1
|
Slijkhuis N, Towers M, Claude E, van Soest G. MALDI versus DESI mass spectrometry imaging of lipids in atherosclerotic plaque. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9927. [PMID: 39435741 DOI: 10.1002/rcm.9927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Mass spectrometry imaging (MSI) is a powerful tool for detecting lipids in tissue sections, with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) as its key ionization techniques. In this study, we examine how MALDI compares with state-of-the-art DESI ionization in identifying lipids in heterogeneous samples, specifically atherosclerotic plaques. Carotid plaques (n = 4) from patients undergoing endarterectomy were snap-frozen, stored at -80°C, and then sectioned for MSI analysis and H&E staining. Measurements were conducted using a SYNAPT XS mass spectrometer in positive ion mode, employing MALDI with a 2,5-dihydroxybenzoic acid (DHB) matrix and DESI with a methanol: water (98:2) (v/v) solvent. Our comparison covered spectral profiles, sensitivity, and image quality generated by these two techniques. We found that both MALDI and DESI are highly suitable techniques for detecting a wide range of lipids in atherosclerotic plaque sections. DESI-MSI exhibited higher ion counts for most lipid classes than MALDI-MSI and provided sharper images. MALDI detected larger amounts of ceramide and hexosylceramide species, possibly due to its efficient generation of dehydrated ions. In contrast, DESI showed greater peak intensities of cholesteryl ester and triacylglyceride species than MALDI, consistent with reduced fragmentation. These findings establish the relative merits of DESI and MALDI and demonstrate their complementarity as techniques for lipid research in MSI.
Collapse
Affiliation(s)
- Nuria Slijkhuis
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Gijs van Soest
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Grgic A, Cuypers E, Dubois LJ, Ellis SR, Heeren RMA. MALDI MSI Protocol for Spatial Bottom-Up Proteomics at Single-Cell Resolution. J Proteome Res 2024. [PMID: 39447324 DOI: 10.1021/acs.jproteome.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) started with spatial mapping of peptides and proteins. Since then, numerous bottom-up protocols have been developed. However, achievable spatial resolution and sample preparation with many wet steps hindered the development of single cell-level workflows for bottom-up spatial proteomics. This study presents a protocol optimized for MALDI-MSI measurements of single cells within the context of their 2D culture. Sublimation of CHCA, followed by a dip in ice-cold ammonium phosphate monobasic (AmP), produced peptide-rich mass spectra while maintaining matrix crystal sizes around 400 nm. This enables MALDI-MSI imaging of proteins in single cells grown on an ITO slide with a throughput of approximately 7800 cells per day. 89 peptide-like features corresponding to a single MDA-MB-231 breast cancer cell were detected. Furthermore, by combining the MALDI-MSI data with LC-MS/MS data obtained on cell pellets, we have successfully identified 24 peptides corresponding to 17 proteins, including actin, vimentin, and transgelin-2.
Collapse
Affiliation(s)
- Andrej Grgic
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Eva Cuypers
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Shane R Ellis
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Xiao Y, Li Y, Zhao H. Spatiotemporal metabolomic approaches to the cancer-immunity panorama: a methodological perspective. Mol Cancer 2024; 23:202. [PMID: 39294747 PMCID: PMC11409752 DOI: 10.1186/s12943-024-02113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Metabolic reprogramming drives the development of an immunosuppressive tumor microenvironment (TME) through various pathways, contributing to cancer progression and reducing the effectiveness of anticancer immunotherapy. However, our understanding of the metabolic landscape within the tumor-immune context has been limited by conventional metabolic measurements, which have not provided comprehensive insights into the spatiotemporal heterogeneity of metabolism within TME. The emergence of single-cell, spatial, and in vivo metabolomic technologies has now enabled detailed and unbiased analysis, revealing unprecedented spatiotemporal heterogeneity that is particularly valuable in the field of cancer immunology. This review summarizes the methodologies of metabolomics and metabolic regulomics that can be applied to the study of cancer-immunity across single-cell, spatial, and in vivo dimensions, and systematically assesses their benefits and limitations.
Collapse
Affiliation(s)
- Yang Xiao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Huakan Zhao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
4
|
Kuzin AA, Sobolev DI, Eliferov VA, Stupnikova GS, Popov IA, Nikolaev EN, Pekov SI. Matrix-assisted laser desorption/ionization matrix incorporation evaluation algorithm for improved peak coverage and signal-to-noise ratio in mass spectrometry imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9830. [PMID: 38813850 DOI: 10.1002/rcm.9830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
RATIONALE Despite decades of implementation, the selection of optimal sample preparation conditions for matrix-assisted laser desorption/ionization (MALDI) imaging is still ambiguous due to the lack of a universal and comprehensive evaluation methodology. Thus, numerous experiments with different matrix application conditions accompany a translation of the method to novel sample types and matrices. METHODS Mouse brain tissues were covered with 9-aminoacridine through sublimation, followed by recrystallization in vapors of 5% (v/v) methanol solution in water. The samples were analyzed by MALDI time-of-flight mass spectrometry, and the efficiency of lipid and small-molecule ionization was evaluated with different metrics. RESULTS We first investigate the dependency of matrix density and recrystallization conditions on the thickness of an analyte-empty matrix layer to roughly evaluate the laser shot number required to obtain an intense signal with minimal noise. Then, we introduce metrics for the analysis of small imaging datasets (small sample regions) of model samples based on median quantity of peaks in spectra (medQP) and weighted median signal-to-noise ratio (wmSNR). The evaluation of small regions and taking median values for metrics help overcome the sample heterogeneity and allow for the simultaneous comparison of different acquisition parameters. CONCLUSIONS Here, we propose a methodology based on gradual laser ablation of small regions of sample and further implementation of weighted signal-to-noise ratio to assess various matrix application conditions. The proposed approach helps reduce the number of test samples required to determine optimal sample preparation conditions and improve the overall quality of images.
