1
|
Abedini-Nassab R, Taheri F, Emamgholizadeh A, Naderi-Manesh H. Single-Cell RNA Sequencing in Organ and Cell Transplantation. BIOSENSORS 2024; 14:189. [PMID: 38667182 PMCID: PMC11048310 DOI: 10.3390/bios14040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Single-cell RNA sequencing is a high-throughput novel method that provides transcriptional profiling of individual cells within biological samples. This method typically uses microfluidics systems to uncover the complex intercellular communication networks and biological pathways buried within highly heterogeneous cell populations in tissues. One important application of this technology sits in the fields of organ and stem cell transplantation, where complications such as graft rejection and other post-transplantation life-threatening issues may occur. In this review, we first focus on research in which single-cell RNA sequencing is used to study the transcriptional profile of transplanted tissues. This technology enables the analysis of the donor and recipient cells and identifies cell types and states associated with transplant complications and pathologies. We also review the use of single-cell RNA sequencing in stem cell implantation. This method enables studying the heterogeneity of normal and pathological stem cells and the heterogeneity in cell populations. With their remarkably rapid pace, the single-cell RNA sequencing methodologies will potentially result in breakthroughs in clinical transplantation in the coming years.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Fatemeh Taheri
- Biomedical Engineering Department, University of Neyshabur, Neyshabur P.O. Box 9319774446, Iran
| | - Ali Emamgholizadeh
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran;
- Department of Biophysics, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| |
Collapse
|
2
|
Camunas-Soler J. Integrating single-cell transcriptomics with cellular phenotypes: cell morphology, Ca 2+ imaging and electrophysiology. Biophys Rev 2024; 16:89-107. [PMID: 38495444 PMCID: PMC10937895 DOI: 10.1007/s12551-023-01174-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/29/2023] [Indexed: 03/19/2024] Open
Abstract
I review recent technological advancements in coupling single-cell transcriptomics with cellular phenotypes including morphology, calcium signaling, and electrophysiology. Single-cell RNA sequencing (scRNAseq) has revolutionized cell type classifications by capturing the transcriptional diversity of cells. A new wave of methods to integrate scRNAseq and biophysical measurements is facilitating the linkage of transcriptomic data to cellular function, which provides physiological insight into cellular states. I briefly discuss critical factors of these phenotypical characterizations such as timescales, information content, and analytical tools. Dedicated sections focus on the integration with cell morphology, calcium imaging, and electrophysiology (patch-seq), emphasizing their complementary roles. I discuss their application in elucidating cellular states, refining cell type classifications, and uncovering functional differences in cell subtypes. To illustrate the practical applications and benefits of these methods, I highlight their use in tissues with excitable cell-types such as the brain, pancreatic islets, and the retina. The potential of combining functional phenotyping with spatial transcriptomics for a detailed mapping of cell phenotypes in situ is explored. Finally, I discuss open questions and future perspectives, emphasizing the need for a shift towards broader accessibility through increased throughput.
Collapse
Affiliation(s)
- Joan Camunas-Soler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
3
|
Swaminath S, Russell AB. The use of single-cell RNA-seq to study heterogeneity at varying levels of virus-host interactions. PLoS Pathog 2024; 20:e1011898. [PMID: 38236826 PMCID: PMC10796064 DOI: 10.1371/journal.ppat.1011898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The outcome of viral infection depends on the diversity of the infecting viral population and the heterogeneity of the cell population that is infected. Until almost a decade ago, the study of these dynamic processes during viral infection was challenging and limited to certain targeted measurements. Presently, with the use of single-cell sequencing technology, the complex interface defined by the interactions of cells with infecting virus can now be studied across the breadth of the transcriptome in thousands of individual cells simultaneously. In this review, we will describe the use of single-cell RNA sequencing (scRNA-seq) to study the heterogeneity of viral infections, ranging from individual virions to the immune response between infected individuals. In addition, we highlight certain key experimental limitations and methodological decisions that are critical to analyzing scRNA-seq data at each scale.
Collapse
Affiliation(s)
- Sharmada Swaminath
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Alistair B. Russell
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
4
|
Ralph DK, Matsen FA. Inference of B cell clonal families using heavy/light chain pairing information. PLoS Comput Biol 2022; 18:e1010723. [PMID: 36441808 PMCID: PMC9731466 DOI: 10.1371/journal.pcbi.1010723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 12/08/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Next generation sequencing of B cell receptor (BCR) repertoires has become a ubiquitous tool for understanding the antibody-mediated immune response: it is now common to have large volumes of sequence data coding for both the heavy and light chain subunits of the BCR. However, until the recent development of high throughput methods of preserving heavy/light chain pairing information, these samples contained no explicit information on which heavy chain sequence pairs with which light chain sequence. One of the first steps in analyzing such BCR repertoire samples is grouping sequences into clonally related families, where each stems from a single rearrangement event. Many methods of accomplishing this have been developed, however, none so far has taken full advantage of the newly-available pairing information. This information can dramatically improve clustering performance, especially for the light chain. The light chain has traditionally been challenging for clonal family inference because of its low diversity and consequent abundance of non-clonal families with indistinguishable naive rearrangements. Here we present a method of incorporating this pairing information into the clustering process in order to arrive at a more accurate partition of the data into clonally related families. We also demonstrate two methods of fixing imperfect pairing information, which may allow for simplified sample preparation and increased sequencing depth. Finally, we describe several other improvements to the partis software package.
Collapse
Affiliation(s)
- Duncan K. Ralph
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| | - Frederick A. Matsen
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Sinha N, Yang H, Janse D, Hendriks L, Rand U, Hauser H, Köster M, van de Vosse FN, de Greef TFA, Tel J. Microfluidic chip for precise trapping of single cells and temporal analysis of signaling dynamics. COMMUNICATIONS ENGINEERING 2022; 1:18. [PMCID: PMC10955935 DOI: 10.1038/s44172-022-00019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2024]
Abstract
Microfluidic designs are versatile examples of technology miniaturisation that find their applications in various cell biology research, especially to investigate the influence of environmental signals on cellular response dynamics. Multicellular systems operate in intricate cellular microenvironments where environmental signals govern well-orchestrated and robust responses, the understanding of which can be realized with integrated microfluidic systems. In this study, we present a fully automated and integrated microfluidic chip that can deliver input signals to single and isolated suspension or adherent cells in a precisely controlled manner. In respective analyses of different single cell types, we observe, in real-time, the temporal dynamics of caspase 3 activation during DMSO-induced apoptosis in single cancer cells (K562) and the translocation of STAT-1 triggered by interferon γ (IFNγ) in single fibroblasts (NIH3T3). Our investigations establish the employment of our versatile microfluidic system in probing temporal single cell signaling networks where alternations in outputs uncover signal processing mechanisms. Nidhi Sinha, Haowen Yang and colleagues report a microfluidic large-scale integration chip to probe temporal single-cell signalling networks via the delivery of patterns of input signalling molecules. The researchers use their device to investigate drug-induced cancer cell apoptosis and single cell transcription (STAT-1) protein signalling dynamics.
Collapse
Affiliation(s)
- Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - David Janse
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Luc Hendriks
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Ulfert Rand
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Hansjörg Hauser
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Frans N. van de Vosse
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Tom F. A. de Greef
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Computational Biology Group, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
6
|
Thakral D, Gupta R, Khan A. Leukemic stem cell signatures in Acute myeloid leukemia- targeting the Guardians with novel approaches. Stem Cell Rev Rep 2022; 18:1756-1773. [DOI: 10.1007/s12015-022-10349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 11/09/2022]
|
7
|
Abstract
Lab-on-a-chip devices leverage microfluidic technologies to enable chemical and biological processes at small scales. However, existing microfluidic channel networks are typically designed for the implementation of a single function or a well-defined protocol and do not allow the flexibility and real-time experimental decision-making essential to many scientific applications. In this Perspective, we highlight that reconfigurability and programmability of microfluidic platforms can support new functionalities that are beyond the reach of current lab-on-a-chip systems. We describe the ideal fully reconfigurable microfluidic device that can change its shape and function dynamically, which would allow researchers to tune a microscale experiment with the capacity to make real-time decisions. We review existing technologies that can dynamically control microscale flows, suggest additional physical mechanisms that could be leveraged towards the goal of reconfigurable microfluidics and highlight the importance of these efforts for the broad scientific community.
Collapse
|
8
|
Zhang Z, Huang X, Liu K, Lan T, Wang Z, Zhu Z. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis. BIOSENSORS 2021; 11:470. [PMID: 34821686 PMCID: PMC8615761 DOI: 10.3390/bios11110470] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 05/10/2023]
Abstract
Cellular heterogeneity is of significance in cell-based assays for life science, biomedicine and clinical diagnostics. Electrical impedance sensing technology has become a powerful tool, allowing for rapid, non-invasive, and label-free acquisition of electrical parameters of single cells. These electrical parameters, i.e., equivalent cell resistance, membrane capacitance and cytoplasm conductivity, are closely related to cellular biophysical properties and dynamic activities, such as size, morphology, membrane intactness, growth state, and proliferation. This review summarizes basic principles, analytical models and design concepts of single-cell impedance sensing devices, including impedance flow cytometry (IFC) to detect flow-through single cells and electrical impedance spectroscopy (EIS) to monitor immobilized single cells. Then, recent advances of both electrical impedance sensing systems applied in cell recognition, cell counting, viability detection, phenotypic assay, cell screening, and other cell detection are presented. Finally, prospects of impedance sensing technology in single-cell analysis are discussed.
Collapse
Affiliation(s)
- Zhao Zhang
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| | - Xiaowen Huang
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Department of Orthopedics, Nanjing 210029, China;
| | - Ke Liu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| | - Tiancong Lan
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| | - Zixin Wang
- School of Electronics and Information Technology, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou 510275, China;
| | - Zhen Zhu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| |
Collapse
|
9
|
Zhou WM, Yan YY, Guo QR, Ji H, Wang H, Xu TT, Makabel B, Pilarsky C, He G, Yu XY, Zhang JY. Microfluidics applications for high-throughput single cell sequencing. J Nanobiotechnology 2021; 19:312. [PMID: 34635104 PMCID: PMC8507141 DOI: 10.1186/s12951-021-01045-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
The inherent heterogeneity of individual cells in cell populations plays significant roles in disease development and progression, which is critical for disease diagnosis and treatment. Substantial evidences show that the majority of traditional gene profiling methods mask the difference of individual cells. Single cell sequencing can provide data to characterize the inherent heterogeneity of individual cells, and reveal complex and rare cell populations. Different microfluidic technologies have emerged for single cell researches and become the frontiers and hot topics over the past decade. In this review article, we introduce the processes of single cell sequencing, and review the principles of microfluidics for single cell analysis. Also, we discuss the common high-throughput single cell sequencing technologies along with their advantages and disadvantages. Lastly, microfluidics applications in single cell sequencing technology for the diagnosis of cancers and immune system diseases are briefly illustrated.
