1
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. Biomaterials 2023; 301:122210. [PMID: 37413842 PMCID: PMC10528716 DOI: 10.1016/j.biomaterials.2023.122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over the chronic implantation period. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating Clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526463. [PMID: 36778360 PMCID: PMC9915570 DOI: 10.1101/2023.01.31.526463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over chronic implantation. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period. Abstract Figure
Collapse
|
3
|
Wu G, Heck I, Zhang N, Phaup G, Zhang X, Wu Y, Stalla DE, Weng Z, Sun H, Li H, Zhang Z, Ding S, Li DP, Zhang Y. Wireless, battery-free push-pull microsystem for membrane-free neurochemical sampling in freely moving animals. SCIENCE ADVANCES 2022; 8:eabn2277. [PMID: 35196090 PMCID: PMC8865804 DOI: 10.1126/sciadv.abn2277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/29/2021] [Indexed: 06/12/2023]
Abstract
Extensive studies in both animals and humans have demonstrated that high molecular weight neurochemicals, such as neuropeptides and other polypeptide neurochemicals, play critical roles in various neurological disorders. Despite many attempts, existing methods are constrained by detecting neuropeptide release in small animal models during behavior tasks, which leaves the molecular mechanisms underlying many neurological and psychological disorders unresolved. Here, we report a wireless, programmable push-pull microsystem for membrane-free neurochemical sampling with cellular spatial resolution in freely moving animals. In vitro studies demonstrate the sampling of various neurochemicals with high recovery (>80%). Open-field tests reveal that the device implantation does not affect the natural behavior of mice. The probe successfully captures the pharmacologically evoked release of neuropeptide Y in freely moving mice. This wireless push-pull microsystem creates opportunities for neuroscientists to understand where, when, and how the release of neuropeptides modulates diverse behavioral outputs of the brain.
Collapse
Affiliation(s)
- Guangfu Wu
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Ian Heck
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Nannan Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Glenn Phaup
- Center for Precision Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Xincheng Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - David E. Stalla
- Electron Microscopy Core, University of Missouri, Columbia, MO 65211, USA
| | - Zhengyan Weng
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - He Sun
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Huijie Li
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Zhe Zhang
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Shinghua Ding
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - De-Pei Li
- Center for Precision Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Yi Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
Gifford EK, Robbins EM, Jaquins-Gerstl A, Rerick MT, Nwachuku EL, Weber SG, Boutelle MG, Okonkwo DO, Puccio AM, Michael AC. Validation of Dexamethasone-Enhanced Continuous-Online Microdialysis for Monitoring Glucose for 10 Days after Brain Injury. ACS Chem Neurosci 2021; 12:3588-3597. [PMID: 34506125 DOI: 10.1021/acschemneuro.1c00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) induces a pathophysiologic state that can be worsened by secondary injury. Monitoring brain metabolism with intracranial microdialysis can provide clinical insights to limit secondary injury in the days following TBI. Recent enhancements to microdialysis include the implementation of continuously operating electrochemical biosensors for monitoring the dialysate sample stream in real time and dexamethasone retrodialysis to mitigate the tissue response to probe insertion. Dexamethasone-enhanced continuous-online microdialysis (Dex-enhanced coMD) records long-lasting declines of glucose after controlled cortical impact in rats and TBI in patients. The present study employed retrodialysis and fluorescence microscopy to investigate the mechanism responsible for the decline of dialysate glucose after injury of the rat cortex. Findings confirm the long-term functionality of Dex-enhanced coMD for monitoring brain glucose after injury, demonstrate that intracranial glucose microdialysis is coupled to glucose utilization in the tissues surrounding the probes, and validate the conclusion that aberrant glucose utilization drives the postinjury glucose decline.
Collapse
Affiliation(s)
- Emily K. Gifford
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Elaine M. Robbins
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea Jaquins-Gerstl
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Michael T. Rerick
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Enyinna L. Nwachuku
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Martyn G. Boutelle
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Woeppel KM, Cui XT. Nanoparticle and Biomolecule Surface Modification Synergistically Increases Neural Electrode Recording Yield and Minimizes Inflammatory Host Response. Adv Healthc Mater 2021; 10:e2002150. [PMID: 34190425 DOI: 10.1002/adhm.202002150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/08/2021] [Indexed: 11/08/2022]
Abstract
Due to their ability to interface with neural tissues, neural electrodes are the key tool used for neurophysiological studies, electrochemical detection, brain computer interfacing, and countless neuromodulation therapies and diagnostic procedures. However, the long-term applications of neural electrodes are limited by the inflammatory host tissue response, decreasing detectable electrical signals, and insulating the device from the native environment. Surface modification methods are proposed to limit these detrimental responses but each has their own limitations. Here, a combinatorial approach is presented toward creating a stable interface between the electrode and host tissues. First, a thiolated nanoparticle (TNP) coating is utilized to increase the surface area and roughness. Next, the neural adhesion molecule L1 is immobilized to the nanoparticle modified substrate. In vitro, the combined nanotopographical and bioactive modifications (TNP+L1) elevate the bioactivity of L1, which is maintained for 28 d. In vivo, TNP+L1 modification improves the recording performance of the neural electrode arrays compared to TNP or L1 modification alone. Postmortem histology reveals greater neural cell density around the TNP+L1 coating while eliminating any inflammatory microglial encapsulation after 4 weeks. These results demonstrate that nanotopographical and bioactive modifications synergistically produce a seamless neural tissue interface for chronic neural implants.
Collapse
Affiliation(s)
- Kevin M. Woeppel
- Department of Bioengineering University of Pittsburgh Pittsburgh PA 15260 USA
- Center for the Neural basis of Cognition Pittsburgh PA 15260 USA
| | - Xinyan Tracy Cui
- Department of Bioengineering University of Pittsburgh Pittsburgh PA 15260 USA
- Center for the Neural basis of Cognition Pittsburgh PA 15260 USA
- McGowan Institute for Regenerative Medicine Pittsburgh PA 15260 USA
| |
Collapse
|
6
|
Dubaniewicz M, Eles JR, Lam S, Song S, Cambi F, Sun D, Wellman SM, Kozai TDY. Inhibition of Na +/H +exchanger modulates microglial activation and scar formation following microelectrode implantation. J Neural Eng 2021; 18. [PMID: 33621208 DOI: 10.1088/1741-2552/abe8f1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/23/2021] [Indexed: 11/12/2022]
Abstract
Objective.Intracortical microelectrodes are an important tool for neuroscience research and have great potential for clinical use. However, the use of microelectrode arrays to treat neurological disorders and control prosthetics is limited by biological challenges such as glial scarring, which can impair chronic recording performance. Microglia activation is an early and prominent contributor to glial scarring. After insertion of an intracortical microelectrode, nearby microglia transition into a state of activation, migrate, and encapsulate the device. Na+/H+exchanger isoform-1 (NHE-1) is involved in various microglial functions, including their polarity and motility, and has been implicated in pro-inflammatory responses to tissue injury. HOE-642 (cariporide) is an inhibitor of NHE-1 and has been shown to depress microglial activation and inflammatory response in brain injury models.Approach.In this study, the effects of HOE-642 treatment on microglial interactions to intracortical microelectrodes was evaluated using two-photon microscopyin vivo.Main results.The rate at which microglia processes and soma migrate in response to electrode implantation was unaffected by HOE-642 administration. However, HOE-642 administration effectively reduced the radius of microglia activation at 72 h post-implantation from 222.2µm to 177.9µm. Furthermore, treatment with HOE-642 significantly reduced microglial encapsulation of implanted devices at 5 h post-insertion from 50.7 ± 6.0% to 8.9 ± 6.1%, which suggests an NHE-1-specific mechanism mediating microglia reactivity and gliosis during implantation injury.Significance.This study implicates NHE-1 as a potential target of interest in microglial reactivity and HOE-642 as a potential treatment to attenuate the glial response and scar formation around implanted intracortical microelectrodes.
Collapse
Affiliation(s)
- Mitchell Dubaniewicz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Stephanie Lam
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, United States of America.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Dandan Sun
- Veterans Administration Pittsburgh, Pittsburgh, PA, United States of America.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America.,NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States of America
| |
Collapse
|
7
|
Tan C, Robbins EM, Wu B, Cui XT. Recent Advances in In Vivo Neurochemical Monitoring. MICROMACHINES 2021; 12:208. [PMID: 33670703 PMCID: PMC7922317 DOI: 10.3390/mi12020208] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022]
Abstract
The brain is a complex network that accounts for only 5% of human mass but consumes 20% of our energy. Uncovering the mysteries of the brain's functions in motion, memory, learning, behavior, and mental health remains a hot but challenging topic. Neurochemicals in the brain, such as neurotransmitters, neuromodulators, gliotransmitters, hormones, and metabolism substrates and products, play vital roles in mediating and modulating normal brain function, and their abnormal release or imbalanced concentrations can cause various diseases, such as epilepsy, Alzheimer's disease, and Parkinson's disease. A wide range of techniques have been used to probe the concentrations of neurochemicals under normal, stimulated, diseased, and drug-induced conditions in order to understand the neurochemistry of drug mechanisms and develop diagnostic tools or therapies. Recent advancements in detection methods, device fabrication, and new materials have resulted in the development of neurochemical sensors with improved performance. However, direct in vivo measurements require a robust sensor that is highly sensitive and selective with minimal fouling and reduced inflammatory foreign body responses. Here, we review recent advances in neurochemical sensor development for in vivo studies, with a focus on electrochemical and optical probes. Other alternative methods are also compared. We discuss in detail the in vivo challenges for these methods and provide an outlook for future directions.