Collapse
Affiliation(s)
- Andrey A Kuzin
- Laboratory for Molecular Medical Diagnostics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Daniil I Sobolev
- Laboratory for Mass Spectrometry, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Vasiliy A Eliferov
- Laboratory for Molecular Medical Diagnostics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Galina S Stupnikova
- Laboratory for Molecular Medical Diagnostics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Igor A Popov
- Laboratory for Molecular Medical Diagnostics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
- Laboratory for Translational Medicine, Siberian State Medical University, Tomsk, Russian Federation
| | - Eugene N Nikolaev
- Laboratory for Mass Spectrometry, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Stanislav I Pekov
- Laboratory for Mass Spectrometry, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
- Laboratory for Translational Medicine, Siberian State Medical University, Tomsk, Russian Federation
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| |
Collapse
|
5
|
García-Rojas NS, Sierra-Álvarez CD, Ramos-Aboites HE, Moreno-Pedraza A, Winkler R. Identification of Plant Compounds with Mass Spectrometry Imaging (MSI). Metabolites 2024; 14:419. [PMID: 39195515 DOI: 10.3390/metabo14080419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The presence and localization of plant metabolites are indicative of physiological processes, e.g., under biotic and abiotic stress conditions. Further, the chemical composition of plant parts is related to their quality as food or for medicinal applications. Mass spectrometry imaging (MSI) has become a popular analytical technique for exploring and visualizing the spatial distribution of plant molecules within a tissue. This review provides a summary of mass spectrometry methods used for mapping and identifying metabolites in plant tissues. We present the benefits and the disadvantages of both vacuum and ambient ionization methods, considering direct and indirect approaches. Finally, we discuss the current limitations in annotating and identifying molecules and perspectives for future investigations.
Collapse
Affiliation(s)
- Nancy Shyrley García-Rojas
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | | | - Hilda E Ramos-Aboites
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | - Abigail Moreno-Pedraza
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Robert Winkler
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| |
Collapse
|
6
|
Guan C, Kong L. Mass spectrometry imaging in pulmonary disorders. Clin Chim Acta 2024; 561:119835. [PMID: 38936534 DOI: 10.1016/j.cca.2024.119835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Mass Spectrometry Imaging (MSI) represents a novel and advancing technology that offers unparalleled in situ characterization of tissues. It provides comprehensive insights into the chemical structures, relative abundances, and spatial distributions of a vast array of both identified and unidentified endogenous and exogenous compounds, a capability not paralleled by existing analytical methodologies. Recent scholarly endeavors have increasingly explored the utility of MSI in the adjunct diagnosis and biomarker research of pulmonary disorders, including but not limited to lung cancer. Concurrently, MSI has proven instrumental in elucidating the spatiotemporal dynamics of various pharmacological agents. This review concisely delineates the fundamental principles underpinning MSI, its applications in pulmonary disease diagnosis, biomarker discovery, and drug distribution investigations. Additionally, it presents a forward-looking perspective on the prospective trajectories of MSI technological advancements.
Collapse
Affiliation(s)
- Chunliu Guan
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lu Kong
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
7
|
Luo Y, Ma S, Zhang J, Zhang Q, Zhang Y, Mao J, Yuan H, Ouyang G, Zhang S, Zhao W. Developing a novel strategy for fabricating matrix film to assess the distribution of potassium perfluorooctanic sulfonate by matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chim Acta 2024; 1303:342528. [PMID: 38609267 DOI: 10.1016/j.aca.2024.342528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Matrix deposition plays a critical role in image quality of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). To improve the ionization efficiency and overcome the limitation of traditional matrix deposition methods in the face of difficult-to-sublimate or difficult-to-dissolve matrix, covalent organic frameworks (COFs) named COF-DhaTab was successfully synthesized and firstly used as matrix film. It was fabricated by imprinting of sieved COF-DhaTab powder on the surface of a double-sided adhesive tape. Outstanding reproducibility and uniformity of COF-DhaTab film were demonstrated by relative standard deviation (RSD) within 8.37% and 7.71% from dot-to-dot and plate-to-plate, respectively. With the introduction of double-sided adhesive tape, water contact angle (WCA) of COF-DhaTab film increased from 55° to 141°, resulting in significant suppression of analyte diffusion. Moreover, the intensity of potassium perfluorooctanic sulfonate (PFOS, C8F17SO3-, m/z 498.93) was 9.3 × 105, more than six hundred times higher than that using DHB matrix. This enhancement was attributed to the rough surface and multiple branches of the synthesized COF-DhaTab. To verify the ability of COF-DhaTab film as substrate, the spatial distribution of PFOS in zebrafish, rat liver and kidney tissues was explored. Superior imaging capability was displayed with high-spatial resolution and reliable location distribution. These results not only demonstrate the outstanding ability of COF-DhaTab as matrix for MALDI-MS and MALDI-MSI, but also provide a facile approach for fabrication of novel matrix films for MALDI-MSI.
Collapse
Affiliation(s)
- Yake Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shanshan Ma
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianxun Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Qidong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Yanhao Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jian Mao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Hang Yuan
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Gangfeng Ouyang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Sasaki S, Mori T, Enomoto H, Nakamura S, Yokota H, Yamashita H, Goto-Inoue N. Assessing Molecular Localization of Symbiont Microalgae in Coral Branches Through Mass Spectrometry Imaging. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:223-229. [PMID: 38345665 DOI: 10.1007/s10126-024-10294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/31/2024] [Indexed: 04/25/2024]
Abstract
Reef-building corals are a fundamental pillar of coral reef ecosystems in tropical and subtropical shallow environments. Corals harbor symbiotic dinoflagellates belonging to the family Symbiodiniaceae, commonly known as zooxanthellae. Extensive research has been conducted on this symbiotic relationship, yet the fundamental information about the distribution and localization of Symbiodiniaceae cells in corals is still limited. This information is crucial to understanding the mechanism underlying the metabolite exchange between corals and their algal symbionts, as well as the metabolic flow within holobionts. To examine the distribution of Symbiodiniaceae cells within corals, in this study, we used fluorescence imaging and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MS-Imaging) on branches of the Acropora tenuis coral. We successfully prepared frozen sections of the coral for molecular imaging without fixing or decalcifying the coral branches. By combining the results of MS-Imaging with that of the fluorescence imaging, we determined that the algal Symbiodiniaceae symbionts were not only localized in the tentacle and surface region of the coral branches but also inhabited the in inner parts. Therefore, the molecular imaging technique used in this study could be valuable to further investigate the molecular dynamics between corals and their symbionts.
