1
|
Mostafa ME, Grinias JP, Edwards JL. Supercritical fluid chromatography- Nanospray ionization-mass spectrometry (SFC-nSI-MS). J Chromatogr A 2024; 1736:465377. [PMID: 39293278 DOI: 10.1016/j.chroma.2024.465377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
A nanospray emitter coupled to a supercritical fluid chromatograph (SFC-nSI-MS) for mass spectrometric (MS) analysis of fatty acids (FA) positional isomers is introduced. The experimental setup uses conventional bore columns before the SF back-pressure regulator (pre-BPR). The flow is then split and nanosprayed using a short emitter post-BPR. A C18 column was used to resolve positional isomers of unsaturated FA with a 5 min gradient. Chromatographic resolution of the nSFC was compared to a LC-MS system with superior resolving power demonstrated in the nSFC MS system. This system has proven quantitative performance for analyzing pharmaceutical effects on FA composition in a complex biological matrix like E coli lysate.
Collapse
Affiliation(s)
- Mahmoud Elhusseiny Mostafa
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St Louis, MO 63102, USA
| | - James P Grinias
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St Louis, MO 63102, USA.
| |
Collapse
|
2
|
Chen KL, Kuo TH, Hsu CC. Mapping Lipid C═C Isomer Profiles of Human Gut Bacteria through a Novel Structural Lipidomics Workflow Assisted by Chemical Epoxidation. Anal Chem 2024. [PMID: 39437332 DOI: 10.1021/acs.analchem.4c02697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The unsaturated lipids produced by human gut bacteria have an extraordinary range of structural diversity, largely because of the isomerism of the carbon-carbon double bond (C═C) in terms of its position and stereochemistry. Characterizing distinct C═C configurations poses a considerable challenge in research, primarily owing to limitations in current bioanalytical methodologies. This study developed a novel structural lipidomics workflow by combining MELDI (meta-chloroperoxybenzoic acid epoxidation for lipid double-bond identification) with liquid chromatography-tandem mass spectrometry for C═C characterization. We utilized this workflow to quantitatively assess more than 50 C═C positional and cis/trans isomers of fatty acids and phospholipids from selected human gut bacteria. Strain-specific isomer profiles revealed unexpectedly high productivity of trans-10-octadecenoic acid by Enterococcus faecalis, Bifidobacterium longum, and Lactobacillus acidophilus among numerous trans-fatty acid isomers produced by gut bacteria. Isotope-tracking experiments suggested that gut bacteria produce trans-10-octadecenoic acid through the isomeric biotransformation of oleic acid in vitro and that such isomeric biotransformation of dietary oleic acid is dependent on the presence of gut bacteria in vivo.
Collapse
Affiliation(s)
- Kai-Li Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
3
|
Olfert M, Knappe C, Sievers-Engler A, Masberg B, Lämmerhofer M. Determination of double bond positions in unsaturated fatty acids by pre-column derivatization with dimethyl and dipyridyl disulfide followed by LC-SWATH-MS analysis. Anal Bioanal Chem 2024:10.1007/s00216-024-05542-z. [PMID: 39367908 DOI: 10.1007/s00216-024-05542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Comprehensive in-depth structural characterization of free mono-unsaturated and polyunsaturated fatty acids often requires the determination of carbon-carbon double bond positions due to their impact on physiological properties and relevance in biological samples or during impurity profiling of pharmaceuticals. In this research, we report on the evaluation of disulfides as suitable derivatization reagents for the determination of carbon-carbon double bond positions of unsaturated free fatty acids by UHPLC-ESI-QTOF-MS/MS analysis and SWATH (sequential windowed acquisition of all theoretical mass spectra) acquisition. Iodine-catalyzed derivatization of C = C double bonds with dimethyl disulfide (DMDS) enabled detection of characteristic carboxy-terminal MS2 fragments for various fatty acids in ESI negative mode. The determination of double bond positions of fatty acids with up to three double bonds, the transfer of the method to plasma samples, and its limitations have been shown. To achieve charge-switching for positive ion mode MS-detection, derivatization with 2,2'-dipyridyldisulfide (DPDS) was investigated. It enabled detection of both corresponding characteristic omega-end- and carboxy-end-fragments for fatty acids with up to two double bonds in positive ion mode. It provides a straightforward strategy for designing MRM transitions for targeted LC-MS/MS assays. Both derivatization techniques represent a simple and inexpensive way for the determination of double bond positions in fatty acids with low number of double bonds. No adaptation of MS hardware is required and the specific isotopic pattern of resulting sulfur-containing products provides additional structural confirmation. This reaction scheme opens up the avenue of structural tuning of disulfide reagents beyond DMDS and DPDS using reagents like cystine and analogs to achieve enhanced performance and sensitivity.
Collapse
Affiliation(s)
- Matthias Olfert
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Cornelius Knappe
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Adrian Sievers-Engler
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Benedikt Masberg
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
4
|
Nsiah ST, Fabijanczuk KC, McLuckey SA. Structural characterization of fatty acid anions via gas-phase charge inversion using Mg(tri-butyl-terpyridine) 2 2+ reagent ions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9741. [PMID: 38567638 DOI: 10.1002/rcm.9741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
RATIONALE Free fatty acids and lipid classes containing fatty acid esters are major components of lipidome. In the absence of a chemical derivatization step, FA anions do not yield all of the structural information that may be of interest under commonly used collision-induced dissociation (CID) conditions. A line of work that avoids condensed-phase derivatization takes advantage of gas-phase ion/ion chemistry to charge invert FA anions to an ion type that provides the structural information of interest using conventional CID. This work was motivated by the potential for significant improvement in overall efficiency for obtaining FA chain structural information. METHODS A hybrid triple quadrupole/linear ion-trap tandem mass spectrometer that has been modified to enable the execution of ion/ion reaction experiments was used to evaluate the use of 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine (ttb-Terpy) as the ligand in divalent magnesium complexes for charge inversion of FA anions. RESULTS Mg(ttb-Terpy)2 2+ complexes provide significantly improved efficiency in producing structurally informative products from FA ions relative to Mg(Terpy)2 2+ complexes, as demonstrated for straight-chain FAs, branched-chain FAs, unsaturated FAs, and cyclopropane-containing FAs. It was discovered that most of the structurally informative fragmentation from [FA-H + Mg(ttb-Terpy)]+ results from the loss of a methyl radical from the ligand followed by radical-directed dissociation (RDD), which stands in contrast to the charge-remote fragmentation (CRF) believed to be operative with the [FA-H + Mg(Terpy)]+ ions. CONCLUSIONS This work demonstrates that a large fraction of product ions from the CID of ions of the form [FA-H + Mg(ttb-Terpy)]+ are derived from RDD of the FA backbone, with a very minor fraction arising from structurally uninformative dissociation channels. This ligand provides an alternative to previously used ligands for the structural characterization of FAs via CRF.
Collapse
Affiliation(s)
- Sarah T Nsiah
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
5
|
Bonney JR, Prentice BM. Structural Elucidation and Relative Quantification of Fatty Acid Double Bond Positional Isomers in Biological Tissues Enabled by Gas-Phase Charge Inversion Ion/Ion Reactions. ANALYSIS & SENSING 2024; 4:e202300063. [PMID: 38827423 PMCID: PMC11139046 DOI: 10.1002/anse.202300063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 06/04/2024]
Abstract
Fatty acids (FAs) contain a vast amount of structural diversity, and differences in fatty acid structure have been associated with various disease states. Accurate identification and characterization of fatty acids is critical to fully understand the biochemical roles these compounds play in disease progression. Conventional tandem mass spectrometry (MS/MS) workflows do not provide sufficient structural information, necessitating alternative dissociation methods. Gas-phase charge inversion ion/ion reactions can be used to alter the ion type subjected to activation to provide improved or complementary structural information. Herein, we have used an ion/ion reaction between fatty acid (FA) anions and magnesium tris-phenanthroline [Mg(Phen)3] dications to promote charge remote fragmentation of carbon-carbon bonds along the fatty acid chain, allowing for localization of carbon-carbon double bond (C=C) positions to successfully differentiate monounsaturated fatty acid isomers. Relative quantification was also performed to obtain the relative abundance of fatty acid isomers in different biological tissues. For example, the relative abundance of FA 18:1 (9) was determined to vary across regions of rat brain, rat kidney, and mouse pancreas, and FA 16:1 (9) was found to have a higher relative abundance in the dermis layer compared to the sebaceous glands in human skin tissue.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
6
|
Shenault DM, Fabijanczuk KC, Murtada R, Finn S, Gonzalez LE, Gao J, McLuckey SA. Gas-Phase Ion/Ion Reactions to Enable Radical-Directed Dissociation of Fatty Acid Ions: Application to Localization of Methyl Branching. Anal Chem 2024; 96:3389-3401. [PMID: 38353412 DOI: 10.1021/acs.analchem.3c04510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Methyl branching on the carbon chains of fatty acids and fatty esters is among the structural variations encountered with fatty acids and fatty esters. Branching in fatty acid/ester chains is particularly prominent in bacterial species and, for example, in vernix caseosa and sebum. The distinction of branched chains from isomeric straight-chain species and the localization of branching can be challenging to determine by mass spectrometry (MS). Condensed-phase derivatization strategies, often used in conjunction with separations, are most commonly used to address the identification and characterization of branched fatty acids. In this work, a gas-phase ion/ion strategy is presented that obviates condensed-phase derivatization and introduces a radical site into fatty acid ions to facilitate radical-directed dissociation (RDD). The gas-phase approach is also directly amenable to fatty acid anions generated via collision-induced dissociation from lipid classes that contain fatty esters. Specifically, divalent magnesium complexes bound to two terpyridine ligands that each incorporate a ((2,2,6,6-tetramethyl-1-piperidine-1-yl)oxy) (TEMPO) moiety are used to charge-invert fatty acid anions. Following the facile loss of one of the ligands and the TEMPO group of the remaining ligand, a radical site is introduced into the complex. Subsequent collision-induced dissociation (CID) of the complex exhibits preferred cleavages that localize the site(s) of branching. The approach is illustrated with iso-, anteiso-, and isoprenoid branched-chain fatty acids and an intact glycerophospholipid and is applied to a mixture of branched- and straight-chain fatty acids derived from Bacillus subtilis.