Collapse
Affiliation(s)
- Wen-Min Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yan-Yan Yan
- School of Medicine, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Qiao-Ru Guo
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hong Ji
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Tian-Tian Xu
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Bolat Makabel
- Xinjiang Institute of Materia Medica, Urumqi, 830004, People's Republic of China
| | - Christian Pilarsky
- Department of Surgery, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Gen He
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
10
|
Harrington J, Esteban LB, Butement J, Vallejo AF, Lane SIR, Sheth B, Jongen MSA, Parker R, Stumpf PS, Smith RCG, MacArthur BD, Rose-Zerilli MJJ, Polak ME, Underwood T, West J. Dual dean entrainment with volume ratio modulation for efficient droplet co-encapsulation: extreme single-cell indexing. LAB ON A CHIP 2021; 21:3378-3386. [PMID: 34240097 PMCID: PMC8383763 DOI: 10.1039/d1lc00292a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/21/2021] [Indexed: 06/01/2023]
Abstract
The future of single cell diversity screens involves ever-larger sample sizes, dictating the need for higher throughput methods with low analytical noise to accurately describe the nature of the cellular system. Current approaches are limited by the Poisson statistic, requiring dilute cell suspensions and associated losses in throughput. In this contribution, we apply Dean entrainment to both cell and bead inputs, defining different volume packets to effect efficient co-encapsulation. Volume ratio scaling was explored to identify optimal conditions. This enabled the co-encapsulation of single cells with reporter beads at rates of ∼1 million cells per hour, while increasing assay signal-to-noise with cell multiplet rates of ∼2.5% and capturing ∼70% of cells. The method, called Pirouette coupling, extends our capacity to investigate biological systems.
Collapse
Affiliation(s)
- Jack Harrington
- Cancer Sciences, Faculty of Medicine, University of Southampton, UK.
| | - Luis Blay Esteban
- Faculty of Engineering and Physical Sciences, University of Southampton, UK
| | - Jonathan Butement
- Cancer Sciences, Faculty of Medicine, University of Southampton, UK.
| | - Andres F Vallejo
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, UK
| | - Simon I R Lane
- Faculty of Engineering and Physical Sciences, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| | - Bhavwanti Sheth
- School for Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, UK
| | - Maaike S A Jongen
- Cancer Sciences, Faculty of Medicine, University of Southampton, UK.
| | - Rachel Parker
- Cancer Sciences, Faculty of Medicine, University of Southampton, UK.
| | - Patrick S Stumpf
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, UK
| | - Rosanna C G Smith
- Cancer Sciences, Faculty of Medicine, University of Southampton, UK.
| | - Ben D MacArthur
- Institute for Life Sciences, University of Southampton, UK
- Mathematical Sciences, University of Southampton, UK
| | - Matthew J J Rose-Zerilli
- Cancer Sciences, Faculty of Medicine, University of Southampton, UK.
- Institute for Life Sciences, University of Southampton, UK
| | - Marta E Polak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| | - Tim Underwood
- Cancer Sciences, Faculty of Medicine, University of Southampton, UK.
- Institute for Life Sciences, University of Southampton, UK
| | - Jonathan West
- Cancer Sciences, Faculty of Medicine, University of Southampton, UK.
- Institute for Life Sciences, University of Southampton, UK
| |
Collapse
|
11
|
Li H. Single-cell RNA sequencing in Drosophila: Technologies and applications. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e396. [PMID: 32940008 PMCID: PMC7960577 DOI: 10.1002/wdev.396] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/09/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for investigating cell states and functions at the single-cell level. It has greatly revolutionized transcriptomic studies in many life science research fields, such as neurobiology, immunology, and developmental biology. With the fast development of both experimental platforms and bioinformatics approaches over the past decade, scRNA-seq is becoming economically feasible and experimentally practical for many biomedical laboratories. Drosophila has served as an excellent model organism for dissecting cellular and molecular mechanisms that underlie tissue development, adult cell function, disease, and aging. The recent application of scRNA-seq methods to Drosophila tissues has led to a number of exciting discoveries. In this review, I will provide a summary of recent scRNA-seq studies in Drosophila, focusing on technical approaches and biological applications. I will also discuss current challenges and future opportunities of making new discoveries using scRNA-seq in Drosophila. This article is categorized under: Technologies > Analysis of the Transcriptome.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Wang X, Zhu J, Yang C, Qin F, Zhang B. Segmented Microfluidics-Based Packing Technology for Chromatographic Columns. Anal Chem 2021; 93:8450-8458. [PMID: 34111926 DOI: 10.1021/acs.analchem.1c00545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoflow liquid chromatography-mass spectrometry (NanoLC-MS) has become the method of choice for the analysis of complex biological systems, especially when the available sample amount is limited. The preparation of high-performance capillary columns for nanoLC use is still a technical challenge. Here, we report a segmented microfluidic method for the preparation of packed capillary columns, where liquid segments were used as soft, dynamic, and well-dispersed slurry reservoirs for carrying and delivering micrometer packing particles. Based on this microfluidic packing technology, the column bed was assembled layer-by-layer at a 50 μm resolution, and ultralong capillary columns of 3, 5, and 10 m were fabricated in such a manner. The microfluidically packed columns demonstrated excellent separation efficiencies of 116 000 plates/m. The higher efficiencies obtained at higher slurry concentrations also indicate that a high-quality packed bed can be obtained without sacrificing the packing speed. Kinetic performance limit analysis shows that the microfluidic packed columns have higher peak capacity production efficiency in the high-resolution region, presenting an improved separation impedance of 2800, which is significantly better than columns packed with the conventional slurry packing method. In comparison with a commercial nanoLC column, a 5 m long microfluidic packed column was evaluated for proteomic analysis using a standard HeLa protein digest and presented 261% improvement in peptide identification capability, resulting in significantly enhanced protein identification confidence.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Chemistry and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jue Zhu
- Department of Chemistry and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyuhu Yang
- Department of Chemistry and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fei Qin
- Xiamen Medical College, Xiamen 361023, China
| | - Bo Zhang
- Department of Chemistry and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Gritti N, Oriola D, Trivedi V. Rethinking embryology in vitro: A synergy between engineering, data science and theory. Dev Biol 2021; 474:48-61. [DOI: 10.1016/j.ydbio.2020.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
|
14
|
Nayak R, Hasija Y. A hitchhiker's guide to single-cell transcriptomics and data analysis pipelines. Genomics 2021; 113:606-619. [PMID: 33485955 DOI: 10.1016/j.ygeno.2021.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/30/2020] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
Single-cell transcriptomics (SCT) is a tour de force in the era of big omics data that has led to the accumulation of massive cellular transcription data at an astounding resolution of single cells. It provides valuable insights into cells previously unachieved by bulk cell analysis and is proving crucial in uncovering cellular heterogeneity, identifying rare cell populations, distinct cell-lineage trajectories, and mechanisms involved in complex cellular processes. SCT data is highly complex and necessitates advanced statistical and computational methods for analysis. This review provides a comprehensive overview of the steps in a typical SCT workflow, starting from experimental protocol to data analysis, deliberating various pipelines used. We discuss recent trends, challenges, machine learning methods for data analysis, and future prospects. We conclude by listing the multitude of scRNA-seq data applications and how it shall revolutionize our understanding of cellular biology and diseases.
Collapse
Affiliation(s)
- Richa Nayak
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India.
| |
Collapse
|
15
|
Jammes FC, Maerkl SJ. How single-cell immunology is benefiting from microfluidic technologies. MICROSYSTEMS & NANOENGINEERING 2020; 6:45. [PMID: 34567657 PMCID: PMC8433390 DOI: 10.1038/s41378-020-0140-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Accepted: 01/25/2020] [Indexed: 05/03/2023]
Abstract
The immune system is a complex network of specialized cells that work in concert to protect against invading pathogens and tissue damage. Imbalances in this network often result in excessive or absent immune responses leading to allergies, autoimmune diseases, and cancer. Many of the mechanisms and their regulation remain poorly understood. Immune cells are highly diverse, and an immune response is the result of a large number of molecular and cellular interactions both in time and space. Conventional bulk methods are often prone to miss important details by returning population-averaged results. There is a need in immunology to measure single cells and to study the dynamic interplay of immune cells with their environment. Advances in the fields of microsystems and microengineering gave rise to the field of microfluidics and its application to biology. Microfluidic systems enable the precise control of small volumes in the femto- to nanoliter range. By controlling device geometries, surface chemistry, and flow behavior, microfluidics can create a precisely defined microenvironment for single-cell studies with spatio-temporal control. These features are highly desirable for single-cell analysis and have made microfluidic devices useful tools for studying complex immune systems. In addition, microfluidic devices can achieve high-throughput measurements, enabling in-depth studies of complex systems. Microfluidics has been used in a large panel of biological applications, ranging from single-cell genomics, cell signaling and dynamics to cell-cell interaction and cell migration studies. In this review, we give an overview of state-of-the-art microfluidic techniques, their application to single-cell immunology, their advantages and drawbacks, and provide an outlook for the future of single-cell technologies in research and medicine.