Collapse
Affiliation(s)
- Shudai Sasaki
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, , Fujisawa, Kanagawa, 252-0880, Japan
| | - Tsukasa Mori
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, , Fujisawa, Kanagawa, 252-0880, Japan
| | - Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya-Shi, Tochigi, 320-8551, Japan
| | - Sakiko Nakamura
- Image Processing Research Team, RIKEN Center for Advanced Photonics, Wako, Japan
| | - Hideo Yokota
- Image Processing Research Team, RIKEN Center for Advanced Photonics, Wako, Japan
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 148 Fukai-Ohta, Ishigaki, Okinawa, 907-0451, Japan
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, , Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
9
|
Ma X, Fernández FM. Advances in mass spectrometry imaging for spatial cancer metabolomics. MASS SPECTROMETRY REVIEWS 2024; 43:235-268. [PMID: 36065601 PMCID: PMC9986357 DOI: 10.1002/mas.21804] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 05/09/2023]
Abstract
Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progression. Different biological samples, including serum, urine, saliva, and tissues have been successfully analyzed using mass spectrometry. In particular, spatial metabolomics using MS imaging (MSI) allows the direct visualization of metabolite distributions in tissues, thus enabling in-depth understanding of cancer-associated biochemical changes within specific structures. In recent years, MSI studies have been increasingly used to uncover metabolic reprogramming associated with cancer development, enabling the discovery of key biomarkers with potential for cancer diagnostics. In this review, we aim to cover the basic principles of MSI experiments for the nonspecialists, including fundamentals, the sample preparation process, the evolution of the mass spectrometry techniques used, and data analysis strategies. We also review MSI advances associated with cancer research in the last 5 years, including spatial lipidomics and glycomics, the adoption of three-dimensional and multimodal imaging MSI approaches, and the implementation of artificial intelligence/machine learning in MSI-based cancer studies. The adoption of MSI in clinical research and for single-cell metabolomics is also discussed. Spatially resolved studies on other small molecule metabolites such as amino acids, polyamines, and nucleotides/nucleosides will not be discussed in the context.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Jiang Y, Shen L, Wang B. Non-electrophysiological techniques targeting transient receptor potential (TRP) gene of gastrointestinal tract. Int J Biol Macromol 2024; 262:129551. [PMID: 38367416 DOI: 10.1016/j.ijbiomac.2024.129551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
Transient receptor potential (TRP) channels are cation channels related to a wide range of physical and chemical stimuli, they are expressed all along the gastrointestinal system, and a myriad of diseases are often associated with aberrant expression or mutation of the TRP gene, suggesting that TRPs are promising targets for drug therapy. Therefore, a better understanding of the information of TRPs in health and disease could facilitate the development of effective drugs for the treatment of gastrointestinal diseases like IBD. But there are very few generalizations about the experimental techniques studied in this field. In view of the promise of TRP as a therapeutic target, we discuss experimental methods that can be used for TRPs including their distribution, function and interaction with other proteins, as well as some promising emerging technologies to provide experimental methods for future studies.
Collapse
Affiliation(s)
- Yuting Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
11
|
Holbrook JH, Kemper GE, Hummon AB. Quantitative mass spectrometry imaging: therapeutics & biomolecules. Chem Commun (Camb) 2024; 60:2137-2151. [PMID: 38284765 PMCID: PMC10878071 DOI: 10.1039/d3cc05988j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Mass spectrometry imaging (MSI) has become increasingly utilized in the analysis of biological molecules. MSI grants the ability to spatially map thousands of molecules within one experimental run in a label-free manner. While MSI is considered by most to be a qualitative method, recent advancements in instrumentation, sample preparation, and development of standards has made quantitative MSI (qMSI) more common. In this feature article, we present a tailored review of recent advancements in qMSI of therapeutics and biomolecules such as lipids and peptides/proteins. We also provide detailed experimental considerations for conducting qMSI studies on biological samples, aiming to advance the methodology.
Collapse
Affiliation(s)
- Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gabrielle E Kemper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Amanda B Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
12
|
Wu W, Fields L, DeLaney K, Buchberger AR, Li L. An Updated Guide to the Identification, Quantitation, and Imaging of the Crustacean Neuropeptidome. Methods Mol Biol 2024; 2758:255-289. [PMID: 38549019 PMCID: PMC11071638 DOI: 10.1007/978-1-0716-3646-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Crustaceans serve as a useful, simplified model for studying peptides and neuromodulation, as they contain numerous neuropeptide homologs to mammals and enable electrophysiological studies at the single-cell and neural circuit levels. Crustaceans contain well-defined neural networks, including the stomatogastric ganglion, oesophageal ganglion, commissural ganglia, and several neuropeptide-rich organs such as the brain, pericardial organs, and sinus glands. As existing mass spectrometry (MS) methods are not readily amenable to neuropeptide studies, there is a great need for optimized sample preparation, data acquisition, and data analysis methods. Herein, we present a general workflow and detailed methods for MS-based neuropeptidomic analysis of crustacean tissue samples and circulating fluids. In conjunction with profiling, quantitation can also be performed with isotopic or isobaric labeling. Information regarding the localization patterns and changes of peptides can be studied via mass spectrometry imaging. Combining these sample preparation strategies and MS analytical techniques allows for a multi-faceted approach to obtaining deep knowledge of crustacean peptidergic signaling pathways.
Collapse
Affiliation(s)
- Wenxin Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
14
|
Chen J, Huang H, Ouyang D, Lin J, Chen Z, Cai Z, Lin Z. A reactive matrix for in situ chemical derivatisation and specific detection of cis-diol compounds by matrix-assisted laser desorption/ionisation mass spectrometry. Analyst 2023; 148:5402-5406. [PMID: 37755117 DOI: 10.1039/d3an01400b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Analysis of cis-diol compounds is essential, because they play important roles in cosmetics, food, pharmaceuticals, and living organisms. Herein, we describe the development of a matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) method to analyse cis-diol compounds. In this method, a 6-borono-1-methylquinoline-1-ium (BMQI) reactive matrix was designed for in situ derivatisation of cis-diol compounds based on the boronate affinity interaction between boronic acid and cis-diol groups. Compared to traditional commercial matrices and other boronic acid reagents, BMQI can significantly accelerate the desorption/ionisation process, improve reproducibility, exhibit free background interference, and enhance signal intensity in the analysis of various cis-diol compounds even for amounts as low as 1 nmol. The BMQI-assisted laser desorption/ionisation mass spectrometry (LDI-MS) was successfully applied to the rapid screening and identification of sugar alcohols in different sugar-free foods. This work provides an alternative method to the LDI-MS analysis of cis-diol-containing molecules, and the method can be extended to other food samples and biofluids.