Collapse
Affiliation(s)
- Chao Tan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
| | - Elaine M. Robbins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
8
|
Jiang Q, Su DY, Wang ZZ, Liu C, Sun YN, Cheng H, Li XM, Yan B. Retina as a window to cerebral dysfunction following studies with circRNA signature during neurodegeneration. Theranostics 2021; 11:1814-1827. [PMID: 33408783 PMCID: PMC7778582 DOI: 10.7150/thno.51550] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemia-induced cerebral injury is a major cause of dementia or death worldwide. The pre-diagnosis is still challenging due to the retarded symptoms. The retina is regarded as the extension of cerebral tissue. Circular RNAs have emerged as the crucial regulators in gene regulatory network and disease progression. However, it is still unknown whether circRNAs can be used as the common regulators and diagnostic markers for cerebral neurodegeneration and retinal neurodegeneration. Methods: C57BL/6J mice were subjected to transient middle cerebral artery occlusion and circRNA microarray profiling was performed to identify neurodegeneration-related circRNAs. Quantitative reverse-transcription PCR (qRT-PCR) assays were performed to verify circRNA expression pattern. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to determine the biologic modules and signaling pathway. TTC staining, Nissl's staining, and immunofluorescence staining assays were performed to investigate the role of circRNA in cerebral neurodegeneration and retinal neurodegeneration in vivo. MTT assay, Propidium iodide (PI)/Calcein-AM staining, and Rhodamine 123 assays were performed to investigate the role of circRNA in neuronal injury in vitro. Bioinformatics, RIP, and luciferase activity assays were performed to determine the regulatory mechanism of circRNA in neurodegeneration. Results: 217 differentially expressed circRNAs were identified between ischemic cerebral tissues and normal controls. Among them, cGLIS3 was shown as the common regulator of cerebral neurodegeneration and retinal neurodegeneration. cGLIS3 silencing alleviated ischemia-induced retinal neurodegeneration and MCAO-induced cerebral neurodegeneration in vivo. cGLIS3 silencing protected against OGD/R-induced RGC injury in vitro. The circulating levels of cGLIS3 were significantly increased in the patients with ischemic stroke compared to healthy subjects. cGLIS3 levels were also increased in the aqueous humor of the patients with retinal vein occlusion. cGLIS3 regulated neuronal cell injury by acting as miR-203 sponge and its level was controlled by EIF4A3. Conclusions: This study provides molecular evidence that the retina is window of the brain from circRNA perspective. cGLIS3 is a common regulator and diagnostic marker of cerebral neurodegeneration and retinal neurodegeneration.
Collapse
Affiliation(s)
- Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Dong-Yuan Su
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhen-Zhen Wang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chang Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ya-Nan Sun
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Cheng
- Department of Neurology, Jiangsu Province Hospital, Nanjing, China
| | - Xiu-Miao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Biao Yan
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| |
Collapse
|
9
|
Jaquins-Gerstl A, Michael AC. Dexamethasone-Enhanced Microdialysis and Penetration Injury. Front Bioeng Biotechnol 2020; 8:602266. [PMID: 33364231 PMCID: PMC7752925 DOI: 10.3389/fbioe.2020.602266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 01/25/2023] Open
Abstract
Microdialysis probes, electrochemical microsensors, and neural prosthetics are often used for in vivo monitoring, but these are invasive devices that are implanted directly into brain tissue. Although the selectivity, sensitivity, and temporal resolution of these devices have been characterized in detail, less attention has been paid to the impact of the trauma they inflict on the tissue or the effect of any such trauma on the outcome of the measurements they are used to perform. Factors affecting brain tissue reaction to the implanted devices include: the mechanical trauma during insertion, the foreign body response, implantation method, and physical properties of the device (size, shape, and surface characteristics. Modulation of the immune response is an important step toward making these devices with reliable long-term performance. Local release of anti-inflammatory agents such as dexamethasone (DEX) are often used to mitigate the foreign body response. In this article microdialysis is used to locally deliver DEX to the surrounding brain tissue. This work discusses the immune response resulting from microdialysis probe implantation. We briefly review the principles of microdialysis and the applications of DEX with microdialysis in (i) neuronal devices, (ii) dopamine and fast scan cyclic voltammetry, (iii) the attenuation of microglial cells, (iv) macrophage polarization states, and (v) spreading depolarizations. The difficulties and complexities in these applications are herein discussed.
Collapse
|
10
|
Liu C, Nguyen MA, Alvarez-Ciara A, Franklin M, Bennett C, Domena JB, Kleinhenz NC, Blanco Colmenares GA, Duque S, Chebbi AF, Bernard B, Olivier JH, Prasad A. Surface Modifications of an Organic Polymer-Based Microwire Platform for Sustained Release of an Anti-Inflammatory Drug. ACS APPLIED BIO MATERIALS 2020; 3:4613-4625. [DOI: 10.1021/acsabm.0c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chuan Liu
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Michelle A. Nguyen
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Anabel Alvarez-Ciara
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Melissa Franklin
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Cassie Bennett
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Justin B. Domena
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Noah C. Kleinhenz
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Gabriel A. Blanco Colmenares
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Sebastian Duque
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Aisha F. Chebbi
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Brianna Bernard
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Jean-Hubert Olivier
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33146, United States
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida 33136, United States
| |
Collapse
|
11
|
Eles JR, Kozai TDY. In vivo imaging of calcium and glutamate responses to intracortical microstimulation reveals distinct temporal responses of the neuropil and somatic compartments in layer II/III neurons. Biomaterials 2020; 234:119767. [PMID: 31954232 DOI: 10.1016/j.biomaterials.2020.119767] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/22/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Intracortical microelectrode implants can generate a tissue response hallmarked by glial scarring and neuron cell death within 100-150 μm of the biomaterial device. Many have proposed that any performance decline in intracortical microstimulation (ICMS) due to this foreign body tissue response could be offset by increasing the stimulation amplitude. The mechanisms of this approach are unclear, however, as there has not been consensus on how increasing amplitude affects the spatial and temporal recruitment patterns of ICMS. APPROACH We clarify these unknowns using in vivo two-photon imaging of mice transgenically expressing the calcium sensor GCaMP6s in Thy1 neurons or virally expressing the glutamate sensor iGluSnFr in neurons. Calcium and neurotransmitter activity are tracked in the neuronal somas and neuropil during long-train stimulation in Layer II/III of somatosensory cortex. MAIN RESULTS Neural calcium activity and glutamate release are dense and strongest within 20-40 μm around the electrode, falling off with distance from the electrode. Neuronal calcium increases with higher amplitude stimulations. During prolonged stimulation trains, a sub-population of somas fail to maintain calcium activity. Interestingly, neuropil calcium activity is 3-fold less correlated to somatic calcium activity for cells that drop-out during the long stimulation train compared to cells that sustain activity throughout the train. Glutamate release is apparent only within 20 μm of the electrode and is sustained for at least 10s after cessation of the 15 and 20 μA stimulation train, but not lower amplitudes. SIGNIFICANCE These results demonstrate that increasing amplitude can increase the radius and intensity of neural recruitment, but it also alters the temporal response of some neurons. Further, dense glutamate release is highest within the first 20 μm of the electrode site even at high amplitudes, suggesting that there may be spatial limitations to the amplitude parameter space. The glutamate elevation outlasts stimulation, suggesting that high-amplitude stimulation may affect neurotransmitter re-uptake. This ultimately suggests that increasing the amplitude of ICMS device stimulation may fundamentally alter the temporal neural response, which could have implications for using amplitude to improve the ICMS effect or "offset" the effects of glial scarring.
Collapse
Affiliation(s)
- James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Scida K, Plaxco KW, Jamieson BG. High frequency, real-time neurochemical and neuropharmacological measurements in situ in the living body. Transl Res 2019; 213:50-66. [PMID: 31361988 DOI: 10.1016/j.trsl.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/20/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
Abstract
The beautiful and complex brain machinery is perfectly synchronized, and our bodies have evolved to protect it against a myriad of potential threats. Shielded physically by the skull and chemically by the blood brain barrier, the brain processes internal and external information so that we can efficiently relate to the world that surrounds us while simultaneously and unconsciously controlling our vital functions. When coupled with the brittle nature of its internal chemical and electric signals, the brain's "armor" render accessing it a challenging and delicate endeavor that has historically limited our understanding of its structural and neurochemical intricacies. In this review, we briefly summarize the advancements made over the past 10 years to decode the brain's neurochemistry and neuropharmacology in situ, at the site of interest in the brain, with special focus on what we consider game-changing emerging technologies (eg, genetically encoded indicators and electrochemical aptamer-based sensors) and the challenges these must overcome before chronic, in situ chemosensing measurements become routine.
Collapse
Affiliation(s)
- Karen Scida
- Diagnostic Biochips, Inc., Glen Burnie, Maryland
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | | |
Collapse
|
13
|
A rotating operant chamber for use with microdialysis. J Neurosci Methods 2019; 326:108387. [PMID: 31377176 DOI: 10.1016/j.jneumeth.2019.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recently, the time resolution of microdialysis followed by a chemical separation for quantitative analysis has improved. The advent of faster microdialysis measurements promises to aid in behavioral research on awake animals. However, microdialysis with awake animals generally employs a fluidic commutator (swivel). The swivel's volume is inimical to the time resolution of the measurements. NEW METHOD Animals can be housed in rotating cages so that the swivel is not required, but rotating operant chambers are not available. Here we describe the design and construction of a rotating operant chamber with microdialysis capability. We modified a rotating cage by adding operant behavior testing components to the side of the bowl-shaped cage. A modular on-board controller facilitates operant component/computer communication. A battery provides power to the controller and the operant components. The battery and controller rotate with the cage, and the controller communicates with the computer wirelessly. RESULTS The rotating operant chamber can be used to train a rat to retrieve a sucrose pellet following a cue. Microdialysis and online liquid chromatography can be used to measure dopamine at one minute intervals while the rat moves freely and interacts with operant behavior testing components. COMPARISON WITH EXISTING METHOD(S) We are not aware of one-minute dopamine measurements in awake animals in an operant chamber. CONCLUSIONS Rotating cage modifications are straightforward. One-minute observations of striatal dopamine can be accomplished while an animal is awake, moving, and interacting with its surroundings.