Collapse
Affiliation(s)
- Fabien C. Jammes
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Habermann AC, Gutierrez AJ, Bui LT, Yahn SL, Winters NI, Calvi CL, Peter L, Chung MI, Taylor CJ, Jetter C, Raju L, Roberson J, Ding G, Wood L, Sucre JMS, Richmond BW, Serezani AP, McDonnell WJ, Mallal SB, Bacchetta MJ, Loyd JE, Shaver CM, Ware LB, Bremner R, Walia R, Blackwell TS, Banovich NE, Kropski JA. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. SCIENCE ADVANCES 2020; 6:eaba1972. [PMID: 32832598 PMCID: PMC7439444 DOI: 10.1126/sciadv.aba1972] [Citation(s) in RCA: 529] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/29/2020] [Indexed: 05/09/2023]
Abstract
Pulmonary fibrosis (PF) is a form of chronic lung disease characterized by pathologic epithelial remodeling and accumulation of extracellular matrix (ECM). To comprehensively define the cell types, mechanisms, and mediators driving fibrotic remodeling in lungs with PF, we performed single-cell RNA sequencing of single-cell suspensions from 10 nonfibrotic control and 20 PF lungs. Analysis of 114,396 cells identified 31 distinct cell subsets/states. We report that a remarkable shift in epithelial cell phenotypes occurs in the peripheral lung in PF and identify several previously unrecognized epithelial cell phenotypes, including a KRT5- /KRT17 + pathologic, ECM-producing epithelial cell population that was highly enriched in PF lungs. Multiple fibroblast subtypes were observed to contribute to ECM expansion in a spatially discrete manner. Together, these data provide high-resolution insights into the complexity and plasticity of the distal lung epithelium in human disease and indicate a diversity of epithelial and mesenchymal cells contribute to pathologic lung fibrosis.
Collapse
Affiliation(s)
- Arun C. Habermann
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Linh T. Bui
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Nichelle I. Winters
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carla L. Calvi
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lance Peter
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Mei-I Chung
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Chase J. Taylor
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher Jetter
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Latha Raju
- Vanderbilt Center for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie Roberson
- Vanderbilt Center for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guixiao Ding
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori Wood
- Department of Thoracic Disease and Transplantation, Norton Thoracic Institute, Phoenix, AZ, USA
| | - Jennifer M. S. Sucre
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley W. Richmond
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - Ana P. Serezani
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wyatt J. McDonnell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon B. Mallal
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Discovery Way, Murdoch, Western Australia 6150, Australia
| | - Matthew J. Bacchetta
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E. Loyd
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ross Bremner
- Department of Thoracic Disease and Transplantation, Norton Thoracic Institute, Phoenix, AZ, USA
| | - Rajat Walia
- Department of Thoracic Disease and Transplantation, Norton Thoracic Institute, Phoenix, AZ, USA
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
17
|
Chakraborty C, Bhattacharya M, Agoramoorthy G. Single-cell sequencing of miRNAs: A modified technology. Cell Biol Int 2020; 44:1773-1780. [PMID: 32379363 DOI: 10.1002/cbin.11376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/07/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
The recent development of next-generation sequencing technologies has offered valuable insights into individual cells. This technology is centered on the characterization of single cells for epigenomics, genomics, and transcriptomics. Ever since the first report appeared in 2009, the single-cell RNA-sequencing saga started to explore deeper into the mechanics intrigued within a single cell. microRNA (miRNA) has been increasingly recognized as an essential molecule triggering an additional layer for gene regulation. Therefore, single-cell sequencing of miRNAs is crucial to explore the logical riddles surrounding the epigenomics, genomics, and transcriptomics of an individual cell. Scientists from the Vienna Biocenter Campus have lately performed single-cell sequencing of miRNAs in the fly, Drosophila, and nematode, Caenorhabditis elegans. In this review, we present the latest scientific explorations supported by all-inclusive data on this novel subject matter of next-generation sequencing.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha, India
| | | |
Collapse
|
18
|
Fung CW, Chan SN, Wu AR. Microfluidic single-cell analysis-Toward integration and total on-chip analysis. BIOMICROFLUIDICS 2020; 14:021502. [PMID: 32161631 PMCID: PMC7060088 DOI: 10.1063/1.5131795] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Various types of single-cell analyses are now extensively used to answer many biological questions, and with this growth in popularity, potential drawbacks to these methods are also becoming apparent. Depending on the specific application, workflows can be laborious, low throughput, and run the risk of contamination. Microfluidic designs, with their advantages of being high throughput, low in reaction volume, and compatible with bio-inert materials, have been widely used to improve single-cell workflows in all major stages of single-cell applications, from cell sorting to lysis, to sample processing and readout. Yet, designing an integrated microfluidic chip that encompasses the entire single-cell workflow from start to finish remains challenging. In this article, we review the current microfluidic approaches that cover different stages of processing in single-cell analysis and discuss the prospects and challenges of achieving a full integrated workflow to achieve total single-cell analysis in one device.
Collapse
Affiliation(s)
- Cheuk Wang Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shek Nga Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Angela Ruohao Wu
- Author to whom correspondence should be addressed:. Tel.: +852 3469-2577
| |
Collapse
|
19
|
An Integrated Preprocessing Approach for Exploring Single-Cell Gene Expression in Rare Cells. Sci Rep 2019; 9:19758. [PMID: 31875032 PMCID: PMC6930255 DOI: 10.1038/s41598-019-55831-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023] Open
Abstract
Exploring the variability in gene expressions of rare cells at the single-cell level is critical for understanding mechanisms of differentiation in tissue function and development as well as for disease diagnostics and cancer treatment. Such studies, however, have been hindered by major difficulties in tracking the identity of individual cells. We present an approach that combines single-cell picking, lysing, reverse transcription and digital polymerase chain reaction to enable the isolation, tracking and gene expression analysis of rare cells. The approach utilizes a photocleavage bead-based microfluidic device to synthesize and deliver stable cDNA for downstream gene expression analysis, thereby allowing chip-based integration of multiple reactions and facilitating the minimization of sample loss or contamination. The utility of the approach was demonstrated with QuantStudio digital PCR by analyzing the radiation and bystander effect on individual IMR90 human lung fibroblasts. Expression levels of the Cyclin-dependent kinase inhibitor 1a (CDKN1A), Growth/differentiation factor 15 (GDF15), and Prostaglandin-endoperoxide synthase 2 (PTGS2) genes, previously shown to have different responses to direct and bystander irradiation, were measured across individual control, microbeam-irradiated or bystander IMR90 cells. In addition to the confirmation of accurate tracking of cell treatments through the system and efficient analysis of single-cell responses, the results enable comparison of activation levels of different genes and provide insight into signaling pathways within individual cells.
Collapse
|
20
|
Xie X, Maharjan S, Liu S, Zhang YS, Livermore C. A Modular, Reconfigurable Microfabricated Assembly Platform for Microfluidic Transport and Multitype Cell Culture and Drug Testing. MICROMACHINES 2019; 11:E2. [PMID: 31861298 PMCID: PMC7020019 DOI: 10.3390/mi11010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023]
Abstract
Modular microfluidics offer the opportunity to combine the precise fluid control, rapid sample processing, low sample and reagent volumes, and relatively lower cost of conventional microfluidics with the flexible reconfigurability needed to accommodate the requirements of target applications such as drug toxicity studies. However, combining the capabilities of fully adaptable modular microelectromechanical systems (MEMS) assembly with the simplicity of conventional microfluidic fabrication remains a challenge. A hybrid polydimethylsiloxane (PDMS)-molding/photolithographic process is demonstrated to rapidly fabricate LEGO®-like modular blocks. The blocks are created with different sizes that interlock via tongue-and-groove joints in the plane and stack via interference fits out of the plane. These miniature strong but reversible connections have a measured resistance to in-plane and out-of-plane forces of up to >6000× and >1000× the weight of the block itself, respectively. The LEGO®-like interference fits enable O-ring-free microfluidic connections that withstand internal fluid pressures of >120 kPa. A single layer of blocks is assembled into LEGO®-like cell culture plates, where the in vitro biocompatibility and drug toxicity to lung epithelial adenocarcinoma cells and hepatocellular carcinoma cells cultured in the modular microwells are measured. A double-layer block structure is then assembled so that a microchannel formed at the interface between layers connects two microwells. Breast tumor cells and hepatocytes cultured in the coupled wells demonstrate interwell migration as well as the simultaneous effects of a single drug on the two cell types.
Collapse
Affiliation(s)
- Xin Xie
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA;
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA;
| | - Sushila Maharjan
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA;
- Research Institute for Bioscience and Biotechnology, Nakkhu-4, Lalitpur 44600, Nepal
| | - Sanwei Liu
- MEMS Sensors and Actuators Laboratory, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA;
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA;
| | - Carol Livermore
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
21
|
Loo JFC, Ho HP, Kong SK, Wang TH, Ho YP. Technological Advances in Multiscale Analysis of Single Cells in Biomedicine. ACTA ACUST UNITED AC 2019; 3:e1900138. [PMID: 32648696 DOI: 10.1002/adbi.201900138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Indexed: 12/20/2022]
Abstract
Single-cell analysis has recently received significant attention in biomedicine. With the advances in super-resolution microscopy, fluorescence labeling, and nanoscale biosensing, new information may be obtained for the design of cancer diagnosis and therapeutic interventions. The discovery of cellular heterogeneity further stresses the importance of single-cell analysis to improve our understanding of disease mechanism and to develop new strategies for disease treatment. To this end, many studies are exploited at the single-cell level for high throughput, highly parallel, and quantitative analysis. Technically, microfluidics are also designed to facilitate single-cell isolation and enrichment for downstream detection and manipulation in a robust, sensitive, and automated manner. Further achievements are made possible by consolidating optically label-free, electrical, and molecular sensing techniques. Moreover, these technologies are coupled with computing algorithms for high throughput and automated quantitative analysis with a short turnaround time. To reflect on how the technological developments have advanced single-cell analysis, this mini-review is aimed to offer readers an introduction to single-cell analysis with a brief historical development and the recent progresses that have enabled multiscale analysis of single-cells in the last decade. The challenges and future trends are also discussed with the view to inspire forthcoming technical developments.