Collapse
Affiliation(s)
- Jiajing Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Huan Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Dan Ouyang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Jiali Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Zhuling Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, PR China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
15
|
Wang Q, Li X, Wang H, Li S, Zhang C, Chen X, Dong J, Shao H, Wang J, Jin F. Spatial Distribution and Migration Characteristic of Forchlorfenuron in Oriental Melon Fruit by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Foods 2023; 12:2858. [PMID: 37569126 PMCID: PMC10417659 DOI: 10.3390/foods12152858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Forchlorfenuron is a widely used plant growth regulator to support the pollination and fruit set of oriental melons. It is critical to investigate the spatial distribution and migration characteristics of forchlorfenuron among fruit tissues to understand its metabolism and toxic effects on plants. However, the application of imaging mass spectrometry in pesticides remains challenging due to the usually extremely low residual concentration and the strong interference from plant tissues. In this study, a matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) method was developed for the first time to obtain the dynamic images of forchlorfenuron in oriental melon. A quantitative assessment has also been performed for MALDI-MSI to characterize the time-dependent permeation and degradation sites of forchlorfenuron in oriental melon. The majority of forchlorfenuron was detected in the exocarp and mesocarp regions of oriental melon and decreased within two days after application. The degradation rate obtained by MALDI-MSI in this study was comparable to that obtained by HPLC-MS/MS, indicating that the methodology and quantification approach based on the MALDI-MSI was reliable and practicable for pesticide degradation study. These results provide an important scientific basis for the assessment of the potential risks and effects of forchlorfenuron on oriental melons.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Xiaohui Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Hongping Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Simeng Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Chen Zhang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Xueying Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Jing Dong
- Shimadzu China MS Center, Beijing 100020, China
| | - Hua Shao
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Fen Jin
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| |
Collapse
|
16
|
Meng X, Xu P, Tao F. RespectM revealed metabolic heterogeneity powers deep learning for reshaping the DBTL cycle. iScience 2023; 26:107069. [PMID: 37426353 PMCID: PMC10329182 DOI: 10.1016/j.isci.2023.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/18/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Synthetic biology, relying on Design-Build-Test-Learn (DBTL) cycle, aims to solve medicine, manufacturing, and agriculture problems. However, the DBTL cycle's Learn (L) step lacks predictive power for the behavior of biological systems, resulting from the incompatibility between sparse testing data and chaotic metabolic networks. Herein, we develop a method, "RespectM," based on mass spectrometry imaging, which is able to detect metabolites at a rate of 500 cells per hour with high efficiency. In this study, 4,321 single cell level metabolomics data were acquired, representing metabolic heterogeneity. An optimizable deep neural network was applied to learn from metabolic heterogeneity and a "heterogeneity-powered learning (HPL)" based model was trained as well. By testing the HPL based model, we suggest minimal operations to achieve high triglyceride production for engineering. The HPL strategy could revolutionize rational design and reshape the DBTL cycle.
Collapse
Affiliation(s)
- Xuanlin Meng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
17
|
Lesco KC, Rowland SM, Ratanathanawongs Williams SK, Laurens LML. Single-filament imaging mass spectrometry lipidomics in Arthrospira platensis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9525. [PMID: 37062938 DOI: 10.1002/rcm.9525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE Elucidating intra-organismal biochemical and lipid organization in photosynthetic biological cell factories of filamentous cyanobacteria, such as Arthrospira platensis (Spirulina), is important for tracking physiological response mechanisms during growth. Little is known about the filaments' biochemical organization and cellular structure and no label-free imaging techniques exist that provide molecular mapping. METHODS We applied ultrahigh-resolution mass spectrometry (MS) with matrix-assisted laser desorption ionization (MALDI) imaging to immobilized Spirulina filaments to investigate the localization of lipids across distinct physiological regions. We optimized matrix selection and deposition methods with the goal of facilitating high spatial, and intra-filament, resolution using untargeted multivariate statistical spectral deconvolution across MS pixels. RESULTS Our results demonstrate an improved two-step matrix application with an optimized procedure for intra-organismal lipid profiling to improve analyte sensitivity and achieve higher spatial resolution. We evaluate several conventional matrices, namely 2,5-dihydroxybenzoic acid (DHB), superDHB (sDHB), 1,5-diaminonaphthalene (DAN), and a 50:50 mix of DHB and sDHB, and compare delineation and pixel-based elucidation of intra-filament lipidomics. We identified a total of 1626 features that could be putatively assigned a lipid-like formula based on database query and 46 unique features, with associated lipid assignments that were significantly distinct in their intra-filament location. CONCLUSIONS MALDI imaging MS with untargeted statistical spectral deconvolution was used to visualize intra-filament lipidomics organization in Spirulina filaments. Improvements in matrix deposition, including sequential sublimation and pneumatic spraying, increased signal abundance at high spatial resolution and allowed for identification of distinct lipid composition regions. This work outlines a methodology that may be used for micro-ecological untargeted molecular phenotyping.
Collapse
Affiliation(s)
- Kaitlin C Lesco
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado, USA
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado, USA
| | - Steven M Rowland
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado, USA
| | | | - Lieve M L Laurens
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado, USA
| |
Collapse
|
18
|
Wang Y, Hummon AB. Quantification of Irinotecan in Single Spheroids Using Internal Standards by MALDI Mass Spectrometry Imaging. Anal Chem 2023; 95:9227-9236. [PMID: 37285205 PMCID: PMC10350333 DOI: 10.1021/acs.analchem.3c00699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been used to visualize molecular distributions in various biological samples. While it has succeeded in localizing molecules ranging from metabolites to peptides, quantitative MSI (qMSI) has remained challenging, especially in small biological samples like spheroids. Spheroids are a three-dimensional cellular model system that replicate the chemical microenvironments of tumors. This cellular model has played an important role in evaluating the penetration of drugs to better understand the efficacy of clinical chemotherapy. Therefore, we aim to optimize a method to quantify the distribution of therapeutics in a single spheroid using MALDI-MSI. Studies were performed with the therapeutic irinotecan (IR). The calibration curve showed a linear relationship with a limit of detection (LOD) of 0.058 ng/mm2 and R2 value at 0.9643. Spheroids treated with IR for different lengths of time were imaged using the optimized method to quantify the drug concentration during the penetration process. With a dosing concentration of 20.6 μM, the concentration of IR at 48 h of treatment was 16.90 μM within a single spheroid. Furthermore, spheroids were divided into different layers by spatial segmentation to be quantified separately. This MALDI-qMSI method is amenable to a wide range of drugs as well as their metabolites. The quantification results show great potential to extend this method to other small biological samples such as organoids for patient derived therapies.