Collapse
Affiliation(s)
- De'Shovon M Shenault
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kimberly C Fabijanczuk
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rayan Murtada
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Shane Finn
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - L Edwin Gonzalez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Kulyk DS, Baryshnikov GV, Damale PS, Maher S, Badu-Tawiah AK. Charge inversion under plasma-nanodroplet reaction conditions excludes Fischer esterification for unsaturated fatty acids: a chemical approach for type II isobaric overlap. Chem Sci 2024; 15:914-922. [PMID: 38239686 PMCID: PMC10793210 DOI: 10.1039/d3sc05369e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/10/2023] [Indexed: 01/22/2024] Open
Abstract
Direct infusion ionization methods provide the highest throughput strategy for mass spectrometry (MS) analysis of low-volume samples. But the trade-off includes matrix effects, which can significantly reduce analytical performance. Herein, we present a novel chemical approach to tackle a special type of matrix effect, namely type II isobaric overlap. We focus on detailed investigation of a nanodroplet-based esterification chemistry for differentiating isotopologue [M + 2] signal due to unsaturated fatty acid (FA) from the monoisotopic signal from a saturated FA. The method developed involves the online fusion of nonthermal plasma with charged nanodroplets, enabling selective esterification of saturated FAs. We discovered that unsaturated FAs undergo spontaneous intramolecular reaction via a novel mechanism based on a carbocation intermediate to afford a protonated lactone moiety (resonance stabilized cyclic carbonium ion), whose mass is the same as the original protonated unsaturated FA. Therefore, the monoisotopic signal from any saturated FA can be selectively shifted away from the mass-to-charge position where the isobaric interference occurs to enable effective characterization by MS. The mechanism governing the spontaneous intramolecular reactions for unsaturated FAs was validated with DFT calculations, experimentation with standards, and isotope labeling. This novel insight achieved via the ultrafast plasma-nanodroplet reaction environment provides a potentially useful synthetic pathway to achieve catalyst-free lactone preparation. Analytically, we believe the performance of direct infusion MS can be greatly enhanced by combining our approach with prior sample enrichment steps for applications in biomedicine and food safety. Also, combination with portable mass spectrometers can improve the efficiency of field studies since front-end separation is not possible under such conditions.
Collapse
Affiliation(s)
- Dmytro S Kulyk
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave. Columbus OH 43210 USA
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University SE-60174 Norrköping Sweden
| | - Purva S Damale
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave. Columbus OH 43210 USA
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool Liverpool UK
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave. Columbus OH 43210 USA
| |
Collapse
|
8
|
Xia T, Jin X, Zhang D, Wang J, Jian R, Yin H, Xia Y. Alternative fatty acid desaturation pathways revealed by deep profiling of total fatty acids in RAW 264.7 cell line. J Lipid Res 2023; 64:100410. [PMID: 37437845 PMCID: PMC10407907 DOI: 10.1016/j.jlr.2023.100410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
In-depth structural characterization of lipids provides a new means to investigate lipid metabolism. In this study, we have conducted deep profiling of total fatty acids (FAs) from RAW 264.7 macrophages by utilizing charge-tagging Paternò-Büchi derivatization of carbon-carbon double bond (C=C) and reversed-phase liquid chromatography-tandem mass spectrometry. A series of FAs exhibiting unusual site(s) of unsaturation was unearthed, with their identities being confirmed by observing anticipated compositional alterations upon desaturase inhibition. The data reveal that FADS2 Δ 6-desaturation can generate n-11 C=C in the odd-chain monounsaturated fatty acids (MUFAs) as well as n-10 and n-12 families of even-chain MUFAs. SCD1 Δ 9-desaturation yields n-6, n-8, and n-10 of odd-chain MUFAs, as well as n-5, n-7, and n-9 families of even-chain MUFAs. Besides n-3 and n-6 families of polyunsaturated fatty acids (PUFAs), the presence of n-7 and n-9 families of PUFAs indicates that the n-7 and n-9 isomers of FA 18:1 can be utilized as substrates for further desaturation and elongation. The n-7 and n-9 families of PUFAs identified in RAW 264.7 macrophages are noteworthy because their C=C modifications are achieved exclusively via de novo lipogenesis. Our discovery outlines the metabolic plasticity in fatty acid desaturation which constitutes an unexplored rewiring in RAW264.7 macrophages.
Collapse
Affiliation(s)
- Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xue Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Donghui Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Jitong Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Shi M, Tang C, Wu JX, Ji BW, Gong BM, Wu XH, Wang X. Mass Spectrometry Detects Sphingolipid Metabolites for Discovery of New Strategy for Cancer Therapy from the Aspect of Programmed Cell Death. Metabolites 2023; 13:867. [PMID: 37512574 PMCID: PMC10384871 DOI: 10.3390/metabo13070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Sphingolipids, a type of bioactive lipid, play crucial roles within cells, serving as integral components of membranes and exhibiting strong signaling properties that have potential therapeutic implications in anti-cancer treatments. However, due to the diverse group of lipids and intricate mechanisms, sphingolipids still face challenges in enhancing the efficacy of different therapy approaches. In recent decades, mass spectrometry has made significant advancements in uncovering sphingolipid biomarkers and elucidating their impact on cancer development, progression, and resistance. Primary sphingolipids, such as ceramide and sphingosine-1-phosphate, exhibit contrasting roles in regulating cancer cell death and survival. The evasion of cell death is a characteristic hallmark of cancer cells, leading to treatment failure and a poor prognosis. The escape initiates with long-established apoptosis and extends to other programmed cell death (PCD) forms when patients experience chemotherapy, radiotherapy, and/or immunotherapy. Gradually, supportive evidence has uncovered the fundamental molecular mechanisms underlying various forms of PCD leading to the development of innovative molecular, genetic, and pharmacological tools that specifically target sphingolipid signaling nodes. In this study, we provide a comprehensive overview of the sphingolipid biomarkers revealed through mass spectrometry in recent decades, as well as an in-depth analysis of the six main forms of PCD (apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis) in aspects of tumorigenesis, metastasis, and tumor response to treatments. We review the corresponding small-molecule compounds associated with these processes and their potential implications in cancer therapy.
Collapse
Affiliation(s)
- Ming Shi
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Collaborative Innovation Center of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200438, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Chao Tang
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jia-Xing Wu
- SINO-SWISS Institute of Advanced Technology, School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Bao-Wei Ji
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai 200032, China
| | - Bao-Ming Gong
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Collaborative Innovation Center of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiao-Hui Wu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Collaborative Innovation Center of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xue Wang
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Collaborative Innovation Center of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
10
|
Menzel JP, Young RSE, Benfield AH, Scott JS, Wongsomboon P, Cudlman L, Cvačka J, Butler LM, Henriques ST, Poad BLJ, Blanksby SJ. Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome. Nat Commun 2023; 14:3940. [PMID: 37402773 DOI: 10.1038/s41467-023-39617-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
Fatty acid isomers are responsible for an under-reported lipidome diversity across all kingdoms of life. Isomers of unsaturated fatty acids are often masked in contemporary analysis by incomplete separation and the absence of sufficiently diagnostic methods for structure elucidation. Here, we introduce a comprehensive workflow, to discover unsaturated fatty acids through coupling liquid chromatography and mass spectrometry with gas-phase ozonolysis of double bonds. The workflow encompasses semi-automated data analysis and enables de novo identification in complex media including human plasma, cancer cell lines and vernix caseosa. The targeted analysis including ozonolysis enables structural assignment over a dynamic range of five orders of magnitude, even in instances of incomplete chromatographic separation. Thereby we expand the number of identified plasma fatty acids two-fold, including non-methylene-interrupted fatty acids. Detection, without prior knowledge, allows discovery of non-canonical double bond positions. Changes in relative isomer abundances reflect underlying perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Jan Philipp Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Faculty of Science, Medicine and Health, School of Chemistry and Molecular Bioscience, Wollongong, NSW, Australia
| | - Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Julia S Scott
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Puttandon Wongsomboon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Lukáš Cudlman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
11
|
Zhang J, Zang Q, Xu W, Tang F. Rapid imaging of unsaturated lipids at isomer level using photoepoxidation. Talanta 2023; 261:124643. [PMID: 37196400 DOI: 10.1016/j.talanta.2023.124643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Unsaturated lipids play an essential role in living organisms, and their different isomers show significant functional differences. Therefore, in situ characterization of unsaturated lipids in tissues needs to be extended to isomer level. However, the exposure of tissue sections to an open environment for a long time may cause cell autolysis or corruption, and current unsaturated lipid imaging methods still face challenges in efficiency. This paper proposes an imaging method based on photoepoxidation coupled with air-flow-assisted desorption electrospray ionization mass spectrometry (AFADESI-MS) to rapidly realize the spatial characterization of unsaturated lipids at the isomer level. The technique has a fast response speed, high epoxide yield (>80%), and high diagnostic ion abundance. After 0.5 min of photoepoxidation, the derivation product yield ratio reached 24.6%. This method rapidly identified six glycerophospholipid isomers containing an 18:1 acyl chain in normal rat liver tissue. Then the imaging method was applied in nude mice lung cancer tissue and human thyroid cancer tissue, with only 3 min photoepoxidation. Results successfully characterized the location and range of unsaturated lipid isomers and revealed their enrichment in tumor tissue. In addition, the experiment shows that the variational trend of the ratio of unsaturated lipid isomers in different types of tumor samples is different. Based on the advantages of efficiency and convenience, this method is prospective for screening unsaturated lipid markers and pathological research of related diseases.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Science, Beijing Institute of Technology, No.5 Yard, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, A2 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, No.5 Yard, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Fei Tang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Zhongguancun Street, Hai Dian District, Beijing, 100084, China.