Collapse
Affiliation(s)
- Jacky Fong-Chuen Loo
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.,Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Ho Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Siu Kai Kong
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.,Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
22
|
Feng X, Kang W, Wu X, Wang S, Liu F. Quantitative Detection and Real-Time Monitoring of Endogenous mRNA at the Single Live Cell Level Using a Ratiometric Molecular Beacon. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28752-28761. [PMID: 31329405 DOI: 10.1021/acsami.9b12394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Messenger ribonucleic acid (mRNA) plays an important role in various cellular processes. however, traditional techniques cannot realize mRNA detections in live cells as they rely on mRNA purification or cell fixation. To achieve real-time and quantitative mRNA detections at a single live cell level, a single-strand stem-loop-structured ratiometric molecular beacon (RMB) composed of the phosphorothioate-modified loop domain on the 2'-O-methyl RNA backbone with a reporter dye, quencher, and reference dye is proposed to detect the Hsp27 mRNA as a modeled endogenous mRNA. When the RMB hybridizes with the target, the stem-loop structure opens, causing separation of the reporter dye and the quencher and restores the reporter fluorescent signals; therefore, the Hsp27 mRNA can be quantitatively detected according to the ratio of the reporter fluorescent signal to the reference fluorescent signal. Both the phosphorothioate and 2'-O-methyl RNA modifications obviously reduce the nonspecific opening, and the additional reference dye ensures the detection precision using co-localization analysis. Not only does this remove the false-positive signal caused by the nuclease degradation-generated RMB fragment, but it also corrects variations caused by direct measurement of reporter fluorescence intensities at a single cell level owing to inhomogeneity in probe delivery. The designed RMB could detect the Hsp27 mRNA with high signal-to-noise ratio and sensitivity as well as excellent specificity and antidegradation capability proved in vitro and in live cells. Furthermore, it was successfully adopted in subcellular localization, quantitative copy number measurements, and even real-time monitoring of Hsp27 mRNA in live cells, demonstrating that the proposed RMB can be a potential quantitative endogenous mRNA detection tool, especially at a single live cell level.
Collapse
Affiliation(s)
- Xufei Feng
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
| | - Wenjie Kang
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
| | - Xuping Wu
- The Second Hospital of Nanjing , Nanjing University of Chinese Medicine , Nanjing 210003 , China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
- Computational Optics Laboratory, School of Science , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
23
|
Peyvan K, Karouia F, Cooper JJ, Chamberlain J, Suciu D, Slota M, Pohorille A. Gene Expression Measurement Module (GEMM) for space application: Design and validation. LIFE SCIENCES IN SPACE RESEARCH 2019; 22:55-67. [PMID: 31421849 DOI: 10.1016/j.lssr.2019.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
In order to facilitate studies on the impact of the space environment on biological systems, we have developed a prototype of GEMM (Gene Expression Measurement Module) - an automated, miniaturized, integrated fluidic system for in-situ measurements of gene expression in microbial samples. The GEMM instrument is capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA to probes attached to a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. To function on small, uncrewed spacecraft, the conventional, laboratory protocols for both sample preparation and hybridization required significant modifications. Biological validation of the instrument was carried out on Synechococcus elongatus, a photosynthetic cyanobacterium known for its metabolic diversity and resilience to adverse conditions. It was demonstrated that GEMM yielded reliable, reproducible gene expression profiles. GEMM is the only high throughput instrument that can be deployed in near future on space platforms other than the ISS to advance biological research in space. It can also prove useful for numerous terrestrial applications in the field.
Collapse
Affiliation(s)
| | - Fathi Karouia
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Space Biosciences Research Branch, Moffett Field, CA 94035, USA; NASA Ames Research Center, Exobiology Branch, MS 239-4, Moffett Field, CA 94035, USA.
| | | | | | | | | | - Andrew Pohorille
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS 239-4, Moffett Field, CA 94035, USA.
| |
Collapse
|
24
|
Ota N, Yonamine Y, Asai T, Yalikun Y, Ito T, Ozeki Y, Hoshino Y, Tanaka Y. Isolating Single Euglena gracilis Cells by Glass Microfluidics for Raman Analysis of Paramylon Biogenesis. Anal Chem 2019; 91:9631-9639. [DOI: 10.1021/acs.analchem.9b01007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nobutoshi Ota
- Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 565-0871, Japan
| | - Yusuke Yonamine
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Takuya Asai
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yaxiaer Yalikun
- Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 565-0871, Japan
| | - Takuro Ito
- Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yu Hoshino
- Department of Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Yo Tanaka
- Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Artificial immunoglobulin light chain with potential to associate with a wide variety of immunoglobulin heavy chains. Biochem Biophys Res Commun 2019; 515:481-486. [PMID: 31167721 DOI: 10.1016/j.bbrc.2019.05.149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
Immunoglobulins play important roles in antigen recognition during the immune response, and the complementarity-determining region (CDR) 3 of the heavy chain is considered as the critical antigen-binding site. We previously developed a statistical protocol for the extensive analysis of heavy chain variable region repertoires and the dynamics of their immune response using next-generation sequencing (NGS). The properties of important antibody heavy chains predicted in silico by the protocol were examined by gene synthesis and antibody protein expression; however, the corresponding light chain that matches with the heavy chain could not be predicted by our protocol. To understand the dynamics of the heavy chain and the effect of light chain pairing on it, we firstly tried to obtain an artificial light chain that pairs with a broad range of heavy chains and then analyzed its effect on the antigen binding of heavy chains upon pairing. During the pre-B cell stage, the surrogate light chain (SLC) could pair with the nascent immunoglobulin μ heavy chains (Ig-μH) and promote them to function in the periphery. On the basis of this property, we designed several versions of genetically engineered "common light chain" prototypes by modifying the SLC structure. Among them, the mouse-derived VpreB1λ5Cκ light chain showed acceptable matching property with several different heavy chains without losing specificity of the original heavy chains, though the antigen affinities were variable. The extent of matching depended on the heavy chain; surprisingly, a specific heavy chain (IGHV9-3) could match with two different conventional Vκs (IGKV3-2*01 and IGKV10-96*01) without losing the antigen affinities, whereas another heavy chain (IGHV1-72) completely lost its antigen affinities by the same matching. Thus, the results suggested that the antigen recognition of the heavy chain is variably affected by the paired light chain, and that the artificial light chain, Mm_VpreB1λ5Cκ, has the potential to be a "common light chain", providing a novel system to analyze the effects of light chains in antigen recognition of heavy chains.
Collapse
|
26
|
Sarma M, Lee J, Ma S, Li S, Lu C. A diffusion-based microfluidic device for single-cell RNA-seq. LAB ON A CHIP 2019; 19:1247-1256. [PMID: 30815639 PMCID: PMC6459606 DOI: 10.1039/c8lc00967h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microfluidic devices provide a low-input and efficient platform for single-cell RNA-seq (scRNA-seq). Existing microfluidic devices have a complicated multi-chambered structure for handling the multi-step process involved in RNA-seq and dilution between steps is used to negate the inhibitory effects among reagents. This makes the device difficult to fabricate and operate. Here we present microfluidic diffusion-based RNA-seq (MID-RNA-seq) for conducting scRNA-seq with a diffusion-based reagent swapping scheme. This device incorporates cell trapping, lysis, reverse transcription and PCR amplification all in one simple microfluidic device. MID-RNA-seq provides high data quality that is comparable to existing scRNA-seq methods while implementing a simple device design that permits multiplexing. The robustness and scalability of the MID-RNA-seq device will be important for transcriptomic studies of scarce cell samples.
Collapse
Affiliation(s)
- Mimosa Sarma
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA
| | - Jiyoung Lee
- The Interdisciplinary PhD Program in Genetics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA
| | - Sai Ma
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA
| | - Song Li
- Department of Crop and Soil Environmental Science, Virginia Tech, Blacksburg, VA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA
| |
Collapse
|
27
|
Solsona M, Westerbeek EY, Bomer JG, Olthuis W, van den Berg A. Gradient in the electric field for particle position detection in microfluidic channels. LAB ON A CHIP 2019; 19:1054-1059. [PMID: 30768116 DOI: 10.1039/c8lc01333k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, a new method to track particles in microfluidic channels is presented. Particle position tracking in microfluidic systems is crucial to characterize sorting systems or to improve the analysis of cells in impedance flow cytometry studies. By developing an electric field gradient in a two parallel electrode array the position of the particles can be tracked in one axis by impedance analysis. This method can track the particle's position at lower frequencies and measure the conductivity of the system at higher frequencies. A 3-D simulation was performed showing particle position detection and conductivity analysis. To experimentally validate the technique, a microfluidic chip that develops a gradient in the electric field was fabricated and used to detect the position of polystyrene particles in one axis and measure their conductivity at low and high frequencies, respectively.
Collapse
Affiliation(s)
- Miguel Solsona
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
28
|
O'Keefe CM, Giammanco D, Li S, Pisanic TR, Wang THJ. Multilayer microfluidic array for highly efficient sample loading and digital melt analysis of DNA methylation. LAB ON A CHIP 2019; 19:444-451. [PMID: 30623957 PMCID: PMC6363116 DOI: 10.1039/c8lc01189c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Liquid biopsies contain a treasure of genetic and epigenetic biomarkers that contain information for the detection and monitoring of human disease. DNA methylation is an epigenetic modification that is critical to determining cellular phenotype and often becomes altered in many disease states. In cancer, aberrant DNA methylation contributes to carcinogenesis and can profoundly affect tumor evolution, metastatic potential, and resistance to therapeutic intervention. However, current technologies are not well-suited for quantitative assessment of DNA methylation heterogeneity, especially in challenging samples such as liquid biopsies with low DNA input and high background. We present a multilayer microfluidic device for quantitative analysis of DNA methylation by digital PCR and high resolution melt (HRM). The multilayer design facilitates high-density array digitization aimed at maximizing sample loading efficiency. The platform achieves highly parallelized digital PCR-HRM-based discrimination of rare heterogeneous DNA methylation as low as 0.0001% methylated/unmethylated molecules of a classic tumor suppressor gene, CDKN2A (p14ARF).
