1
|
Tang CL, Li YQ, Du XK, Fang XX, Guang YM, Li PZ, Chen S, Xue SY, Yu JM, Liu XY, Luo YP, Zhou LX, Luo C, Xiong H, Liang ZJ, Ding H. Identifying a non-conserved site for achieving allosteric covalent inhibition of CECR2. Acta Pharmacol Sin 2025:10.1038/s41401-024-01452-z. [PMID: 39833305 DOI: 10.1038/s41401-024-01452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
The bromodomain (BRD) represents a highly conserved structural module that provides BRD proteins with fundamental functionality in modulating protein-protein interactions involved in diverse biological processes such as chromatin-mediated gene transcription, DNA recombination, replication and repair. Consequently, dysregulation of BRD proteins has been implicated in the pathogenesis of numerous human diseases. In recent years, considerable scientific endeavors have focused on unraveling the molecular mechanisms underlying BRDs and developing inhibitors that target these domains. While these inhibitors compete for binding with the acetylated lysine binding site of BRDs, achieving inhibition of BRD proteins via competitive pocket binding has proven challenging due to the conserved nature of these pockets. To address this limitation, the present study employed dynamic simulations for a comprehensive analysis, leading to the identification of a non-conserved pocket in CECR2 for achieving BRD family inhibition through allosteric modulation. Subsequently, the compound BAY 11-7085 was proven capable of covalently binding to C494 of this pocket after covalent docking and biological verification in vitro. The allosteric inhibition strategy of CECR2 was further verified by the structurally optimized compound LC-CE-7, which is an allosteric covalent CECR2 inhibitor with anti-cancer effects in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Cai-Ling Tang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuan-Qing Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xi-Kun Du
- Center for Systems Biology, Department of Bioinformatics, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Xiao-Xia Fang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Yi-Man Guang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Pei-Zhuo Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shuang Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Sheng-Yu Xue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia-Min Yu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Yi Liu
- Center for Systems Biology, Department of Bioinformatics, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Yi-Pan Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Lan-Xin Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Cheng Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Huan Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Zhong-Jie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, 215123, China.
| | - Hong Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
2
|
Jing X, Mackay JP, Passioura T. Macrocyclic peptides as a new class of targeted protein degraders. RSC Chem Biol 2025:d4cb00199k. [PMID: 39822773 PMCID: PMC11733494 DOI: 10.1039/d4cb00199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025] Open
Abstract
Targeted protein degraders, in the form of proteolysis targeting chimaeras (PROTACs) and molecular glues, leverage the ubiquitin-proteasome system to catalytically degrade specific target proteins of interest. Because such molecules can be extremely potent, they have attracted considerable attention as a therapeutic modality in recent years. However, while targeted degraders have great potential, they are likely to face many of the same challenges as more traditional small molecules when it comes to their development as therapeutics. In particular, existing targeted degrader design is largely only applicable to the same set of protein targets as traditional small molecules (i.e., ∼15% of the human proteome). Here, we consider the potential of macrocyclic peptides to overcome this limitation. Such molecules possess several features that make them well-suited for the role, including the ability to induce the formation of ternary protein complexes that can involve relatively flat surfaces and their structural commonality with E3 ligase-recruiting peptide degrons. For these reasons, macrocyclic peptides provide the opportunity both to broaden the number of targets accessible to degrader activity and to broaden the number of E3 ligases that can be harnessed to mediate that activity.
Collapse
Affiliation(s)
- Xuefei Jing
- School of Life and Environmental Sciences, The University of Sydney Sydney NSW 2006 Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney Sydney NSW 2006 Australia
| | - Toby Passioura
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
- Insamo South Pty Ltd Chippendale NSW 2008 Australia
| |
Collapse
|
3
|
Nuñez R, Sidlowski PFW, Steen EA, Wynia-Smith SL, Sprague DJ, Keyes RF, Smith BC. The TRIM33 Bromodomain Recognizes Histone Lysine Lactylation. ACS Chem Biol 2024; 19:2418-2428. [PMID: 39556662 PMCID: PMC11706526 DOI: 10.1021/acschembio.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Histone lysine lactylation (Kla) regulates inflammatory gene expression in activated macrophages and mediates the polarization of inflammatory (M1) to reparative (M2) macrophages. However, the molecular mechanisms and key protein players involved in Kla-mediated transcriptional changes are unknown. As Kla is structurally similar to lysine acetylation (Kac), which is bound by bromodomains, we hypothesized that bromodomain-containing proteins bind histone Kla. Here, we screened 28 recombinantly expressed bromodomains for binding to histone Kla peptides via AlphaScreen assays. TRIM33 was the sole bromodomain tested that bound histone Kla peptides. TRIM33 attenuates inflammatory genes during late-stage macrophage activation; thus, TRIM33 provides a potential link between histone Kla and macrophage polarization. Orthogonal biophysical techniques, including isothermal titration calorimetry and protein-detected nuclear magnetic resonance, confirmed the submicromolar binding affinity of the TRIM33 bromodomain to both Kla and Kac histone post-translational modifications. Sequence alignments of human bromodomains revealed a unique glutamic acid residue within the TRIM33 binding pocket that we found confers TRIM33 specificity for binding Kla compared with other bromodomains. Molecular modeling of interactions of Kla with the TRIM33 bromodomain binding pocket and site-directed mutagenesis of glutamic acid confirmed the critical role of this residue in the selective recognition of Kla by TRIM33. Collectively, our findings implicate TRIM33, a bromodomain-containing protein, as a novel reader of histone Kla, potentially bridging the gap between histone Kla and macrophage polarization. This study enhances our understanding of the regulatory role of histone Kla in macrophage-mediated inflammation and offers insights into the underlying structural and biophysical mechanisms.
Collapse
Affiliation(s)
- Raymundo Nuñez
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Paul F W Sidlowski
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Erica A Steen
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Daniel J Sprague
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Robert F Keyes
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brian C Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
4
|
Menendez CA, Accordino SR, Loubet NA, Appignanesi GA. Study of Protein Hydration Water with the V4S Structural Index: Focus on Binding Site Description. J Phys Chem B 2024; 128:11865-11875. [PMID: 39566099 DOI: 10.1021/acs.jpcb.4c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
V4S, a new structural indicator for water specially designed to be suitable for hydration and nanoconfined contexts, has been recently introduced and preliminarily applied for water in contact with self-assembled monolayers and graphene-like systems. This index enabled an accurate detection of defective high local density water molecules (called HDA-like given their structural resemblance with the high-density amorphous ice, HDA). In the present work, we shall apply this new metric to characterize protein hydration water with particular interest in protein binding sites. As a first result, we shall find that protein hydration water has a higher concentration of HDA-like molecular arrangements compared to the bulk. Significantly, we shall show that the concentration of HDA-like molecules sharply decreases beyond the first hydration layer. Finally, we shall also reveal a highly nonuniform spatial distribution of the V4S values for the first hydration shell on the protein surface, where the higher hydrophobicity inherent to the ligand binding site will be evident from an enrichment in HDA-like molecules as compared to the population exhibited by the global protein surface.
Collapse
Affiliation(s)
- C A Menendez
- Sección Fisicoquímica, INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - S R Accordino
- Sección Fisicoquímica, INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - N A Loubet
- Sección Fisicoquímica, INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - G A Appignanesi
- Sección Fisicoquímica, INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| |
Collapse
|
5
|
Chen X, Yu T, Li S, Fang H. Inhibition of bromodomain regulates cellular senescence in pancreatic adenocarcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:360-370. [PMID: 39544715 PMCID: PMC11558316 DOI: 10.62347/bknq9812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Bromodomain and extra terminal domain (BET) proteins are important epigenetic regulators that promote the transcription of genes in the chromatin region associated with acetylated histones. Small molecule BET inhibitor JQ1 suppresses the biologic function of BET proteins in a variety of tumors and inhibits their proliferation. METHODS We investigated the effect of JQ1 in the treatment of pancreatic cancer. In addition, we evaluated the expression level of BRD4 protein in pancreatic cancer tissues using the Gene Expression Profiling Interactive Analysis (GEPIA) and the Human protein Altas databases and analyzed the correlation between BRD4 and the clinicopathologic features and immune checkpoints of pancreatic adenocarcinoma using UALACN and TIMER databases. RESULTS JQ1 significantly inhibited the proliferation of pancreatic adenocarcinoma (PAAD) cells and induced cell senescence but had little effect on Senescence-associated secretory phenotype (SASP). Interestingly, JQ1 inhibited the epithelial-mesenchymal transition (EMT) and Wnt signaling pathways. CONCLUSIONS These results provide a theoretical basis for new targets in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiujiang University Jiujiang 332000, Jiangxi, China
| | - Tao Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiujiang University Jiujiang 332000, Jiangxi, China
| | - Shu Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiujiang University Jiujiang 332000, Jiangxi, China
| | - Hongcai Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiujiang University Jiujiang 332000, Jiangxi, China
| |
Collapse
|
6
|
De S, Sahu R, Palei S, Narayan Nanda L. Synthesis, SAR, and application of JQ1 analogs as PROTACs for cancer therapy. Bioorg Med Chem 2024; 112:117875. [PMID: 39178586 DOI: 10.1016/j.bmc.2024.117875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
JQ1 is a wonder therapeutic molecule that selectively inhibits the BRD4 signaling pathway and is thus widely used in the anticancer drug discovery program. Due to its unique selective BRD4 binding property, its applications are further extended in the design and synthesis of bi-functional PROTAC molecules. This BRD4 targeting PROTAC molecule selectively degrades the protein by proteolysis. There are several modifications of JQ1 known to date and extensively explored for their applications in PROTAC technology by several research groups in academia as well as industry for targeting oncogenic genes. In this review, we have covered the discovery and synthesis of the JQ1 molecule. The SAR of the JQ1 analogs will help researchers develop potent JQ1 compounds with improved inhibitory properties against malignant cells. Furthermore, we explored the potential application of JQ1 analogs in PROTAC technology. The brief history of the bromodomain family of proteins, as well as the obstacles connected with PROTAC technology, can help comprehend the context of the current research, which has the potential to improve the drug development process. Overall, this review comprehensively appraises JQ1 molecules and their prior implementation in PROTAC technology and cancer therapy.
Collapse
Affiliation(s)
- Soumik De
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India
| | - Raghaba Sahu
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Shubhendu Palei
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Laxmi Narayan Nanda
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Harvard Medical School, Cambridge 02142, United States; P.G. Department of Chemistry, Government Autonomous College, Utkal University, Angul 759143, Odisha, India.
| |
Collapse
|
7
|
Alonso VL, Escalante AM, Rodríguez Araya E, Frattini G, Tavernelli LE, Moreno DM, Furlan RLE, Serra E. 1,3,4-oxadiazoles as inhibitors of the atypical member of the BET family bromodomain factor 3 from Trypanosoma cruzi ( TcBDF3). Front Microbiol 2024; 15:1465672. [PMID: 39411427 PMCID: PMC11473290 DOI: 10.3389/fmicb.2024.1465672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions globally, with increasing urban cases outside of Latin America. Treatment is based on two compounds, namely, benznidazole (BZ) and nifurtimox, but chronic cases pose several challenges. Targeting lysine acetylation, particularly bromodomain-containing proteins, shows promise as a novel antiparasitic target. Our research focuses on TcBDF3, a cytoplasmic protein, which is crucial for parasite differentiation that recognizes acetylated alpha-tubulin. In our previous study, A1B4 was identified as a high-affinity binder of TcBDF3, showing significant trypanocidal activity with low host toxicity in vitro. In this report, the binding of TcBDF3 to A1B4 was validated using differential scanning fluorescence, fluorescence polarization, and molecular modeling, confirming its specific interaction. Additionally, two new 1,3,4-oxadiazoles derived from A1B4 were identified, which exhibited improved trypanocide activity and cytotoxicity profiles. Furthermore, TcBDF3 was classified for the first time as an atypical divergent member of the bromodomain extraterminal family found in protists and plants. These results make TcBDF3 a unique target due to its localization and known functions not shared with higher eukaryotes, which holds promise for Chagas disease treatment.