Collapse
Affiliation(s)
- Yijia Wang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
19
|
Maciel LÍL, Bernardo RA, Martins RO, Batista Junior AC, Oliveira JVA, Chaves AR, Vaz BG. Desorption electrospray ionization and matrix-assisted laser desorption/ionization as imaging approaches for biological samples analysis. Anal Bioanal Chem 2023:10.1007/s00216-023-04783-8. [PMID: 37329466 DOI: 10.1007/s00216-023-04783-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
The imaging of biological tissues can offer valuable information about the sample composition, which improves the understanding of analyte distribution in such complex samples. Different approaches using mass spectrometry imaging (MSI), also known as imaging mass spectrometry (IMS), enabled the visualization of the distribution of numerous metabolites, drugs, lipids, and glycans in biological samples. The high sensitivity and multiple analyte evaluation/visualization in a single sample provided by MSI methods lead to various advantages and overcome drawbacks of classical microscopy techniques. In this context, the application of MSI methods, such as desorption electrospray ionization-MSI (DESI-MSI) and matrix-assisted laser desorption/ionization-MSI (MALDI-MSI), has significantly contributed to this field. This review discusses the evaluation of exogenous and endogenous molecules in biological samples using DESI and MALDI imaging. It offers rare technical insights not commonly found in the literature (scanning speed and geometric parameters), making it a comprehensive guide for applying these techniques step-by-step. Furthermore, we provide an in-depth discussion of recent research findings on using these methods to study biological tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Boniek Gontijo Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
20
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
21
|
Shanmugaraj N, Rutten T, Svatoš A, Schnurbusch T, Mock HP. Fast and Reproducible Matrix Deposition for MALDI Mass Spectrometry Imaging with Improved Glass Sublimation Setup. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:513-517. [PMID: 36735868 DOI: 10.1021/jasms.2c00301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sublimation is one of the preferred methods of choice for matrix deposition in high spatial resolution MALDI mass spectrometry imaging (MALDI-MSI) experiments. However, reproducibility and time are the major concerns for this setup. Here we present a lab-made glass sublimator with significant improvements in fine control of the vacuum with real-time monitoring and a rapid sublimation process of only 22 min. This method yielded reproducible homogeneous matrix crystals of <1 μm on the sample surface. MALDI-MSI was performed in tissue sections of barley inflorescence meristems at 15 μm spatial resolution, thus demonstrating its efficiency. Overall, we believe these simple yet effective new modifications can be easily adapted to the standard glass sublimation devices to achieve highly reproducible matrix deposition for high spatial resolution MALDI-MSI.
Collapse
Affiliation(s)
- Nandhakumar Shanmugaraj
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, 06466, Seeland, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, 06466, Seeland, Germany
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, 06466, Seeland, Germany
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Universitätsplatz 10, 06108 Halle (Saale), Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, 06466, Seeland, Germany
| |
Collapse
|
22
|
Andersen MK, Giampà M, Midtbust E, Høiem TS, Krossa S, Tessem MB. Sample Preparation for Metabolite Detection in Mass Spectrometry Imaging. Methods Mol Biol 2023; 2688:135-146. [PMID: 37410290 DOI: 10.1007/978-1-0716-3319-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Metabolites reflect the biological state of cells and tissue, and metabolomics is therefore a field of high interest both to understand normal physiological functions and disease development. When studying heterogeneous tissue samples, mass spectrometry imaging (MSI) is a valuable tool as it conserves the spatial distribution of analytes on tissue sections. A large proportion of metabolites are, however, small and polar, making them vulnerable to delocalizing through diffusion during sample preparation. Here we present a sample preparation method optimized to limit diffusion and delocalization of small polar metabolites in fresh frozen tissue sections. This sample preparation protocol includes cryosectioning, vacuum frozen storage, and matrix application. The methods described were primely developed for matrix-assisted laser desorption/ionization (MALDI) MSI, but the protocol describing cryosectioning and vacuum freezing storage can also be applied before desorption electrospray ionization (DESI) MSI. Our vacuum drying and vacuum packing approach offers a particular advantage to limit delocalization and safe storage.
Collapse
Affiliation(s)
- Maria K Andersen
- Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
| | - Marco Giampà
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Elise Midtbust
- Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Therese S Høiem
- Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Sebastian Krossa
- Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
23
|
Xiang L, Wang F, Bian Y, Harindintwali JD, Wang Z, Wang Y, Dong J, Chen H, Schaeffer A, Jiang X, Cai Z. Visualizing the Distribution of Phthalate Esters and Plant Metabolites in Carrot by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15311-15320. [PMID: 36442135 DOI: 10.1021/acs.jafc.2c06995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accumulation of organic pollutants in vegetables is a major global food safety issue. The concentrations of pollutants in vegetables usually differ across different tissues because of different transport and accumulation pathways. However, owing to the limitations of conventional methods, in situ localization of typical organic pollutants such as phthalate esters (PAEs) in plant tissues has not yet been studied. Here, we developed a quick and efficient method for in situ detection and imaging of the spatial distribution of PAEs in a typical root vegetable, carrot, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). The use of a 2,5-dihydroxybenzoic acid matrix with a spray-sublimation coating method led to the successful identification of PAEs ion signals. The IMS results showed that a typical PAE-di-(2-ethylhexyl)phthalate (DEHP) was broadly distributed in the cortex, phloem, and metaxylem, but was barely detectable in the cambium and protoxylem. Interestingly, MALDI-IMS data also revealed for the first time the spatial distribution of sugars and β-carotene in carrots. In summary, the developed method offers a new and practical methodology for the in situ analysis of PAEs and plant metabolites in plant tissues. As a result, it could provide a more intuitive understanding of the movement and transformation of organic pollutants in soil-plant systems.