Collapse
Affiliation(s)
- Christine M O'Keefe
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
29
|
Zhang Y, Devendran C, Lupton C, de Marco A, Neild A. Versatile platform for performing protocols on a chip utilizing surface acoustic wave (SAW) driven mixing. LAB ON A CHIP 2019; 19:262-271. [PMID: 30564824 DOI: 10.1039/c8lc01117f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present and demonstrate a dextrous microfluidic device which features a reaction chamber with volume flexibility. This feature is critical for developing protocols directly on chip when the exact reaction is not yet defined, enabling bio/chemical reactions on chip to be performed without volumetric restrictions. This is achieved by the integration of single layer valves (for reagent dispensing) and surface acoustic wave excitation (for rapid reagent mixing). We show that a single layer valve can control the delivery of fluid into, an initially air-filled, mixing chamber. This chamber arrangement offers flexibility in the relative volume of reagents used, and so offers the capability to not only conduct, but also develop protocols on a chip. To enable this potential, we have integrated a SAW based mixer into the system, and characterised its mixing time based on frequency and power of excitation. Numerical simulations on the streaming pattern inside the chamber were conducted to probe the underlying physics of the experimental system. To demonstrate the on-chip protocol capability, the system was utilised to perform protein crystallization. Furthermore, the effect of rapid mixing, results in a significant increase in crystal size uniformity.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Microfluidics platforms can program small amounts of fluids to execute a bio-protocol, and thus, can automate the work of a technician and also integrate a large part of laboratory equipment. Although most microfluidic systems have considerably reduced the size of a laboratory, they are still benchtop units, of a size comparable to a desktop computer. In this paper, we argue that achieving true mobility in microfluidics would revolutionize the domain by making laboratory services accessible during traveling or even in daily situations, such as sport and outdoor activities. We review the existing efforts to achieve mobility in microfluidics, and we discuss the conditions mobile biochips need to satisfy. In particular, we show how we adapted an existing biochip for mobile use, and we present the results when using it during a train ride. Based on these results and our systematic discussion, we identify the challenges that need to be overcome at technical, usability and social levels. In analogy to the history of computing, we make some predictions on the future of mobile biochips. In our vision, mobile biochips will disrupt how people interact with a wide range of healthcare processes, including medical testing and synthesis of on-demand medicine.
Collapse
Affiliation(s)
- Mirela Alistar
- Atlas Institute and Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309-0320, USA.
| |
Collapse
|
31
|
Lee H, Choi J, Jeong E, Baek S, Kim HC, Chae JH, Koh Y, Seo SW, Kim JS, Kim SJ. dCas9-mediated Nanoelectrokinetic Direct Detection of Target Gene for Liquid Biopsy. NANO LETTERS 2018; 18:7642-7650. [PMID: 30421614 DOI: 10.1021/acs.nanolett.8b03224] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The-state-of-the-art bio- and nanotechnology have opened up an avenue to noninvasive liquid biopsy for identifying diseases from biomolecules in bloodstream, especially DNA. In this work, we combined sequence-specific-labeling scheme using mutated clustered regularly interspaced short palindromic repeats associated protein 9 without endonuclease activity (CRISPR/dCas9) and ion concentration polarization (ICP) phenomenon as a mechanism to selectively preconcentrate targeted DNA molecules for rapid and direct detection. Theoretical analysis on ICP phenomenon figured out a critical mobility, elucidating two distinguishable concentrating behaviors near a nanojunction, a stacking and a propagating behavior. Through the modulation of the critical mobility to shift those behaviors, the C-C chemokine receptor type 5 ( CCR5) sequences were optically detected without PCR amplification. Conclusively, the proposed dCas9-mediated genetic detection methodology based on ICP would provide rapid and accurate micro/nanofluidic platform of liquid biopsies for disease diagnostics.
Collapse
Affiliation(s)
- Hyomin Lee
- Department of Chemical and Biological Engineering , Jeju National University , Jeju , 63243 , Republic of Korea
| | | | - Euihwan Jeong
- Center for Genome Engineering , Institute for Basic Science , Seoul 34047 , Republic of Korea
| | | | | | | | - Youngil Koh
- Department of Internal Medicine , Seoul National University Hospital , Seoul 03080 , Republic of Korea
| | | | - Jin-Soo Kim
- Center for Genome Engineering , Institute for Basic Science , Seoul 34047 , Republic of Korea
| | - Sung Jae Kim
- Inter-university Semiconductor Research Center , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
32
|
Prado RC, Borges ER. MICROBIOREACTORS AS ENGINEERING TOOLS FOR BIOPROCESS DEVELOPMENT. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180354s20170433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- R. C. Prado
- Federal University of Rio de Janeiro, Brazil
| | | |
Collapse
|
33
|
Sinha N, Subedi N, Tel J. Integrating Immunology and Microfluidics for Single Immune Cell Analysis. Front Immunol 2018; 9:2373. [PMID: 30459757 PMCID: PMC6232771 DOI: 10.3389/fimmu.2018.02373] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
The field of immunoengineering aims to develop novel therapies and modern vaccines to manipulate and modulate the immune system and applies innovative technologies toward improved understanding of the immune system in health and disease. Microfluidics has proven to be an excellent technology for analytics in biology and chemistry. From simple microsystem chips to complex microfluidic designs, these platforms have witnessed an immense growth over the last decades with frequent emergence of new designs. Microfluidics provides a highly robust and precise tool which led to its widespread application in single-cell analysis of immune cells. Single-cell analysis allows scientists to account for the heterogeneous behavior of immune cells which often gets overshadowed when conventional bulk study methods are used. Application of single-cell analysis using microfluidics has facilitated the identification of several novel functional immune cell subsets, quantification of signaling molecules, and understanding of cellular communication and signaling pathways. Single-cell analysis research in combination with microfluidics has paved the way for the development of novel therapies, point-of-care diagnostics, and even more complex microfluidic platforms that aid in creating in vitro cellular microenvironments for applications in drug and toxicity screening. In this review, we provide a comprehensive overview on the integration of microsystems and microfluidics with immunology and focus on different designs developed to decode single immune cell behavior and cellular communication. We have categorized the microfluidic designs in three specific categories: microfluidic chips with cell traps, valve-based microfluidics, and droplet microfluidics that have facilitated the ongoing research in the field of immunology at single-cell level.
Collapse
Affiliation(s)
- Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nikita Subedi
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
34
|
Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 2018; 50:1-14. [PMID: 30089861 PMCID: PMC6082860 DOI: 10.1038/s12276-018-0071-8] [Citation(s) in RCA: 942] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
Rapid progress in the development of next-generation sequencing (NGS) technologies in recent years has provided many valuable insights into complex biological systems, ranging from cancer genomics to diverse microbial communities. NGS-based technologies for genomics, transcriptomics, and epigenomics are now increasingly focused on the characterization of individual cells. These single-cell analyses will allow researchers to uncover new and potentially unexpected biological discoveries relative to traditional profiling methods that assess bulk populations. Single-cell RNA sequencing (scRNA-seq), for example, can reveal complex and rare cell populations, uncover regulatory relationships between genes, and track the trajectories of distinct cell lineages in development. In this review, we will focus on technical challenges in single-cell isolation and library preparation and on computational analysis pipelines available for analyzing scRNA-seq data. Further technical improvements at the level of molecular and cell biology and in available bioinformatics tools will greatly facilitate both the basic science and medical applications of these sequencing technologies. Showing which genes are expressed, or switched on, in individual cells may help to reveal the first signs of disease. Each cell in an organism contains the same genetic information, but cell type and behavior depend on which genes are expressed. Previously, researchers could only sequence cells in batches, averaging the results, but technological improvements now allow sequencing of the genes expressed in an individual cell, known as single-cell RNA sequencing (scRNA-seq). Ji Hyun Lee (Kyung Hee University, Seoul) and Duhee Bang and Byungjin Hwang (Yonsei University, Seoul) have reviewed the available scRNA-seq technologies and the strategies available to analyze the large quantities of data produced. They conclude that scRNA-seq will impact both basic and medical science, from illuminating drug resistance in cancer to revealing the complex pathways of cell differentiation during development.
Collapse
Affiliation(s)
- Byungjin Hwang
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea. .,Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Korea.
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul, Korea.
| |
Collapse
|
35
|
Reprogramming the Stem Cell Behavior by Shear Stress and Electric Field Stimulation: Lab-on-a-Chip Based Biomicrofluidics in Regenerative Medicine. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0071-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Guo S, Lin WN, Hu Y, Sun G, Phan DT, Chen CH. Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification. LAB ON A CHIP 2018; 18:1914-1920. [PMID: 29877542 DOI: 10.1039/c8lc00390d] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Analysis of microRNA (miRNA), a pivotal primary regulator of fundamental cellular processes, at the single-cell level is essential to elucidate regulated gene expression precisely. Most single-cell gene sequencing methods use the polymerase chain reaction (PCR) to increase the concentration of the target gene for detection, thus requiring a barcoding process for cell identification and creating a challenge for real-time, large-scale screening of sequences in cells to rapidly profile physiological samples. In this study, a rapid, PCR-free, single-cell miRNA assay is developed from a continuous-flow microfluidic process employing a DNA hybridization chain reaction to amplify the target miRNA signal. Individual cells are encapsulated with DNA amplifiers in water-in-oil droplets and then lysed. The released target miRNA interacts with the DNA amplifiers to trigger hybridization reactions, producing fluorescence signals. Afterward, the target sequences are recycled to trigger a cyclic cascade reaction and significantly amplify the fluorescence signals without using PCR thermal cycling. Multiple DNA amplifiers with distinct fluorescence signals can be encapsulated simultaneously in a droplet to measure multiple miRNAs from a single cell simultaneously. Moreover, this process converts the lab bench PCR assay to a real-time droplet assay with the post-reaction fluorescence signal as a readout to allow flow cytometry-like continuous-flow measurement of sequences in a single cell with an ultrahigh throughput (300-500 cells per minute) for rapid biomedical identification.
Collapse
Affiliation(s)
- Song Guo
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, 119077 Singapore.
| | | | | | | | | | | |
Collapse
|
37
|
Marie R, Pødenphant M, Koprowska K, Bærlocher L, Vulders RCM, Wilding J, Ashley N, McGowan SJ, van Strijp D, van Hemert F, Olesen T, Agersnap N, Bilenberg B, Sabatel C, Schira J, Kristensen A, Bodmer W, van der Zaag PJ, Mir KU. Sequencing of human genomes extracted from single cancer cells isolated in a valveless microfluidic device. LAB ON A CHIP 2018; 18:1891-1902. [PMID: 29873383 DOI: 10.1039/c8lc00169c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sequencing the genomes of individual cells enables the direct determination of genetic heterogeneity amongst cells within a population. We have developed an injection-moulded valveless microfluidic device in which single cells from colorectal cancer derived cell lines (LS174T, LS180 and RKO) and fresh colorectal tumors have been individually trapped, their genomes extracted and prepared for sequencing using multiple displacement amplification (MDA). Ninety nine percent of the DNA sequences obtained mapped to a reference human genome, indicating that there was effectively no contamination of these samples from non-human sources. In addition, most of the reads are correctly paired, with a low percentage of singletons (0.17 ± 0.06%) and we obtain genome coverages approaching 90%. To achieve this high quality, our device design and process shows that amplification can be conducted in microliter volumes as long as the lysis is in sub-nanoliter volumes. Our data thus demonstrates that high quality whole genome sequencing of single cells can be achieved using a relatively simple, inexpensive and scalable device. Detection of genetic heterogeneity at the single cell level, as we have demonstrated for freshly obtained single cancer cells, could soon become available as a clinical tool to precisely match treatment with the properties of a patient's own tumor.