Collapse
Affiliation(s)
- Victoria L. Alonso
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrea M. Escalante
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Elvio Rodríguez Araya
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gianfranco Frattini
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Química Rosario, CONICET-UNR, Rosario, Argentina
| | - Luis E. Tavernelli
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
| | - Diego M. Moreno
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Química Rosario, CONICET-UNR, Rosario, Argentina
| | - Ricardo L. E. Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Esteban Serra
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
8
|
Zhang S, Lin T, Xiong X, Chen C, Tan P, Wei Q. Targeting histone modifiers in bladder cancer therapy - preclinical and clinical evidence. Nat Rev Urol 2024; 21:495-511. [PMID: 38374198 DOI: 10.1038/s41585-024-00857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
Bladder cancer in the most advanced, muscle-invasive stage is lethal, and very limited therapeutic advances have been reported for decades. To date, cisplatin-based chemotherapy remains the first-line therapy for advanced bladder cancer. Late-line options have historically been limited. In the past few years, next-generation sequencing technology has enabled chromatin remodelling gene mutations to be characterized, showing that these alterations are more frequent in urothelial bladder carcinoma than in other cancer types. Histone modifiers have functional roles in tumour progression by modulating the expression of tumour suppressors and oncogenes and, therefore, have been considered as novel drug targets for cancer therapy. The roles of epigenetic reprogramming through histone modifications have been increasingly studied in bladder cancer, and the therapeutic efficacy of targeting those histone modifiers genetically or chemically is being assessed in preclinical studies. Results from preclinical studies in bladder cancer encouraged the investigation of some of these drugs in clinical trials, which yield mixed results. Further understanding of how alterations of histone modification mechanistically contribute to bladder cancer progression, drug resistance and tumour microenvironment remodelling will be required to facilitate clinical application of epigenetic drugs in bladder cancer.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianhai Lin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xingyu Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ping Tan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Ju X, Wang K, Wang C, Zeng C, Wang Y, Yu J. Regulation of myofibroblast dedifferentiation in pulmonary fibrosis. Respir Res 2024; 25:284. [PMID: 39026235 PMCID: PMC11264880 DOI: 10.1186/s12931-024-02898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Idiopathic pulmonary fibrosis is a lethal, progressive, and irreversible condition that has become a significant focus of medical research due to its increasing incidence. This rising trend presents substantial challenges for patients, healthcare providers, and researchers. Despite the escalating burden of pulmonary fibrosis, the available therapeutic options remain limited. Currently, the United States Food and Drug Administration has approved two drugs for the treatment of pulmonary fibrosis-nintedanib and pirfenidone. However, their therapeutic effectiveness is limited, and they cannot reverse the fibrosis process. Additionally, these drugs are associated with significant side effects. Myofibroblasts play a central role in the pathophysiology of pulmonary fibrosis, significantly contributing to its progression. Consequently, strategies aimed at inhibiting myofibroblast differentiation or promoting their dedifferentiation hold promise as effective treatments. This review examines the regulation of myofibroblast dedifferentiation, exploring various signaling pathways, regulatory targets, and potential pharmaceutical interventions that could provide new directions for therapeutic development.
Collapse
Affiliation(s)
- Xuetao Ju
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Kai Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Congjian Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Chenxi Zeng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
10
|
Hirst DJ, Bamborough P, Al-Mahdi N, Angell DC, Barnett HA, Baxter A, Bit RA, Brown JA, Chung CW, Craggs PD, Davis RP, Demont EH, Ferrie A, Gordon LJ, Harada I, Ho TCT, Holyer ID, Hooper-Greenhill E, Jones KL, Lindon MJ, Lovatt C, Lugo D, Maller C, McGonagle G, Messenger C, Mitchell DJ, Pascoe DD, Patel VK, Patten C, Poole DL, Shah RR, Rioja I, Stafford KAJ, Tape D, Taylor S, Theodoulou NH, Tomlinson L, Wall ID, Wellaway CR, White G, Prinjha RK, Humphreys PG. Structure- and Property-Based Optimization of Efficient Pan-Bromodomain and Extra Terminal Inhibitors to Identify Oral and Intravenous Candidate I-BET787. J Med Chem 2024; 67:10464-10489. [PMID: 38866424 DOI: 10.1021/acs.jmedchem.4c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The bromodomain and extra terminal (BET) family of bromodomain-containing proteins are important epigenetic regulators that elicit their effect through binding histone tail N-acetyl lysine (KAc) post-translational modifications. Recognition of such markers has been implicated in a range of oncology and immune diseases and, as such, small-molecule inhibition of the BET family bromodomain-KAc protein-protein interaction has received significant interest as a therapeutic strategy, with several potential medicines under clinical evaluation. This work describes the structure- and property-based optimization of a ligand and lipophilic efficient pan-BET bromodomain inhibitor series to deliver candidate I-BET787 (70) that demonstrates efficacy in a mouse model of inflammation and suitable properties for both oral and intravenous (IV) administration. This focused two-phase explore-exploit medicinal chemistry effort delivered the candidate molecule in 3 months with less than 100 final compounds synthesized.
Collapse
Affiliation(s)
- David J Hirst
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Bamborough
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Niam Al-Mahdi
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Davina C Angell
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Heather A Barnett
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Andrew Baxter
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rino A Bit
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jack A Brown
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Chun-Wa Chung
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Peter D Craggs
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Robert P Davis
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Emmanuel H Demont
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Alan Ferrie
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Laurie J Gordon
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Isobel Harada
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Tim C T Ho
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D Holyer
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Katherine L Jones
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Matthew J Lindon
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Cerys Lovatt
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - David Lugo
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Claire Maller
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Grant McGonagle
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Cassie Messenger
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Darren J Mitchell
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - David D Pascoe
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | - Darren L Poole
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rishi R Shah
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Inmaculada Rioja
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Daniel Tape
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Simon Taylor
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Laura Tomlinson
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D Wall
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Gemma White
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rab K Prinjha
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | |
Collapse
|
11
|
Patel R, Onyema A, Tang PK, Loverde SM. Conformational Dynamics of the Nucleosomal Histone H2B Tails Revealed by Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:4709-4726. [PMID: 38865599 PMCID: PMC11200259 DOI: 10.1021/acs.jcim.4c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Epigenetic modifications of histone N-terminal tails play a critical role in regulating the chromatin structure and biological processes such as transcription and DNA repair. One of the key post-translational modifications (PTMs) is the acetylation of lysine residues on histone tails. Epigenetic modifications are ubiquitous in the development of diseases, such as cancer and neurological disorders. Histone H2B tails are critical regulators of nucleosome dynamics, biological processes, and certain diseases. Here, we report all-atomistic molecular dynamics (MD) simulations of the nucleosome to demonstrate that acetylation of the histone tails changes their conformational space and interaction with DNA. We perform simulations of H2B tails, critical regulators of gene regulation, in both the lysine-acetylated (ACK) and unacetylated wild type (WT) states. To explore the effects of salt concentration, we use two different NaCl concentrations to perform simulations at microsecond time scales. Salt can modulate the effects of electrostatic interactions between the DNA phosphate backbone and histone tails. Upon acetylation, H2B tails shift their secondary structure helical propensity. The number of contacts between the DNA and the H2B tail decreases. We characterize the conformational dynamics of the H2B tails by principal component analysis (PCA). The ACK tails become more compact at increased salt concentrations, but conformations from the WT tails display the most contacts with DNA at both salt concentrations. Mainly, H2B acetylation may increase the DNA accessibility for regulatory proteins to bind, which can aid in gene regulation and NCP stability.
Collapse
Affiliation(s)
- Rutika Patel
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
| | - Augustine Onyema
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
| | - Phu K. Tang
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
| | - Sharon M. Loverde
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Ph.D.
Program in Physics, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
12
|
Lee PWT, Koseki LR, Haitani T, Harada H, Kobayashi M. Hypoxia-Inducible Factor-Dependent and Independent Mechanisms Underlying Chemoresistance of Hypoxic Cancer Cells. Cancers (Basel) 2024; 16:1729. [PMID: 38730681 PMCID: PMC11083728 DOI: 10.3390/cancers16091729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In hypoxic regions of malignant solid tumors, cancer cells acquire resistance to conventional therapies, such as chemotherapy and radiotherapy, causing poor prognosis in patients with cancer. It is widely recognized that some of the key genes behind this are hypoxia-inducible transcription factors, e.g., hypoxia-inducible factor 1 (HIF-1). Since HIF-1 activity is suppressed by two representative 2-oxoglutarate-dependent dioxygenases (2-OGDDs), PHDs (prolyl-4-hydroxylases), and FIH-1 (factor inhibiting hypoxia-inducible factor 1), the inactivation of 2-OGDD has been associated with cancer therapy resistance by the activation of HIF-1. Recent studies have also revealed the importance of hypoxia-responsive mechanisms independent of HIF-1 and its isoforms (collectively, HIFs). In this article, we collate the accumulated knowledge of HIF-1-dependent and independent mechanisms responsible for resistance of hypoxic cancer cells to anticancer drugs and briefly discuss the interplay between hypoxia responses, like EMT and UPR, and chemoresistance. In addition, we introduce a novel HIF-independent mechanism, which is epigenetically mediated by an acetylated histone reader protein, ATAD2, which we recently clarified.
Collapse
Affiliation(s)
- Peter Wai Tik Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Lina Rochelle Koseki
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Takao Haitani
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Gupta A, Purohit R. Identification of potent BRD4-BD1 inhibitors using classical and steered molecular dynamics based free energy analysis. J Cell Biochem 2024; 125:e30532. [PMID: 38317535 DOI: 10.1002/jcb.30532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
In the present work a combination of traditional and steered molecular dynamics based techniques were employed to identify potential inhibitors against the human BRD4 protein (BRD4- BD1); an established drug target for multiple illnesses including various malignancies. Quinoline derivatives that were synthesized in-house were tested for their potential as new BRD4-BD1 inhibitors. Initially molecular docking experiments were performed to determine the binding poses of BRD4-BD1 inhibitors. To learn more about the thermodynamics of inhibitor binding to the BRD4-BD1 active site, the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) free energy calculations were conducted afterwards. The findings of the MM-PBSA analysis were further reinforced by performing steered umbrella sampling simulations which revealed crucial details about the binding/unbinding process of the most potent quinoline derivatives at the BRD4-BD1 active site. We report a novel quinoline derivative which can be developed into a fully functional BRD4-BD1 inhibitor after experimental validation. The identified compound (4 g) shows better properties than the standard BRD4-BD1 inhibitors considered in the study. The study also highlights the crucial role of Gln78, Phe79, Trp81, Pro82, Phe83, Gln84, Gln85, Val87, Leu92, Leu94, Tyr97, Met105, Cys136, Asn140, Ile146 and Met149 in inhibitor binding. The study provides a possible lead candidate and key amino acids involved in inhibitor recognition and binding at the active site of BRD4-BD1 protein. The findings might be of significance to medicinal chemists involved in the development of potent BRD4-BD1 inhibitors.