Collapse
|
14
|
Taylor IM, Patel NA, Freedman NC, Castagnola E, Cui XT. Direct in Vivo Electrochemical Detection of Resting Dopamine Using Poly(3,4-ethylenedioxythiophene)/Carbon Nanotube Functionalized Microelectrodes. Anal Chem 2019; 91:12917-12927. [PMID: 31512849 DOI: 10.1021/acs.analchem.9b02904] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dopamine (DA) is a monoamine neurotransmitter responsible for the maintenance of a variety of vital life functions. In vivo DA signaling occurs over multiple time scales, from subsecond phasic release due to dopamine neuron firing to tonic release responsible for long-term DA concentration changes over minutes to hours. Due to the complex, multifaceted nature of DA signaling, analytical sensing technology must be capable of recording DA from multiple locations and over multiple time scales. Decades of research has focused on improving in vivo detection capabilities for subsecond phasic DA, but the accurate detection of absolute resting DA levels in real time has proven challenging. We have developed a poly(3,4-ethylenedioxythiophene) (PEDOT)-based nanocomposite coating that exhibits excellent DA sensing capabilities for resting DA. PEDOT/functionalized carbon nanotube (PEDOT/CNT)-coated carbon fiber microelectrodes (CFEs) are capable of directly measuring resting DA using square wave voltammetry (SWV) with high sensitivity and selectivity. Incorporation of a PEDOT/CNT coating significantly increases the sensitivity for the detection of resting DA by a factor of 422. SWV measurements performed at PEDOT/CNT-functionalized CFEs implanted in the rat dorsal striatum reveal the absolute basal DA concentration to be 82 ± 6 nM. Systemic administration of the dopamine transporter inhibitor nomifensine increases resting DA to a maximum 207 ± 16 nM at 28 ± 2 min following injection. PEDOT/CNT was also functionalized onto individual gold electrode sites along silicon microelectrode arrays (MEAs) to produce a multisite DA sensing electrode. MEA implantation allows for the quantification of basal DA from different brain regions with excellent spatial resolution. SWV detection paired with PEDOT/CNT functionalization is highly adaptable and shows great promise for tonic DA detection with high spatial and temporal resolution.
Collapse
Affiliation(s)
- Ian Mitchell Taylor
- Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Department of Chemistry , Saint Vincent College , Latrobe , Pennsylvania 15650 , United States
| | - Nikita Anurag Patel
- Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Noah Chaim Freedman
- Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Elisa Castagnola
- Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Xinyan Tracy Cui
- Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
15
|
Robbins EM, Jaquins-Gerstl A, Fine DF, Leong CL, Dixon CE, Wagner AK, Boutelle MG, Michael AC. Extended (10-Day) Real-Time Monitoring by Dexamethasone-Enhanced Microdialysis in the Injured Rat Cortex. ACS Chem Neurosci 2019; 10:3521-3531. [PMID: 31246409 DOI: 10.1021/acschemneuro.9b00145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intracerebral microdialysis has proven useful for chemical monitoring in patients following traumatic brain injury. Recent studies in animals, however, have documented that insertion of microdialysis probes into brain tissues initiates a foreign-body response. Within a few days after probe insertion, the foreign body response impedes the use of microdialysis to monitor the K+ and glucose transients associated with spreading depolarization, a potential mechanism for secondary brain injury. Herein, we show that perfusing microdialysis probes with dexamethasone, a potent anti-inflammatory glucocorticoid, suppresses the foreign body response and facilitates the monitoring of spontaneous spreading depolarizations for at least 10 days following controlled cortical injury in the rat. In addition to spreading depolarizations, results of this study suggest that a progressive, apparently permanent, decline in pericontusional interstitial glucose may be an additional sequela of brain injury. This study establishes extended dexamethasone-enhanced microdialysis in the injured rodent cortex as a new paradigm for investigating trauma-induced metabolic crisis.
Collapse
Affiliation(s)
- Elaine M. Robbins
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea Jaquins-Gerstl
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David F. Fine
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Chi Leng Leong
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - C. Edward Dixon
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Amy K. Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Martyn G. Boutelle
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
16
|
Lu L, Armstrong EA, Yager JY, Unsworth LD. Sustained Release of Dexamethasone from Sulfobutyl Ether β-cyclodextrin Modified Self-Assembling Peptide Nanoscaffolds in a Perinatal Rat Model of Hypoxia-Ischemia. Adv Healthc Mater 2019; 8:e1900083. [PMID: 30977596 DOI: 10.1002/adhm.201900083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/13/2019] [Indexed: 11/10/2022]
Abstract
Inflammation plays a critical role in the development of hypoxia-ischemia (HI) induced newborn brain damage. A localized, sustained delivery of dexamethasone (Dex) through an intracerebral injection could reduce the inflammatory response in the injured perinatal brain while avoiding unnecessary side effects. Herein, investigated using anionic sulfobutyl ether β-cyclodextrin (SBE-β-CD) to load Dex in the (RADA)4 nanofiber networks as a means of reducing the inflammatory response to HI injury is investigated. The ionic interaction between SBE-β-CD and (RADA)4 dramatically affects nanofiber formation and the stability of the nanoscaffold is highly dependent on the SBE-β-CD/(RADA)4 ratio. It is observed that the Dex release rate is affected by the concentration of SBE-β-CD and (RADA)4 peptide. A higher concentration of SBE-β-CD or (RADA)4 results in a higher drug encapsulation efficiency and slower release rate of Dex. This phenomenon may be related to the structure of fiber bundles. Animal studies show that nanoscaffold loaded with Dex inhibits both microglia activation and glial scar formation compared to controls (Dex alone or nanoscaffold alone) within 2 days of injury. It is thought that this is a step toward building a multifaceted nanoscaffold that can be used to treat HI events in perinates.
Collapse
Affiliation(s)
- Lei Lu
- School of Life Science and EngineeringSouthwest Jiaotong University Chengdu Sichuan 611756 China
- Department of Chemical and Materials EngineeringUniversity of Alberta Edmonton Alberta T6G 2V4 Canada
| | - Edward A. Armstrong
- Department of PediatricsDivision of Pediatric NeurosciencesUniversity of Alberta Edmonton Alberta T6G 1C9 Canada
| | - Jerome Y. Yager
- Department of PediatricsDivision of Pediatric NeurosciencesUniversity of Alberta Edmonton Alberta T6G 1C9 Canada
| | - Larry D. Unsworth
- Department of Chemical and Materials EngineeringUniversity of Alberta Edmonton Alberta T6G 2V4 Canada
| |
Collapse
|
17
|
Proteomic analysis and ATP assay reveal a positive effect of artificial cerebral spinal fluid perfusion following microdialysis sampling on repair of probe-induced brain damage. J Neurosci Methods 2019; 315:1-5. [PMID: 30625339 DOI: 10.1016/j.jneumeth.2018.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microdialysis (MD) is conventionally used to measure the in vivo levels of various substances and metabolites in extracellular and cerebrospinal fluid of brain. However, insertion of the MD probe and subsequent perfusion to obtain samples cause damage in the vicinity of the insertion site, raising questions regarding the validity of the measurements. NEW METHOD We used fluorogenic derivatization liquid chromatography-tandem mass spectrometry, that quantifies both high and low abundance proteins, to differentiate the effects of perfusion from the effects of probe insertion on the proteomic profiles of expressed proteins in rat brain. RESULTS We found that the expression levels of five proteins were significantly lower in the perfusion group than in the non-perfusion group. Three of these proteins are directly involved in ATP synthesis. In contrast to decreased levels of the three proteins involved in ATP synthesis, ATP assays show that perfusion, following probe insertion, even for a short time (3 h) increased ATP level up to 148% that prior to perfusion, and returned it to normal state (before probe insertion). COMPARISON WITH EXISTING METHOD There is essentially no information regarding which observed changes are due to probe insertion and which to perfusion. CONCLUSIONS Our findings partially demonstrate that the influence of whole MD sampling process may not significantly compromise brain function and subsequent analytical results may have physiological equivalence to normal, although energy production is transiently damaged by probe insertion.
Collapse
|
18
|
Zhang Y, Li L, Li T, Xin Y, Liu J, Ma F, Mao L. In vivo measurement of the dynamics of norepinephrine in an olfactory bulb following ischemia-induced olfactory dysfunction and its responses to dexamethasone treatment. Analyst 2018; 143:5247-5254. [PMID: 30276380 DOI: 10.1039/c8an01300d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Information on the dynamics of molecules following olfactory dysfunction remains essential for understanding the molecular events involved in the pathological process of olfactory dysfunction. This study for the first time demonstrates a method based on the combination of in vivo microdialysis with high performance liquid chromatography (HPLC) and electrochemical detection (ECD) for the measurement of the dynamics of norepinephrine (NE) in the olfactory bulbs of Sprague-Dawley rats following olfactory dysfunction induced by brain ischemia and its responses toward dexamethasone treatment. The method possesses a high spatial resolution and benefits from in vivo microdialysis and high selectivity and is thus capable of measuring NE in the olfactory bulb of rats. With this method, the basal level of NE in the olfactory bulb was evaluated to be ca. 235 ± 25 nM (n = 6). This level was found to increase by 260 ± 90% at a time point of 240 min after brain ischemia with bilateral ligation of both common carotid arteries. The increase was found to be suppressed upon the treatment of the animals with 0.2% dexamethasone in the olfactory bulb. These results suggest that NE is involved in the pathological process of ischemia-induced olfactory dysfunction and this information is useful to further understand the molecular events involved in olfactory dysfunction.
Collapse
Affiliation(s)
- Yinghong Zhang
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100083, China.
| | - Lijuan Li
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100083, China.
| | - Tao Li
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100083, China.
| | - Ying Xin
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100083, China.
| | - Junxiu Liu
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100083, China.
| | - Furong Ma
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100083, China.
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
19
|
Ou Y, Wilson RE, Weber SG. Methods of Measuring Enzyme Activity Ex Vivo and In Vivo. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:509-533. [PMID: 29505726 PMCID: PMC6147230 DOI: 10.1146/annurev-anchem-061417-125619] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Enzymes catalyze a variety of biochemical reactions in the body and, in conjunction with transporters and receptors, control virtually all physiological processes. There is great value in measuring enzyme activity ex vivo and in vivo. Spatial and temporal differences or changes in enzyme activity can be related to a variety of natural and pathological processes. Several analytical approaches have been developed to meet this need. They can be classified broadly as methods either based on artificial substrates, with the goal of creating images of diseased tissue, or based on natural substrates, with the goal of understanding natural processes. This review covers a selection of these methods, including optical, magnetic resonance, mass spectrometry, and physical sampling approaches, with a focus on creative chemistry and method development that make ex vivo and in vivo measurements of enzyme activity possible.