Collapse
Affiliation(s)
- Rodolphe Marie
- Department for Micro and Nanotechnology, Technical University of Denmark, Ørsteds Plads Building 345C, 2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Brower K, Puccinelli R, Markin CJ, Shimko TC, Longwell SA, Cruz B, Gomez-Sjoberg R, Fordyce PM. An Open-Source, Programmable Pneumatic Setup for Operation and Automated Control of Single- and Multi-Layer Microfluidic Devices. HARDWAREX 2018; 3:117-134. [PMID: 30221210 PMCID: PMC6136661 DOI: 10.1016/j.ohx.2017.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microfluidic technologies have been used across diverse disciplines (e.g. high-throughput biological measurement, fluid physics, laboratory fluid manipulation) but widespread adoption has been limited in part due to the lack of openly disseminated resources that enable non-specialist labs to make and operate their own devices. Here, we report the open-source build of a pneumatic setup capable of operating both single and multilayer (Quake-style) microfluidic devices with programmable scripting automation. This setup can operate both simple and complex devices with 48 device valve control inputs and 18 sample inputs, with modular design for easy expansion, at a fraction of the cost of similar commercial solutions. We present a detailed step-by-step guide to building the pneumatic instrumentation, as well as instructions for custom device operation using our software, Geppetto, through an easy-to-use GUI for live on-chip valve actuation and a scripting system for experiment automation. We show robust valve actuation with near real-time software feedback and demonstrate use of the setup for high-throughput biochemical measurements on-chip. This open-source setup will enable specialists and novices alike to run microfluidic devices easily in their own laboratories.
Collapse
Affiliation(s)
- Kara Brower
- Department of Bioengineering, Stanford University, Stanford CA 94305
- Chem-H Institute, Stanford University, Stanford CA 94305
- Stanford Microfluidic Foundry, Stanford University, Stanford CA 94305
| | | | - Craig J Markin
- Department of Biochemistry, Stanford University, Stanford CA 94305
| | - Tyler C Shimko
- Department of Genetics, Stanford University, Stanford CA 94305
| | - Scott A Longwell
- Department of Bioengineering, Stanford University, Stanford CA 94305
| | - Bianca Cruz
- Department of Physics and Astronomy, California State Polytechnic University Pomona, Pomona CA 91768
| | | | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford CA 94305
- Department of Genetics, Stanford University, Stanford CA 94305
- Chem-H Institute, Stanford University, Stanford CA 94305
- Stanford Microfluidic Foundry, Stanford University, Stanford CA 94305
- Chan Zuckerberg Biohub, San Francisco CA 94158
| |
Collapse
|
39
|
Single-Cell Sequencing in Normal and Malignant Hematopoiesis. Hemasphere 2018; 2:e34. [PMID: 31723762 PMCID: PMC6745901 DOI: 10.1097/hs9.0000000000000034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/31/2022] Open
Abstract
Hematopoiesis is one of the best studied adult stem-cell systems, with a differentiation hierarchy progressing from immature hematopoietic stem cells to over 10 distinct mature cell types. Recent technological breakthroughs now make it possible to define transcriptional profiles in thousands of individual cells. Facilitated by the wealth of prior data on cell purification and analysis strategies, hematopoiesis has been one of the earliest experimental systems to which many of these new single-cell sequencing technologies have been applied. In this review, the authors focus on recent studies, which have shed light on heterogeneity within individual populations as well as the relationships between populations, and also attempt to characterize the differences between normal and disease/perturbed states.
Collapse
|
40
|
Zhang Y, Chan PPY, Herr AE. Rapid Capture and Release of Nucleic Acids through a Reversible Photo-Cycloaddition Reaction in a Psoralen-Functionalized Hydrogel. Angew Chem Int Ed Engl 2018; 57:2357-2361. [PMID: 29316080 PMCID: PMC5955697 DOI: 10.1002/anie.201711441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 12/21/2022]
Abstract
Reversible immobilization of DNA and RNA is of great interest to researchers who seek to manipulate DNA or RNA in applications such as microarrays, DNA hydrogels, and gene therapeutics. However, there is no existing system that can rapidly capture and release intact nucleic acids. To meet this unmet need, we developed a functional hydrogel for rapid DNA/RNA capture and release based on the reversible photo-cycloaddition of psoralen and pyrimidines. The functional hydrogel can be easily fabricated through copolymerization of acrylamide with the synthesized allylated psoralen. The psoralen-functionalized hydrogel exhibits effective capture and release of nucleic acids spanning a wide range of lengths in a rapid fashion; over 90 % of the capture process is completed within 1 min, and circa 100 % of the release process is completed within 2 min. We observe no deleterious effects on the hybridization to the captured targets.
Collapse
Affiliation(s)
- Yizhe Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Peggy P Y Chan
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Faculty of Science Engineering & Technology, Swinburne University of Technology, Melbourne, VIC, 3122, Australia
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
41
|
Chang CH, Mau-Hsu D, Chen KC, Wei CW, Chiu CY, Young TH. Evaluation of digital real-time PCR assay as a molecular diagnostic tool for single-cell analysis. Sci Rep 2018; 8:3432. [PMID: 29467444 PMCID: PMC5821883 DOI: 10.1038/s41598-018-21041-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
In a single-cell study, isolating and identifying single cells are essential, but these processes often require a large investment of time or money. The aim of this study was to isolate and analyse single cells using a novel platform, the PanelChip™ Analysis System, which includes 2500 microwells chip and a digital real-time polymerase chain reaction (dqPCR) assay, in comparison with a standard PCR (qPCR) assay. Through the serial dilution of a known concentration standard, namely pUC19, the accuracy and sensitivity levels of two methodologies were compared. The two systems were tested on the basis of expression levels of the genetic markers vimentin, E-cadherin, N-cadherin and GAPDH in A549 lung carcinoma cells at two known concentrations. Furthermore, the influence of a known PCR inhibitor commonly found in blood samples, heparin, was evaluated in both methodologies. Finally, mathematical models were proposed and separation method of single cells was verified; moreover, gene expression levels during epithelial-mesenchymal transition in single cells under TGFβ1 treatment were measured. The drawn conclusion is that dqPCR performed using PanelChip™ is superior to the standard qPCR in terms of sensitivity, precision, and heparin tolerance. The dqPCR assay is a potential tool for clinical diagnosis and single-cell applications.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Daxen Mau-Hsu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 100, Taiwan
| | - Ke-Cheng Chen
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 100, Taiwan
- National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Cheng-Wey Wei
- Quark Biosciences, Inc., Hsinchu County, 302, Taiwan
| | | | - Tai-Horng Young
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106, Taiwan.
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
42
|
Review: Microfluidics technologies for blood-based cancer liquid biopsies. Anal Chim Acta 2018; 1012:10-29. [PMID: 29475470 DOI: 10.1016/j.aca.2017.12.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 12/19/2022]
Abstract
Blood-based liquid biopsies provide a minimally invasive alternative to identify cellular and molecular signatures that can be used as biomarkers to detect early-stage cancer, predict disease progression, longitudinally monitor response to chemotherapeutic drugs, and provide personalized treatment options. Specific targets in blood that can be used for detailed molecular analysis to develop highly specific and sensitive biomarkers include circulating tumor cells (CTCs), exosomes shed from tumor cells, cell-free circulating tumor DNA (cfDNA), and circulating RNA. Given the low abundance of CTCs and other tumor-derived products in blood, clinical evaluation of liquid biopsies is extremely challenging. Microfluidics technologies for cellular and molecular separations have great potential to either outperform conventional methods or enable completely new approaches for efficient separation of targets from complex samples like blood. In this article, we provide a comprehensive overview of blood-based targets that can be used for analysis of cancer, review microfluidic technologies that are currently used for isolation of CTCs, tumor derived exosomes, cfDNA, and circulating RNA, and provide a detailed discussion regarding potential opportunities for microfluidics-based approaches in cancer diagnostics.
Collapse
|
43
|
Zhang Y, Chan PPY, Herr AE. Rapid Capture and Release of Nucleic Acids through a Reversible Photo-Cycloaddition Reaction in a Psoralen-Functionalized Hydrogel. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yizhe Zhang
- Department of Bioengineering; University of California, Berkeley; Berkeley CA 94720 USA
| | - Peggy P. Y. Chan
- Department of Bioengineering; University of California, Berkeley; Berkeley CA 94720 USA
- Faculty of Science Engineering & Technology; Swinburne University of Technology; Melbourne VIC 3122 Australia
| | - Amy E. Herr
- Department of Bioengineering; University of California, Berkeley; Berkeley CA 94720 USA
| |
Collapse
|
44
|
Kim M, Wu L, Kim B, Hung DT, Han J. Continuous and High-Throughput Electromechanical Lysis of Bacterial Pathogens Using Ion Concentration Polarization. Anal Chem 2018; 90:872-880. [PMID: 29193960 PMCID: PMC6784835 DOI: 10.1021/acs.analchem.7b03746] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrical lysis of mammalian cells has been a preferred method in microfluidic platforms because of its simple implementation and rapid recovery of lysates without additional reagents. However, bacterial lysis typically requires at least a 10-fold higher electric field (∼10 kV/cm), resulting in various technical difficulties. Here, we present a novel, low-field-enabled electromechanical lysis mechanism of bacterial cells using electroconvective vortices near ion selective materials. The vortex-assisted lysis only requires a field strength of ∼100 V/cm, yet it efficiently recovers proteins and nucleic acids from a variety of pathogenic bacteria and operates in a continuous and ultrahigh-throughput (>1 mL/min) manner. Therefore, we believe that the electromechanical lysis will not only facilitate microfluidic bacterial sensing and analysis but also various high-volume applications such as the energy-efficient recovery of valuable metabolites in biorefinery pharmaceutical industries and the disinfection of large-volume fluid for the water and food industries.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lidan Wu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bumjoo Kim
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
45
|
Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M, Clevers H, Deplancke B, Dunham I, Eberwine J, Eils R, Enard W, Farmer A, Fugger L, Göttgens B, Hacohen N, Haniffa M, Hemberg M, Kim S, Klenerman P, Kriegstein A, Lein E, Linnarsson S, Lundberg E, Lundeberg J, Majumder P, Marioni JC, Merad M, Mhlanga M, Nawijn M, Netea M, Nolan G, Pe'er D, Phillipakis A, Ponting CP, Quake S, Reik W, Rozenblatt-Rosen O, Sanes J, Satija R, Schumacher TN, Shalek A, Shapiro E, Sharma P, Shin JW, Stegle O, Stratton M, Stubbington MJT, Theis FJ, Uhlen M, van Oudenaarden A, Wagner A, Watt F, Weissman J, Wold B, Xavier R, Yosef N. The Human Cell Atlas. eLife 2017; 6:e27041. [PMID: 29206104 DOI: 10.1101/121202] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/30/2017] [Indexed: 05/28/2023] Open
Abstract
The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.