Collapse
Affiliation(s)
- Ashish Gupta
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Huber AD, Poudel S, Wu J, Miller DJ, Lin W, Yang L, Bwayi MN, Rimmer MA, Gee RRF, Seetharaman J, Chai SC, Chen T. A bromodomain-independent mechanism of gene regulation by the BET inhibitor JQ1: direct activation of nuclear receptor PXR. Nucleic Acids Res 2024; 52:1661-1676. [PMID: 38084912 PMCID: PMC10899790 DOI: 10.1093/nar/gkad1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 02/29/2024] Open
Abstract
Bromodomain and extraterminal (BET) proteins are extensively studied in multiple pathologies, including cancer. BET proteins modulate transcription of various genes, including those synonymous with cancer, such as MYC. Thus, BET inhibitors are a major area of drug development efforts. (+)-JQ1 (JQ1) is the prototype inhibitor and is a common tool to probe BET functions. While showing therapeutic promise, JQ1 is not clinically usable, partly due to metabolic instability. Here, we show that JQ1 and the BET-inactive (-)-JQ1 are agonists of pregnane X receptor (PXR), a nuclear receptor that transcriptionally regulates genes encoding drug-metabolizing enzymes such as CYP3A4, which was previously shown to oxidize JQ1. A PXR-JQ1 co-crystal structure identified JQ1's tert-butyl moiety as a PXR anchor and explains binding by (-)-JQ1. Analogs differing at the tert-butyl lost PXR binding, validating our structural findings. Evaluation in liver cell models revealed both PXR-dependent and PXR-independent modulation of CYP3A4 expression by BET inhibitors. We have characterized a non-BET JQ1 target, a mechanism of physiological JQ1 instability, a biological function of (-)-JQ1, and BET-dependent transcriptional regulation of drug metabolism genes.
Collapse
Affiliation(s)
- Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Monicah N Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mary Ashley Rimmer
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Rebecca R Florke Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
15
|
Dreier MR, Walia J, de la Serna IL. Targeting SWI/SNF Complexes in Cancer: Pharmacological Approaches and Implications. EPIGENOMES 2024; 8:7. [PMID: 38390898 PMCID: PMC10885108 DOI: 10.3390/epigenomes8010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
SWI/SNF enzymes are heterogeneous multi-subunit complexes that utilize the energy from ATP hydrolysis to remodel chromatin structure, facilitating transcription, DNA replication, and repair. In mammalian cells, distinct sub-complexes, including cBAF, ncBAF, and PBAF exhibit varying subunit compositions and have different genomic functions. Alterations in the SWI/SNF complex and sub-complex functions are a prominent feature in cancer, making them attractive targets for therapeutic intervention. Current strategies in cancer therapeutics involve the use of pharmacological agents designed to bind and disrupt the activity of SWI/SNF complexes or specific sub-complexes. Inhibitors targeting the catalytic subunits, SMARCA4/2, and small molecules binding SWI/SNF bromodomains are the primary approaches for suppressing SWI/SNF function. Proteolysis-targeting chimeras (PROTACs) were generated by the covalent linkage of the bromodomain or ATPase-binding ligand to an E3 ligase-binding moiety. This engineered connection promotes the degradation of specific SWI/SNF subunits, enhancing and extending the impact of this pharmacological intervention in some cases. Extensive preclinical studies have underscored the therapeutic potential of these drugs across diverse cancer types. Encouragingly, some of these agents have progressed from preclinical research to clinical trials, indicating a promising stride toward the development of effective cancer therapeutics targeting SWI/SNF complex and sub-complex functions.
Collapse
Affiliation(s)
- Megan R Dreier
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave, Toledo 43614, OH, USA
| | - Jasmine Walia
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave, Toledo 43614, OH, USA
| | - Ivana L de la Serna
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave, Toledo 43614, OH, USA
| |
Collapse
|
16
|
Breindl M, Spitzer D, Gerasimaitė R, Kairys V, Schubert T, Henfling R, Schwartz U, Lukinavičius G, Manelytė L. Biochemical and cellular insights into the Baz2B protein, a non-catalytic subunit of the chromatin remodeling complex. Nucleic Acids Res 2024; 52:337-354. [PMID: 38000389 PMCID: PMC10783490 DOI: 10.1093/nar/gkad1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/21/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Baz2B is a regulatory subunit of the ATP-dependent chromatin remodeling complexes BRF1 and BRF5, which control access to DNA during DNA-templated processes. Baz2B has been implicated in several diseases and also in unhealthy ageing, however limited information is available on the domains and cellular roles of Baz2B. To gain more insight into the Baz2B function, we biochemically characterized the TAM (Tip5/ARBP/MBD) domain with the auxiliary AT-hook motifs and the bromodomain (BRD). We observed alterations in histone code recognition in bromodomains carrying cancer-associated point mutations, suggesting their potential involvement in disease. Furthermore, the depletion of Baz2B in the Hap1 cell line resulted in altered cell morphology, reduced colony formation and perturbed transcriptional profiles. Despite that, super-resolution microscopy images revealed no changes in the overall chromatin structure in the absence of Baz2B. These findings provide insights into the biological function of Baz2B.
Collapse
Affiliation(s)
- Matthias Breindl
- Biochemistry III, University of Regensburg, Regensburg DE-93053, Germany
| | - Dominika Spitzer
- Biochemistry III, University of Regensburg, Regensburg DE-93053, Germany
| | - Rūta Gerasimaitė
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, DE-37077 Göttingen, Germany
| | - Visvaldas Kairys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | | | - Ramona Henfling
- Biochemistry III, University of Regensburg, Regensburg DE-93053, Germany
| | - Uwe Schwartz
- NGS Analysis Center, University of Regensburg, Regensburg DE-93053, Germany
| | - Gražvydas Lukinavičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, DE-37077 Göttingen, Germany
| | - Laura Manelytė
- Biochemistry III, University of Regensburg, Regensburg DE-93053, Germany
| |
Collapse
|
17
|
Barman S, Padhan J, Sudhamalla B. Uncovering the non-histone interactome of the BRPF1 bromodomain using site-specific azide-acetyllysine photochemistry. J Biol Chem 2024; 300:105551. [PMID: 38072045 PMCID: PMC10789646 DOI: 10.1016/j.jbc.2023.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 01/08/2024] Open
Abstract
Bromodomain-PHD finger protein 1 (BRPF1) belongs to the BRPF family of bromodomain-containing proteins. Bromodomains are exclusive reader modules that recognize and bind acetylated histones and non-histone transcription factors to regulate gene expression. The biological functions of acetylated histone recognition by BRPF1 bromodomain are well characterized; however, the function of BRPF1 regulation via non-histone acetylation is still unexplored. Therefore, identifying the non-histone interactome of BRPF1 is pivotal in deciphering its role in diverse cellular processes, including its misregulation in diseases like cancer. Herein, we identified the non-histone interacting partners of BRPF1 utilizing a protein engineering-based approach. We site-specifically introduced the unnatural photo-cross-linkable amino acid 4-azido-L-phenylalanine into the bromodomain of BRPF1 without altering its ability to recognize acetylated histone proteins. Upon photoirradiation, the engineered BRPF1 generates a reactive nitrene species, cross-linking interacting partners with spatio-temporal precision. We demonstrated the robust cross-linking efficiency of the engineered variant with reported histone ligands of BRPF1 and further used the variant reader to cross-link its interactome. We also characterized novel interacting partners by proteomics, suggesting roles for BRPF1 in diverse cellular processes. BRPF1 interaction with interleukin enhancer-binding factor 3, one of these novel interacting partners, was further validated by isothermal titration calorimetry and co-IP. Lastly, we used publicly available ChIP-seq and RNA-seq datasets to understand the colocalization of BRPF1 and interleukin enhancer-binding factor 3 in regulating gene expression in the context of hepatocellular carcinoma. Together, these results will be crucial for full understanding of the roles of BRPF1 in transcriptional regulation and in the design of small-molecule inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
18
|
Russell C, Carter JL, Borgia JM, Bush J, Calderón F, Gabarró R, Conway SJ, Mottram JC, Wilkinson AJ, Jones NG. Bromodomain Factor 5 as a Target for Antileishmanial Drug Discovery. ACS Infect Dis 2023; 9:2340-2357. [PMID: 37906637 PMCID: PMC10644352 DOI: 10.1021/acsinfecdis.3c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Leishmaniases are a collection of neglected tropical diseases caused by kinetoplastid parasites in the genus Leishmania. Current chemotherapies are severely limited, and the need for new antileishmanials is of pressing international importance. Bromodomains are epigenetic reader domains that have shown promising therapeutic potential for cancer therapy and may also present an attractive target to treat parasitic diseases. Here, we investigate Leishmania donovani bromodomain factor 5 (LdBDF5) as a target for antileishmanial drug discovery. LdBDF5 contains a pair of bromodomains (BD5.1 and BD5.2) in an N-terminal tandem repeat. We purified recombinant bromodomains of L. donovani BDF5 and determined the structure of BD5.2 by X-ray crystallography. Using a histone peptide microarray and fluorescence polarization assay, we identified binding interactions of LdBDF5 bromodomains with acetylated peptides derived from histones H2B and H4. In orthogonal biophysical assays including thermal shift assays, fluorescence polarization, and NMR, we showed that BDF5 bromodomains bind to human bromodomain inhibitors SGC-CBP30, bromosporine, and I-BRD9; moreover, SGC-CBP30 exhibited activity against Leishmania promastigotes in cell viability assays. These findings exemplify the potential BDF5 holds as a possible drug target in Leishmania and provide a foundation for the future development of optimized antileishmanial compounds targeting this epigenetic reader protein.
Collapse
Affiliation(s)
- Catherine
N. Russell
- York
Structural Biology Laboratory and York Biomedical Research Institute,
Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Jennifer L. Carter
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Juliet M. Borgia
- York
Structural Biology Laboratory and York Biomedical Research Institute,
Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Jacob Bush
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | | | | | - Stuart J. Conway
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Jeremy C. Mottram
- York
Biomedical Research Institute, Department of Biology, University of York, York YO10 5NG, U.K.
| | - Anthony J. Wilkinson
- York
Structural Biology Laboratory and York Biomedical Research Institute,
Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Nathaniel G. Jones
- York
Biomedical Research Institute, Department of Biology, University of York, York YO10 5NG, U.K.
| |
Collapse
|
19
|
Wahi A, Manchanda N, Jain P, Jadhav HR. Targeting the epigenetic reader "BET" as a therapeutic strategy for cancer. Bioorg Chem 2023; 140:106833. [PMID: 37683545 DOI: 10.1016/j.bioorg.2023.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Bromodomain and extraterminal (BET) proteins have the ability to bind to acetylated lysine residues present in both histones and non-histone proteins. This binding is facilitated by the presence of tandem bromodomains. The regulatory role of BET proteins extends to chromatin dynamics, cellular processes, and disease progression. The BET family comprises of BRD 2, 3, 4 and BRDT. The BET proteins are a class of epigenetic readers that regulate the transcriptional activity of a multitude of genes that are involved in the pathogenesis of cancer. Thus, targeting BET proteins has been identified as a potentially efficacious approach for the treatment of cancer. BET inhibitors (BETis) are known to interfere with the binding of BET proteins to acetylated lysine residues of chromatin, thereby leading to the suppression of transcription of several genes, including oncogenic transcription factors. Here in this review, we focus on role of Bromodomain and extra C-terminal (BET) proteins in cancer progression. Furthermore, numerous small-molecule inhibitors with pan-BET activity have been documented, with certain compounds currently undergoing clinical assessment. However, it is apparent that the clinical effectiveness of the present BET inhibitors is restricted, prompting the exploration of novel technologies to enhance their clinical outcomes and mitigate undesired adverse effects. Thus, strategies like development of selective BET-BD1, & BD2 inhibitors, dual and acting BET are also presented in this review and attempts to cover the chemistry needed for proper establishment of designed molecules into BRD have been made. Moreover, the review attempts to summarize the details of research till date and proposes a space for future development of BET inhibitor with diminished side effects. It can be concluded that discovery of isoform selective BET inhibitors can be a way forward in order to develop BET inhibitors with negligible side effects.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Namish Manchanda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India.