Collapse
Affiliation(s)
| | - Rachael E Wilson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA;
| | - Stephen G Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA;
| |
Collapse
|
20
|
Merkel SF, Andrews AM, Lutton EM, Razmpour R, Cannella LA, Ramirez SH. Dexamethasone Attenuates the Enhanced Rewarding Effects of Cocaine Following Experimental Traumatic Brain Injury. Cell Transplant 2018; 26:1178-1192. [PMID: 28933216 PMCID: PMC5447499 DOI: 10.1177/0963689717714341] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical studies have identified traumatic brain injury (TBI) as a risk factor for the development of cocaine dependence. This claim is supported by our recent preclinical studies showing enhancement of the rewarding effects of cocaine in mice sustaining moderate controlled cortical impact (CCI) injury during adolescence. Here we test the efficacy of dexamethasone, an anti-inflammatory corticosteroid, to attenuate augmentation of the behavioral response to cocaine observed in CCI-TBI animals using the conditioned place preference (CPP) assay. These studies were performed in order to determine whether proinflammatory activity in the nucleus accumbens (NAc), a key brain nucleus in the reward pathway, mediates enhanced cocaine-induced CPP in adolescent animals sustaining moderate CCI-TBI. Our data reveal robust glial activation in the NAc following CCI-TBI and a significant increase in the cocaine-induced CPP of untreated CCI-TBI mice. Furthermore, our results show that dexamethasone treatment following CCI-TBI can attenuate the cocaine place preference of injured animals without producing aversion in the CPP assay. Our studies also found that dexamethasone treatment significantly reduced the expression of select immune response genes including Monocyte chemoattractant protein-1 (MCP-1/CCL2) and intercellular adhesion molecule-1 ( ICAM-1), returning their expression to control levels, which prompted an investigation of peripheral blood monocytes in dexamethasone-treated animals. Experimental findings showed that no craniectomy/dexamethasone mice had a significant increase, while CCI-TBI/dexamethasone animals had a significant decrease in the percentage of circulating nonclassical patrolling monocytes. These results suggest that a portion of these monocytes may migrate to the brain in response to CCI-TBI, potentially sparing the development of chronic neuroinflammation in regions associated with the reward circuitry such as the NAc. Overall, our findings indicate that anti-inflammatory agents, such as dexamethasone, may be effective in normalizing the rewarding effects of cocaine following CCI-TBI.
Collapse
Affiliation(s)
- Steven F Merkel
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,2 Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Allison M Andrews
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,2 Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Evan M Lutton
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Roshanak Razmpour
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Lee Anne Cannella
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,2 Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Servio H Ramirez
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,2 Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,3 Shriners Hospitals Pediatric Research Center, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Chatard C, Meiller A, Marinesco S. Microelectrode Biosensors forin vivoAnalysis of Brain Interstitial Fluid. ELECTROANAL 2018. [DOI: 10.1002/elan.201700836] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Charles Chatard
- INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center, Team TIGER
- Université Claude Bernard Lyon 1; Lyon France
| | - Anne Meiller
- AniRA-Neurochem Technological Platform; Lyon France
- Université Claude Bernard Lyon 1; Lyon France
| | - Stéphane Marinesco
- INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center, Team TIGER
- AniRA-Neurochem Technological Platform; Lyon France
- Université Claude Bernard Lyon 1; Lyon France
- Lyon Neuroscience Research Center, Team TIGER; Faculty of Medicine; 8 Avenue Rockefeller 69373 Lyon Cedex 08 France
| |
Collapse
|
22
|
Vizuete AFK, Hansen F, Negri E, Leite MC, de Oliveira DL, Gonçalves CA. Effects of dexamethasone on the Li-pilocarpine model of epilepsy: protection against hippocampal inflammation and astrogliosis. J Neuroinflammation 2018; 15:68. [PMID: 29506554 PMCID: PMC5839012 DOI: 10.1186/s12974-018-1109-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background Temporal lobe epilepsy (TLE) is the most common form of partial epilepsy and is accompanied, in one third of cases, by resistance to antiepileptic drugs (AED). Most AED target neuronal activity modulated by ionic channels, and the steroid sensitivity of these channels has supported the use of corticosteroids as adjunctives to AED. Assuming the importance of astrocytes in neuronal activity, we investigated inflammatory and astroglial markers in the hippocampus, a key structure affected in TLE and in the Li-pilocarpine model of epilepsy. Methods Initially, hippocampal slices were obtained from sham rats and rats subjected to the Li-pilocarpine model of epilepsy, at 1, 14, and 56 days after status epilepticus (SE), which correspond to the acute, silent, and chronic phases. Dexamethasone was added to the incubation medium to evaluate the secretion of S100B, an astrocyte-derived protein widely used as a marker of brain injury. In the second set of experiments, we evaluated the in vivo effect of dexamethasone, administrated at 2 days after SE, on hippocampal inflammatory (COX-1/2, PGE2, and cytokines) and astroglial parameters: GFAP, S100B, glutamine synthetase (GS) and water (AQP-4), and K+ (Kir 4.1) channels. Results Basal S100B secretion and S100B secretion in high-K+ medium did not differ at 1, 14, and 56 days for the hippocampal slices from epileptic rats, in contrast to sham animal slices, where high-K+ medium decreased S100B secretion. Dexamethasone addition to the incubation medium per se induced a decrease in S100B secretion in sham and epileptic rats (1 and 56 days after SE induction). Following in vivo dexamethasone administration, inflammatory improvements were observed, astrogliosis was prevented (based on GFAP and S100B content), and astroglial dysfunction was partially abrogated (based on Kir 4.1 protein and GSH content). The GS decrease was not prevented by dexamethasone, and AQP-4 was not altered in this epileptic model. Conclusions Changes in astroglial parameters emphasize the importance of these cells for understanding alterations and mechanisms of epileptic disorders in this model. In vivo dexamethasone administration prevented most of the parameters analyzed, reinforcing the importance of anti-inflammatory steroid therapy in the Li-pilocarpine model and possibly in other epileptic conditions in which neuroinflammation is present. Electronic supplementary material The online version of this article (10.1186/s12974-018-1109-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| | - Fernanda Hansen
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Elisa Negri
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Marina Concli Leite
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Diogo Losch de Oliveira
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
23
|
Varner EL, Leong CL, Jaquins-Gerstl A, Nesbitt KM, Boutelle MG, Michael AC. Enhancing Continuous Online Microdialysis Using Dexamethasone: Measurement of Dynamic Neurometabolic Changes during Spreading Depolarization. ACS Chem Neurosci 2017; 8:1779-1788. [PMID: 28482157 DOI: 10.1021/acschemneuro.7b00148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Microdialysis is well established in chemical neuroscience as a mainstay technology for real time intracranial chemical monitoring in both animal models and human patients. Evidence shows that microdialysis can be enhanced by mitigating the penetration injury caused during the insertion of microdialysis probes into brain tissue. Herein, we show that retrodialysis of dexamethasone in the rat cortex enhances the microdialysis detection of K+ and glucose transients induced by spreading depolarization. Without dexamethasone, quantification of glucose transients was unreliable by 5 days after probe insertion. With dexamethasone, robust K+ and glucose transients were readily quantified at 2 h, 5 days, and 10 days after probe insertion. The amplitudes of the K+ transients declined day-to-day following probe insertion, and the amplitudes of the glucose transients exhibited a decreasing trend that did not reach statistical significance. Immunohistochemistry and fluorescence microscopy confirm that dexamethasone is highly effective at preserving a healthy probe-brain interface for at least 10 days even though retrodialysis of dexamethasone ceased after 5 days.
Collapse
Affiliation(s)
- Erika L. Varner
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chi Leng Leong
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrea Jaquins-Gerstl
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kathryn M. Nesbitt
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Martyn G. Boutelle
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
24
|
Taylor IM, Robbins EM, Catt KA, Cody PA, Happe CL, Cui XT. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. Biosens Bioelectron 2017; 89:400-410. [PMID: 27268013 PMCID: PMC5107160 DOI: 10.1016/j.bios.2016.05.084] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 11/26/2022]
Abstract
Dopamine (DA) is a monoamine neurotransmitter responsible for regulating a variety of vital life functions. In vivo detection of DA poses a challenge due to the low concentration and high speed of physiological signaling. Fast scan cyclic voltammetry at carbon fiber microelectrodes (CFEs) is an effective method to monitor real-time in vivo DA signaling, however the sensitivity is somewhat limited. Electrodeposition of poly(3,4-ethylene dioxythiophene) (PEDOT)/graphene oxide (GO) onto the CFE surface is shown to increase the sensitivity and lower the limit of detection for DA compared to bare CFEs. Thicker PEDOT/GO coatings demonstrate higher sensitivities for DA, but display the negative drawback of slow adsorption and electron transfer kinetics. The moderate thickness resulting from 25 s electrodeposition of PEDOT/GO produces the optimal electrode, exhibiting an 880% increase in sensitivity, a 50% decrease in limit of detection and minimally altered electrode kinetics. PEDOT/GO coated electrodes rapidly and robustly detect DA, both in solution and in the rat dorsal striatum. This increase in DA sensitivity is likely due to increasing the electrode surface area with a PEDOT/GO coating and improved adsorption of DA's oxidation product (DA-o-quinone). Increasing DA sensitivity without compromising electrode kinetics is expected to significantly improve our understanding of the DA function in vivo.