Collapse
Affiliation(s)
- Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Ewan Birney
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Bernd Bodenmiller
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Peter Campbell
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Piero Carninci
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Menna Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Hans Clevers
- Hubrecht Institute, Princess Maxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Ian Dunham
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - James Eberwine
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Roland Eils
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Enard
- Department of Biology II, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Andrew Farmer
- Takara Bio United States, Inc., Mountain View, United States
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, United States
- Massachusetts General Hospital Cancer Center, Boston, United States
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Seung Kim
- Departments of Developmental Biology and of Medicine, Stanford University School of Medicine, Stanford, United States
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and the Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, United States
| | - Sten Linnarsson
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Genetics, Stanford University, Stanford, United States
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - John C Marioni
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Musa Mhlanga
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Martijn Nawijn
- Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mihai Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Garry Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, United States
| | | | - Chris P Ponting
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen Quake
- Department of Applied Physics and Department of Bioengineering, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Wolf Reik
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Joshua Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Rahul Satija
- Department of Biology, New York University, New York, United States
- New York Genome Center, New York University, New York, United States
| | - Ton N Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alex Shalek
- Broad Institute of MIT and Harvard, Cambridge, United States
- Institute for Medical Engineering & Science (IMES) and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Ehud Shapiro
- Department of Computer Science and Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, Department of Immunology, MD Anderson Cancer Center, University of Texas, Houston, United States
| | - Jay W Shin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Oliver Stegle
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Michael Stratton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | | | - Fabian J Theis
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Matthias Uhlen
- Science for Life Laboratory and Department of Proteomics, KTH Royal Institute of Technology, Stockholm, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | | | - Allon Wagner
- Department of Electrical Engineering and Computer Science and the Center for Computational Biology, University of California, Berkeley, Berkeley, United States
| | - Fiona Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | - Jonathan Weissman
- Howard Hughes Medical Institute, Chevy Chase, United States
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, United States
- Center for RNA Systems Biology, University of California, San Francisco, San Francisco, United States
| | - Barbara Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ramnik Xavier
- Broad Institute of MIT and Harvard, Cambridge, United States
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, United States
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, United States
| | - Nir Yosef
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
- Department of Electrical Engineering and Computer Science and the Center for Computational Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
46
|
Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M, Clevers H, Deplancke B, Dunham I, Eberwine J, Eils R, Enard W, Farmer A, Fugger L, Göttgens B, Hacohen N, Haniffa M, Hemberg M, Kim S, Klenerman P, Kriegstein A, Lein E, Linnarsson S, Lundberg E, Lundeberg J, Majumder P, Marioni JC, Merad M, Mhlanga M, Nawijn M, Netea M, Nolan G, Pe'er D, Phillipakis A, Ponting CP, Quake S, Reik W, Rozenblatt-Rosen O, Sanes J, Satija R, Schumacher TN, Shalek A, Shapiro E, Sharma P, Shin JW, Stegle O, Stratton M, Stubbington MJT, Theis FJ, Uhlen M, van Oudenaarden A, Wagner A, Watt F, Weissman J, Wold B, Xavier R, Yosef N. The Human Cell Atlas. eLife 2017; 6:e27041. [PMID: 29206104 PMCID: PMC5762154 DOI: 10.7554/elife.27041] [Citation(s) in RCA: 1261] [Impact Index Per Article: 180.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022] Open
Abstract
The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.
Collapse
Affiliation(s)
- Aviv Regev
- Broad Institute of MIT and HarvardCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
| | - Eric S Lander
- Broad Institute of MIT and HarvardCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Ido Amit
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and ImmunobiologyHarvard Medical SchoolBostonUnited States
| | - Ewan Birney
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
| | - Bernd Bodenmiller
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Institute of Molecular Life SciencesUniversity of ZürichZürichSwitzerland
| | - Peter Campbell
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Piero Carninci
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
| | - Menna Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular BiologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Hans Clevers
- Hubrecht Institute, Princess Maxima Center for Pediatric Oncology and University Medical Center UtrechtUtrechtThe Netherlands
| | - Bart Deplancke
- Institute of Bioengineering, School of Life SciencesSwiss Federal Institute of Technology (EPFL)LausanneSwitzerland
| | - Ian Dunham
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
| | - James Eberwine
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Roland Eils
- Division of Theoretical Bioinformatics (B080)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuantHeidelberg UniversityHeidelbergGermany
| | - Wolfgang Enard
- Department of Biology IILudwig Maximilian University MunichMartinsriedGermany
| | - Andrew Farmer
- Takara Bio United States, Inc.Mountain ViewUnited States
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular MedicineJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Berthold Göttgens
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust-MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Nir Hacohen
- Broad Institute of MIT and HarvardCambridgeUnited States
- Massachusetts General Hospital Cancer CenterBostonUnited States
| | - Muzlifah Haniffa
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Seung Kim
- Departments of Developmental Biology and of MedicineStanford University School of MedicineStanfordUnited States
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and the Translational Gastroenterology Unit, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
- Oxford NIHR Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoUnited States
| | - Ed Lein
- Allen Institute for Brain ScienceSeattleUnited States
| | - Sten Linnarsson
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Emma Lundberg
- Science for Life Laboratory, School of BiotechnologyKTH Royal Institute of TechnologyStockholmSweden
- Department of GeneticsStanford UniversityStanfordUnited States
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene TechnologyKTH Royal Institute of TechnologyStockholmSweden
| | | | - John C Marioni
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Miriam Merad
- Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Musa Mhlanga
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Martijn Nawijn
- Department of Pathology and Medical Biology, GRIAC Research InstituteUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Mihai Netea
- Department of Internal Medicine and Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Garry Nolan
- Department of Microbiology and ImmunologyStanford UniversityStanfordUnited States
| | - Dana Pe'er
- Computational and Systems Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | | | - Chris P Ponting
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Stephen Quake
- Department of Applied Physics and Department of BioengineeringStanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Wolf Reik
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Epigenetics ProgrammeThe Babraham InstituteCambridgeUnited Kingdom
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Joshua Sanes
- Center for Brain Science and Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
| | - Rahul Satija
- Department of BiologyNew York UniversityNew YorkUnited States
- New York Genome CenterNew York UniversityNew YorkUnited States
| | - Ton N Schumacher
- Division of ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Alex Shalek
- Broad Institute of MIT and HarvardCambridgeUnited States
- Institute for Medical Engineering & Science (IMES) and Department of ChemistryMassachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| | - Ehud Shapiro
- Department of Computer Science and Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, Department of Immunology, MD Anderson Cancer CenterUniversity of TexasHoustonUnited States
| | - Jay W Shin
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
| | - Oliver Stegle
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
| | - Michael Stratton
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | | | - Fabian J Theis
- Institute of Computational BiologyGerman Research Center for Environmental Health, Helmholtz Center MunichNeuherbergGermany
- Department of MathematicsTechnical University of MunichGarchingGermany
| | - Matthias Uhlen
- Science for Life Laboratory and Department of ProteomicsKTH Royal Institute of TechnologyStockholmSweden
- Novo Nordisk Foundation Center for BiosustainabilityDanish Technical UniversityLyngbyDenmark
| | | | - Allon Wagner
- Department of Electrical Engineering and Computer Science and the Center for Computational BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Fiona Watt
- Centre for Stem Cells and Regenerative MedicineKing's College LondonLondonUnited Kingdom
| | - Jonathan Weissman
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Cellular & Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- California Institute for Quantitative Biomedical ResearchUniversity of California, San FranciscoSan FranciscoUnited States
- Center for RNA Systems BiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Barbara Wold
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Ramnik Xavier
- Broad Institute of MIT and HarvardCambridgeUnited States
- Center for Computational and Integrative BiologyMassachusetts General HospitalBostonUnited States
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel DiseaseMassachusetts General HospitalBostonUnited States
- Center for Microbiome Informatics and TherapeuticsMassachusetts Institute of TechnologyCambridgeUnited States
| | - Nir Yosef
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Department of Electrical Engineering and Computer Science and the Center for Computational BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Human Cell Atlas Meeting Participants
- Broad Institute of MIT and HarvardCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
- Division of Immunology, Department of Microbiology and ImmunobiologyHarvard Medical SchoolBostonUnited States
- Institute of Molecular Life SciencesUniversity of ZürichZürichSwitzerland
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular BiologyUniversity of CambridgeCambridgeUnited Kingdom
- Hubrecht Institute, Princess Maxima Center for Pediatric Oncology and University Medical Center UtrechtUtrechtThe Netherlands
- Institute of Bioengineering, School of Life SciencesSwiss Federal Institute of Technology (EPFL)LausanneSwitzerland
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Division of Theoretical Bioinformatics (B080)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuantHeidelberg UniversityHeidelbergGermany
- Department of Biology IILudwig Maximilian University MunichMartinsriedGermany
- Takara Bio United States, Inc.Mountain ViewUnited States
