileptic cellular processes. For instance, paroxysmal discharges of EAPs would exert, like a booster-driver, a powerful synchronizing synaptic drive upon a large number of excitatory and inhibitory postsynaptic neurons. We have proposed that, once backpropagated, EAPs are likewise capable of initiating (and anticipating) threshold and low-threshold somatodendritic depolarizations. Interestingly, an antidromic EAP can modulate the excitability of the parent soma.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Pinault
- Université Laval, Centre de Recherches en Neurobiologie, Hôpital de l'Enfant-Jésus, Québec, Canada
| |
Collapse
|
47
|
Young HM, Furness JB. Ultrastructural examination of the targets of serotonin-immunoreactive descending interneurons in the guinea pig small intestine. J Comp Neurol 1995; 356:101-14. [PMID: 7629305 DOI: 10.1002/cne.903560107] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Serotonin neurons are descending interneurons in the myenteric plexus of the guinea pig small intestine. Preembedding single- and double-label immunocytochemistries at the ultrastructural level were used to identify the targets of these serotonin interneurons. Serial ultrathin sections were taken through a myenteric ganglion that had been processed for serotonin immunocytochemistry. The ganglion contained the cell bodies of 69 neurons, including 2 serotonin neurons and 6 neurons with the ultrastructural features of Dogiel type II cells. For each cell body in the ganglion, the number of serotonin inputs (synapses and close contacts) was determined. About 59% of the cell bodies did not receive any serotonin inputs. The most abundant serotonin terminals were related to two targets: other serotonin descending interneurons and a population of neurons with Dogiel type I morphology, but whose neurochemistry and function is unknown. The serotonin inputs to the serotonin cell bodies were located predominantly on the lamellar dendrites. Each of the Dogiel type II neurons received 3 or fewer serotonin inputs, and none of the serotonin inputs to Dogiel type II neurons formed a synapse. Overall, about 40% of the serotonin inputs formed synapses. The serotonin inputs to neurons that received many serotonin inputs were more likely to show synaptic specializations than serotonin inputs to neurons that received few serotonin inputs. Inhibitory motor neurons contain nitric oxide synthase (NOS). At the light microscope level, serotonin nerve fibers do not form dense pericellular baskets around NOS cell bodies. To determine whether there are serotonin inputs to NOS neurons, serial ultrathin sections were taken through a myenteric ganglion that had been processed for preembedding double-label immunocytochemistry, in which the NOS neurons were labeled with peroxidase-diaminobenzidine and the serotonin neurons with silver-intensified 1 nm gold. Only 1 out of 9 NOS cells examined in serial section received more than 5 serotonin inputs. The results suggest that, in the guinea pig small intestine, the serotonin descending interneurons are not an essential element of the descending inhibitory reflex.
Collapse
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
48
|
Umbriaco D, Watkins KC, Descarries L, Cozzari C, Hartman BK. Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. J Comp Neurol 1994; 348:351-73. [PMID: 7844253 DOI: 10.1002/cne.903480304] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study was aimed at characterizing the ultrastructural morphology of the normal acetylcholine (ACh) innervation in adult rat parietal cortex. After immunostaining with a monoclonal antibody against purified rat brain choline acetyltransferase (ChAT), more than 100 immunoreactive axonal varicosities (terminals) from each layer of the Par 1 area were photographed and examined in serial thin sections across their entire volume. These varicosities were relatively small, averaging 0.6 micron in diameter, 1.6 microns 2 in surface, and 0.12 micron 3 in volume. In every layer, a relatively low proportion exhibited a synaptic membrane differentiation (10% in layer I, 14% in II-III, 11% in IV, 21% in V, 14% in VI), for a I-VI average of 14%. These synaptic junctions were usually single, symmetrical (> 99%), and occupied a small portion of the surface of varicosities (< 3%). A majority were found on dendritic branches (76%), some on spines (24%), and none on cell bodies. On the whole, the ACh junctional varicosities were significantly larger than their nonjunctional counterparts, and both synaptic and nonsynaptic varicosities could be observed on the same fiber. A subsample of randomized single thin sections from these whole varicosities yielded similar values for size and synaptic frequency as the result of a stereological extrapolation. Also analyzed in single sections, the microenvironment of the ChAT-immunostained varicosities appeared markedly different from that of unlabeled varicosity profiles randomly selected from their vicinity, mainly due to a lower incidence of synaptically targeted dendritic spines. Thus, the normal ACh innervation of adult rat parietal cortex is predominantly nonjunctional (> 85% of its varicosities), and the composition of the microenvironment of its varicosities suggests some randomness in their distribution at the microscopic level. It is unlikely that these ultrastructural characteristics are exclusive to the parietal region. Among other functional implications, they suggest that this system depends predominantly on volume transmission to exert its modulatory effects on cortical activity.