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-Pilani Campus, Vidya Vihar Pilani, Rajasthan 333031, India
| |
Collapse
|
20
|
Pan Z, Zhao Y, Wang X, Xie X, Liu M, Zhang K, Wang L, Bai D, Foster LJ, Shu R, He G. Targeting bromodomain-containing proteins: research advances of drug discovery. MOLECULAR BIOMEDICINE 2023; 4:13. [PMID: 37142850 PMCID: PMC10159834 DOI: 10.1186/s43556-023-00127-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/02/2023] [Indexed: 05/06/2023] Open
Abstract
Bromodomain (BD) is an evolutionarily conserved protein module found in 46 different BD-containing proteins (BCPs). BD acts as a specific reader for acetylated lysine residues (KAc) and serves an essential role in transcriptional regulation, chromatin remodeling, DNA damage repair, and cell proliferation. On the other hand, BCPs have been shown to be involved in the pathogenesis of a variety of diseases, including cancers, inflammation, cardiovascular diseases, and viral infections. Over the past decade, researchers have brought new therapeutic strategies to relevant diseases by inhibiting the activity or downregulating the expression of BCPs to interfere with the transcription of pathogenic genes. An increasing number of potent inhibitors and degraders of BCPs have been developed, some of which are already in clinical trials. In this paper, we provide a comprehensive review of recent advances in the study of drugs that inhibit or down-regulate BCPs, focusing on the development history, molecular structure, biological activity, interaction with BCPs and therapeutic potentials of these drugs. In addition, we discuss current challenges, issues to be addressed and future research directions for the development of BCPs inhibitors. Lessons learned from the successful or unsuccessful development experiences of these inhibitors or degraders will facilitate the further development of efficient, selective and less toxic inhibitors of BCPs and eventually achieve drug application in the clinic.
Collapse
Affiliation(s)
- Zhaoping Pan
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyun Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mingxia Liu
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyao Zhang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lian Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Gu He
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Rehkopf L, Seidel J, Sindlinger J, Wang M, Kirchgäßner S, Schwarzer D. Synthesis of Nε-acetyl-L-homolysine by the Lossen rearrangement and its application for probing deacetylases and binding modules of acetyl-lysine. J Pept Sci 2023; 29:e3462. [PMID: 36416071 DOI: 10.1002/psc.3462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Lysine acetylation is a posttranslational protein modification mediating protein-protein interactions by recruitment of bromodomains. Investigations of bromodomains have focused so far on the sequence context of the modification site and acyl-modifications installed at lysine side chains. In contrast, there is only little information about the impact of the lysine residue that carries the modification on bromodomain binding. Here, we report a synthesis strategy for L-acetyl-homolysine from L-2-aminosuberic acid by the Lossen rearrangement. Peptide probes containing acetylated homolysine, lysine, and ornithine were generated and used for probing the binding preferences of four bromodomains from three different families. Tested bromodomains showed distinct binding patterns, and one of them bound acetylated homolysine with similar efficiency as the native substrate containing acetyl-lysine. Deacetylation assays with a bacterial sirtuin showed a strong preference for acetylated lysine, despite a broad specificity for N-acyl modifications.
Collapse
Affiliation(s)
- Luisa Rehkopf
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Julian Seidel
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany.,Institute for Organic and Macromolecular Chemistry, Universität Jena, Jena, Germany
| | - Julia Sindlinger
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany.,Institute for Inorganic and Analytical Chemistry, Mass Spectrometry Platform, Universität Jena, Jena, Germany
| | - Mary Wang
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Sören Kirchgäßner
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Dirk Schwarzer
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Jaganathan R, Kumaradhas P. Binding mechanism of anacardic acid, carnosol and garcinol with PCAF: A comprehensive study using molecular docking and molecular dynamics simulations and binding free energy analysis. J Cell Biochem 2023; 124:731-742. [PMID: 36966470 DOI: 10.1002/jcb.30400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The p300/CBP associated factor bromodomain (PCAF Brd) is emerged as one of the promising target proteins for different types of cancers. PCAF is one among the histone acetyltransferase enzymes which involved in the regulation of transcriptase process by modifying the chromatin structure. Anacardic acid, carnosol, garcinol are the experimentally reported inhibitors of PCAF Brd; however, their detailed binding mechanism these inhibitors are not yet known. The intermolecular interaction, binding energy, and the stability of these inhibitors with the active site of PCAF Brd are playing the key role in the binding of these inhibitors with PCAF. The in silico study incorporates the molecular docking and dynamics simulations; these molecular level simulations allow to understand the binding mechanism. In the present study, the induced fit molecular docking and molecular dynamics of anacardic acid, carnosol and garcinol molecules against the PCAF Brd have been performed. The docking score values of these molecules are -5.112 (anacardic acid), -5.141 (carnosol), -5.199 (garcinol) and -3.641 (L45) kcal/mol, respectively. Further, the molecular dynamics simulation was carried out for these docked complexes to understand their conformational their stability and binding energy from the roots means square deviation (RMSD) and root means square of fluctuation (RMSF), and molecular mechanics with the generalized born and surface area solvation (MM/GBSA) binding free energy calculations. The intermolecular interactions and binding free energy values confirm that garcinol forms key interactions and has high binding affinity towards PCAF Brd on compare with the other two inhibitors. Therefore, garcinol may be considered as a potential inhibitor of PCAF Brd.
Collapse
Affiliation(s)
- Ramakrishnan Jaganathan
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Poomani Kumaradhas
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| |
Collapse
|
23
|
Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. Int J Mol Sci 2023; 24:ijms24065665. [PMID: 36982740 PMCID: PMC10055343 DOI: 10.3390/ijms24065665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
BET proteins are a family of multifunctional epigenetic readers, mainly involved in transcriptional regulation through chromatin modelling. Transcriptome handling ability of BET proteins suggests a key role in the modulation of cell plasticity, both in fate decision and in lineage commitment during embryonic development and in pathogenic conditions, including cancerogenesis. Glioblastoma is the most aggressive form of glioma, characterized by a very poor prognosis despite the application of a multimodal therapy. Recently, new insights are emerging about the glioblastoma cellular origin, leading to the hypothesis that several putative mechanisms occur during gliomagenesis. Interestingly, epigenome dysregulation associated with loss of cellular identity and functions are emerging as crucial features of glioblastoma pathogenesis. Therefore, the emerging roles of BET protein in glioblastoma onco-biology and the compelling demand for more effective therapeutic strategies suggest that BET family members could be promising targets for translational breakthroughs in glioblastoma treatment. Primarily, “Reprogramming Therapy”, which is aimed at reverting the malignant phenotype, is now considered a promising strategy for GBM therapy.
Collapse
|
24
|
Lefi N, Kazachenko AS, Raja M, Issaoui N, Kazachenko AS. Molecular Structure, Spectral Analysis, Molecular Docking and Physicochemical Studies of 3-Bromo-2-hydroxypyridine Monomer and Dimer as Bromodomain Inhibitors. Molecules 2023; 28:molecules28062669. [PMID: 36985641 PMCID: PMC10054851 DOI: 10.3390/molecules28062669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
In this paper, both methods (DFT and HF) were used in a theoretical investigation of 3-bromo-2-Hydroxypyridine (3-Br-2HyP) molecules where the molecular structures of the title compound have been optimized. Molecular electrostatic potential (MEP) was computed using the B3LYP/6-311++G(d,p) level of theory. The time-dependent density functional theory (TD-DFT) approach was used to simulate the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) on the one hand to achieve the frontier orbital gap and on the other hand to calculate the UV–visible spectrum of the compound in gas phase and for different solvents. In addition, electronic localization function and Fukui functions were carried out. Intermolecular interactions were discussed by the topological AIM (atoms in molecules) approach. The thermodynamic functions have been reported with the help of spectroscopic data using statistical methods revealing the correlations between these functions and temperature. To describe the non-covalent interactions, the reduced density gradient (RDG) analysis is performed. To study the biological activity of the compound of the molecule, molecular docking studies were executed on the active sites of BRD2 inhibitors and to explore the hydrogen bond interaction, minimum binding energies with targeted receptors such as PDB ID: 5IBN, 3U5K, 6CD5 were calculated.
Collapse
Affiliation(s)
- Nizar Lefi
- Department of Physics, College of Sciences and Arts in Uglat Asugour, Qassim University, Buraydah 52571, Saudi Arabia
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Aleksandr S. Kazachenko
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia
- Department of Organic and Analytical Chemistry, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Department of Biological Chemistry with Courses in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University, St. Partizan Zheleznyak, Bld. 1, 660022 Krasnoyarsk, Russia
- Correspondence: (A.S.K.); (N.I.); (A.S.K.)
| | - Murugesan Raja
- Department of Physics, Govt. Thirumagal Mills College, Gudiyatham, Vellore 632602, India
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
- Correspondence: (A.S.K.); (N.I.); (A.S.K.)
| | - Anna S. Kazachenko
- Department of Organic and Analytical Chemistry, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Correspondence: (A.S.K.); (N.I.); (A.S.K.)
| |
Collapse
|
25
|
Ali MM, Naz S, Ashraf S, Knapp S, Ul-Haq Z. Epigenetic modulation by targeting bromodomain containing protein 9 (BRD9): Its therapeutic potential and selective inhibition. Int J Biol Macromol 2023; 230:123428. [PMID: 36709803 DOI: 10.1016/j.ijbiomac.2023.123428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The bromodomain-containing protein 9, a component of the SWI/SNF chromatin remodeling complex, functions as an 'epigenetic reader' selectively recognizing acetyl-lysine marks. It regulates chromatin structure and gene expression by recruitment of acetylated transcriptional regulators and by modulating the function of remodeling complexes. Recent data suggests that BRD9 plays an important role in regulating cellular growth and it has been suggested to drive progression of several malignant diseases such as cervical cancer, and acute myeloid leukemia. Its role in tumorigenesis suggests that selective BRD9 inhibitors may have therapeutic value in cancer therapy. Currently, there has been increasing interest in developing small molecules that can specifically target BRD9 or the closely related bromodomain protein BRD7. Available chemical probes will help to clarify biological functions of BRD9 and its potential for cancer therapy. Since the report of the first BRD9 inhibitor LP99 in 2015, numerous inhibitors have been developed. In this review, we summarized the biological roles of BRD9, structural details and the progress made in the development of BRD9 inhibitors.