| |
Collapse
|
12
|
Kaya I, Schembri LS, Nilsson A, Shariatgorji R, Baijnath S, Zhang X, Bezard E, Svenningsson P, Odell LR, Andrén PE. On-Tissue Chemical Derivatization for Comprehensive Mapping of Brain Carboxyl and Aldehyde Metabolites by MALDI-MS Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:836-846. [PMID: 37052344 PMCID: PMC10161219 DOI: 10.1021/jasms.2c00336] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The visualization of small metabolites by MALDI mass spectrometry imaging in brain tissue sections is challenging due to low detection sensitivity and high background interference. We present an on-tissue chemical derivatization MALDI mass spectrometry imaging approach for the comprehensive mapping of carboxyls and aldehydes in brain tissue sections. In this approach, the AMPP (1-(4-(aminomethyl)phenyl)pyridin-1-ium chloride) derivatization reagent is used for the covalent charge-tagging of molecules containing carboxylic acid (in the presence of peptide coupling reagents) and aldehydes. This includes free fatty acids and the associated metabolites, fatty aldehydes, dipeptides, neurotoxic reactive aldehydes, amino acids, neurotransmitters and associated metabolites, as well as tricarboxylic acid cycle metabolites. We performed sensitive ultrahigh mass resolution MALDI-MS detection and imaging of various carboxyl- and aldehyde-containing endogenous metabolites simultaneously in rodent brain tissue sections. We verified the AMPP-derivatized metabolites by tandem MS for structural elucidation. This approach allowed us to image numerous aldehydes and carboxyls, including certain metabolites which had been undetectable in brain tissue sections. We also demonstrated the application of on-tissue derivatization to carboxyls and aldehydes in coronal brain tissue sections of a nonhuman primate Parkinson's disease model. Our methodology provides a powerful tool for the sensitive, simultaneous spatial molecular imaging of numerous aldehydes and carboxylic acids during pathological states, including neurodegeneration, in brain tissue.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | | | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Sooraj Baijnath
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Xiaoqun Zhang
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
13
|
Zhang J, Zhang Z, Jiang T, Zhang Z, Zhang W, Xu W. Rapidly identifying and quantifying of unsaturated lipids with carbon-carbon double bond isomers by photoepoxidation. Talanta 2023; 260:124575. [PMID: 37141821 DOI: 10.1016/j.talanta.2023.124575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Unsaturated lipids play an essential role in life activities. Identifying and quantifying their carbon-carbon double bond (CC) isomers have become a hot topic in recent years. In lipidomics, the analysis of unsaturated lipids in complex biological samples usually requires high-throughput methods, which puts forward the requirements of rapid response and simple operation for identification. In this paper, we proposed a photoepoxidation strategy, which uses benzoin to open the double bonds of unsaturated lipids to form epoxides under ultraviolet light and aerobic conditions. Photoepoxidation is controlled by light and has a fast response. After 5 min, the derivatization yield can reach 80% with no side reaction products. Besides, the method has the advantages of high quantitation accuracy and a high yield of diagnostic ions. It was successfully applied to rapidly identify the double bond locations of various unsaturated lipids in both positive and negative ion modes, and to rapidly identify and quantitatively analyze the various isomers of unsaturated lipids in mouse tissue extract. So the method has the potential for large-scale analysis of unsaturated lipids in complex biological samples.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Science, Beijing Institute of Technology, No.5 Yard, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zesen Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Zhongguancun Street, Hai Dian District, Beijing, 100084, China
| | - Ting Jiang
- School of Life Science, Beijing Institute of Technology, No.5 Yard, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhenyu Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Zhongguancun Street, Hai Dian District, Beijing, 100084, China
| | - Wenjing Zhang
- School of Life Science, Beijing Institute of Technology, No.5 Yard, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, No.5 Yard, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
14
|
Young RSE, Flakelar CL, Narreddula VR, Jekimovs LJ, Menzel JP, Poad BLJ, Blanksby SJ. Identification of Carbon-Carbon Double Bond Stereochemistry in Unsaturated Fatty Acids by Charge-Remote Fragmentation of Fixed-Charge Derivatives. Anal Chem 2022; 94:16180-16188. [DOI: 10.1021/acs.analchem.2c03625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Reuben S. E. Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Clare L. Flakelar
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane 4014, Queensland, Australia
| | - Venkateswara R. Narreddula
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Lachlan J. Jekimovs
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Jan P. Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Berwyck L. J. Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Stephen J. Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| |
Collapse
|
15
|
Feng Y, Lv Y, Gu TJ, Chen B, Li L. Quantitative Analysis and Structural Elucidation of Fatty Acids by Isobaric Multiplex Labeling Reagents for Carbonyl-Containing Compound (SUGAR) Tags and m-CPBA Epoxidation. Anal Chem 2022; 94:13036-13042. [PMID: 36099193 PMCID: PMC9912774 DOI: 10.1021/acs.analchem.2c01917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, a novel analytical method was developed to investigate fatty acids (FAs) for relative quantification, carbon-carbon double-bond localization, and cis-/trans-geometry differentiation by isobaric multiplex labeling reagents for carbonyl-containing compound (SUGAR) tag conjugation and meta-chloroperoxybenzoic acid (m-CPBA) epoxidation. FAs are essential components of cells and have diverse functions in energy storage and as complex lipid constituents. It has been reported that FAs play different roles in various biological processes such as the functional development of the brain. The comprehensive characterization and quantification of FAs are crucial to further elucidate their biological roles. However, it is challenging to perform relative quantification and structural elucidation of FAs using integrated mass spectrometry (MS)-based methods. Recently, our group developed isobaric multiplex SUGAR tags for quantitative glycomics. Besides aldehyde/ketone groups on glycans, hydrazide groups also possess reactivity toward carboxylic acids on FAs. In this study, we extended SUGAR tag labeling with FAs for the quantitative analysis by liquid chromatography (LC)-MS/MS in the positive ion mode and applied this strategy for the comparative analysis of FAs hydrolyzed from oil samples. In addition, to comprehensively elucidate the structures of unsaturated FAs, epoxidation by m-CPBA was performed before SUGAR tag labeling to enable carbon-carbon double-bond localization. Moreover, the cis- and trans-geometries of carbon-carbon double bonds in multiple pairs of monounsaturated FAs could also be differentiated in higher-energy collisional dissociation (HCD)-MS/MS. This study developed a high-throughput comprehensive FA analysis platform, which could be widely applied and utilized in biological and clinical studies.
Collapse
Affiliation(s)
- Yu Feng
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Yanni Lv
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States.,School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Ting-Jia Gu
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Bingming Chen
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Shields SWJ, Sanders JD, Brodbelt JS. Enhancing the Signal-to-Noise of Diagnostic Fragment Ions of Unsaturated Glycerophospholipids via Precursor Exclusion Ultraviolet Photodissociation Mass Spectrometry (PEx-UVPD-MS). Anal Chem 2022; 94:11352-11359. [PMID: 35917227 PMCID: PMC9484799 DOI: 10.1021/acs.analchem.2c02128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding and elucidating the diverse structures and functions of lipids has motivated the development of many innovative tandem mass spectrometry (MS/MS) strategies. Higher-energy activation methods, such as ultraviolet photodissociation (UVPD), generate unique fragment ions from glycerophospholipids that can be used to perform in-depth structural analysis and facilitate the deconvolution of isomeric lipid structures in complex samples. Although detailed characterization is central to the correlation of lipid structure to biological function, it is often impeded by the lack of sufficient instrument sensitivity for highly bioactive but low-abundance phospholipids. Here, we present precursor exclusion (PEx) UVPD, a simple yet powerful technique to enhance the signal-to-noise (S/N) of informative low-abundance fragment ions produced from UVPD of glycerophospholipids. Through the exclusion of the large population of undissociated precursor ions with an MS3 strategy, the S/N of diagnostic fragment ions from PC 18:0/18:2(9Z, 12Z) increased up to an average of 13x for PEx-UVPD compared to UVPD alone. These enhancements were extended to complex mixtures of lipids from bovine liver extract to confidently identify 35 unique structures using liquid chromatography PEx-UVPD. This methodology has the potential to advance lipidomics research by offering deeper structure elucidation and confident identification of biologically active lipids.
Collapse
Affiliation(s)
- Samuel W J Shields
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Gu TJ, Feng Y, Wang D, Li L. Simultaneous multiplexed quantification and C=C localization of fatty acids with LC-MS/MS using isobaric multiplex reagents for carbonyl-containing compound (SUGAR) tags and C=C epoxidation. Anal Chim Acta 2022; 1225:340215. [DOI: 10.1016/j.aca.2022.340215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/01/2022]
|
18
|
Kirkwood KI, Pratt BS, Shulman N, Tamura K, MacCoss MJ, MacLean BX, Baker ES. Utilizing Skyline to analyze lipidomics data containing liquid chromatography, ion mobility spectrometry and mass spectrometry dimensions. Nat Protoc 2022; 17:2415-2430. [PMID: 35831612 DOI: 10.1038/s41596-022-00714-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/21/2022] [Indexed: 12/26/2022]
Abstract
Lipidomics studies suffer from analytical and annotation challenges because of the great structural similarity of many of the lipid species. To improve lipid characterization and annotation capabilities beyond those afforded by traditional mass spectrometry (MS)-based methods, multidimensional separation methods such as those integrating liquid chromatography, ion mobility spectrometry, collision-induced dissociation and MS (LC-IMS-CID-MS) may be used. Although LC-IMS-CID-MS and other multidimensional methods offer valuable hydrophobicity, structural and mass information, the files are also complex and difficult to assess. Thus, the development of software tools to rapidly process and facilitate confident lipid annotations is essential. In this Protocol Extension, we use the freely available, vendor-neutral and open-source software Skyline to process and annotate multidimensional lipidomic data. Although Skyline ( https://skyline.ms/skyline.url ) was established for targeted processing of LC-MS-based proteomics data, it has since been extended such that it can be used to analyze small-molecule data as well as data containing the IMS dimension. This protocol uses Skyline's recently expanded capabilities, including small-molecule spectral libraries, indexed retention time and ion mobility filtering, and provides a step-by-step description for importing data, predicting retention times, validating lipid annotations, exporting results and editing our manually validated 500+ lipid library. Although the time required to complete the steps outlined here varies on the basis of multiple factors such as dataset size and familiarity with Skyline, this protocol takes ~5.5 h to complete when annotations are rigorously verified for maximum confidence.