Collapse
Affiliation(s)
- D Umbriaco
- Département de Pathologie, Université de Montréal, Quebec, Canada
| | | | | | | | | |
Collapse
|
49
|
Aoki C, Go CG, Venkatesan C, Kurose H. Perikaryal and synaptic localization of alpha 2A-adrenergic receptor-like immunoreactivity. Brain Res 1994; 650:181-204. [PMID: 7953684 DOI: 10.1016/0006-8993(94)91782-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Through molecular cloning, the existence of three distinct subtypes of alpha 2-adrenergic receptors (alpha 2AR)--A, B and C--has been established and are referred to as alpha 2A AR, alpha 2B AR and alpha 2CAR. Due to limitations in pharmacological tools, it has been difficult to ascribe the role of each subtype to the central functions of alpha 2AR. In situ hybridization studies have provided valuable information regarding their distribution within brain. However, little is known about their subcellular distribution, and in particular, their pre- versus postsynaptic localization or their relation to noradrenergic neurons in the CNS. We used an antiserum that selectively recognizes the A-subtype of alpha 2AR to determine: (1) the regional distribution of the receptor within brains of rat and monkey; (2) the subcellular distribution of the receptor in locus coeruleus (LC) of rats and prefrontal cortex of monkeys; and (3) the ultrastructural relation of the receptor to noradrenergic processes in LC. Light microscopic immunocytochemistry revealed prominent immunoreactivity in LC, the brainstem regions modulating the baroreflex, the granule cell layer of the cerebellar cortex, the paraventricular and supraoptic nuclei of the hypothalamus (PVN, SON), the basal ganglia, all thalamic nuclei, the hippocampal formation and throughout cerebral cortical areas. Comparison of results obtained from rat and monkey brains revealed no apparent interspecies-differences in the regional distribution of immunoreactivity. Immunoreactivity occurred as small puncta, less than 1 micron in diameter, that cluster over neuronal perikarya. Besides these puncta, cell bodies, proximal dendrites and fine varicose processes--most likely to be axonal--of the PVN and SON and the hippocampal granule cells also exhibited homogeneously intense distribution of immunoreactivity. Subcellularly, alpha 2AAR-ir in LC and prefrontal cortex were associated with synaptic and non-synaptic plasma membrane of dendrites and perikarya as well as perikaryal membranous organelles. In addition, cortical tissue, but not LC, exhibited prominent immunoreactivity within spine heads. Rat brainstem tissue immunolabeled dually for alpha 2AAR and dopamine beta-hydroxylase (D beta H, the noradrenaline-synthesizing enzyme) revealed that alpha 2AAR-li occurs in catecholaminergic terminals but is also prevalent within non-catecholaminergic terminals. Terminals exhibiting alpha 2AAR-li formed symmetric and asymmetric types of synapses onto dendrites with and without D beta H-immunoreactivity. These results indicate that: (1) the A-subtype of alpha 2AR is distributed widely within brain; (2) alpha 2AAR-li reflects the presence of newly synthesized alph 2AAR in perikarya as well as those receptors along the plasma membrane of perikarya, dendritic trunks and spines; and (3) alpha 2AAR in LC may operate as heteroreceptors on non-catecholaminergic terminals as well as autoreceptors on noradrenergic terminals.
Collapse
Affiliation(s)
- C Aoki
- Center for Neural Science, New York University, NY 10003
| | | | | | | |
Collapse
|
50
|
Daniels R, Harding GF, Anderson SJ. Effect of dopamine and acetylcholine on the visual evoked potential. Int J Psychophysiol 1994; 16:251-61. [PMID: 7916338 DOI: 10.1016/0167-8760(89)90052-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Visual evoked potentials were measured on patients with Parkinson's disease and Alzheimer's disease and normal controls to assess the function of dopamine and acetylcholine in the visual system. Dopamine is a neurotransmitter known to be present in the retina of primates and is found to be severely depleted in the substantia nigra of patients with Parkinson's disease. Acetylcholine is also known to be present in the retina, visual cortex, and superior colliculus and is found to be grossly reduced in patients with Alzheimer's disease. Stimuli were designed to preferentially activate functionally separate pathways in the visual system described as magnocellular and parvocellular. The four stimuli were a diffuse flash; an achromatic, 73' check counterphasing at 6 Hz at a contrast of 30%; an achromatic 10' check counterphasing at 2 Hz at a contrast of 85%; and an isoluminant red/green grating of 4 cpd presented using an on and off cosine ramp of 200 ms. The results indicate that an acetylcholine deficit produces a delay to the flash P2 component of the visual evoked potential. No change was detected when other stimuli were used.
Collapse
Affiliation(s)
- R Daniels
- Department of Vision Sciences, Aston University, Birmingham, UK
| | | | | |
Collapse
|