Collapse
Affiliation(s)
- Leilei Xiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Environmental Research, RWTH Aachen University, WorringerWeg 1, Aachen 52074, Germany
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziquan Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yu Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jing Dong
- Shimadzu China Innovation Center, Beijing 100000, China
| | - Hong Chen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, WorringerWeg 1, Aachen 52074, Germany
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, China
| |
Collapse
|
24
|
Liu H, Pan Y, Xiong C, Han J, Wang X, Chen J, Nie Z. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) for in situ analysis of endogenous small molecules in biological samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Mass spectrometry imaging of diclofenac and its metabolites in tissues using nanospray desorption electrospray ionization. Anal Chim Acta 2022; 1233:340490. [DOI: 10.1016/j.aca.2022.340490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
|
26
|
Liang Z, Giles MB, Stenslik MJ, Marsales M, Ormes JD, Seto R, Zhong W. Direct visualization of the drug release process of non-conductive polymeric implants via molecular imaging. Anal Chim Acta 2022; 1230:340395. [DOI: 10.1016/j.aca.2022.340395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/12/2022] [Accepted: 09/11/2022] [Indexed: 11/15/2022]
|
27
|
Harkin C, Smith KW, Cruickshank FL, Logan Mackay C, Flinders B, Heeren RMA, Moore T, Brockbank S, Cobice DF. On-tissue chemical derivatization in mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2022; 41:662-694. [PMID: 33433028 PMCID: PMC9545000 DOI: 10.1002/mas.21680] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 05/04/2023]
Abstract
Mass spectrometry imaging (MSI) combines molecular and spatial information in a valuable tool for a wide range of applications. Matrix-assisted laser desorption/ionization (MALDI) is at the forefront of MSI ionization due to its wide availability and increasing improvement in spatial resolution and analysis speed. However, ionization suppression, low concentrations, and endogenous and methodological interferences cause visualization problems for certain molecules. Chemical derivatization (CD) has proven a viable solution to these issues when applied in mass spectrometry platforms. Chemical tagging of target analytes with larger, precharged moieties aids ionization efficiency and removes analytes from areas of potential isobaric interferences. Here, we address the application of CD on tissue samples for MSI analysis, termed on-tissue chemical derivatization (OTCD). MALDI MSI will remain the focus platform due to its popularity, however, alternative ionization techniques such as liquid extraction surface analysis and desorption electrospray ionization will also be recognized. OTCD reagent selection, application, and optimization methods will be discussed in detail. MSI with OTCD is a powerful tool to study the spatial distribution of poorly ionizable molecules within tissues. Most importantly, the use of OTCD-MSI facilitates the analysis of previously inaccessible biologically relevant molecules through the adaptation of existing CD methods. Though further experimental optimization steps are necessary, the benefits of this technique are extensive.
Collapse
Affiliation(s)
- Carla Harkin
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | - Karl W. Smith
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility (ICR)Florida State UniversityTallahasseeFloridaUSA
| | - Faye L. Cruickshank
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EaStCHEM School of ChemistryUniversity of EdinburghScotlandUK
| | - C. Logan Mackay
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EaStCHEM School of ChemistryUniversity of EdinburghScotlandUK
| | - Bryn Flinders
- Screening Division, Mass Spectrometry, Hair DiagnostixDutch Screening GroupMaastrichtThe Netherlands
| | - Ron M. A. Heeren
- Maastricht Multimodal Molecular Imaging Institute (M4I)University of MaastrichtMaastrichtThe Netherlands
| | - Tara Moore
- Genomic Medicine, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | | | - Diego F. Cobice
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| |
Collapse
|
28
|
Baquer G, Sementé L, Mahamdi T, Correig X, Ràfols P, García-Altares M. What are we imaging? Software tools and experimental strategies for annotation and identification of small molecules in mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2022:e21794. [PMID: 35822576 DOI: 10.1002/mas.21794] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) has become a widespread analytical technique to perform nonlabeled spatial molecular identification. The Achilles' heel of MSI is the annotation and identification of molecular species due to intrinsic limitations of the technique (lack of chromatographic separation and the difficulty to apply tandem MS). Successful strategies to perform annotation and identification combine extra analytical steps, like using orthogonal analytical techniques to identify compounds; with algorithms that integrate the spectral and spatial information. In this review, we discuss different experimental strategies and bioinformatics tools to annotate and identify compounds in MSI experiments. We target strategies and tools for small molecule applications, such as lipidomics and metabolomics. First, we explain how sample preparation and the acquisition process influences annotation and identification, from sample preservation to the use of orthogonal techniques. Then, we review twelve software tools for annotation and identification in MSI. Finally, we offer perspectives on two current needs of the MSI community: the adaptation of guidelines for communicating confidence levels in identifications; and the creation of a standard format to store and exchange annotations and identifications in MSI.
Collapse
Affiliation(s)
- Gerard Baquer
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Lluc Sementé
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Toufik Mahamdi
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Xavier Correig
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut D'Investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - Pere Ràfols
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut D'Investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - María García-Altares
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
29
|
Lin H, Yuan Y, Hang T, Wang P, Lu S, Wang H. Matrix-assisted laser desorption/ionization mass spectrometric imaging the spatial distribution of biodegradable vascular stents using a self-made semi-quantitative target plate. J Pharm Biomed Anal 2022; 219:114888. [PMID: 35752027 DOI: 10.1016/j.jpba.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
In recent years, the development and optimization of biodegradable coronary stents have become the research focus of many medical device manufacturers and scientific research institutions since they can be completely degraded and absorbed, and they restore vascular function. However, there is a lack of in situ quantification of these stents spatially in tissue in vivo. In this study, matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT ICR) and time-of-flight (TOF) mass spectrometric imaging (MSI) were used to analyze the time-dependent distributions of a biodegradable vascular scaffold, which consisted of copolymers of lactic acid and glycolic acid (PLGA) and its degradation products in cross-sections and longitudinal sections of blood vessels. The MALDI-MSI methods for analyzing the distribution of PLGA and its derivatives in vivo were established by optimizing the conditions of sample pretreatment and mass spectrometry (MS). In order to semi-quantify the contents of PLGA degradation products in blood vessels, self-made stainless-steel and indium tin oxide (ITO) target plates were developed to compare and establish the standard curves for semi-quantitative analysis. The target plate can be placed on the target carrier of MS simultaneously with the conductive slide, which can simultaneously carry out vapor deposition or spray on the substrate, to ensure the parallelism of the pretreatment experiments between the standards and the actual vascular samples. The proposed method provided a powerful tool for evaluating the distributions and degradation process of biological stent materials in the coronary artery, as well as provided technical support for the research and development of degradable biological stents and product optimization.