Collapse
Affiliation(s)
- I Mitch Taylor
- University of Pittsburgh, Department of Bioengineering, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Elaine M Robbins
- University of Pittsburgh, Department of Chemistry, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| | - Kasey A Catt
- University of Pittsburgh, Department of Bioengineering, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Patrick A Cody
- University of Pittsburgh, Department of Bioengineering, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Cassandra L Happe
- University of California, San Diego, Department of Bioengineering, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Xinyan Tracy Cui
- University of Pittsburgh, Department of Bioengineering, 3501 Fifth Ave., Pittsburgh, PA 15261, USA.
| |
Collapse
|
25
|
Turkina MV, Ghafouri N, Gerdle B, Ghafouri B. Evaluation of dynamic changes in interstitial fluid proteome following microdialysis probe insertion trauma in trapezius muscle of healthy women. Sci Rep 2017; 7:43512. [PMID: 28266628 PMCID: PMC5339898 DOI: 10.1038/srep43512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/27/2017] [Indexed: 02/05/2023] Open
Abstract
Microdialysis (MD) has been shown to be a promising technique for sampling of biomarkers. Implantation of MD probe causes an acute tissue trauma and provokes innate response cascades. In order to normalize tissue a two hours equilibration period for analysis of small molecules has been reported previously. However, how the proteome profile changes due to this acute trauma has yet to be fully understood. To characterize the early proteome events induced by this trauma we compared proteome in muscle dialysate collected during the equilibration period with two hours later in "post-trauma". Samples were collected from healthy females using a 100 kDa MW cut off membrane and analyzed by high sensitive liquid chromatography tandem mass spectrometry. Proteins involved in stress response, immune system processes, inflammatory responses and nociception from extracellular and intracellular fluid spaces were identified. Sixteen proteins were found to be differentially abundant in samples collected during first two hours in comparison to "post-trauma". Our data suggests that microdialysis in combination with mass spectrometry may provide potentially new insights into the interstitial proteome of trapezius muscle, yet should be further adjusted for biomarker discovery and diagnostics. Moreover, MD proteome alterations in response to catheter injury may reflect individual innate reactivity.
Collapse
Affiliation(s)
- Maria V Turkina
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linkoping University, Sweden
| | - Nazdar Ghafouri
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
26
|
Ngo KT, Varner EL, Michael AC, Weber SG. Monitoring Dopamine Responses to Potassium Ion and Nomifensine by in Vivo Microdialysis with Online Liquid Chromatography at One-Minute Resolution. ACS Chem Neurosci 2017; 8:329-338. [PMID: 28094974 DOI: 10.1021/acschemneuro.6b00383] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recently, our laboratory has demonstrated the technical feasibility of monitoring dopamine at 1 min temporal resolution with microdialysis and online liquid chromatography. Here, we monitor dopamine in the rat striatum during local delivery of high potassium/low sodium or nomifensine in awake-behaving rats. Microdialysis probes were implanted and perfused continuously with or without dexamethasone in the perfusion fluid for 4 days. Dexamethasone is an anti-inflammatory agent that exhibits several positive effects on the apparent health of the brain tissue surrounding microdialysis probes. Dopamine was monitored 1 or 4 days after implantation under basal conditions, during 10 min applications of 60 mM or 100 mM K+, and during 15 min applications of 10 μM nomifensine. High K+ and nomifensine were delivered locally by adding them to the microdialysis perfusion fluid using a computer-controlled, low-dead-volume six-port valve. Each day/K+/dexamethasone combination elicited specific dopamine responses. Dexamethasone treatment increased dopamine levels in basal dialysates (i.e., in the absence of K+ or nomifensine). Applications of 60 mM K+ evoked distinct responses on days one and four after probe implantation, depending upon the presence or absence of dexamethasone, consistent with dexamethasone's ability to mitigate the traumatic effect of probe implantation. Applications of 100 mM K+ evoked dramatic oscillations in dopamine levels that correlated with changes in the field potential at a metal electrode implanted adjacent to the microdialysis probe. This combination of results indicates the role of spreading depolarization in response to 100 mM K+. With 1 min temporal resolution, we find that it is possible to characterize the pharmacokinetics of the response to the local delivery of nomifensine. Overall, the findings reported here confirm the benefits arising from the ability to monitor dopamine via microdialysis at high sensitivity and at high temporal resolution.
Collapse
Affiliation(s)
- Khanh T. Ngo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Erika L. Varner
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
27
|
Zhao J, Gao Q, Zhang F, Sun W, Bai Y. Synthesis, Characterization and Theoretical Calculations of a New Fluorescent Probe for Detection Cu2+. Polycycl Aromat Compd 2016. [DOI: 10.1080/10406638.2016.1138973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Junxia Zhao
- Ministry of Education, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, P. R. China
| | - Qi Gao
- Ministry of Education, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, P. R. China
| | - Feifei Zhang
- Ministry of Education, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, P. R. China
| | - Wei Sun
- Ministry of Education, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, P. R. China
| | - Yinjuan Bai
- Ministry of Education, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, P. R. China
| |
Collapse
|
28
|
Eles JR, Vazquez AL, Snyder NR, Lagenaur C, Murphy MC, Kozai TDY, Cui XT. Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy. Biomaterials 2016; 113:279-292. [PMID: 27837661 DOI: 10.1016/j.biomaterials.2016.10.054] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 12/15/2022]
Abstract
Implantable neural electrode technologies for chronic neural recordings can restore functional control to paralysis and limb loss victims through brain-machine interfaces. These probes, however, have high failure rates partly due to the biological responses to the probe which generate an inflammatory scar and subsequent neuronal cell death. L1 is a neuronal specific cell adhesion molecule and has been shown to minimize glial scar formation and promote electrode-neuron integration when covalently attached to the surface of neural probes. In this work, the acute microglial response to L1-coated neural probes was evaluated in vivo by implanting coated devices into the cortex of mice with fluorescently labeled microglia, and tracking microglial dynamics with multi-photon microscopy for the ensuing 6 h in order to understand L1's cellular mechanisms of action. Microglia became activated immediately after implantation, extending processes towards both L1-coated and uncoated control probes at similar velocities. After the processes made contact with the probes, microglial processes expanded to cover 47.7% of the control probes' surfaces. For L1-coated probes, however, there was a statistically significant 83% reduction in microglial surface coverage. This effect was sustained through the experiment. At 6 h post-implant, the radius of microglia activation was reduced for the L1 probes by 20%, shifting from 130.0 to 103.5 μm with the coating. Microglia as far as 270 μm from the implant site displayed significantly lower morphological characteristics of activation for the L1 group. These results suggest that the L1 surface treatment works in an acute setting by microglial mediated mechanisms.
Collapse
Affiliation(s)
- James R Eles
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
| | - Alberto L Vazquez
- Bioengineering, University of Pittsburgh, United States; Radiology, University of Pittsburgh, United States; Neurobiology, University of Pittsburgh, United States
| | - Noah R Snyder
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
| | - Carl Lagenaur
- Neurobiology, University of Pittsburgh, United States
| | | | - Takashi D Y Kozai
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States; NeuroTech Center of the University of Pittsburgh Brain Institute, United States.
| | - X Tracy Cui
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States.
| |
Collapse
|
29
|
Dolgodilina E, Imobersteg S, Laczko E, Welt T, Verrey F, Makrides V. Brain interstitial fluid glutamine homeostasis is controlled by blood-brain barrier SLC7A5/LAT1 amino acid transporter. J Cereb Blood Flow Metab 2016; 36:1929-1941. [PMID: 26661195 PMCID: PMC5094305 DOI: 10.1177/0271678x15609331] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/20/2015] [Accepted: 08/31/2015] [Indexed: 01/26/2023]
Abstract
L-glutamine (Gln) is the most abundant amino acid in plasma and cerebrospinal fluid and a precursor for the main central nervous system excitatory (L-glutamate) and inhibitory (γ-aminobutyric acid (GABA)) neurotransmitters. Concentrations of Gln and 13 other brain interstitial fluid amino acids were measured in awake, freely moving mice by hippocampal microdialysis using an extrapolation to zero flow rate method. Interstitial fluid levels for all amino acids including Gln were ∼5-10 times lower than in cerebrospinal fluid. Although the large increase in plasma Gln by intraperitoneal (IP) injection of 15N2-labeled Gln (hGln) did not increase total interstitial fluid Gln, low levels of hGln were detected in microdialysis samples. Competitive inhibition of system A (SLC38A1&2; SNAT1&2) or system L (SLC7A5&8; LAT1&2) transporters in brain by perfusion with α-(methylamino)-isobutyric acid (MeAIB) or 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) respectively, was tested. The data showed a significantly greater increase in interstitial fluid Gln upon BCH than MeAIB treatment. Furthermore, brain BCH perfusion also strongly increased the influx of hGln into interstitial fluid following IP injection consistent with transstimulation of LAT1-mediated transendothelial transport. Taken together, the data support the independent homeostatic regulation of amino acids in interstitial fluid vs. cerebrospinal fluid and the role of the blood-brain barrier expressed SLC7A5/LAT1 as a key interstitial fluid gatekeeper.
Collapse
Affiliation(s)
- Elena Dolgodilina
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP) and NCCR Kidney. CH, University of Zurich, Zurich, Switzerland
| | - Stefan Imobersteg
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - Endre Laczko
- Functional Genomic Center Zurich (FGCZ), ETH and University of Zurich, Zurich, Switzerland
| | - Tobias Welt
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - Francois Verrey
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP) and NCCR Kidney. CH, University of Zurich, Zurich, Switzerland
| | - Victoria Makrides
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP) and NCCR Kidney. CH, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Characterization of Biosensors Based on Recombinant Glutamate Oxidase: Comparison of Crosslinking Agents in Terms of Enzyme Loading and Efficiency Parameters. SENSORS 2016; 16:s16101565. [PMID: 27669257 PMCID: PMC5087354 DOI: 10.3390/s16101565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/07/2016] [Accepted: 09/18/2016] [Indexed: 02/05/2023]
Abstract
Amperometric l-glutamate (Glu) biosensors, based on both wild-type and a recombinant form of l-glutamate oxidase (GluOx), were designed and characterized in terms of enzyme-kinetic, sensitivity and stability parameters in attempts to fabricate a real-time Glu monitoring device suitable for future long-term detection of this amino acid in biological and other complex media. A comparison of the enzyme from these two sources showed that they were similar in terms of biosensor performance. Optimization of the loading of the polycationic stabilization agent, polyethyleneimine (PEI), was established before investigating a range of crosslinking agents under different conditions: glutaraldehyde (GA), polyethylene glycol (PEG), and polyethylene glycol diglycidyl ether (PEGDE). Whereas PEI-free biosensor designs lost most of their meager Glu sensitivity after one or two days, configurations with a 2:5 ratio of dip-evaporation applications of PEI(1%):GluOx(400 U/mL) displayed a 20-fold increase in their initial sensitivity, and a decay half-life extended to 10 days. All the crosslinkers studied had no effect on initial Glu sensitivity, but enhanced biosensor stability, provided the crosslinking procedure was carried out under well-defined conditions. The resulting biosensor design based on the recombinant enzyme deposited on a permselective layer of poly-(ortho-phenylenediamine), PoPD/PEI₂/GluOx₅/PEGDE, displayed good sensitivity (LOD < 0.2 μM), response time (t90% < 1 s) and stability over a 90-day period, making it an attractive candidate for future long-term monitoring of Glu concentration dynamics in complex media.