Collapse
Affiliation(s)
- Kaylie I Kirkwood
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Brian S Pratt
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nicholas Shulman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Kaipo Tamura
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA. .,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
19
|
Mao R, Li W, Jia P, Ding H, Teka T, Zhang L, Fu Z, Fu X, Kaushal S, Dou Z, Han L. An efficient and sensitive method on the identification of unsaturated fatty acids in biosamples: Total lipid extract from bovine liver as a case study. J Chromatogr A 2022; 1675:463176. [DOI: 10.1016/j.chroma.2022.463176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
|
20
|
Zhang B, Wang Y, Zhou BW, Cheng J, Xu Q, Zhang L, Sun TQ, Zhang J, Guo YL. Chloramine-T-Enabled Mass Spectrometric Analysis of C═C Isomers of Unsaturated Fatty Acids and Phosphatidylcholines in Human Thyroids. Anal Chem 2022; 94:6216-6224. [PMID: 35420783 DOI: 10.1021/acs.analchem.1c05607] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Specific locations of carbon-carbon double bonds (C═C) in lipids often play an essential role in biological processes, and there has been a booming development in C═C composition analysis by mass spectrometry. However, a universal derivatization and fragmentation pattern for the annotation of C═C positions in lipids is still challenging and attractive. To expand this field in lipidomics, a flexible and convenient N-tosylaziridination method was developed, with high derivatization efficiency, sensitivity, and specificity. The derivatization was very fast (15 s), and C═C numbers as well as locations could be pinpointed specifically in tandem mass spectra. By qualitative and quantitative studies of paratumor and tumor thyroid tissues of human beings, the total content of unsaturated fatty acids was suggested to be increased in tumor tissues, and good correlations in and between lysophosphatidylcholines and phosphatidylcholines were revealed by Spearman analysis. Further studies of C═C isomers showed that n-6/n-3 ratios were closely associated with human thyroid tumorigenesis, and high ratios of n-6/n-3 isomers seemed to suffer a high risk of carcinogenesis. Other isomers were not very representative; however, C═C in n-9/n-7 could also be significant for oncology research. Generally, it is supposed that both total amounts and C═C isomer ratios were related to cancer, and N-tosylaziridine derivatization could provide an alternative strategy for the C═C isomer study of disease models.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yunjun Wang
- Department of Head and Neck Surgery, Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, 270 Dongan Road, Shanghai 200032, China
| | - Bo-Wen Zhou
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jie Cheng
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qi Xu
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Li Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Tuan-Qi Sun
- Department of Head and Neck Surgery, Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, 270 Dongan Road, Shanghai 200032, China
| | - Jing Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yin-Long Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
21
|
Liao S, Sherman G, Huang Y. Elucidation of double-bond positions of polyunsaturated alkenes through gas chromatography/mass spectrometry analysis of mono-dimethyl disulfide derivatives. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9228. [PMID: 34845773 DOI: 10.1002/rcm.9228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/24/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Derivatization with dimethyl disulfide (DMDS) followed by gas chromatography/mass spectrometry (GC/MS) analysis is a well-established method for locating double-bond position on the alkyl chain of mono-unsaturated compounds such as alkenes. For alkenes containing more than one double bond, however, the conventional DMDS derivatization approach forms poly- or cyclized DMDS adducts whose mass spectra are difficult to interpret in terms of double-bond positions. In this study, we report an efficient experimental procedure to produce mono-DMDS adducts for polyunsaturated alkenes with two to six double bonds. GC/MS analyses of these mono-DMDS adducts yield highly characteristic mass fragments, allowing unambiguous assignments of double-bond positions on the alkyl chain. We also apply our new approach (i.e., preferential formation of mono-DMDS adducts during derivatization with DMDS) to determine the double-bond positions of unsaturated alkenes produced by laboratory cultured Isochrysis litoralis, a haptophyte algal species. METHODS Alkenes from different sources were derivatized with DMDS at 25°C for 20 to 160 min. The mass spectra of mono-DMDS adducts were obtained by GC/EI-MS analysis of reaction products which contain chromatographically resolved mono-DMDS adducts. RESULTS Mass spectra of corresponding mono-DMDS adducts contain prominent diagnostic ions that allow a conclusive elucidation of double-bond positions. In culture samples of Isochrysis litoralis, a series of novel mono- to tri-unsaturated C31 alkenes (9-C31:1 , 6,9-C31:2 , 6,22-C31:2 , 6,25-C31:2 , 9,22-C31:2 , 6,9,25-C31:3 ) were discovered for the first time. CONCLUSIONS A highly efficient DMDS derivatization approach is developed to yield abundant mono-DMDS adducts of polyunsaturated alkyl alkenes for elucidating double-bond positions using GC/MS.
Collapse
Affiliation(s)
- Sian Liao
- Department of Chemistry, Brown University, Providence, RI, USA
- Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
| | - Gordon Sherman
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA
| | - Yongsong Huang
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
22
|
Swiner DJ, Kulyk DS, Osae H, Durisek GR, Badu-Tawiah AK. Reactive Thread Spray Mass Spectrometry for Localization of C═C Bonds in Free Fatty Acids: Applications for Obesity Diagnosis. Anal Chem 2022; 94:2358-2365. [PMID: 35072466 PMCID: PMC9107611 DOI: 10.1021/acs.analchem.1c03270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cellulose thread substrates offer a platform for microsampling and reactive ionization of free fatty acid (FFA) isomers for direct differentiation by mass spectrometry. Ambient corona discharge forms when direct current high voltage is applied to the tiny subfibers on the thread substrate in the presence of a polar spray solvent (MeOH/H2O, 2:1, v/v), facilitating chemical reactions across a C═C bond of unsaturated fatty acids. The process was applied for diagnosis of obesity, which we observed to show better discriminatory power when compared to determinations based on body mass index. Overall, the integrated reactive thread-based platform is capable of (i) microsampling and dry-state, room-temperature storage (>30 days) of the biofluids, (ii) in-capillary liquid/liquid extraction, and (iii) in situ epoxidation reactions to locate the C═C bond position in unsaturated fatty acids via reactions with reactive oxygen species present in ambient corona discharge. The study showcased the ability to correctly characterize FFAs, including degree of unsaturation, and the determination of their relative concentrations in clinical biofluid samples.
Collapse
Affiliation(s)
- Devin J. Swiner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Dmytro S. Kulyk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Hannah Osae
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - George R. Durisek
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Abraham K. Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
23
|
Jian R, Zhao X, Lin Q, Xia Y. Profiling of branched-chain fatty acids via nitroxide radical-directed dissociation integrated on an LC-MS/MS workflow. Analyst 2022; 147:2115-2123. [DOI: 10.1039/d2an00266c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By coupling O-benzylhydroxylamine derivatization and tandem mass spectrometry, nitroxide radical-induced dissociation can be initiated via collisional activation which enables the analysis of methyl branching(s) in fatty acids.
Collapse
Affiliation(s)
- Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xue Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiaohong Lin
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Pathmasiri KC, Nguyen TTA, Khamidova N, Cologna SM. Mass spectrometry-based lipid analysis and imaging. CURRENT TOPICS IN MEMBRANES 2021; 88:315-357. [PMID: 34862030 DOI: 10.1016/bs.ctm.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful tool for in situ mapping of analytes across a sample. With growing interest in lipid biochemistry, the ability to perform such mapping without antibodies has opened many opportunities for MSI and lipid analysis. Herein, we discuss the basics of MSI with particular emphasis on MALDI mass spectrometry and lipid analysis. A discussion of critical advancements as well as protocol details are provided to the reader. In addition, strategies for improving the detection of lipids, as well as applications in biomedical research, are presented.