Collapse
Affiliation(s)
- Houwei Lin
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Yinlian Yuan
- Department of Paediatric Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Tian Hang
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Peng Wang
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Shijiao Lu
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Hang Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
30
|
Müller WH, Verdin A, De Pauw E, Malherbe C, Eppe G. Surface-assisted laser desorption/ionization mass spectrometry imaging: A review. MASS SPECTROMETRY REVIEWS 2022; 41:373-420. [PMID: 33174287 PMCID: PMC9292874 DOI: 10.1002/mas.21670] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 05/04/2023]
Abstract
In the last decades, surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) has attracted increasing interest due to its unique capabilities, achievable through the nanostructured substrates used to promote the analyte desorption/ionization. While the most widely recognized asset of SALDI-MS is the untargeted analysis of small molecules, this technique also offers the possibility of targeted approaches. In particular, the implementation of SALDI-MS imaging (SALDI-MSI), which is the focus of this review, opens up new opportunities. After a brief discussion of the nomenclature and the fundamental mechanisms associated with this technique, which are still highly controversial, the analytical strategies to perform SALDI-MSI are extensively discussed. Emphasis is placed on the sample preparation but also on the selection of the nanosubstrate (in terms of chemical composition and morphology) as well as its functionalization possibilities for the selective analysis of specific compounds in targeted approaches. Subsequently, some selected applications of SALDI-MSI in various fields (i.e., biomedical, biological, environmental, and forensic) are presented. The strengths and the remaining limitations of SALDI-MSI are finally summarized in the conclusion and some perspectives of this technique, which has a bright future, are proposed in this section.
Collapse
Affiliation(s)
- Wendy H. Müller
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| |
Collapse
|
31
|
Meng L, Han J, Chen J, Wang X, Huang X, Liu H, Nie Z. Development of an Automatic Ultrasonic Matrix Sprayer for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal Chem 2022; 94:6457-6462. [PMID: 35438954 DOI: 10.1021/acs.analchem.2c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) has emerged as a powerful tool for studying the spatial distribution of various types of molecules. Matrix deposition is a critical step for obtaining high-quality imaging data. An automatic device named SoniCoat was fabricated based on an ultrasonic nozzle driven by a pizeoelectric ceramic for matrix coating in the present study. Compared with the minihumidifier developed previously by our group for matrix deposition, SoniCoat realized automation, and the ultrasonic nozzle of this device is easy to clean and less likely to get clogged, indicating a longer life. Compared with commercial and homemade instruments such as the TM-Sprayer and electrospray matrix coating device, our newly developed device achieved a good nebulization effect without the need for high-pressure gas flow and high voltage. Matrix deposition by SoniCoat generated more homogeneous matrix crystals with diameters of about 10 μm and reduced the occurrence of molecular diffusion to a greater extent, compared with the results by TM-Sprayer. Repeatable high-spatial-resolution MS imaging data were obtained with the help of SoniCoat. Furthermore, the newly developed device can also be successfully applied for in situ derivatization.
Collapse
Affiliation(s)
- Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Mass spectrometry imaging and its potential in food microbiology. Int J Food Microbiol 2022; 371:109675. [DOI: 10.1016/j.ijfoodmicro.2022.109675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022]
|
33
|
DeLaney K, Phetsanthad A, Li L. ADVANCES IN HIGH-RESOLUTION MALDI MASS SPECTROMETRY FOR NEUROBIOLOGY. MASS SPECTROMETRY REVIEWS 2022; 41:194-214. [PMID: 33165982 PMCID: PMC8106695 DOI: 10.1002/mas.21661] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/13/2020] [Indexed: 05/08/2023]
Abstract
Research in the field of neurobiology and neurochemistry has seen a rapid expansion in the last several years due to advances in technologies and instrumentation, facilitating the detection of biomolecules critical to the complex signaling of neurons. Part of this growth has been due to the development and implementation of high-resolution Fourier transform (FT) mass spectrometry (MS), as is offered by FT ion cyclotron resonance (FTICR) and Orbitrap mass analyzers, which improves the accuracy of measurements and helps resolve the complex biological mixtures often analyzed in the nervous system. The coupling of matrix-assisted laser desorption/ionization (MALDI) with high-resolution MS has drastically expanded the information that can be obtained with these complex samples. This review discusses notable technical developments in MALDI-FTICR and MALDI-Orbitrap platforms and their applications toward molecules in the nervous system, including sequence elucidation and profiling with de novo sequencing, analysis of post-translational modifications, in situ analysis, key advances in sample preparation and handling, quantitation, and imaging. Notable novel applications are also discussed to highlight key developments critical to advancing our understanding of neurobiology and providing insight into the exciting future of this field. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
34
|
Liu Y, Li G, Gu TJ, Li L. Nanosecond Photochemical Reaction for Enhanced Identification, Quantification, and Visualization of Primary Amine-Containing Metabolites by MALDI-Mass Spectrometry. Anal Chem 2022; 94:3774-3781. [PMID: 35189681 DOI: 10.1021/acs.analchem.1c03840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many metabolites, including amino acids, neurotransmitters, and pharmaceuticals, contain primary amine functional groups. The analysis of these molecules by mass spectrometry (MS) plays an important role in the study of cancers and psychogenic diseases. However, the MS-based detection and visualization of these bioactive metabolites directly from real biological systems still suffer from challenges such as low ionization efficiency and/or matrix interference effects. Here, we introduce a simple and efficient strategy, the nanosecond photochemical reaction (nsPCR)-enabled fast chemical derivatization, enabling direct MS analysis of primary amine-containing metabolites, with enhanced detection sensitivity for numerous metabolites from cell culture medium and rat brain sections. Furthermore, this nsPCR-based chemical derivatization strategy was demonstrated to be a useful visualizing tool that could provide improved spatial information for these metabolites, potentially offering alternative tools for gaining novel insights into metabolic events.