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular MedicineJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Wellcome Trust-MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Massachusetts General Hospital Cancer CenterBostonUnited States
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Departments of Developmental Biology and of MedicineStanford University School of MedicineStanfordUnited States
- Peter Medawar Building for Pathogen Research and the Translational Gastroenterology Unit, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
- Oxford NIHR Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoUnited States
- Allen Institute for Brain ScienceSeattleUnited States
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- Science for Life Laboratory, School of BiotechnologyKTH Royal Institute of TechnologyStockholmSweden
- Department of GeneticsStanford UniversityStanfordUnited States
- Science for Life Laboratory, Department of Gene TechnologyKTH Royal Institute of TechnologyStockholmSweden
- National Institute of Biomedical GenomicsKalyaniIndia
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkUnited States
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Department of Pathology and Medical Biology, GRIAC Research InstituteUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Internal Medicine and Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Microbiology and ImmunologyStanford UniversityStanfordUnited States
- Computational and Systems Biology ProgramSloan Kettering InstituteNew YorkUnited States
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
- Department of Applied Physics and Department of BioengineeringStanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Epigenetics ProgrammeThe Babraham InstituteCambridgeUnited Kingdom
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUnited Kingdom
- Center for Brain Science and Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
- Department of BiologyNew York UniversityNew YorkUnited States
- New York Genome CenterNew York UniversityNew YorkUnited States
- Division of ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Institute for Medical Engineering & Science (IMES) and Department of ChemistryMassachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Department of Computer Science and Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
- Department of Genitourinary Medical Oncology, Department of Immunology, MD Anderson Cancer CenterUniversity of TexasHoustonUnited States
- Institute of Computational BiologyGerman Research Center for Environmental Health, Helmholtz Center MunichNeuherbergGermany
- Department of MathematicsTechnical University of MunichGarchingGermany
- Science for Life Laboratory and Department of ProteomicsKTH Royal Institute of TechnologyStockholmSweden
- Novo Nordisk Foundation Center for BiosustainabilityDanish Technical UniversityLyngbyDenmark
- Hubrecht Institute and University Medical Center UtrechtUtrechtThe Netherlands
- Department of Electrical Engineering and Computer Science and the Center for Computational BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Centre for Stem Cells and Regenerative MedicineKing's College LondonLondonUnited Kingdom
- Department of Cellular & Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- California Institute for Quantitative Biomedical ResearchUniversity of California, San FranciscoSan FranciscoUnited States
- Center for RNA Systems BiologyUniversity of California, San FranciscoSan FranciscoUnited States
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
- Center for Computational and Integrative BiologyMassachusetts General HospitalBostonUnited States
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel DiseaseMassachusetts General HospitalBostonUnited States
- Center for Microbiome Informatics and TherapeuticsMassachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
47
|
Du K, Park M, Griffiths A, Carrion R, Patterson J, Schmidt H, Mathies R. Microfluidic System for Detection of Viral RNA in Blood Using a Barcode Fluorescence Reporter and a Photocleavable Capture Probe. Anal Chem 2017; 89:12433-12440. [PMID: 29073356 PMCID: PMC5990416 DOI: 10.1021/acs.analchem.7b03527] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A microfluidic sample preparation multiplexer (SPM) and assay procedure is developed to improve amplification-free detection of Ebola virus RNA from blood. While a previous prototype successfully detected viral RNA following off-chip RNA extraction from infected cells, the new device and protocol can detect Ebola virus in raw blood with clinically relevant sensitivity. The Ebola RNA is hybridized with sequence specific capture and labeling DNA probes in solution and then the complex is pulled down onto capture beads for purification and concentration. After washing, the captured RNA target is released by irradiating the photocleavable DNA capture probe with ultraviolet (UV) light. The released, labeled, and purified RNA is detected by a sensitive and compact fluorometer. Exploiting these capabilities, a detection limit of 800 attomolar (aM) is achieved without target amplification. The new SPM can run up to 80 assays in parallel using a pneumatic multiplexing architecture. Importantly, our new protocol does not require time-consuming and problematic off-chip probe conjugation and washing. This improved SPM and labeling protocol is an important step toward a useful POC device and assay.
Collapse
Affiliation(s)
- Ke Du
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Myeongkee Park
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Anthony Griffiths
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, Texas 78227, United States
| | - Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, Texas 78227, United States
| | - Jean Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, Texas 78227, United States
| | - Holger Schmidt
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Richard Mathies
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
48
|
Bevilacqua C, Ducos B. Laser microdissection: A powerful tool for genomics at cell level. Mol Aspects Med 2017; 59:5-27. [PMID: 28927943 DOI: 10.1016/j.mam.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
Laser microdissection (LM) has become widely democratized over the last fifteen years. Instruments have evolved to offer more powerful and efficient lasers as well as new options for sample collection and preparation. Technological evolutions have also focused on the post-microdissection analysis capabilities, opening up investigations in all disciplines of experimental and clinical biology, thanks to the advent of new high-throughput methods of genome analysis, including RNAseq and proteomics, now globally known as microgenomics, i.e. analysis of biomolecules at the cell level. In spite of the advances these rapidly developing methods have allowed, the workflow for sampling and collection by LM remains a critical step in insuring sample integrity in terms of histology (accurate cell identification) and biochemistry (reliable analyzes of biomolecules). In this review, we describe the sample processing as well as the strengths and limiting factors of LM applied to the specific selection of one or more cells of interest from a heterogeneous tissue. We will see how the latest developments in protocols and methods have made LM a powerful and sometimes essential tool for genomic and proteomic analyzes of tiny amounts of biomolecules extracted from few cells isolated from a complex tissue, in their physiological context, thus offering new opportunities for understanding fundamental physiological and/or patho-physiological processes.
Collapse
Affiliation(s)
- Claudia Bevilacqua
- GABI, Plateforme @BRIDGE, INRA, AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy en Josas, France.
| | - Bertrand Ducos
- LPS-ENS, CNRS UMR 8550, UPMC, Université Denis Diderot, PSL Research University, 24 Rue Lhomond, 75005 Paris France; High Throughput qPCR Core Facility, IBENS, 46 Rue d'Ulm, 75005 Paris France; Laser Microdissection Facility of Montagne Sainte Geneviève, CIRB Collège de France, Place Marcellin Berthelot, 75005 Paris France.
| |
Collapse
|
49
|
Cottet J, Vaillier C, Buret F, Frénéa-Robin M, Renaud P. A reproducible method for μm precision alignment of PDMS microchannels with on-chip electrodes using a mask aligner. BIOMICROFLUIDICS 2017; 11:064111. [PMID: 29308100 PMCID: PMC5738258 DOI: 10.1063/1.5001145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/06/2017] [Indexed: 06/01/2023]
Abstract
This paper describes a reproducible method for μm precision alignment of polydimethylsiloxane (PDMS) microchannels with coplanar electrodes using a conventional mask aligner for lab-on-a-chip applications. It is based on the use of a silicon mold in combination with a PMMA sarcophagus for precise control of the parallelism between the top and bottom surfaces of molded PDMS. The alignment of the fabricated PDMS slab with electrodes patterned on a glass chip is then performed using a conventional mask aligner with a custom-made steel chuck and magnets. This technique allows to bond and align chips with a resolution of less than 2 μm.
Collapse
Affiliation(s)
| | - C Vaillier
- École Polytechnique Fédérale de Lausanne, STI IMT LMIS4, Station 17, CH-1015 Lausanne, Switzerland
| | - F Buret
- Univ Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CNRS, AMPERE, F-69130, Ecully, France
| | - M Frénéa-Robin
- Univ Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CNRS, AMPERE, F-69130, Ecully, France
| | - P Renaud
- École Polytechnique Fédérale de Lausanne, STI IMT LMIS4, Station 17, CH-1015 Lausanne, Switzerland
| |
Collapse
|
50
|
Redin D, Borgström E, He M, Aghelpasand H, Käller M, Ahmadian A. Droplet Barcode Sequencing for targeted linked-read haplotyping of single DNA molecules. Nucleic Acids Res 2017; 45:e125. [PMID: 28525570 PMCID: PMC5569991 DOI: 10.1093/nar/gkx436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/08/2017] [Indexed: 11/14/2022] Open
Abstract
Data produced with short-read sequencing technologies result in ambiguous haplotyping and a limited capacity to investigate the full repertoire of biologically relevant forms of genetic variation. The notion of haplotype-resolved sequencing data has recently gained traction to reduce this unwanted ambiguity and enable exploration of other forms of genetic variation; beyond studies of just nucleotide polymorphisms, such as compound heterozygosity and structural variations. Here we describe Droplet Barcode Sequencing, a novel approach for creating linked-read sequencing libraries by uniquely barcoding the information within single DNA molecules in emulsion droplets, without the aid of specialty reagents or microfluidic devices. Barcode generation and template amplification is performed simultaneously in a single enzymatic reaction, greatly simplifying the workflow and minimizing assay costs compared to alternative approaches. The method has been applied to phase multiple loci targeting all exons of the highly variable Human Leukocyte Antigen A (HLA-A) gene, with DNA from eight individuals present in the same assay. Barcode-based clustering of sequencing reads confirmed analysis of over 2000 independently assayed template molecules, with an average of 753 reads in support of called polymorphisms. Our results show unequivocal characterization of all alleles present, validated by correspondence against confirmed HLA database entries and haplotyping results from previous studies.
Collapse
Affiliation(s)
- David Redin
- Royal Institute of Technology (KTH), School of Biotechnology, Division of Gene Technology, Science for Life Laboratory, Solna SE-171 65, Sweden
| | - Erik Borgström
- Royal Institute of Technology (KTH), School of Biotechnology, Division of Gene Technology, Science for Life Laboratory, Solna SE-171 65, Sweden.,Karolinska Institute (KI), Department of Biosciences and Nutrition, Science for Life Laboratory, Solna SE-171 65, Sweden
| | - Mengxiao He
- Royal Institute of Technology (KTH), School of Biotechnology, Division of Gene Technology, Science for Life Laboratory, Solna SE-171 65, Sweden
| | - Hooman Aghelpasand
- Royal Institute of Technology (KTH), School of Biotechnology, Division of Gene Technology, Science for Life Laboratory, Solna SE-171 65, Sweden
| | - Max Käller
- Royal Institute of Technology (KTH), School of Biotechnology, Division of Gene Technology, Science for Life Laboratory, Solna SE-171 65, Sweden
| | - Afshin Ahmadian
- Royal Institute of Technology (KTH), School of Biotechnology, Division of Gene Technology, Science for Life Laboratory, Solna SE-171 65, Sweden
| |
Collapse
|