Collapse
Affiliation(s)
- Koralege C Pathmasiri
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Nigina Khamidova
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States; Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
25
|
Zhang J, Guo C, Huo X, Ma X, Li X, Abliz Z, Chu Y, Wang X, Tang F. Unsaturated lipid isomeric imaging based on the Paternò-Büchi reaction in the solid phase in ambient conditions. Talanta 2021; 235:122816. [PMID: 34517672 DOI: 10.1016/j.talanta.2021.122816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022]
Abstract
In recent years, the development of unsaturated lipid isomeric imaging based on the Paternò-Büchi (PB) reaction has improved significantly. However, research on this imaging method in ambient conditions needs to expand. In this paper, a method of PB reaction in the solid phase in ambient conditions is developed, which is combined with air-flow-assisted desorption electrospray ionisation mass spectrometry (AFADESI-MS) to achieve in situ imaging of lipids at an isomeric level. Experiments showed that the efficiency of the PB reaction was much higher when spraying the reagent solution than when sprinkling the reactant powder directly, and it was not lower than that in the liquid phase. This method can simplify the reaction conditions in the imaging process and can be applied to tissue section samples with only 10 min of pre-processing. The study successfully demonstrated the spatial distribution of unsaturated lipid isomers, and the isomeric ratio corresponded to the lesion areas in mouse brain cancer tissues. Due to its simple operation and performance in ambient conditions, this method may be useful for future studies on lipid isomers in tissues.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Science, Beijing Institute of Technology, No.5 Yard, Zhongguancun South Street, Haidian District, Beijing, 100081, China; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Zhongguancun Street, Haidian District, Beijing, 100084, China
| | - Chengan Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Zhongguancun Street, Haidian District, Beijing, 100084, China
| | - Xinming Huo
- Tsinghua Shenzhen International Graduate School, Shenzhen University Town, Lishui Road, Xili Town, Nanshan District, Shenzhen, 518055, China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Zhongguancun Street, Haidian District, Beijing, 100084, China
| | - Xin Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, A2 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, A2 Nanwei Road, Xicheng District, Beijing, 100050, China; Centre for Imaging and Systems Biology, Minzu University of China, No.27 Yard, Zhongguancun South Street, Haidian District, Beijing, 100091, China
| | - Yao Chu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Zhongguancun Street, Haidian District, Beijing, 100084, China
| | - Xiaohao Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Zhongguancun Street, Haidian District, Beijing, 100084, China
| | - Fei Tang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Zhongguancun Street, Haidian District, Beijing, 100084, China.
| |
Collapse
|
26
|
Horká P, Vrkoslav V, Kindl J, Schwarzová-Pecková K, Cvačka J. Structural Characterization of Unusual Fatty Acid Methyl Esters with Double and Triple Bonds Using HPLC/APCI-MS 2 with Acetonitrile In-Source Derivatization. Molecules 2021; 26:molecules26216468. [PMID: 34770878 PMCID: PMC8588306 DOI: 10.3390/molecules26216468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Double and triple bonds have significant effects on the biological activities of lipids. Determining multiple bond positions in their molecules by mass spectrometry usually requires chemical derivatization. This work presents an HPLC/MS method for pinpointing the double and triple bonds in fatty acids. Fatty acid methyl esters were separated by reversed-phase HPLC with an acetonitrile mobile phase. In the APCI source, acetonitrile formed reactive species, which added to double and triple bonds to form [M + C3H5N]+• ions. Their collisional activation in an ion trap provided fragments helpful in localizing the multiple bond positions. This approach was applied to fatty acids with isolated, cumulated, and conjugated double bonds and triple bonds. The fatty acids were isolated from the fat body of early-nesting bumblebee Bombus pratorum and seeds or seed oils of Punicum granatum, Marrubium vulgare, and Santalum album. Using the method, the presence of the known fatty acids was confirmed, and new ones were discovered.
Collapse
Affiliation(s)
- Petra Horká
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 166 00 Prague 6, Czech Republic; (P.H.); (V.V.); (J.K.)
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic;
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 166 00 Prague 6, Czech Republic; (P.H.); (V.V.); (J.K.)
| | - Jiří Kindl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 166 00 Prague 6, Czech Republic; (P.H.); (V.V.); (J.K.)
| | - Karolina Schwarzová-Pecková
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic;
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 166 00 Prague 6, Czech Republic; (P.H.); (V.V.); (J.K.)
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic;
- Correspondence: ; Tel.: +420-220-183-303
| |
Collapse
|
27
|
Macias LA, Garza KY, Feider CL, Eberlin LS, Brodbelt JS. Relative Quantitation of Unsaturated Phosphatidylcholines Using 193 nm Ultraviolet Photodissociation Parallel Reaction Monitoring Mass Spectrometry. J Am Chem Soc 2021; 143:14622-14634. [PMID: 34486374 PMCID: PMC8579512 DOI: 10.1021/jacs.1c05295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structural characterization of glycerophospholipids beyond the fatty acid level has become a major endeavor in lipidomics, presenting an opportunity to advance the understanding of the intricate relationship between lipid metabolism and disease state. Distinguishing subtle lipid structural features, however, remains a major challenge for high-throughput workflows that implement traditional tandem mass spectrometry (MS/MS) techniques, stunting the molecular depth of quantitative strategies. Here, reversed phase liquid chromatography is coupled to parallel reaction mass spectrometry utilizing the double bond localization capabilities of ultraviolet photodissociation (UVPD) mass spectrometry to produce double bond isomer specific responses that are leveraged for relative quantitation. The strategy provides lipidomic characterization at the double bond level for phosphatidylcholine phospholipids from biological extracts. In addition to quantifying monounsaturated lipids, quantitation of phospholipids incorporating isomeric polyunsaturated fatty acids is also achieved. Using this technique, phosphatidylcholine isomer ratios are compared across human normal and tumor breast tissue to reveal significant structural alterations related to disease state.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyana Y Garza
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Clara L Feider
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
28
|
Xu S, Lv X, Wu B, Xie Y, Wu Z, Tu X, Chen H, Wei F. Pseudotargeted Lipidomics Strategy Enabling Comprehensive Profiling and Precise Lipid Structural Elucidation of Polyunsaturated Lipid-Rich Echium Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9012-9024. [PMID: 33683118 DOI: 10.1021/acs.jafc.0c07268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Echium oil has great nutritional value as a result of its high content of α-linolenic acid (ALA, 18:3ω-3) and stearidonic acid (SDA, 18:4ω-3). However, the comprehensive lipid profiling and exact structural characterization of bioactive polyunsaturated lipids in echium oil have not yet been obtained. In this study, we developed a novel pseudotargeted lipidomics strategy for comprehensive profiling and lipid structural elucidation of polyunsaturated lipid-rich echium oil. Our approach integrated untargeted lipidomics analysis with a targeted lipidomics strategy based on Paternò-Büchi (PB)-tandem mass spectrometry (MS/MS) using 2-acetylpyridine (2-AP) as the reaction reagent, allowing for high-coverage lipid profiling and simultaneous determination of C═C locations in triacylglycerols (TGs), diacylglycerols (DGs), free fatty acids (FFAs), and sterol esters (SEs) in echium oil. A total of 209 lipid species were profiled, among which 162 unsaturated lipids were identified with C═C location assignment and 42 groups of ω-3 and ω-6 C═C location isomers were discovered. In addition, relative isomer ratios of certain groups of lipid C═C location isomers were revealed. This pseudotargeted lipidomics strategy described in this study is expected to provide new insight into structural characterization of distinctive bioactive lipids in food.
Collapse
Affiliation(s)
- Shuling Xu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Bangfu Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Ya Xie
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Zongyuan Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xinghao Tu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Hong Chen
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
29
|
B Gowda SG, Gowda D, Ohno M, Liang C, Chiba H, Hui SP. Detection and Structural Characterization of SFAHFA Homologous Series in Mouse Colon Contents by LTQ-Orbitrap-MS and Their Implication in Influenza Virus Infection. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2196-2205. [PMID: 34170677 DOI: 10.1021/jasms.1c00138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) are a new class of endogenous lipids with promising physiological functions in mammals. We previously introduced a new type of lipids to this family called short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs), branching specific to the C2 carbon of a long-chain fatty acid (≥C20). In this study, we discovered a homologous series of SFAHFAs comprising C16-C26 hydroxy fatty acids esterified with short-chain fatty acids (C2-C5) in mouse colon contents. The detected SFAHFAs were characterized by high-resolution mass spectrometry with MSn analysis. The double-bond position of monounsaturated SFAHFAs was determined by the epoxidation reaction of samples with m-chloroperoxybenzoic acid and their MSn analysis. Further, the measurement of SFAHFA concentration in the colon contents of mice infected with influenza A/Puerto Rico/8/34 (H1N1; PR8) virus revealed a significant increase in their levels compared to native control. A strong correlation was observed between hydroxy fatty acid and SFAHFAs. Detection, characterization, and profiling of these new SFAHFA levels in relation with pandemic H1N1; PR8 influenza virus will contribute to the in-depth study of their function and metabolism.
Collapse
Affiliation(s)
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan
| | - Marumi Ohno
- Zoonosis Research Center, Hokkaido University, Kita-20, Nishi-10, Kita-Ku, Sapporo 001-0020, Japan
| | - Chongsheng Liang
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo 007-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan
| |
Collapse
|
30
|
Moon SH, Dilthey BG, Liu X, Guan S, Sims HF, Gross RW. High-fat diet activates liver iPLA 2γ generating eicosanoids that mediate metabolic stress. J Lipid Res 2021; 62:100052. [PMID: 33636162 PMCID: PMC8010217 DOI: 10.1016/j.jlr.2021.100052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
High-fat (HF) diet-induced obesity precipitates multiple metabolic disorders including insulin resistance, glucose intolerance, oxidative stress, and inflammation, resulting in the initiation of cell death programs. Previously, we demonstrated murine germline knockout of calcium-independent phospholipase A2γ (iPLA2γ) prevented HF diet-induced weight gain, attenuated insulin resistance, and decreased mitochondrial permeability transition pore (mPTP) opening leading to alterations in bioenergetics. To gain insight into the specific roles of hepatic iPLA2γ in mitochondrial function and cell death under metabolic stress, we generated a hepatocyte-specific iPLA2γ-knockout (HEPiPLA2γKO). Using this model, we compared the effects of an HF diet on wild-type versus HEPiPLA2γKO mice in eicosanoid production and mitochondrial bioenergetics. HEPiPLA2γKO mice exhibited higher glucose clearance rates than WT controls. Importantly, HF-diet induced the accumulation of 12-hydroxyeicosatetraenoic acid (12-HETE) in WT liver which was decreased in HEPiPLA2γKO. Furthermore, HF-feeding markedly increased Ca2+ sensitivity and resistance to ADP-mediated inhibition of mPTP opening in WT mice. In contrast, ablation of iPLA2γ prevented the HF-induced hypersensitivity of mPTP opening to calcium and maintained ADP-mediated resistance to mPTP opening. Respirometry revealed that ADP-stimulated mitochondrial respiration was significantly reduced by exogenous 12-HETE. Finally, HEPiPLA2γKO hepatocytes were resistant to calcium ionophore-induced lipoxygenase-mediated lactate dehydrogenase release. Collectively, these results demonstrate that an HF diet increases iPLA2γ-mediated hepatic 12-HETE production leading to mitochondrial dysfunction and hepatic cell death.