Collapse
Affiliation(s)
- Maria Mushtaq Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Sehrish Naz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Goethe University Frankfurt, Max von Lauestrasse 9, 60438 Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max von Lauestrasse 15, 60438 Frankfurt, Germany
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| |
Collapse
|
26
|
Dawson MA, Borthakur G, Huntly BJ, Karadimitris A, Alegre A, Chaidos A, Vogl DT, Pollyea DA, Davies FE, Morgan GJ, Glass JL, Kamdar M, Mateos MV, Tovar N, Yeh P, Delgado RG, Basheer F, Marando L, Gallipoli P, Wyce A, Krishnatry AS, Barbash O, Bakirtzi E, Ferron-Brady G, Karpinich NO, McCabe MT, Foley SW, Horner T, Dhar A, Kremer BE, Dickinson M. A Phase I/II Open-Label Study of Molibresib for the Treatment of Relapsed/Refractory Hematologic Malignancies. Clin Cancer Res 2023; 29:711-722. [PMID: 36350312 PMCID: PMC9932578 DOI: 10.1158/1078-0432.ccr-22-1284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/02/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Molibresib is a selective, small molecule inhibitor of the bromodomain and extra-terminal (BET) protein family. This was an open-label, two-part, Phase I/II study investigating molibresib monotherapy for the treatment of hematological malignancies (NCT01943851). PATIENTS AND METHODS Part 1 (dose escalation) determined the recommended Phase 2 dose (RP2D) of molibresib in patients with acute myeloid leukemia (AML), Non-Hodgkin lymphoma (NHL), or multiple myeloma. Part 2 (dose expansion) investigated the safety and efficacy of molibresib at the RP2D in patients with relapsed/refractory myelodysplastic syndrome (MDS; as well as AML evolved from antecedent MDS) or cutaneous T-cell lymphoma (CTCL). The primary endpoint in Part 1 was safety and the primary endpoint in Part 2 was objective response rate (ORR). RESULTS There were 111 patients enrolled (87 in Part 1, 24 in Part 2). Molibresib RP2Ds of 75 mg daily (for MDS) and 60 mg daily (for CTCL) were selected. Most common Grade 3+ adverse events included thrombocytopenia (37%), anemia (15%), and febrile neutropenia (15%). Six patients achieved complete responses [3 in Part 1 (2 AML, 1 NHL), 3 in Part 2 (MDS)], and 7 patients achieved partial responses [6 in Part 1 (4 AML, 2 NHL), 1 in Part 2 (MDS)]. The ORRs for Part 1, Part 2, and the total study population were 10% [95% confidence interval (CI), 4.8-18.7], 25% (95% CI, 7.3-52.4), and 13% (95% CI, 6.9-20.6), respectively. CONCLUSIONS While antitumor activity was observed with molibresib, use was limited by gastrointestinal and thrombocytopenia toxicities. Investigations of molibresib as part of combination regimens may be warranted.
Collapse
Affiliation(s)
- Mark A. Dawson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Anastasios Karadimitris
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London and Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Adrian Alegre
- Hospital Universitario de La Princesa and Quironsalud, Madrid, Spain
| | - Aristeidis Chaidos
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London and Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Dan T. Vogl
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Faith E. Davies
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Gareth J. Morgan
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Jacob L. Glass
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Manali Kamdar
- University of Colorado School of Medicine, Aurora, Colorado
| | | | - Natalia Tovar
- Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Paul Yeh
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michael Dickinson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Sadek M, Sheth A, Zimmerman G, Hays E, Vélez-Cruz R. The role of SWI/SNF chromatin remodelers in the repair of DNA double strand breaks and cancer therapy. Front Cell Dev Biol 2022; 10:1071786. [PMID: 36605718 PMCID: PMC9810387 DOI: 10.3389/fcell.2022.1071786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Switch/Sucrose non-fermenting (SWI/SNF) chromatin remodelers hydrolyze ATP to push and slide nucleosomes along the DNA thus modulating access to various genomic loci. These complexes are the most frequently mutated epigenetic regulators in human cancers. SWI/SNF complexes are well known for their function in transcription regulation, but more recent work has uncovered a role for these complexes in the repair of DNA double strand breaks (DSBs). As radiotherapy and most chemotherapeutic agents kill cancer cells by inducing double strand breaks, by identifying a role for these complexes in double strand break repair we are also identifying a DNA repair vulnerability that can be exploited therapeutically in the treatment of SWI/SNF-mutated cancers. In this review we summarize work describing the function of various SWI/SNF subunits in the repair of double strand breaks with a focus on homologous recombination repair and discuss the implication for the treatment of cancers with SWI/SNF mutations.
Collapse
Affiliation(s)
- Maria Sadek
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Anand Sheth
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Grant Zimmerman
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Emily Hays
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Renier Vélez-Cruz
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
- Chicago College of Optometry, Midwestern University, Downers Grove, IL, United States
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
28
|
Lizcano F, Bustamante L. Molecular perspectives in hypertrophic heart disease: An epigenetic approach from chromatin modification. Front Cell Dev Biol 2022; 10:1070338. [DOI: 10.3389/fcell.2022.1070338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
Epigenetic changes induced by environmental factors are increasingly relevant in cardiovascular diseases. The most frequent molecular component in cardiac hypertrophy is the reactivation of fetal genes caused by various pathologies, including obesity, arterial hypertension, aortic valve stenosis, and congenital causes. Despite the multiple investigations performed to achieve information about the molecular components of this pathology, its influence on therapeutic strategies is relatively scarce. Recently, new information has been taken about the proteins that modify the expression of fetal genes reactivated in cardiac hypertrophy. These proteins modify the DNA covalently and induce changes in the structure of chromatin. The relationship between histones and DNA has a recognized control in the expression of genes conditioned by the environment and induces epigenetic variations. The epigenetic modifications that regulate pathological cardiac hypertrophy are performed through changes in genomic stability, chromatin architecture, and gene expression. Histone 3 trimethylation at lysine 4, 9, or 27 (H3-K4; -K9; -K27me3) and histone demethylation at lysine 9 and 79 (H3-K9; -K79) are mediators of reprogramming in pathologic hypertrophy. Within the chromatin architecture modifiers, histone demethylases are a group of proteins that have been shown to play an essential role in cardiac cell differentiation and may also be components in the development of cardiac hypertrophy. In the present work, we review the current knowledge about the influence of epigenetic modifications in the expression of genes involved in cardiac hypertrophy and its possible therapeutic approach.
Collapse
|
29
|
Jiang H, Zhang Y, Liu B, Yang X, Wang Z, Han M, Li H, Luo J, Yao H. Dynamic regulation of eEF1A1 acetylation affects colorectal carcinogenesis. Biol Chem 2022; 404:585-599. [PMID: 36420535 DOI: 10.1515/hsz-2022-0180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022]
Abstract
Abstract
The dysregulation of the translation elongation factor families which are responsible for reprogramming of mRNA translation has been shown to contribute to tumor progression. Here, we report that the acetylation of eukaryotic Elongation Factor 1 Alpha 1 (eEF1A1/EF1A1) is required for genotoxic stress response and maintaining the malignancy of colorectal cancer (CRC) cells. The evolutionarily conserved site K439 is identified as the key acetylation site. Tissue expression analysis demonstrates that the acetylation level of eEF1A1 K439 is higher than paired normal tissues. Most importantly, hyperacetylation of eEF1A1 at K439 negatively correlates with CRC patient survival. Mechanistically, CBP and SIRT1 are the major acetyltransferase and deacetylase of eEF1A1. Hyperacetylation of eEF1A1 at K439 shows a significant tumor-promoting effect by increasing the capacity of proliferation, migration, and invasion of CRC cells. Our findings identify the altered post-translational modification at the translation machines as a critical factor in stress response and susceptibility to colorectal carcinogenesis.
Collapse
Affiliation(s)
- Hongpeng Jiang
- Department of General Surgery, Beijing Friendship Hospital , Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases , 95 Yong-an Road, Xi-Cheng District , Beijing 100050 , P.R. China
| | - Yu Zhang
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Boya Liu
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Xin Yang
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Zhe Wang
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences , Tsinghua University , Beijing 100084 , P.R. China
- College of Biological Sciences and Technology , Beijing Key Laboratory of Food Processing and Safety in Forest, Beijing Forestry University , Beijing 100083 , P.R. China
| | - Huiying Li
- College of Biological Sciences and Technology , Beijing Key Laboratory of Food Processing and Safety in Forest, Beijing Forestry University , Beijing 100083 , P.R. China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital , Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases , 95 Yong-an Road, Xi-Cheng District , Beijing 100050 , P.R. China
| |
Collapse
|
30
|
Jacinto MP, Heidenreich D, Müller S, Greenberg MM. Covalent Modification of Bromodomain Proteins by Peptides Containing a DNA Damage-Induced, Histone Post-Translational Modification. Chembiochem 2022; 23:e202200373. [PMID: 36173930 PMCID: PMC9675715 DOI: 10.1002/cbic.202200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/28/2022] [Indexed: 02/03/2023]
Abstract
An electrophilic 5-methylene-2-pyrrolone modification (KMP ) is produced at lysine residues of histone proteins in nucleosome core particles upon reaction with a commonly formed DNA lesion (C4-AP). The nonenzymatic KMP modification is also generated in the histones of HeLa cells treated with the antitumor agent, bleomycin that oxidizes DNA and forms C4-AP. This nonenzymatic covalent histone modification has the same charge as the N-acetyllysine (KAc ) modification but is more electrophilic. In this study we show that KMP -containing histone peptides are recognized by, and covalently modify bromodomain proteins that are KAc readers. Distinct selectivity preferences for covalent bromodomain modification are observed following incubation with KMP -containing peptides of different sequence. MS/MS analysis of 3 covalently modified bromodomain proteins confirmed that Cys adduction was selective. The modified Cys was not always proximal to the KAc binding site, indicating that KMP -containing peptide interaction with bromodomain protein is distinct from the former. Analysis of protein adduction yields as a function of bromodomain pH at which the protein charge is zero (pI) or cysteine solvent accessible surface area are also consistent with non-promiscuous interaction between the proteins and electrophilic peptides. These data suggest that intracellular formation of KMP could affect cellular function and viability by modifying proteins that regulate genetic expression.
Collapse
Affiliation(s)
- Marco Paolo Jacinto
- Chemistry, Johns Hopkins University, 3400 N. Charles St., 21218, Baltimore, MD, USA
| | - David Heidenreich
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Marc M Greenberg
- Chemistry, Johns Hopkins University, 3400 N. Charles St., 21218, Baltimore, MD, USA
| |
Collapse
|
31
|
Humphreys PG, Anderson NA, Bamborough P, Baxter A, Chung CW, Cookson R, Craggs PD, Dalton T, Fournier JCL, Gordon LJ, Gray HF, Gray MW, Gregory R, Hirst DJ, Jamieson C, Jones KL, Kessedjian H, Lugo D, McGonagle G, Patel VK, Patten C, Poole DL, Prinjha RK, Ramirez-Molina C, Rioja I, Seal G, Stafford KAJ, Shah RR, Tape D, Theodoulou NH, Tomlinson L, Ukuser S, Wall ID, Wellaway N, White G. Identification and Optimization of a Ligand-Efficient Benzoazepinone Bromodomain and Extra Terminal (BET) Family Acetyl-Lysine Mimetic into the Oral Candidate Quality Molecule I-BET432. J Med Chem 2022; 65:15174-15207. [DOI: 10.1021/acs.jmedchem.2c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Niall A. Anderson
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Bamborough
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Andrew Baxter
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Chun-wa Chung
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rosa Cookson
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Peter D. Craggs
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Toryn Dalton
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Laurie J. Gordon
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Heather F. Gray
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Matthew W. Gray
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Richard Gregory
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - David J. Hirst
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Craig Jamieson
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | | | | | - David Lugo
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Grant McGonagle
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | - Darren L. Poole
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rab K. Prinjha
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Inmaculada Rioja
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Gail Seal
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Rishi R. Shah
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Daniel Tape
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Laura Tomlinson
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Sabri Ukuser
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D. Wall
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Natalie Wellaway
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Gemma White
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
32
|
Divakaran A, Scholtz CR, Zahid H, Lin W, Griffith EC, Lee RE, Chen T, Harki DA, Pomerantz WCK. Development of an N-Terminal BRD4 Bromodomain-Targeted Degrader. ACS Med Chem Lett 2022; 13:1621-1627. [PMID: 36262390 PMCID: PMC9575167 DOI: 10.1021/acsmedchemlett.2c00300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Targeted protein degradation is a powerful induced-proximity tool to control cellular protein concentrations using small molecules. However, the design of selective degraders remains empirical. Among bromodomain and extra-terminal (BET) family proteins, BRD4 is the primary therapeutic target over family members BRD2/3/T. Existing strategies for selective BRD4 degradation use pan-BET inhibitors optimized for BRD4:E3 ubiquitin ligase (E3) ternary complex formation, but these result in residual inhibition of undegraded BET-bromodomains by the pan-BET ligand, obscuring BRD4-degradation phenotypes. Using our selective inhibitor of the first BRD4 bromodomain, iBRD4-BD1 (IC50 = 12 nM, 23- to 6200-fold intra-BET selectivity), we developed dBRD4-BD1 to selectively degrade BRD4 (DC50 = 280 nM). Notably, dBRD4-BD1 upregulates BRD2/3, a result not observed with degraders using pan-BET ligands. Designing BRD4 selectivity up front enables analysis of BRD4 biology without wider BET-inhibition and simplifies designing BRD4-selective heterobifunctional molecules, such as degraders with new E3 recruiting ligands or for additional probes beyond degraders.