Collapse
|
31
|
LC–MS/MS assay of ropinirole in rat biological matrices: elimination of lysoglycerophosphocholines-based matrix effect. Bioanalysis 2016; 8:1823-35. [DOI: 10.4155/bio-2016-0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: To adequately support PK evaluation of ropinirole in rats following intranasal administration, it was desirable to determine ropinirole concentrations in rat plasma, brain homogenate and microdialysate. Results & methodology: A robust LC–MS/MS method has been developed for the determination of ropinirole in biological samples. Liquid–liquid extraction using ethyl acetate eliminated matrix effect due to significantly reduced levels of lysoglycerophosphocholines. The assay was fully validated with dynamic ranges of 0.01–20 ng/ml for plasma and brain homogenate samples and 0.1–200 ng/ml for microdialysate samples. Conclusion: The proposed method was accurate and precise for the quantification of ropinirole in biological samples and was successfully applied to a microdialysis study of ropinirole in rats.
Collapse
|
32
|
Varner EL, Jaquins-Gerstl A, Michael AC. Enhanced Intracranial Microdialysis by Reduction of Traumatic Penetration Injury at the Probe Track. ACS Chem Neurosci 2016; 7:728-36. [PMID: 27003503 PMCID: PMC7372793 DOI: 10.1021/acschemneuro.5b00331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microdialysis provides deep insight into chemical neuroscience by enabling in vivo intracranial chemical monitoring. Nevertheless, implanting a microdialysis probe causes a traumatic penetration injury (TPI) of brain tissue at the probe track. The TPI, which is clearly documented by voltammetry and histochemical imaging, is a drawback because it perturbs the exact tissue from which the brain dialysate samples are derived. Our goal is to reduce, if not eventually eliminate, the TPI and its detrimental effects on neurochemical monitoring. Here, we demonstrate that combining a 5-day wait period after probe implantation with the continuous retrodialysis of a low-micromolar concentration of dexamethasone vastly reduces the TPI. Our approach to reducing the TPI reinstates normal evoked dopamine release activity in the tissue adjacent to the microdialysis probe, brings evoked dopamine release at the probe outlet into quantitative agreement with evoked dopamine release next to the probe, reinstates normal immunoreactivity for tyrosine hydroxylase and the dopamine transporter near the probe track, and greatly suppresses glial activation and scaring near the probe track. This reduction of the TPI and reinstatement of normal evoked dopamine release activity adjacent to the probe track appears to be due to dexamethasone's anti-inflammatory actions.
Collapse
Affiliation(s)
- Erika L Varner
- Department of Chemistry, University of Pittsburgh , 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea Jaquins-Gerstl
- Department of Chemistry, University of Pittsburgh , 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Adrian C Michael
- Department of Chemistry, University of Pittsburgh , 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
33
|
Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo. Biomaterials 2016; 87:157-169. [PMID: 26923363 PMCID: PMC4866508 DOI: 10.1016/j.biomaterials.2016.02.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 12/19/2022]
Abstract
Intracortical neural probes enable researchers to measure electrical and chemical signals in the brain. However, penetration injury from probe insertion into living brain tissue leads to an inflammatory tissue response. In turn, microglia are activated, which leads to encapsulation of the probe and release of pro-inflammatory cytokines. This inflammatory tissue response alters the electrical and chemical microenvironment surrounding the implanted probe, which may in turn interfere with signal acquisition. Dexamethasone (Dex), a potent anti-inflammatory steroid, can be used to prevent and diminish tissue disruptions caused by probe implantation. Herein, we report retrodialysis administration of dexamethasone while using in vivo two-photon microscopy to observe real-time microglial reaction to the implanted probe. Microdialysis probes under artificial cerebrospinal fluid (aCSF) perfusion with or without Dex were implanted into the cortex of transgenic mice that express GFP in microglia under the CX3CR1 promoter and imaged for 6 h. Acute morphological changes in microglia were evident around the microdialysis probe. The radius of microglia activation was 177.1 μm with aCSF control compared to 93.0 μm with Dex perfusion. T-stage morphology and microglia directionality indices were also used to quantify the microglial response to implanted probes as a function of distance. Dexamethasone had a profound effect on the microglia morphology and reduced the acute activation of these cells.
Collapse
Affiliation(s)
- Takashi D Y Kozai
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States; Neurotech Center of the University of Pittsburgh Brain Institute, United States.
| | | | - Alberto L Vazquez
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; Radiology, University of Pittsburgh, United States
| | | | - X Tracy Cui
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States.
| |
Collapse
|
34
|
Zhang W, Wei L, Yu W, Cui X, Liu X, Wang Q, Wang S. Effect of Jian-Pi-Zhi-Dong Decoction on striatal glutamate and γ-aminobutyric acid levels detected using microdialysis in a rat model of Tourette syndrome. Neuropsychiatr Dis Treat 2016; 12:1233-42. [PMID: 27279743 PMCID: PMC4878666 DOI: 10.2147/ndt.s106330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Jian-Pi-Zhi-Dong Decoction (JPZDD) is a dedicated treatment of Tourette syndrome (TS). The balance of neurotransmitters in the cortico-striato-pallido-thalamo-cortical network is crucial to the occurrence of TS and related to its severity. This study evaluated the effect of JPZDD on glutamate (Glu) and γ-aminobutyric acid (GABA) and their receptors in a TS rat model. MATERIALS AND METHODS Rats were divided into four groups (n=12 each). TS was induced in three of the groups by injecting them with 3,3'-iminodipropionitrile for 7 consecutive days. Two model groups were treated with tiapride (Tia) or JPZDD, while the control and the remaining model group were gavaged with saline. Behavior was assessed by stereotypic score and autonomic activity. Striatal Glu and GABA contents were detected using microdialysis. Expressions of N-methyl-D-aspartate receptor 1 and GABAA receptor (GABAAR) were observed using Western blot and real-time polymerase chain reaction. RESULTS Tia and JPZDD groups had decreased stereotypy compared with model rats; however, the JPZDD group showed a larger decrease in stereotypy than the Tia group at a 4-week time point. In a spontaneous activity test, the total distance of the JPZDD and Tia groups was significantly decreased compared with the model group. The Glu levels of the model group were higher than the control group and decreased with Tia or JPZDD treatment. The GABA level was higher in the model group than the control group. Expressions of GABAAR protein in the model group were higher than in the control group. Treatment with Tia or JPZDD reduced the expression of GABAAR protein. In the case of the mRNA expression, only Tia reduced the expression of N-methyl-D-aspartate receptor 1, compared with the model group. CONCLUSION JPZDD could alleviate impairments in behavior and dysfunctional signaling by downregulating GABAAR in the striatum. We suggest that this acts to maintain the balance of Glu and GABA.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pediatrics, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Li Wei
- Department of Pediatrics, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Wenjing Yu
- Department of Pediatrics, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xia Cui
- Department of Pediatrics, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xiaofang Liu
- Department of Pediatrics, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qian Wang
- Department of Pediatrics, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Sumei Wang
- Department of Pediatrics, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
35
|
Two-photon imaging of chronically implanted neural electrodes: Sealing methods and new insights. J Neurosci Methods 2015; 258:46-55. [PMID: 26526459 DOI: 10.1016/j.jneumeth.2015.10.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Two-photon microscopy has enabled the visualization of dynamic tissue changes to injury and disease in vivo. While this technique has provided powerful new information, in vivo two-photon chronic imaging around tethered cortical implants, such as microelectrodes or neural probes, present unique challenges. NEW METHOD A number of strategies are described to prepare a cranial window to longitudinally observe the impact of neural probes on brain tissue and vasculature for up to 3 months. RESULTS It was found that silastic sealants limit cell infiltration into the craniotomy, thereby limiting light scattering and preserving window clarity over time. In contrast, low concentration hydrogel sealants failed to prevent cell infiltration and their use at high concentration displaced brain tissue and disrupted probe performance. COMPARISON WITH EXISTING METHOD(S) The use of silastic sealants allows for a suitable imaging window for long term chronic experiments and revealed new insights regarding the dynamic leukocyte response around implants and the nature of chronic BBB leakage in the sub-dural space. CONCLUSION The presented method provides a valuable tool for evaluating the chronic inflammatory response and the performance of emerging implantable neural technologies.
Collapse
|
36
|
Gu H, Varner EL, Groskreutz SR, Michael AC, Weber SG. In Vivo Monitoring of Dopamine by Microdialysis with 1 min Temporal Resolution Using Online Capillary Liquid Chromatography with Electrochemical Detection. Anal Chem 2015; 87:6088-94. [PMID: 25970591 PMCID: PMC4835028 DOI: 10.1021/acs.analchem.5b00633] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microdialysis is often applied to understanding brain function. Because neurotransmission involves rapid events, increasing the temporal resolution of in vivo measurements is desirable. Here, we demonstrate microdialysis with online capillary liquid chromatography for the analysis of 1 min rat brain dialysate samples at 1 min intervals. Mobile phase optimization involved adjusting the pH, buffer composition, and surfactant concentration to eliminate interferences with the dopamine peak. By analyzing electrically evoked dopamine transients carefully synchronized with the switching of the online LC sample valve, we demonstrate that our system has both 1 min sampling capabilities and bona fide 1 min temporal resolution. Evoked DA transients were confined to single, 1 min brain dialysate samples. After uptake inhibition with nomifensine (20 mg/kg i.p.), responses to electrical stimuli of 1 s duration were detected.