Collapse
Affiliation(s)
- Sung Ho Moon
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Beverly Gibson Dilthey
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Xinping Liu
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shaoping Guan
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Harold F Sims
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA; Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA; Department of Chemistry, Washington University, Saint Louis, MO, USA.
| |
Collapse
|
31
|
Hu T, Sun Y, Li H, Du P, Liu L, An Z. Dual derivatization strategy for the comprehensive quantification and double bond location characterization of fatty acids by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1639:461939. [PMID: 33530009 DOI: 10.1016/j.chroma.2021.461939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Comprehensive analysis of fatty acids (FAs) has long been challenging due to their poor ionization efficiency, lack of characteristic fragment ions and difficulty of identifying C=C bond locations. In this study, a high coverage ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established for the quantification and C=C bond location characterization of FAs using two structural analogues, 2-hydrazinyl-4,6-dimethylpyrimidine (DMP) and 2-hydrazinylpyrimidine (DP), as dual derivatization reagents. DP-labeled FA standards were used as internal standards to reduced matrix effects, which guaranteed the accurate quantification of FAs. The derivatization yields of FAs were larger than 99% and the sensitivities were increased by 400-fold compared with non-derivatized FAs. Pretreatment and instrumental analysis of FAs can be completed in 20 minutes. Only 5 μL rat plasma can satisfy the quantification of 36 FAs with good linearity (r>0.99). Both intra-day and inter-day accuracies were in the range of 85-105%, and the precisions were less than 15%. The extraction recoveries were investigated to be in the range of 88-112%. No obvious matrix effects were observed for the derivatized FAs. In addition, the locations of C=C bonds in DMP-derivatized FAs could be identified by diagnostic fragment ions generated from 1,4-hydrogen elimination and allylic cleavage under low energy collision induced dissociation (CID). The new method was finally employed for FA profiling in plasma from rats with moxifloxacin-induced liver injury. Significant downregulation of butyric acid was observed in moxifloxacin treated model rats, which was believed to be related to the liver injury.
Collapse
Affiliation(s)
- Ting Hu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Yuan Sun
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Han Li
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Ping Du
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Lihong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| | - Zhuoling An
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
32
|
Zaikin VG, Borisov RS. Options of the Main Derivatization Approaches for Analytical ESI and MALDI Mass Spectrometry. Crit Rev Anal Chem 2021; 52:1287-1342. [PMID: 33557614 DOI: 10.1080/10408347.2021.1873100] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inclusion of preliminary chemical labeling (derivatization) in the analysis process by such powerful and widespread methods as electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a popular and widely used methodological approach. This is due to the need to remove some fundamental limitations inherent in these powerful analytic methods. Although a number of special reviews has been published discussing the utilization of derivatization approaches, the purpose of the present critical review is to comprehensively summarize, characterize and evaluate most of the previously developed and practically applied, as well as recently proposed representative derivatization reagents for ESI-MS and MALDI-MS platforms in their mostly sensitive positive ion mode and frequently hyphenated with separation techniques. The review is focused on the use of preliminary chemical labeling to facilitate the detection, identification, structure elucidation, quantification, profiling or MS imaging of compounds within complex matrices. Two main derivatization approaches, namely the introduction of permanent charge-fixed or highly proton affinitive residues into analytes are critically evaluated. In situ charge-generation, charge-switch and charge-transfer derivatizations are considered separately. The potential of using reactive matrices in MALDI-MS and chemical labeling in MS-based omics sciences is given.
Collapse
Affiliation(s)
- Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Roman S Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
33
|
Mass Spectrometry-Based Shotgun Lipidomics Using Charge-Switch Derivatization for Analysis of Complex Long-Chain Fatty Acids. Methods Mol Biol 2021; 2306:93-103. [PMID: 33954942 DOI: 10.1007/978-1-0716-1410-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Charge-switch derivatization to convert long-chain fatty acids (LCFAs) to their N-(4-aminomethylphenyl) pyridinium (AMPP) derivatives (FA-AMPP derivative) drastically increases their sensitivity (>102) detected by electrospray ionization (ESI) or matrix assisted laser desorption ionization (MALDI). Lipidomic analyses of the FA-AMPP derivatives by ESI combined with CID tandem mass spectrometry (MS2), or by MALDI-TOF/TOF affords unambiguous structural characterization of LCFAs, including many unusual microbial LCFAs that contain various functional groups such as methyl, hydroxyl, cyclopropyl, and double bond(s). The ease of preparation of the FA-AMPP derivatives, the tremendous gain in sensitivity after derivatization, and more importantly, the readily recognizable product ion spectra that contain rich structurally informative fragment ions for locating functional groups make this method one of the most powerful techniques for LCFA identification and quantification.
Collapse
|
34
|
Odenkirk MT, Zin PPK, Ash JR, Reif DM, Fourches D, Baker ES. Structural-based connectivity and omic phenotype evaluations (SCOPE): a cheminformatics toolbox for investigating lipidomic changes in complex systems. Analyst 2020; 145:7197-7209. [PMID: 33094747 PMCID: PMC7695036 DOI: 10.1039/d0an01638a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since its inception, the main goal of the lipidomics field has been to characterize lipid species and their respective biological roles. However, difficulties in both full speciation and biological interpretation have rendered these objectives extremely challenging and as a result, limited our understanding of lipid mechanisms and dysregulation. While mass spectrometry-based advancements have significantly increased the ability to identify lipid species, less progress has been made surrounding biological interpretations. We have therefore developed a Structural-based Connectivity and Omic Phenotype Evaluations (SCOPE) cheminformatics toolbox to aid in these evaluations. SCOPE enables the assessment and visualization of two main lipidomic associations: structure/biological connections and metadata linkages either separately or in tandem. To assess structure and biological relationships, SCOPE utilizes key lipid structural moieties such as head group and fatty acyl composition and links them to their respective biological relationships through hierarchical clustering and grouped heatmaps. Metadata arising from phenotypic and environmental factors such as age and diet is then correlated with the lipid structures and/or biological relationships, utilizing Toxicological Prioritization Index (ToxPi) software. Here, SCOPE is demonstrated for various applications from environmental studies to clinical assessments to showcase new biological connections not previously observed with other techniques.
Collapse
Affiliation(s)
- Melanie T Odenkirk
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Randolph CE, Blanksby SJ, McLuckey SA. Enhancing detection and characterization of lipids using charge manipulation in electrospray ionization-tandem mass spectrometry. Chem Phys Lipids 2020; 232:104970. [PMID: 32890498 PMCID: PMC7606777 DOI: 10.1016/j.chemphyslip.2020.104970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Heightened awareness regarding the implication of disturbances in lipid metabolism with respect to prevalent human-related pathologies demands analytical techniques that provide unambiguous structural characterization and accurate quantitation of lipids in complex biological samples. The diversity in molecular structures of lipids along with their wide range of concentrations in biological matrices present formidable analytical challenges. Modern mass spectrometry (MS) offers an unprecedented level of analytical power in lipid analysis, as many advancements in the field of lipidomics have been facilitated through novel applications of and developments in electrospray ionization tandem mass spectrometry (ESI-MS/MS). ESI allows for the formation of intact lipid ions with little to no fragmentation and has become widely used in contemporary lipidomics experiments due to its sensitivity, reproducibility, and compatibility with condensed-phase modes of separation, such as liquid chromatography (LC). Owing to variations in lipid functional groups, ESI enables partial chemical separation of the lipidome, yet the preferred ion-type is not always formed, impacting lipid detection, characterization, and quantitation. Moreover, conventional ESI-MS/MS approaches often fail to expose diverse subtle structural features like the sites of unsaturation in fatty acyl constituents or acyl chain regiochemistry along the glycerol backbone, representing a significant challenge for ESI-MS/MS. To overcome these shortcomings, various charge manipulation strategies, including charge-switching, have been developed to transform ion-type and charge state, with aims of increasing sensitivity and selectivity of ESI-MS/MS approaches. Importantly, charge manipulation approaches afford enhanced ionization efficiency, improved mixture analysis performance, and access to informative fragmentation channels. Herein, we present a critical review of the current suite of solution-based and gas-phase strategies for the manipulation of lipid ion charge and type relevant to ESI-MS/MS.
Collapse
Affiliation(s)
- Caitlin E Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|
36
|
Chintalapudi K, Badu-Tawiah AK. An integrated electrocatalytic nESI-MS platform for quantification of fatty acid isomers directly from untreated biofluids. Chem Sci 2020; 11:9891-9897. [PMID: 34094249 PMCID: PMC8162127 DOI: 10.1039/d0sc03403g] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/23/2020] [Indexed: 12/17/2022] Open
Abstract
Positional isomers of alkenes are frequently transparent to the mass spectrometer and it is difficult to provide convincing data to support their presence. This work focuses on the development of a new reactive nano-electrospray ionization (nESI) platform that utilizes non-inert metal electrodes (e.g., Ir and Ru) for rapid detection of fatty acids by mass spectrometry (MS), with concomitant localization of the C[double bond, length as m-dash]C bond to differentiate fatty acid isomers. During the electrospray process, the electrical energy (direct current voltage) is harnessed for in situ oxide formation on the electrode surface via electro-oxidation. The as-formed surface oxides are found to facilitate in situ epoxide formation at the C[double bond, length as m-dash]C bond position and the products are analyzed by MS in real-time. This phenomenon has been applied to analyze isomers of unsaturated fatty acids from complex serum samples, without pre-treatment.