Collapse
Affiliation(s)
- Anand Divakaran
- Department
of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Cole R. Scholtz
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Huda Zahid
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Wenwei Lin
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Elizabeth C. Griffith
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Richard E. Lee
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Taosheng Chen
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Daniel A. Harki
- Department
of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - William C. K. Pomerantz
- Department
of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Zhang J, Li Y, Fan TY, Liu D, Zou WD, Li H, Li YK. Identification of bromodomain-containing proteins prognostic value and expression significance based on a genomic landscape analysis of ovarian serous cystadenocarcinoma. Front Oncol 2022; 12:1021558. [PMID: 36276071 PMCID: PMC9579433 DOI: 10.3389/fonc.2022.1021558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundOvarian serous cystadenocarcinoma (OSC), a common gynecologic tumor, is characterized by high mortality worldwide. Bromodomain (BRD)-containing proteins are a series of evolutionarily conserved proteins that bind to acetylated Lys residues of histones to regulate the transcription of multiple genes. The ectopic expression of BRDs is often observed in multiple cancer types, but the role of BRDs in OSC is still unclear.MethodsWe performed the differential expression, GO enrichment, GSEA, immune infiltration, risk model, subtype classification, stemness feature, DNA alteration, and epigenetic modification analysis for these BRDs based on multiple public databases.ResultsMost BRDs were dysregulated in OSC tissues compared to normal ovary tissues. These BRDs were positively correlated with each other in OSC patients. Gene alteration and epigenetic modification were significant for the dysregulation of BRDs in OSC patients. GO enrichment suggested that BRDs played key roles in histone acetylation, viral carcinogenesis, and transcription coactivator activity. Two molecular subtypes were classified by BRDs for OSC, which were significantly correlated with stemness features, m6A methylation, ferroptosis, drug sensitivity, and immune infiltration. The risk model constructed by LASSO regression with BRDs performed moderately well in prognostic predictions for OSC patients. Moreover, BRPF1 plays a significant role in these BRDs for the development and progression of OSC patients.ConclusionBRDs are potential targets and biomarkers for OSC patients, especially BRPF1.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yan Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Ting-yu Fan
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Wen-da Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| | - Yu-kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| |
Collapse
|
34
|
Metzger JJ, Pereda C, Adhikari A, Haremaki T, Galgoczi S, Siggia ED, Brivanlou AH, Etoc F. Deep-learning analysis of micropattern-based organoids enables high-throughput drug screening of Huntington's disease models. CELL REPORTS METHODS 2022; 2:100297. [PMID: 36160045 PMCID: PMC9500000 DOI: 10.1016/j.crmeth.2022.100297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/06/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022]
Abstract
Organoids are carrying the promise of modeling complex disease phenotypes and serving as a powerful basis for unbiased drug screens, potentially offering a more efficient drug-discovery route. However, unsolved technical bottlenecks of reproducibility and scalability have prevented the use of current organoids for high-throughput screening. Here, we present a method that overcomes these limitations by using deep-learning-driven analysis for phenotypic drug screens based on highly standardized micropattern-based neural organoids. This allows us to distinguish between disease and wild-type phenotypes in complex tissues with extremely high accuracy as well as quantify two predictors of drug success: efficacy and adverse effects. We applied our approach to Huntington's disease (HD) and discovered that bromodomain inhibitors revert complex phenotypes induced by the HD mutation. This work demonstrates the power of combining machine learning with phenotypic drug screening and its successful application to reveal a potentially new druggable target for HD.
Collapse
Affiliation(s)
- Jakob J. Metzger
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Carlota Pereda
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| | - Arjun Adhikari
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| | - Tomomi Haremaki
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| | - Szilvia Galgoczi
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Eric D. Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ali H. Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| |
Collapse
|
35
|
Xu C, Yu M, Zhang Q, Ma Z, Du K, You H, Wei J, Wang D, Tao W. Genome-Wide Identification and Characterization of the BRD Family in Nile Tilapia (Oreochromis niloticus). Animals (Basel) 2022; 12:ani12172266. [PMID: 36077987 PMCID: PMC9454494 DOI: 10.3390/ani12172266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Nile tilapia is a good model for genome-wide identification and examination of the expression and role of gene families. In this study, we identified 54 bromodomain genes (BRDs) divided into eight subfamilies in Nile tilapia. Phylogenetic analysis revealed a high conservation of the BRDs family in vertebrates, with BRDs expansion due to fish-specific duplications. Most of the BRDs displayed sexually dimorphic expression in the gonads at 90 and 180 dah (days after hatching), including 21 testis-dominated genes (brdt, brd4a and brd2b, etc.), and 9 ovary-dominated genes (brd3b, brd2a and kat2a, etc.). Male fish treated with JQ1 (BET subfamily inhibitor) displayed abnormal spermatogenesis. The numbers of germ cells were reduced and the expression of steroidogenic enzyme genes was downregulated, while the expression of apoptosis-promoting genes was elevated in the testes of treated fish. Abstract The bromodomain (BRD) proteins specifically recognize the N-acetyllysine motifs, which is a key event in the reading process of epigenetic marks. BRDs are evolutionarily highly conserved. Over recent years, BRDs attracted great interest because of their important roles in biological processes. However, the genome-wide identification of this family was not carried out in many animal groups, in particular, in teleosts. Moreover, the expression patterns were not reported for any of the members in this family, and the role of the BRD family was not extensively studied in fish reproduction. In this study, we identified 16 to 120 BRD genes in 24 representative species. BRDs expanded significantly in vertebrates. Phylogenetic analysis showed that the BRD family was divided into eight subfamilies (I–VIII). Transcriptome analysis showed that BRDs in Nile tilapia (Oreochromis niloticus) exhibited different expression patterns in different tissues, suggesting that these genes may play different roles in growth and development. Gonadal transcriptome analysis showed that most of the BRDs display sexually dimorphic expression in the gonads at 90 and 180 dah (days after hatching), including 21 testis-dominated genes (brdt, brd4a and brd2b, etc.), and nine ovary-dominated genes (brd3b, brd2a and kat2a, etc.). Consistent with transcriptomic data, the results of qRT-PCR and fluorescence in situ hybridization showed that brdt expression was higher in the testis than in the ovary, suggesting its critical role in the spermatogenesis of the tilapia. Male fish treated with JQ1 (BET subfamily inhibitor) displayed abnormal spermatogenesis. The numbers of germ cells were reduced, and the expression of steroidogenic enzyme genes was downregulated, while the expression of apoptosis-promoting genes was elevated in the testis tissue of treated fish. Our data provide insights into the evolution and expression of BRD genes, which is helpful for understanding their critical roles in sex differentiation and gonadal development in teleosts.
Collapse
|
36
|
Lisi S, Trovato M, Vitaloni O, Fantini M, Chirichella M, Tognini P, Cornuti S, Costa M, Groth M, Cattaneo A. Acetylation-Specific Interference by Anti-Histone H3K9ac Intrabody Results in Precise Modulation of Gene Expression. Int J Mol Sci 2022; 23:ijms23168892. [PMID: 36012156 PMCID: PMC9408029 DOI: 10.3390/ijms23168892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Among Histone post-translational modifications (PTMs), lysine acetylation plays a pivotal role in the epigenetic regulation of gene expression, mediated by chromatin modifying enzymes. Due to their activity in physiology and pathology, several chemical compounds have been developed to inhibit the function of these proteins. However, the pleiotropy of these classes of proteins represents a weakness of epigenetic drugs. Ideally, a new generation of epigenetic drugs should target with molecular precision individual acetylated lysines on the target protein. We exploit a PTM-directed interference, based on an intrabody (scFv-58F) that selectively binds acetylated lysine 9 of histone H3 (H3K9ac), to test the hypothesis that targeting H3K9ac yields more specific effects than inhibiting the corresponding HAT enzyme that installs that PTM. In yeast scFv-58F modulates, gene expression in a more specific way, compared to two well-established HAT inhibitors. This PTM-specific interference modulated expression of genes involved in ribosome biogenesis and function. In mammalian cells, the scFv-58F induces exclusive changes in the H3K9ac-dependent expression of specific genes. These results suggest the H3K9ac-specific intrabody as the founder of a new class of molecules to directly target histone PTMs, inverting the paradigm from inhibiting the writer enzyme to acting on the PTM.
Collapse
Affiliation(s)
- Simonetta Lisi
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Matteo Trovato
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | | | - Marco Fantini
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
| | | | - Paola Tognini
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Sara Cornuti
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Mario Costa
- Institute of Neurosciences, Consiglio Nazionale Delle Ricerche, 56124 Pisa, Italy
| | - Marco Groth
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
- Correspondence: ; Tel.: +39-050-509320
| |
Collapse
|
37
|
Tumor-Promoting ATAD2 and Its Preclinical Challenges. Biomolecules 2022; 12:biom12081040. [PMID: 36008934 PMCID: PMC9405547 DOI: 10.3390/biom12081040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
ATAD2 has received extensive attention in recent years as one prospective oncogene with tumor-promoting features in many malignancies. ATAD2 is a highly conserved bromodomain family protein that exerts its biological functions by mainly AAA ATPase and bromodomain. ATAD2 acts as an epigenetic decoder and transcription factor or co-activator, which is engaged in cellular activities, such as transcriptional regulation, DNA replication, and protein modification. ATAD2 has been reported to be highly expressed in a variety of human malignancies, including gastrointestinal malignancies, reproductive malignancies, urological malignancies, lung cancer, and other types of malignancies. ATAD2 is involved in the activation of multiple oncogenic signaling pathways and is closely associated with tumorigenesis, progression, chemoresistance, and poor prognosis, but the oncogenic mechanisms vary in different cancer types. Moreover, the direct targeting of ATAD2’s bromodomain may be a very challenging task. In this review, we summarized the role of ATAD2 in various types of malignancies and pointed out the pharmacological direction.