Collapse
Affiliation(s)
- Hui Gu
- #Department of Chemistry, East China Normal University, Shanghai 200062, PRC
| | - Erika L Varner
- †Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen R Groskreutz
- †Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Adrian C Michael
- †Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G Weber
- †Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
37
|
Abstract
The mass transport or flux of neurochemicals in the brain and how this flux affects chemical measurements and their interpretation is reviewed. For all endogenous neurochemicals found in the brain, the flux of each of these neurochemicals exists between sources that produce them and the sites that consume them all within μm distances. Principles of convective-diffusion are reviewed with a significant emphasis on the tortuous paths and discrete point sources and sinks. The fundamentals of the primary methods of detection, microelectrodes and microdialysis sampling of brain neurochemicals are included in the review. Special attention is paid to the change in the natural flux of the neurochemicals caused by implantation and consumption at microelectrodes and uptake by microdialysis. The detection of oxygen, nitric oxide, glucose, lactate, and glutamate, and catecholamines by both methods are examined and where possible the two techniques (electrochemical vs. microdialysis) are compared. Non-invasive imaging methods: magnetic resonance, isotopic fluorine MRI, electron paramagnetic resonance, and positron emission tomography are also used for different measurements of the above-mentioned solutes and these are briefly reviewed. Although more sophisticated, the imaging techniques are unable to track neurochemical flux on short time scales, and lack spatial resolution. Where possible, determinations of flux using imaging are compared to the more classical techniques of microdialysis and microelectrodes.
Collapse
Affiliation(s)
- David W Paul
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | | |
Collapse
|
38
|
Jaquins-Gerstl A, Michael AC. A review of the effects of FSCV and microdialysis measurements on dopamine release in the surrounding tissue. Analyst 2015; 140:3696-708. [PMID: 25876757 PMCID: PMC4437820 DOI: 10.1039/c4an02065k] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microdialysis is commonly used in neuroscience to obtain information about the concentration of substances, including neurotransmitters such as dopamine (DA), in the extracellular space (ECS) of the brain. Measuring DA concentrations in the ECS with in vivo microdialysis and/or voltammetry is a mainstay of investigations into both normal and pathological function of central DA systems. Although both techniques are instrumental in understanding brain chemistry each has its shortcomings. The objective of this review is to characterize some of the tissue and DA differences associated with each technique in vivo. Much of this work will focus on immunohistochemical and microelectrode measurements of DA in the tissue next to the microdialysis probe and mitigating the response to the damage caused by probe implantation.
Collapse
|
39
|
Cepeda DE, Hains L, Li D, Bull J, Lentz SI, Kennedy RT. Experimental evaluation and computational modeling of tissue damage from low-flow push-pull perfusion sampling in vivo. J Neurosci Methods 2015; 242:97-105. [PMID: 25614385 PMCID: PMC4331210 DOI: 10.1016/j.jneumeth.2015.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/05/2015] [Accepted: 01/09/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Neurochemical monitoring via sampling probes is valuable for deciphering neurotransmission in vivo. Microdialysis is commonly used; however, the spatial resolution is poor. NEW METHOD Recently push-pull perfusion at low flow rates (50nL/min) has been proposed as a method for in vivo sampling from the central nervous system. Tissue damage from such probes has not been investigated in detail. In this work, we evaluated acute tissue response to low-flow push-pull perfusion by infusing the nuclear stains Sytox Orange and Hoechst 33342 through probes implanted in the striatum for 200min, to label damaged and total cells, respectively, in situ. RESULTS Using the damaged/total labeled cell ratio as a measure of tissue damage, we found that 33±8% were damaged within the dye region around a microdialysis probe. We found that low-flow push-pull perfusion probes damaged 24±4% of cells in the sampling area. Flow had no effect on the number of damaged cells for low-flow push-pull perfusion. Modeling revealed that shear stress and pressure gradients generated by the flow were lower than thresholds expected to cause damage. Comparison with existing methods.Push-pull perfusion caused less tissue damage but yielded 1500-fold better spatial resolution. CONCLUSIONS Push-pull perfusion at low flow rates is a viable method for sampling from the brain with potential for high temporal and spatial resolution. Tissue damage is mostly caused by probe insertion. Smaller probes may yield even lower damage.
Collapse
Affiliation(s)
- David E Cepeda
- University of Michigan, Department of Biomedical Engineering, 1101 Beal Ave, Ann Arbor, MI, 49109, United States; University of Michigan, Department of Chemistry, 930N University Ave, Ann Arbor, MI, 48109, United States
| | - Leah Hains
- Wadsworth Center, NYS Department of Health, New York State Bicycle Route 5, Albany, NY 12201, United States
| | - David Li
- University of Michigan, Department of Biomedical Engineering, 1101 Beal Ave, Ann Arbor, MI, 49109, United States
| | - Joseph Bull
- University of Michigan, Department of Biomedical Engineering, 1101 Beal Ave, Ann Arbor, MI, 49109, United States
| | - Stephen I Lentz
- University of Michigan, Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, 6245 Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, United States
| | - Robert T Kennedy
- University of Michigan, Department of Chemistry, 930N University Ave, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
40
|
Nesbitt K, Varner EL, Jaquins-Gerstl A, Michael AC. Microdialysis in the rat striatum: effects of 24 h dexamethasone retrodialysis on evoked dopamine release and penetration injury. ACS Chem Neurosci 2015; 6:163-73. [PMID: 25491242 PMCID: PMC4304486 DOI: 10.1021/cn500257x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/04/2014] [Indexed: 12/25/2022] Open
Abstract
The power of microdialysis for in vivo neurochemical monitoring is a result of intense efforts to enhance microdialysis procedures, the probes themselves, and the analytical systems used for the analysis of dialysate samples. Our goal is to refine microdialysis further by focusing attention on what happens when the probes are implanted into brain tissue. It is broadly acknowledged that some tissue damage occurs, such that the tissue nearest the probes is disrupted from its normal state. We hypothesize that mitigating such disruption would refine microdialysis. Herein, we show that the addition of dexamethasone, an anti-inflammatory drug, to the perfusion fluid protects evoked dopamine responses as measured by fast-scan cyclic voltammetry next to the probes after 24 h. We also show that dexamethasone stabilizes evoked dopamine responses measured at the probe outlet over a 4-24 h postimplantation interval. The effects of dexamethasone are attributable to its anti-inflammatory actions, as dexamethasone had no significant effect on two histochemical markers for dopamine terminals, tyrosine hydroxylase and the dopamine transporter. Using histochemical assays, we confirmed that the actions of dexamethasone are tightly confined to the immediate, local vicinity of the probe.
Collapse
Affiliation(s)
- Kathryn
M. Nesbitt
- Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Erika L. Varner
- Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea Jaquins-Gerstl
- Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Adrian C. Michael
- Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
41
|
Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem Neurosci 2015; 6:48-67. [PMID: 25546652 PMCID: PMC4304489 DOI: 10.1021/cn500256e] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
![]()
Implantable biosensors are valuable
scientific tools for basic
neuroscience research and clinical applications. Neurotechnologies
provide direct readouts of neurological signal and neurochemical processes.
These tools are generally most valuable when performance capacities
extend over months and years to facilitate the study of memory, plasticity,
and behavior or to monitor patients’ conditions. These needs
have generated a variety of device designs from microelectrodes for
fast scan cyclic voltammetry (FSCV) and electrophysiology to microdialysis
probes for sampling and detecting various neurochemicals. Regardless
of the technology used, the breaching of the blood–brain barrier
(BBB) to insert devices triggers a cascade of biochemical pathways
resulting in complex molecular and cellular responses to implanted
devices. Molecular and cellular changes in the microenvironment surrounding
an implant include the introduction of mechanical strain, activation
of glial cells, loss of perfusion, secondary metabolic injury, and
neuronal degeneration. Changes to the tissue microenvironment surrounding
the device can dramatically impact electrochemical and electrophysiological
signal sensitivity and stability over time. This review summarizes
the magnitude, variability, and time course of the dynamic molecular
and cellular level neural tissue responses induced by state-of-the-art
implantable devices. Studies show that insertion injuries and foreign
body response can impact signal quality across all implanted central
nervous system (CNS) sensors to varying degrees over both acute (seconds
to minutes) and chronic periods (weeks to months). Understanding the
underlying biological processes behind the brain tissue response to
the devices at the cellular and molecular level leads to a variety
of intervention strategies for improving signal sensitivity and longevity.
Collapse
Affiliation(s)
- Takashi D. Y. Kozai
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea S. Jaquins-Gerstl
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alberto L. Vazquez
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Adrian C. Michael
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - X. Tracy Cui
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
42
|
Sarter M, Kim Y. Interpreting chemical neurotransmission in vivo: techniques, time scales, and theories. ACS Chem Neurosci 2015; 6:8-10. [PMID: 25514622 PMCID: PMC4304491 DOI: 10.1021/cn500319m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Monitoring
neurotransmitter levels is a major research strategy
for determining the functions of neuronal systems, specifically the
ascending neuromodulator systems. In this Viewpoint, we consider the
impact of different methods for recording extracellular neurotransmitter
levels in vivo on theories concerning the signaling mode(s) and functions
of these neuronal systems. As exemplified by evidence from experiments
using different methods to measure acetylcholine (ACh) signaling,
both neuromodulatory and deterministic functions have been attributed
to cholinergic activity. Technical and experimental advances now allow
determination of the validity of such dual-signaling theories.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology
and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Youngsoo Kim
- Department of Psychology
and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
43
|
Kolarcik CL, Catt K, Rost E, Albrecht IN, Bourbeau D, Du Z, Kozai TDY, Luo X, Weber DJ, Cui XT. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion. J Neural Eng 2014; 12:016008. [PMID: 25485675 DOI: 10.1088/1741-2560/12/1/016008] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The dorsal root ganglion is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity. APPROACH Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-wall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as a result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB. MAIN RESULTS Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced. SIGNIFICANCE This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities.