Collapse
Affiliation(s)
- Kavyasree Chintalapudi
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| |
Collapse
|
37
|
Hellhake S, Meckelmann SW, Empl MT, Rentmeister K, Wißdorf W, Steinberg P, Schmitz OJ, Benter T, Schebb NH. Non-targeted and targeted analysis of oxylipins in combination with charge-switch derivatization by ion mobility high-resolution mass spectrometry. Anal Bioanal Chem 2020; 412:5743-5757. [PMID: 32699965 PMCID: PMC7413910 DOI: 10.1007/s00216-020-02795-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Eicosanoids and other oxylipins play an important role in mediating inflammation as well as other biological processes. For the investigation of their biological role(s), comprehensive analytical methods are necessary, which are able to provide reliable identification and quantification of these compounds in biological matrices. Using charge-switch derivatization with AMPP (N-(4-aminomethylphenyl)pyridinium chloride) in combination with liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry (LC-IM-QTOF-MS), we developed a non-target approach to analyze oxylipins in plasma, serum, and cells. The developed workflow makes use of an ion mobility resolved fragmentation to pinpoint derivatized molecules based on the cleavage of AMPP, which yields two specific fragment ions. This allows a reliable identification of known and unknown eicosanoids and other oxylipins. We characterized the workflow using 52 different oxylipins and investigated their fragmentation patterns and ion mobilities. Limits of detection ranged between 0.2 and 10.0 nM (1.0-50 pg on column), which is comparable with other state-of-the-art methods using LC triple quadrupole (QqQ) MS. Moreover, we applied this strategy to analyze oxylipins in different biologically relevant matrices, as cultured cells, human plasma, and serum. Graphical abstract.
Collapse
Affiliation(s)
- Stefan Hellhake
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstr. 5-7, 45141, Essen, Germany
| | - Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bünteweg 2, 30559, Hannover, Germany
| | - Kristina Rentmeister
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstr. 5-7, 45141, Essen, Germany
| | - Walter Wißdorf
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bünteweg 2, 30559, Hannover, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstr. 5-7, 45141, Essen, Germany
| | - Thorsten Benter
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Nils Helge Schebb
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
38
|
Xia T, Ren H, Zhang W, Xia Y. Lipidome-wide characterization of phosphatidylinositols and phosphatidylglycerols on CC location level. Anal Chim Acta 2020; 1128:107-115. [PMID: 32825894 DOI: 10.1016/j.aca.2020.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/25/2020] [Accepted: 06/09/2020] [Indexed: 01/03/2023]
Abstract
Phosphatidylglycerol (PG) and phosphatidylinositol (PI) are two essential classes of glycerophospholipids (GPs), playing versatile roles such as signalling messengers and lipid-protein interaction ligands in cell. Although a majority of PG and PI molecular species contain unsaturated fatty acyl chain(s), conventional tandem mass spectrometry (MS/MS) methods cannot discern isomers different in carbon-carbon double bond (CC) locations. In this work, we paired phosphate methylation with acetone Paternò-Büchi (PB) reaction, aiming to provide a solution for sensitive and structurally informative analysis of these two important classes of GPs down to the location of CC. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflow was established. Offline methylated PG or PI mixtures were subjected to hydrophilic interaction chromatographic separation, online acetone PB reaction, and MS/MS via collision-induced dissociation (CID) for CC location determination in positive ion mode. This method was sensitive, offering limit of identification at 5 nM for both PG and PI standards down to CC locations. On molecular species level, 49 PI and 31 PG were identified from bovine liver, while 61 PIs were identified from human plasma. This workflow also enabled ratiometric comparisons of CC location isomers (C18:1 Δ9 vs. Δ11) of a series of PIs from type 2 diabetes (T2D) plasma to that of normal plasma samples. PI 16:0_18:1 and PI 18:0_18:1 were found to exhibit significant changes in CC isomeric ratios between T2D and normal plasma samples. The above results demonstrate that the developed LC-PB-MS/MS workflow is applicable to different classes of lipids and compatible with other established lipid derivatization methods to achieve comprehensive lipid analysis.
Collapse
Affiliation(s)
- Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hanlin Ren
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenpeng Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China; Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
39
|
Feider CL, Macias LA, Brodbelt JS, Eberlin LS. Double Bond Characterization of Free Fatty Acids Directly from Biological Tissues by Ultraviolet Photodissociation. Anal Chem 2020; 92:8386-8395. [PMID: 32421308 PMCID: PMC7433749 DOI: 10.1021/acs.analchem.0c00970] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Free fatty acids (FA) are a vital component of cells and are critical to cellular structure and function, so much so that alterations in FA are often associated with cell malfunction and disease. Analysis of FA from biological samples can be achieved by mass spectrometry (MS), but these analyses are often not capable of distinguishing the fine structural alterations within FA isomers and often limited to global profiling of lipids without spatial resolution. Here, we present the use of ultraviolet photodissociation (UVPD) for the characterization of double bond positional isomers of charge inverted dication·FA complexes and the subsequent implementation of this method for online desorption electrospray ionization (DESI) MS imaging of FA isomers from human tissue sections. This method allows relative quantification of FA isomers from heterogeneous biological tissue sections, yielding spatially resolved information about alterations in double bond isomers within these samples. Applying this method to the analysis of the monounsaturated FA 18:1 within breast cancer subtypes uncovered a correlation between double bond positional isomer abundance and the hormone receptor status of the tissue sample, an important factor in the prognosis and treatment of breast cancer patients. This result further validates similar studies that suggest FA synthase activity and FA isomer abundances are significantly altered within breast cancer tissue.
Collapse
Affiliation(s)
- Clara L Feider
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
40
|
Rodrigues-Costa F, Slivinski J, Ióca LP, Bertonha AF, de Felício R, Cunha MGD, da Mata Madeira PV, Cauz ACG, Trindade DM, Freire VF, Ropke CD, Gales A, Brocchi M, Ferreira AG, Gueiros-Filho F, Trivella DBB, Berlinck RGS, Dessen A. Merulinic acid C overcomes gentamicin resistance in Enterococcus faecium. Bioorg Chem 2020; 100:103921. [PMID: 32464403 DOI: 10.1016/j.bioorg.2020.103921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022]
Abstract
Enterococci are gram-positive, widespread nosocomial pathogens that in recent years have developed resistance to various commonly employed antibiotics. Since finding new infection-control agents based on secondary metabolites from organisms has proved successful for decades, natural products are potentially useful sources of compounds with activity against enterococci. Herein are reported the results of a natural product library screening based on a whole-cell assay against a gram-positive model organism, which led to the isolation of a series of anacardic acids identified by analysis of their spectroscopic data and by chemical derivatizations. Merulinic acid C was identified as the most active anacardic acid derivative obtained against antibiotic-resistant enterococci. Fluorescence microscopy analyses showed that merulinic acid C targets the bacterial membrane without affecting the peptidoglycan and causes rapid cellular ATP leakage from cells. Merulinic acid C was shown to be synergistic with gentamicin against Enterococcus faecium, indicating that this compound could inspire the development of new antibiotic combinations effective against drug-resistant pathogens.
Collapse
Affiliation(s)
- Fernanda Rodrigues-Costa
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, 13083-970 Campinas, SP, Brazil; Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Campinas, São Paulo, Brazil
| | - Juliano Slivinski
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | - Ariane F Bertonha
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | - Rafael de Felício
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, 13083-970 Campinas, SP, Brazil
| | | | - Paulo Vinicius da Mata Madeira
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, 13083-970 Campinas, SP, Brazil; Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Campinas, São Paulo, Brazil
| | - Ana C G Cauz
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Campinas, São Paulo, Brazil
| | | | - Vítor F Freire
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | | | - Ana Gales
- Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Campinas, São Paulo, Brazil
| | - Antônio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905, São Carlos, SP, Brazil
| | - Frederico Gueiros-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), CEP 05508-000, São Paulo, Brazil
| | | | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil.
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, 13083-970 Campinas, SP, Brazil; Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
41
|
Klein DR, Blevins MS, Macias LA, Douglass MV, Trent MS, Brodbelt JS. Localization of Double Bonds in Bacterial Glycerophospholipids Using 193 nm Ultraviolet Photodissociation in the Negative Mode. Anal Chem 2020; 92:5986-5993. [PMID: 32212719 PMCID: PMC7385702 DOI: 10.1021/acs.analchem.0c00221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The need for detailed structural characterization of glycerophospholipids (GPLs) for many types of biologically motivated applications has led to the development of novel mass spectrometry-based methodologies that utilize alternative ion activation methods. Ultraviolet photodissociation (UVPD) has shown great utility for localizing sites of unsaturation within acyl chains and to date has predominantly been used for positive mode analysis of GPLs. In the present work, UVPD is used to localize sites of unsaturation in GPL anions. Similar to UVPD mass spectra of GPL cations, UVPD of deprotonated or formate-adducted GPLs yields diagnostic fragment ions spaced 24 Da apart. This method was integrated into a liquid chromatography workflow and used to evaluate profiles of sites of unsaturation of lipids in Escherichia coli (E. coli) and Acinetobacter baumannii (A. baumannii). When assigning sites of unsaturation, E. coli was found to contain all unsaturation elements at the same position relative to the terminal methyl carbon of the acyl chain; the first carbon participating in a site of unsaturation was consistently seven carbons along the acyl chain when counting carbons from the terminal methyl carbon. GPLs from A. baumannii exhibited more variability in locations of unsaturation. For GPLs containing sites of unsaturation in both acyl chains, an MS3 method was devised to assign sites to specific acyl chains.