Collapse
|
38
|
Nargund AM, Xu C, Mandoli A, Okabe A, Chen GB, Huang KK, Sheng T, Yao X, Teo JMN, Sundar R, Kok YJ, See YX, Xing M, Li Z, Yong CH, Anand A, A I ZF, Poon LF, Ng MSW, Koh JYP, Ooi WF, Tay ST, Ong X, Tan ALK, Grabsch HI, Fullwood MJ, Teh TB, Bi X, Kaneda A, Li S, Tan P. Chromatin Rewiring by Mismatch Repair Protein MSH2 Alters Cell Adhesion Pathways and Sensitivity to BET Inhibition in Gastric Cancer. Cancer Res 2022; 82:2538-2551. [PMID: 35583999 DOI: 10.1158/0008-5472.can-21-2072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
Mutations in the DNA mismatch repair gene MSH2 are causative of microsatellite instability (MSI) in multiple cancers. Here, we discovered that besides its well-established role in DNA repair, MSH2 exerts a novel epigenomic function in gastric cancer. Unbiased CRISPR-based mass spectrometry combined with genome-wide CRISPR functional screening revealed that in early-stage gastric cancer MSH2 genomic binding is not randomly distributed but rather is associated specifically with tumor-associated super-enhancers controlling the expression of cell adhesion genes. At these loci, MSH2 genomic binding was required for chromatin rewiring, de novo enhancer-promoter interactions, maintenance of histone acetylation levels, and regulation of cell adhesion pathway expression. The chromatin function of MSH2 was independent of its DNA repair catalytic activity but required MSH6, another DNA repair gene, and recruitment to gene loci by the SWI/SNF chromatin remodeler SMARCA4/BRG1. Loss of MSH2 in advanced gastric cancers was accompanied by deficient cell adhesion pathway expression, epithelial-mesenchymal transition, and enhanced tumorigenesis in vitro and in vivo. However, MSH2-deficient gastric cancers also displayed addiction to BAZ1B, a bromodomain-containing family member, and consequent synthetic lethality to bromodomain and extraterminal motif (BET) inhibition. Our results reveal a role for MSH2 in gastric cancer epigenomic regulation and identify BET inhibition as a potential therapy in MSH2-deficient gastric malignancies. SIGNIFICANCE DNA repair protein MSH2 binds and regulates cell adhesion genes by enabling enhancer-promoter interactions, and loss of MSH2 causes deficient cell adhesion and bromodomain and extraterminal motif inhibitor synthetic lethality in gastric cancer.
Collapse
Affiliation(s)
- Amrita M Nargund
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Chang Xu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Amit Mandoli
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Gao Bin Chen
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Taotao Sheng
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Xiaosai Yao
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | | | - Raghav Sundar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore.,Department of Hematology-Oncology, National University Health System, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yee Jiun Kok
- Bioprocessing Technology Institute, Singapore, Singapore
| | - Yi Xiang See
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Manjie Xing
- Epigenetic and Epitranscriptomic Regulation, Genome Institute of Singapore, Singapore, Singapore
| | - Zhimei Li
- Division of Medical Science, Laboratory of Cancer Epigenome, National Cancer Center, Singapore, Singapore
| | - Chern Han Yong
- Division of Medical Science, Laboratory of Cancer Epigenome, National Cancer Center, Singapore, Singapore
| | - Aparna Anand
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Lai Fong Poon
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | | | - Javier Yu Peng Koh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Wen Fong Ooi
- Epigenetic and Epitranscriptomic Regulation, Genome Institute of Singapore, Singapore, Singapore
| | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Angie Lay Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Heike I Grabsch
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands.,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Melissa J Fullwood
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tean Bin Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore.,Division of Medical Science, Laboratory of Cancer Epigenome, National Cancer Center, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre, Singapore, Singapore
| | - Xuezhi Bi
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore.,Bioprocessing Technology Institute, Singapore, Singapore
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore.,Epigenetic and Epitranscriptomic Regulation, Genome Institute of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre, Singapore, Singapore
| |
Collapse
|
39
|
Xu H, Luo G, Wu T, Hu J, Wang C, Wu X, Zhang Y, Xu Y, Xiang Q. Structural insights revealed by the cocrystal structure of CCS1477 in complex with CBP bromodomain. Biochem Biophys Res Commun 2022; 623:17-22. [PMID: 35868068 DOI: 10.1016/j.bbrc.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Inhibition of the bromodomain of the CREB (cyclic-AMP response element-binding protein) binding protein (CBP) is a particularly promising new therapeutic approach for cancer. Benzimidazole derivatives CCS1477 and its analogues (8 and 9) are highly potent and selective CBP bromodomain inhibitors, with Kd values of 26.4, 37.0, and 34.3 nM in ITC assay, respectively. Among these compounds, CCS1477 is undergoing phase Ib/IIa clinical trials for the treatment of various cancers. Thus, we determined the co-crystal structures of CCS1477 and its analogues in complex with CBP bromodomain and revealed the detailed binding modes. Furthermore, overlapping with other reported co-crystal structures allowed us to identify that interaction with Arg1173, LPF shelf, and ZA channel was critical for keeping strong biological activity and selectivity. Collectively, this study provided a structural basis for CBP bromodomain inhibitors design.
Collapse
Affiliation(s)
- Hongrui Xu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guolong Luo
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No.19 Yuquan Road, Beijing, 100049, China
| | - Tianbang Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiankang Hu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No.19 Yuquan Road, Beijing, 100049, China
| | - Chao Wang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No.19 Yuquan Road, Beijing, 100049, China
| | - Xishan Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Qiuping Xiang
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China.
| |
Collapse
|
40
|
Corton JC, Liu J, Williams A, Cho E, Yauk CL. A gene expression biomarker identifies inhibitors of two classes of epigenome effectors in a human microarray compendium. Chem Biol Interact 2022; 365:110032. [PMID: 35777453 DOI: 10.1016/j.cbi.2022.110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/03/2022]
Abstract
Biomarkers predictive of molecular and toxicological effects are needed to interpret emerging high-throughput transcriptomics (HTTr) data streams. To address the limited approaches available for identifying epigenotoxicants, we previously developed and validated an 81-gene biomarker that accurately predicts histone deacetylase inhibition (HDACi) in transcript profiles derived from chemically-treated TK6 cells. In the present study, we sought to determine if this biomarker (TGx-HDACi) could be used to identify HDACi chemicals in other cell lines using the Running Fisher correlation test. Using microarray comparisons derived from human cells exposed to HDACi, we found considerable heterogeneity in correlation with the TGx-HDACi biomarker dependent on chemical exposure conditions and tissue from which the cell line was derived. Using a defined set of conditions that overlapped with our earlier study, the biomarker was able to accurately identify HDACi chemicals (90-100% balanced accuracy). In an in silico screen of 2427 chemicals in 9660 chemical versus control comparisons, the biomarker coupled with the Running Fisher test was able to identify 14 additional HDACi chemicals as well as other chemicals not previously associated with HDACi. Most notable were 12 inhibitors of bromodomain (BRD) and extraterminal (BET) family proteins including BRD4 that bind to acetylated histones. The BET protein inhibitors could be distinguished from the HDACi based on differences in the expression of a small set of biomarker genes. Our results indicate that the TGx-HDACi biomarker will be useful for identifying inhibitors of two classes of epigenome effectors in HTTr screening studies.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Jie Liu
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | - Eunnara Cho
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
41
|
Choi HI, An GY, Yoo E, Baek M, Binas B, Chai JC, Lee YS, Jung KH, Chai YG. The bromodomain inhibitor JQ1 up-regulates the long non-coding RNA MALAT1 in cultured human hepatic carcinoma cells. Sci Rep 2022; 12:7779. [PMID: 35546353 PMCID: PMC9095596 DOI: 10.1038/s41598-022-11868-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022] Open
Abstract
The epigenetic reader, bromodomain-containing 4 (BRD4), is overexpressed in hepatocellular carcinoma (HCC), and BRD4 inhibition is considered as a new therapeutic approach. The BRD inhibitor JQ1 is known to inhibit the enrichment of BRD4 at enhancer sites. Gene network analyses have implicated long non-coding RNAs (lncRNAs) in the effects of JQ1, but the precise molecular events remain unexplored. Here, we report that in HepG2 cells, JQ1 significantly reduced various proliferation-related lncRNAs, but up-regulated the known liver tumor marker, MALAT1. Using ChIP-sequencing data, ChIP-qPCR, luciferase reporter assays, and chromatin conformation capture (3C), we characterized the MALAT1 gene locus. We found that JQ1 elicited a rearrangement of its chromatin looping conformation, which involved the putative enhancers E1, E2, E3, the gene body, and the promoter. We further found that the forkhead box protein A2 (FOXA2) binds to E2 and the promoter; suppression of FOXA2 expression resulted in MALAT1 up-regulation and increased cell proliferation. These results suggest that the inhibition of MALAT1 may improve the effect of BET inhibitors as an anti-cancer therapy and that FOXA2 would be a suitable target for that approach.
Collapse
Affiliation(s)
- Hae In Choi
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Ga Yeong An
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Eunyoung Yoo
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Mina Baek
- Department of Molecular and Life Science, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
- Institute of Natural Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Bert Binas
- Department of Molecular and Life Science, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Jin Choul Chai
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Seek Lee
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung Hwa Jung
- Convergence Technology Campus of Korea Polytechnic II, Incheon, 21417, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea.
- Department of Molecular and Life Science, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
42
|
A Comprehensive Overview of Globally Approved JAK Inhibitors. Pharmaceutics 2022; 14:pharmaceutics14051001. [PMID: 35631587 PMCID: PMC9146299 DOI: 10.3390/pharmaceutics14051001] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Janus kinase (JAK) is a family of cytoplasmic non-receptor tyrosine kinases that includes four members, namely JAK1, JAK2, JAK3, and TYK2. The JAKs transduce cytokine signaling through the JAK-STAT pathway, which regulates the transcription of several genes involved in inflammatory, immune, and cancer conditions. Targeting the JAK family kinases with small-molecule inhibitors has proved to be effective in the treatment of different types of diseases. In the current review, eleven of the JAK inhibitors that received approval for clinical use have been discussed. These drugs are abrocitinib, baricitinib, delgocitinib, fedratinib, filgotinib, oclacitinib, pacritinib, peficitinib, ruxolitinib, tofacitinib, and upadacitinib. The aim of the current review was to provide an integrated overview of the chemical and pharmacological data of the globally approved JAK inhibitors. The synthetic routes of the eleven drugs were described. In addition, their inhibitory activities against different kinases and their pharmacological uses have also been explained. Moreover, their crystal structures with different kinases were summarized, with a primary focus on their binding modes and interactions. The proposed metabolic pathways and metabolites of these drugs were also illustrated. To sum up, the data in the current review could help in the design of new JAK inhibitors with potential therapeutic benefits in inflammatory and autoimmune diseases.
Collapse
|
43
|
Maach S, Chiaramonte N, Borgonetti V, Sarno F, Pierucci F, Dei S, Teodori E, Altucci L, Meacci E, Galeotti N, Romanelli MN. Dual HDAC–BRD4 inhibitors endowed with antitumor and antihyperalgesic activity. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractHistone deacetylases (HDAC) are enzymes that regulate the concentration of acetylated histones which, in turns, interact with the bromodomain (BRD) of BET (Bromodomain and Extracellular domain) proteins to affect transcriptional activity. Simultaneous blockade of both epigenetic players has shown synergistic effects in a variety of cancer cell lines. In this paper we report the design, synthesis and activity of new dual inhibitors, obtained by adding a methyltriazole moiety to some HDAC inhibitors carrying a benzodiazepine core, which were previously developed by us. An Alphascreen FRET assay showed that the compounds were able to interact with BRD4-1 and BRD4-2 proteins, with some selectivity for the latter, while the HDAC inhibiting properties were measured by means of an immunoprecipitation assay. The antiproliferative activity was tested on C26 adenocarcinoma, SSMC2 melanoma and SHSY5Y neuroblastoma cells. Interestingly, both compounds were endowed with antihyperalgesic activity in the mouse Spared Nerve Injury (SNI) model.