Collapse
Affiliation(s)
- Christi L Kolarcik
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA. Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA. McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Effect of Buyang Huanwu decoction on amino acid content in cerebrospinal fluid of rats during ischemic/reperfusion injury. J Pharm Biomed Anal 2013; 86:143-50. [DOI: 10.1016/j.jpba.2013.07.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/15/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022]
|
45
|
Zhang J, Jaquins-Gerstl A, Nesbitt KM, Rutan SC, Michael AC, Weber SG. In vivo monitoring of serotonin in the striatum of freely moving rats with one minute temporal resolution by online microdialysis-capillary high-performance liquid chromatography at elevated temperature and pressure. Anal Chem 2013; 85:9889-97. [PMID: 24020786 DOI: 10.1021/ac4023605] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Online monitoring of serotonin in striatal dialysate from freely moving rats was carried out for more than 16 h at 1 min time resolution using microdialysis coupled online to a capillary HPLC system operating at about 500 bar and 50 °C. Several aspects of the system were optimized toward robust, in vivo online measurements. A two-loop, eight-port rotary injection valve demonstrated better consistency of continuous injections than the more commonly used two-loop, 10-port valve. A six-port loop injector for introducing stimulating solutions (stimulus injector) was placed in-line between the syringe pump and microdialysis probe. We minimized solute dispersion by using capillary tubing (75 μm inside diameter, 70 cm long) for the probe inlet and outlet. In vitro assessment of concentration dispersion during transport with a 30 s time resolution showed that the dispersion standard deviation for serotonin was well within the desired system temporal resolution. Each 30 or 60 s measurement reflects the integral of the true time response over the measurement time. We have accounted for this mathematically in determining the concentration dispersion during transport. The delay time between a concentration change at the probe and its detection is 7 min. The timing of injections from the stimulus injector and the cycle time for the HPLC monitoring of the flow stream were controlled. The electrochemical detector contained a 13 μm spacer to minimize detector dead volume. During in vivo experiments, retention time and separation efficiency were stable and reproducible. There was no statistically significant change over 5.5 h in the electrochemical detector sensitivity factor for serotonin. Dialysate serotonin concentrations change significantly in response to a 120 mM K(+) stimulus. Release of serotonin evoked by a 10 min, 120 mM K(+) stimulation, but not for other K(+) stimuli, exhibited a reproducible, oscillating profile of dialysate serotonin concentration versus time. Infusion of fluoxetine, a serotonin uptake inhibitor, increased dialysate serotonin concentrations and stimulated release magnitude. Transient serotonin increases were observed in response to the stress associated with unexpected handling. This system is simple, efficient, reliable, and suitable for the study of serotonin neurochemistry associated with emotion and behavior.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | | | |
Collapse
|
46
|
Nesbitt KM, Jaquins-Gerstl A, Skoda EM, Wipf P, Michael AC. Pharmacological mitigation of tissue damage during brain microdialysis. Anal Chem 2013; 85:8173-9. [PMID: 23927692 PMCID: PMC3799822 DOI: 10.1021/ac401201x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microdialysis sampling in the brain is employed frequently in the chemical analysis of neurological function and disease, but implanting the probes, which are substantially larger than the size and spacing of brain cells and blood vessels, is injurious and triggers ischemia, gliosis, and cell death at the sampling site. The nature of the interface between the brain and the microdialysis probe is critical to the use of microdialysis as a neurochemical analysis technique. The objective of the work reported here was to investigate the potential of two compounds, dexamethasone, a glucocorticoid anti-inflammatory agent, and XJB-5-131, a mitochondrially targeted reactive oxygen species scavenger, to mitigate the penetration injury. Measurements were performed in the rat brain striatum, which is densely innervated by axons that release dopamine, an electroactive neurotransmitter. We used voltammetry to measure electrically evoked dopamine release next to microdialysis probes during the retrodialysis of dexamethasone or XJB-5-131. After the in vivo measurements, the brain tissue containing the microdialysis probe tracks was examined by fluorescence microscopy using markers for ischemia, neuronal nuclei, macrophages, and dopamine axons and terminals. Dexamethasone and XJB-5-131 each diminished the loss of evoked dopamine activity, diminished ischemia, diminished the loss of neuronal nuclei, diminished the appearance of extravasated macrophages, and diminished the loss of dopamine axons and terminals next to the probes. Our findings confirm the ability of dexamethasone and XJB-5-131 to mitigate, but not eliminate, the effects of the penetration injury caused by implanting microdialysis probes into brain tissue.
Collapse
Affiliation(s)
- Kathryn M. Nesbitt
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Erin M. Skoda
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
47
|
Chai X, Zhou X, Zhu A, Zhang L, Qin Y, Shi G, Tian Y. A Two-Channel Ratiometric Electrochemical Biosensor for In Vivo Monitoring of Copper Ions in a Rat Brain Using Gold Truncated Octahedral Microcages. Angew Chem Int Ed Engl 2013; 52:8129-33. [DOI: 10.1002/anie.201302958] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Indexed: 01/09/2023]
|
48
|
Chai X, Zhou X, Zhu A, Zhang L, Qin Y, Shi G, Tian Y. A Two-Channel Ratiometric Electrochemical Biosensor for In Vivo Monitoring of Copper Ions in a Rat Brain Using Gold Truncated Octahedral Microcages. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302958] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Rupert AE, Ou Y, Sandberg M, Weber SG. Electroosmotic push-pull perfusion: description and application to qualitative analysis of the hydrolysis of exogenous galanin in organotypic hippocampal slice cultures. ACS Chem Neurosci 2013; 4:838-48. [PMID: 23614879 DOI: 10.1021/cn400082d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We demonstrate here a method that perfuses a small region of an organotypic hippocampal culture with a solution containing an enzyme substrate, a neuropeptide. Perfusate containing hydrolysis products is continually collected and subsequently analyzed for the products of the enzymatic degradation of the peptide substrate. The driving force for perfusion is an electric field. The fused silica capillaries used as "push" and "pull" or "source" and "collection" capillaries have a ζ-potential that is negative and greater in magnitude than the tissue's ζ-potential. Thus, depending on the magnitudes of particular dimensions, the electroosmotic flow in the capillaries augments the fluid velocity in the tissue. The flow rate is not directly measured; however, we determine it using a finite-element approach. We have determined the collection efficiency of the system using an all d-amino acid internal standard. The flow rates are low, in the nL/min range, and adjustable by controlling the current or voltage in the system. The collection efficiency of the d-amino acid peptide internal standard is variable, increasing with increased current and thus electroosmotic flow rate. The collection efficiency can be rationalized in the context of a Peclet number. Electroosmotic push-pull perfusion of the neuropeptide galanin (gal1-29) through the extracellular space of an organotypic hippocampal culture results in its hydrolysis by ectopeptidase reactions occurring in the extracellular space. The products of hydrolysis were identified by MALDI-MS. Experiments at two levels of current (8-12 μA and 19-40 μA) show that the probability of seeing hydrolysis products (apparently from aminopeptidases) is greater in the Cornu Ammonis area 3 (CA3) than in the Cornu Ammonis area 1 (CA1) in the higher current experiments. In the lower current experiments, shorter peptide products of aminopeptidases (gal13-29 to gal20-19) are seen with greater frequency in CA3 than in CA1 but there is no statistically significant difference for longer peptides (gal3-29 to gal12-29).
Collapse
Affiliation(s)
- Amy E. Rupert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| | - Y. Ou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| | - M. Sandberg
- Department
of Medical Biochemistry and Cell Biology, Gothenburg University, Gothenburg, S 405 30 Sweden
| | - S. G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| |
Collapse
|
50
|
Vasicek TW, Jackson MR, Poseno TM, Stenken JA. In vivo microdialysis sampling of cytokines from rat hippocampus: comparison of cannula implantation procedures. ACS Chem Neurosci 2013; 4:737-46. [PMID: 23480171 DOI: 10.1021/cn400025m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cytokines are signaling proteins that have been of significant importance in the field of immunology, since these proteins affect different cells in the immune system. In addition to their immune system significance, these proteins have recently been referred to as a third chemical communication network within the CNS. The role that cytokines play in orchestrating the immune response within tissues after a mechanical injury leads to potential complications if the source of cytokines (i.e., trauma vs disease) is of interest. Microdialysis sampling has seen wide use in collection of many different solutes within the CNS. Yet, implantation of microdialysis guide cannulas and the probes creates tissue injury. In this study, we compared the differences in cytokine levels in dialysates from 4 mm, 100 kDa molecular weight cutoff (MWCO) polyethersulfone membrane microdialysis probes implanted in the hippocampus of male Sprague-Dawley rats. Comparisons were made between animals that were dialyzed immediately after cannula implantation (day 0), 7 days post cannula implantation (day 7), and repeatedly sampled on day 0 and day 7. Multiplexed bead-based immunoassays were used to quantify CCL2 (MCP-1), CCL3 (MIP-1α), CCL5 (RANTES), CXCL1 (KC/GRO), CXCL2 (MIP-2), IL-1β, IL-6, and IL-10 in dialysates. Differences in cytokine concentrations between the different treatment groups were observed with higher levels of inflammatory cytokines measured in day 7 cannulated animals. Only CCL3 (MIP-1α), CXCL1 (KC/GRO), CXCL2 (MIP-2), and IL-10 were measured above the assay limits of detection for a majority of the dialysates, and their concentrations were typically in the low to high (10-1000) picogram per milliliter range. The work described here lays the groundwork for additional basic research studies with microdialysis sampling of cytokines in rodent CNS.
Collapse
Affiliation(s)
- Thaddeus W. Vasicek
- Department of Chemistry and Biochemistry, ‡Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Matthew R. Jackson
- Department of Chemistry and Biochemistry, ‡Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Tina M. Poseno
- Department of Chemistry and Biochemistry, ‡Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Julie A. Stenken
- Department of Chemistry and Biochemistry, ‡Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|