Collapse
Affiliation(s)
- Dustin R Klein
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Molly S Blevins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Martin V Douglass
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602, United States
| | - M Stephen Trent
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602, United States
- Department of Microbiology, The University of Georgia, College of Arts and Sciences, Athens, Georgia 30602, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
42
|
Xu SL, Wu BF, Orešič M, Xie Y, Yao P, Wu ZY, Lv X, Chen H, Wei F. Double Derivatization Strategy for High-Sensitivity and High-Coverage Localization of Double Bonds in Free Fatty Acids by Mass Spectrometry. Anal Chem 2020; 92:6446-6455. [DOI: 10.1021/acs.analchem.9b05588] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shu-ling Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, P. R. China
| | - Bang-fu Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, P. R. China
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | - Ya Xie
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, P. R. China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Zong-yuan Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, P. R. China
| | - Xin Lv
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, P. R. China
| | - Hong Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, P. R. China
| | - Fang Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, P. R. China
| |
Collapse
|
43
|
Xu S, Wei F, Xie Y, Wu B, Lv X, Qin Z, Chen H. Localisation of C=C Bond and absolute quantification of unsaturated Fatty Acids in Vegetable Oils based on photochemical derivatisation reaction coupled with mass spectrometry. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shuling Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Fang Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Ya Xie
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Bangfu Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Xin Lv
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Zuojian Qin
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Hong Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| |
Collapse
|
44
|
Absolute quantitative imaging of sphingolipids in brain tissue by exhaustive liquid microjunction surface sampling–liquid chromatography–mass spectrometry. J Chromatogr A 2020; 1609:460436. [DOI: 10.1016/j.chroma.2019.460436] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
|
45
|
Wei F, Lamichhane S, Orešič M, Hyötyläinen T. Lipidomes in health and disease: Analytical strategies and considerations. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115664] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Hu C, Wang C, He L, Han X. Novel strategies for enhancing shotgun lipidomics for comprehensive analysis of cellular lipidomes. Trends Analyt Chem 2019; 120:115330. [PMID: 32647401 PMCID: PMC7344273 DOI: 10.1016/j.trac.2018.11.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Shotgun lipidomics is one of the most powerful tools in analysis of cellular lipidomes in lipidomics, which directly analyzes lipids from lipid extracts of diverse biological samples with high accuracy/precision. However, despite its great advances in high throughput analysis of cellular lipidomes, low coverage of poorly ionized lipids, especially those species in very low abundance, and some types of isomers within complex lipid extracts by shotgun lipidomics remains a huge challenge. In the past few years, many strategies have been developed to enhance shotgun lipidomics for comprehensive analysis of lipid species. Chemical derivatization represents one of the most attractive and effective strategies, already receiving considerable attention. This review focuses on novel advanced derivatization strategies for enhancing shotgun lipidomics. It is anticipated that with the development of enhanced strategies, shotgun lipidomics can make greater contributions to biological and biomedical research.
Collapse
Affiliation(s)
- Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Chunyan Wang
- Barshop Institute for Longevity and Aging Research, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Lijiao He
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Xianlin Han
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
- Barshop Institute for Longevity and Aging Research, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Medicine – Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
47
|
Poad BLJ, Marshall DL, Harazim E, Gupta R, Narreddula VR, Young RSE, Duchoslav E, Campbell JL, Broadbent JA, Cvačka J, Mitchell TW, Blanksby SJ. Combining Charge-Switch Derivatization with Ozone-Induced Dissociation for Fatty Acid Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2135-2143. [PMID: 31347025 DOI: 10.1007/s13361-019-02285-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The specific positions of carbon-carbon double bond(s) within an unsaturated fatty acid exert a significant effect on the physical and chemical properties of the lipid that ultimately inform its biological function(s). Contemporary liquid chromatography-mass spectrometry (MS) strategies based on electrospray ionization coupled to tandem MS can easily detect fatty acyl lipids but generally cannot reveal those specific site(s) of unsaturation. Herein, we describe a novel and versatile workflow whereby fatty acids are first converted to fixed charge N-(4-aminomethylphenyl)pyridinium (AMPP) derivatives and subsequently subjected to ozone-induced dissociation (OzID) on a modified triple quadrupole mass spectrometer. The AMPP modification enhances the detection of fatty acids introduced by direct infusion. Fragmentation of the derivatized fatty acids also provides diagnostic fragment ions upon collision-induced dissociation that can be targeted in precursor ion scans to subsequently trigger OzID analyses in an automated data-dependent workflow. It is these OzID analyses that provide unambiguous assignment of carbon-carbon double bond locations in the AMPP-derivatized fatty acids. The performance of this analysis pipeline is assessed in profiling the patterns of unsaturation in fatty acids within the complex biological secretion vernix caseosa. This analysis uncovers significant isomeric diversity within the fatty acid pool of this sample, including a number of hitherto unreported double bond positional isomers that hint at the activity of potentially new metabolic pathways.
Collapse
Affiliation(s)
- Berwyck L J Poad
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia.
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Eva Harazim
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Rajesh Gupta
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Venkateswara R Narreddula
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Reuben S E Young
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | | | | | - James A Broadbent
- SCIEX, Concord, ON, Canada
- CSIRO Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Todd W Mitchell
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
48
|
Macias LA, Feider CL, Eberlin LS, Brodbelt JS. Hybrid 193 nm Ultraviolet Photodissociation Mass Spectrometry Localizes Cardiolipin Unsaturations. Anal Chem 2019; 91:12509-12516. [PMID: 31490676 DOI: 10.1021/acs.analchem.9b03278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Developing alternative MS/MS strategies to distinguish isomeric lipids has become a high impact goal in shotgun lipidomics. Novel approaches have been developed to resolve structural features that are not discernible by traditional shotgun methods and have consequently promoted the discovery of new disease biomarkers. However, these methods have largely been limited to characterizing lipids with low structural complexity. Here, ultraviolet photodissociation (UVPD) strategies for phospholipid characterization are expanded for analysis of cardiolipins (CL), a class of phospholipids that exhibits a higher degree of structural complexity. A hybrid collision induced dissociation/193 nm UVPD (CID/UVPD) approach was implemented to pinpoint the location of both double bond and cyclopropyl unsaturations on the four acyl chains of CLs. This strategy was complemented with CID for the de novo elucidation of unknown CLs in biological extracts.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| | - Clara L Feider
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| | - Livia S Eberlin
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| |
Collapse
|
49
|
Marshall DL, Criscuolo A, Young RSE, Poad BLJ, Zeller M, Reid GE, Mitchell TW, Blanksby SJ. Mapping Unsaturation in Human Plasma Lipids by Data-Independent Ozone-Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1621-1630. [PMID: 31222675 DOI: 10.1007/s13361-019-02261-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Over 1500 different lipids have been reported in human plasma at the sum composition level. Yet the number of unique lipids present is surely higher, once isomeric contributions from double bond location(s) and fatty acyl regiochemistry are considered. In order to resolve this ambiguity, herein, we describe the incorporation of ozone-induced dissociation (OzID) into data-independent shotgun lipidomics workflows on a high-resolution hybrid quadrupole-Orbitrap platform. In this configuration, [M + Na]+ ions generated by electrospray ionization of a plasma lipid extract were transmitted through the quadrupole in 1 Da segments. Reaction of mass-selected lipid ions with ozone in the octopole collision cell yielded diagnostic ions for each double bond position. The increased ozone concentration in this region significantly improved ozonolysis efficiency compared with prior implementations on linear ion-trap devices. This advancement translates into increased lipidome coverage and improvements in duty cycle for data-independent MS/MS analysis using shotgun workflows. Grouping all precursor ions with a common OzID neutral loss enables straightforward classification of the lipidome by unsaturation position (with respect to the methyl terminus). Two-dimensional maps obtained from this analysis provide a powerful visualization of structurally related lipids and lipid isomer families within plasma. Global profiling of lipid unsaturation in plasma extracts reveals that most unsaturated lipids are present as isomeric mixtures. These new insights provide a unique picture of underlying metabolism that could in the future provide novel indicators of health and disease.
Collapse
Affiliation(s)
- David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| | - Angela Criscuolo
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
- Thermo Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199, Bremen, Germany
| | - Reuben S E Young
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Martin Zeller
- Thermo Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199, Bremen, Germany
| | - Gavin E Reid
- School of Chemistry, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Todd W Mitchell
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
50
|
Song C, Gao D, Li S, Liu L, Chen X, Jiang Y. Determination and quantification of fatty acid C=C isomers by epoxidation reaction and liquid chromatography-mass spectrometry. Anal Chim Acta 2019; 1086:82-89. [PMID: 31561797 DOI: 10.1016/j.aca.2019.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022]
Abstract
The location of double bond in unsaturated fatty acids (FAs) plays a critical role in their physiological properties. However, structural identification and quantification of unsaturated FAs by mass spectrometry are still challenging. In this work, we reported the coupling of epoxidation reaction of the C=C in unsaturated FAs and liquid chromatography-mass spectrometry (LC-MS) with multiple reaction monitoring (MRM) mode for accurate identification and quantification of C=C isomers of FAs. Epoxidation of the C=C in unsaturated FAs was induced by a dioxide of ketone, tetrahydrothiopyran-4-one 1,1-dioxide, as a catalyst and Oxone as an oxidant in less than 5 min with nearly 100% yield. All the C=C bonds were epoxidized to obtain a single product, simplifying the chromatographic separation of epoxidation products to enable more accurate quantification analysis. The epoxidation products were stable at room temperature and can produce highly abundant diagnostic ions indicative of C=C locations by tandem mass spectrometry using collision-induced association (CID). The application of this approach for the analysis of FAs isomers in human plasma demonstrated the potential of our method for the qualitative and quantitative analysis of unsaturated FAs in complex biological samples, which is valuable in biological and medical analysis.
Collapse
Affiliation(s)
- Chao Song
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| | - Shangfu Li
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Liping Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 North of Dongmen Road, Shenzhen, Guangdong Province, 518000, China
| | - Xiaowu Chen
- Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, 518110, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|