Collapse
|
44
|
Farrelly LA, Zheng S, Schrode N, Topol A, Bhanu NV, Bastle RM, Ramakrishnan A, Chan JC, Cetin B, Flaherty E, Shen L, Gleason K, Tamminga CA, Garcia BA, Li H, Brennand KJ, Maze I. Chromatin profiling in human neurons reveals aberrant roles for histone acetylation and BET family proteins in schizophrenia. Nat Commun 2022; 13:2195. [PMID: 35459277 PMCID: PMC9033776 DOI: 10.1038/s41467-022-29922-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Schizophrenia (SZ) is a psychiatric disorder with complex genetic risk dictated by interactions between hundreds of risk variants. Epigenetic factors, such as histone posttranslational modifications (PTMs), have been shown to play critical roles in many neurodevelopmental processes, and when perturbed may also contribute to the precipitation of disease. Here, we apply an unbiased proteomics approach to evaluate combinatorial histone PTMs in human induced pluripotent stem cell (hiPSC)-derived forebrain neurons from individuals with SZ. We observe hyperacetylation of H2A.Z and H4 in neurons derived from SZ cases, results that were confirmed in postmortem human brain. We demonstrate that the bromodomain and extraterminal (BET) protein, BRD4, is a bona fide 'reader' of H2A.Z acetylation, and further provide evidence that BET family protein inhibition ameliorates transcriptional abnormalities in patient-derived neurons. Thus, treatments aimed at alleviating BET protein interactions with hyperacetylated histones may aid in the prevention or treatment of SZ.
Collapse
Affiliation(s)
- Lorna A Farrelly
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shuangping Zheng
- Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Nadine Schrode
- Department of Genetics and Genomic Sciences, Pamela Sklar Division of Psychiatric Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aaron Topol
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Natarajan V Bhanu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ryan M Bastle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bulent Cetin
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Erin Flaherty
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Pamela Sklar Division of Psychiatric Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kelly Gleason
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Haitao Li
- Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Pamela Sklar Division of Psychiatric Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Departments of Psychiatry and Genetics, Wu Tsai Institute, Yale School of Medicine, New Haven, CT, 065109, USA.
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
45
|
Zhang M, Gao L, Ye Y, Li X. Advances in glioma-associated oncogene (GLI) inhibitors for cancer therapy. Invest New Drugs 2022; 40:370-388. [PMID: 34837604 DOI: 10.1007/s10637-021-01187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
The Hedgehog/Glioma-associated oncogene homolog (HH/GLI) signaling pathway regulates self-renewal of rare and highly malignant cancer stem cells, which have been shown to account for the initiation and maintenance of tumor growth as well as for drug resistance, metastatic spread and relapse. As an important component of the Hh signaling pathway, glioma-associated oncogene (GLI) acts as a key signal transmission hub for various signaling pathways in many tumors. Here, we review direct and indirect inhibitors of GLI; summarize the abundant active structurally diverse natural GLI inhibitors; and discuss how to better develop and utilize GLI inhibitors to solve the problem of drug resistance in tumors of interest. In summary, GLI inhibitors will be promising candidates for various cancer treatments.
Collapse
Affiliation(s)
- Meng Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijuan Gao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiping Ye
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoyu Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
46
|
Hassan Nazmy M, Ahmed Mekheimer R, Shoman ME, Abo-Elsebaa M, Abd-Elmonem M, Usef Sadek K. Controlled microwave-assisted reactions: A facile synthesis of polyfunctionally substituted phthalazines as dual EGFR and PI3K inhibitors in CNS SNB-75 cell line. Bioorg Chem 2022; 122:105740. [PMID: 35298961 DOI: 10.1016/j.bioorg.2022.105740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
Abstract
Brain tumors are stubborn cancers with poor prognosis and disappointing survival rates. Targeted cancer therapeutics with higher efficacy and lower resistance are highly demanded. An efficient one-pot synthesis of polyfunctionalized phthalazines derivatives was developed by reacting ethyl 1-aryl-5-cyano-1,6-dihydro-4-methyl-6-oxo-3-pyridazine-carboxylates with cinnamonitrile derivatives and the cycloaddition reaction of thieno[3,4-d]pyridazines with activated double or triple bond systems under controlled microwave heating with high yields. The resultant synthesized phthalazines (5a-e, 9 and 13) were tested for their in vitro anti-cancer activities by using in vitro one dose assay at National Cancer institute, USA. Only phthalazine (5b) showed broad spectrum anti-tumor activity against most tested cancer cell lines from all subpanels with mean % GI = 22.61. Interestingly, all tested compounds showed varying growth inhibitory activity against a particular cell line, CNS SNB-75 cell line, but (5b) exhibited the highest growth inhibitory activity against CNS-SNB-75 cell line with (GI% = 108.81) and (IC50 = 3.703 ± 0.2) compared to erlotinib; (IC50 = 12.5 ± 0.68). It caused Pre-G1 apoptosis and growth arrest at S phase. It also increased percentage of the total apoptotic cells in CNS-SNB-75 cell line (39.26%) compared to control cells (2.17%) in the annexin V-FITC experiment. It revealed pronounced EGFR inhibitory activity (IC50 = 47.27 ± 2.41 ng/mL) compared to erlotinib (IC50 = 30.7 ± 1.56 ng/mL). It also inhibited the different PI3K isoforms α, β, γ and δ (with IC50 of 4.39, 13.6, 12.5 and 3.11 μg/mL, respectively compared to LY294002 (with IC50 of 12.7, 8.57, 6.89 and 5.7 μg/mL, respectively). It also caused significant lower protein expression levels of pPI3K, AKT, pAKT and Bcl2 and higher protein expression levels of BAX, Casp3 and Casp9 when compared to untreated cells. Conclusion: Phthalazine (5b) may be an effective, convenient and safe anti-cancer agent acting via proapoptotic and dual EGFR and PI3K kinase inhibitory actions in CNS SNB-75 cell line.
Collapse
Affiliation(s)
- Maiiada Hassan Nazmy
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | | | - Mai E Shoman
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Mohamed Abo-Elsebaa
- Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mohamed Abd-Elmonem
- Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Kamal Usef Sadek
- Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
47
|
Järvenpää J, Rahnasto-Rilla M, Lahtela-Kakkonen M, Küblbeck J. Profiling the regulatory interplay of BET bromodomains and Sirtuins in cancer cell lines. Biomed Pharmacother 2022; 147:112652. [DOI: 10.1016/j.biopha.2022.112652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/27/2022] Open
|
48
|
Chen L, Liu Z, Li X. Recent Advances in Dual BRD4-Kinase Inhibitors Base on Polypharmacology. ChemMedChem 2022; 17:e202100731. [PMID: 35146935 DOI: 10.1002/cmdc.202100731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Indexed: 11/11/2022]
Abstract
Epigenetic reader BRD4 is involved in chromatin remodeling and transcriptional regulation, making it a promising therapeutic target. However, during the past decades, the results of many BRD4 inhibitors that have entered clinical trials were, in the main, unsatisfactory, due to some therapeutic limitations such as off-target effects and drug resistance. Combining a BRD4 inhibitor with another drug was expected to be an ideal option to overcome these "bottlenecks" and achieve improved therapeutic outcomes. However, combination therapy might trigger toxicity caused by drug-drug interaction, complex pharmacokinetic and additive effects. Recently, the application of dual-target drugs targeting BRD4 and other kinases has emerged to be an attractive approach to remedy defects of a single BRD4 inhibitor. Herein, this review focuses on recent advances in the discovery of dual BRD4-kinase inhibitors, with emphasis on their co-crystal structures and structure-activity relationships (SARs), as well as perspective prospects in the field.
Collapse
Affiliation(s)
- Li Chen
- Shandong University Cheeloo College of Medicine, Medicinal chemistry, West Wenhua Road 44, 250012, Jinnan, CHINA
| | - Zhaopeng Liu
- Institute of Medicinal Chemistry, Department of Organic Chemistry, School of Pharmaceutical Sciences, Shandong Un, No.44 WhenHua XiLu, 250012, Jinan, CHINA
| | - Xun Li
- Shandong First Medical University, Institute of Materia Medica, CHINA
| |
Collapse
|
49
|
Smilova MD, Curran PR, Radoux CJ, von Delft F, Cole JC, Bradley AR, Marsden BD. Fragment Hotspot Mapping to Identify Selectivity-Determining Regions between Related Proteins. J Chem Inf Model 2022; 62:284-294. [PMID: 35020376 PMCID: PMC8790751 DOI: 10.1021/acs.jcim.1c00823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Selectivity is a
crucial property in small molecule development.
Binding site comparisons within a protein family are a key piece of
information when aiming to modulate the selectivity profile of a compound.
Binding site differences can be exploited to confer selectivity for
a specific target, while shared areas can provide insights into polypharmacology.
As the quantity of structural data grows, automated methods are needed
to process, summarize, and present these data to users. We present
a computational method that provides quantitative and data-driven
summaries of the available binding site information from an ensemble
of structures of the same protein. The resulting ensemble maps identify
the key interactions important for ligand binding in the ensemble.
The comparison of ensemble maps of related proteins enables the identification
of selectivity-determining regions within a protein family. We applied
the method to three examples from the well-researched human bromodomain
and kinase families, demonstrating that the method is able to identify
selectivity-determining regions that have been used to introduce selectivity
in past drug discovery campaigns. We then illustrate how the resulting
maps can be used to automate comparisons across a target protein family.
Collapse
Affiliation(s)
- Mihaela D Smilova
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K
| | - Peter R Curran
- The Cambridge Crystallographic Data Centre (CCDC), Cambridge CB2 1EZ, U.K.,Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Chris J Radoux
- Exscientia Ltd., The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, U.K
| | - Frank von Delft
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.,Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.,Research Complex at Harwell. Harwell Science and Innovation Campus, Didcot OX11 0FA, U.K.,Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | - Jason C Cole
- The Cambridge Crystallographic Data Centre (CCDC), Cambridge CB2 1EZ, U.K
| | - Anthony R Bradley
- Exscientia Ltd., The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, U.K
| | - Brian D Marsden
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.,Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7DQ, U.K
| |
Collapse
|
50
|
Gatto L, Franceschi E, Tosoni A, Di Nunno V, Bartolini S, Brandes AA. Molecular Targeted Therapies: Time for a Paradigm Shift in Medulloblastoma Treatment? Cancers (Basel) 2022; 14:333. [PMID: 35053495 PMCID: PMC8773620 DOI: 10.3390/cancers14020333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma is a rare malignancy of the posterior cranial fossa. Although until now considered a single disease, according to the current WHO classification, it is a heterogeneous tumor that comprises multiple molecularly defined subgroups, with distinct gene expression profiles, pathogenetic driver alterations, clinical behaviors and age at onset. Adult medulloblastoma, in particular, is considered a rarer "orphan" entity in neuro-oncology practice because while treatments have progressively evolved for the pediatric population, no practice-changing prospective, randomized clinical trials have been performed in adults. In this scenario, the toughest challenge is to transfer the advances in cancer genomics into new molecularly targeted therapeutics, to improve the prognosis of this neoplasm and the treatment-related toxicities. Herein, we focus on the recent advances in targeted therapy of medulloblastoma based on the new and deeper knowledge of disease biology.
Collapse
Affiliation(s)
- Lidia Gatto
- Medical Oncology Department, Azienda Unità Sanitaria Locale, 40139 Bologna, Italy; (L.G.); (V.D.N.)
| | - Enrico Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, 40139 Bologna, Italy; (A.T.); (S.B.); (A.A.B.)
| | - Alicia Tosoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, 40139 Bologna, Italy; (A.T.); (S.B.); (A.A.B.)
| | - Vincenzo Di Nunno
- Medical Oncology Department, Azienda Unità Sanitaria Locale, 40139 Bologna, Italy; (L.G.); (V.D.N.)
| | - Stefania Bartolini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, 40139 Bologna, Italy; (A.T.); (S.B.); (A.A.B.)
| | - Alba Ariela Brandes
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, 40139 Bologna, Italy; (A.T.); (S.B.); (A.A.B.)
| |
Collapse
|