Collapse
Affiliation(s)
- Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Gongyu Li
- Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ting-Jia Gu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
35
|
Hahm TH, Matsui T, Tanaka M. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Tissues via the Formation of Reproducible Matrix Crystals by the Fluorescence-Assisted Spraying Method: A Quantification Approach. Anal Chem 2022; 94:1990-1998. [PMID: 35040638 DOI: 10.1021/acs.analchem.1c03369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging to quantitative analyses is restricted by the variability of MS intensity of the analytes in nonreproducible matrix crystals of tissues. To overcome this challenge, a fluorescence-assisted spraying method was developed for a constant matrix amount employing an MS-detectable fluorescent reagent, rhodamine 6G (R6G), which was sprayed with the matrix. To form a homogeneous matrix crystal on the tissue section, a matrix solution, 1,5-diaminonaphthalene (10 mg/mL), containing R6G (40 μg/mL) and O-dinitrobenzene (O-DNB, 10 mg/mL) was sprayed until the desired constant fluorescence intensity was achieved. Compared with that obtained via conventional cycle-number-fixed spraying [relative standard deviation (RSD) = 31.1%], the reproducibility of the relative MS intensity of the analyte [ferulic acid (FA), RSD = 3.1%] to R6G was significantly improved by the fluorescence-assisted matrix spraying. This result indicated that R6G could be employed as an index of the matrix amount and an MS normalizing standard. The proposed matrix spraying successfully quantified nifedipine (0.5-40 pmol/mm2 in the positive mode, R2 = 0.965) and FA (0.5-75 pmol/mm2 in the negative mode, R2 = 0.9972) in the kidney section of a rat. Employing the quantitative MALDI-MS imaging assay, FA, which accumulated in the kidney of the rat after 50 mg/kg was orally administered, was visually determined to be 3.5, 3.0, and 0.2 μmol/g tissue at 15, 30, and 60 min, respectively.
Collapse
Affiliation(s)
- Tae Hun Hahm
- Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| | - Toshiro Matsui
- Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan.,Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan
| | - Mitsuru Tanaka
- Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan.,Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
36
|
Li H, Wu R, Hu Q, Chen X, Dominic Chan TW. A Matrix Sublimation Device with an Integrated Solvent Nebulizer for MALDI-MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:11-16. [PMID: 34939792 DOI: 10.1021/jasms.1c00335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The current matrix deposition methods in MALDI-mass spectrometry imaging (MALDI-MSI) face technical problems related to the inhomogeneous distribution of crystals and the low analyte extraction and cocrystallization efficiency. In this work, an integrated matrix sublimation device with synchronous solvent nebulization was developed for MALDI-MSI. Droplets of solvents were directly introduced into the chamber of the sublimator by using a miniaturized ultrasonic nebulizer unit. The synchronous and asynchronous working modes of solvent nebulization and matrix sublimation were systematically investigated. Imaging of both protein and small metabolite distributions in mouse brain tissue sections was successfully performed using the developed matrix deposition device. The sensitivity and quality of the images were clearly improved in synchronous mode compared with those of the conventional spray and sublimation methods. These results demonstrate that the integrated device with both solvent nebulization and matrix sublimation is a useful tool in MALDI-MSI applications.
Collapse
Affiliation(s)
- Huizhi Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), 19th Keyuan Road, Jinan, Shandong 250014, P.R. China
| | - Ri Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| | - Qiongzheng Hu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), 19th Keyuan Road, Jinan, Shandong 250014, P.R. China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), 19th Keyuan Road, Jinan, Shandong 250014, P.R. China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| |
Collapse
|
37
|
Chakraborty S, Rudra Paul A, Majumdar S. Base and metal free true recyclable medium for Knoevenagel condensation reaction in SDS-ionic liquid-aqueous miceller composite system. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
38
|
Li G, Liu Y, Li L. Nanosecond Photochemical Reaction (nsPCR) for Enhanced Mass Spectrometric Identification, Quantification, and Visualization of Metabolites and Neuropeptides. Methods Mol Biol 2022; 2437:143-157. [PMID: 34902146 PMCID: PMC8823285 DOI: 10.1007/978-1-0716-2030-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Small-molecule (e.g., metabolite) and low-abundance neuropeptide analyses by mass spectrometry (MS) represent important research directions and have witnessed tremendous growth and developments during past decades. With innate advantages of MS and gentle nature of soft ionization techniques including electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), profiling and visualization of these bioactive metabolites and neuropeptides have undergone technological advancements that can be applied to real biological systems, although numerous challenges still exist. We herein present a rapid and efficient strategy to improve both metabolite and neuropeptide analysis, the nanosecond photochemical reaction (nsPCR)-enabled fast chemical derivatization. Amine-directed chemoselectivity facilitates the rapid tagging on amine-containing metabolites and neuropeptides, resulting in improved detection sensitivity. Additionally, the nsPCR generates a localized pH jump zone and enables localized thermophoresis at nanosecond timescale which benefits on-demand matrix removal during MALDI-MS identification and visualization of low-abundance biomolecules. A step-by-step nsPCR experimental protocol is introduced in detail herein for both spot analysis and imaging analysis, followed by suggestions for data analysis to ensure successful application of the nsPCR strategy.
Collapse
Affiliation(s)
- Gongyu Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
39
|
McCaughey C, Trebino M, Yildiz FH, Sanchez LM. Utilizing imaging mass spectrometry to analyze microbial biofilm chemical responses to exogenous compounds. Methods Enzymol 2022; 665:281-304. [PMID: 35379438 PMCID: PMC9022628 DOI: 10.1016/bs.mie.2021.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is an appealing label-free method for imaging biological samples which focuses on the spatial distribution of chemical signals. This approach has been used to study the chemical ecology of microbes and can be applied to study the chemical responses of microbes to treatment with exogenous compounds. Specific conjugated cholic acids such as taurocholic acid (TCA), have been shown to inhibit biofilm formation in the enteric pathogen Vibrio cholerae and MALDI-IMS can be used to directly observe the chemical responses of V. cholerae biofilm colonies to treatment with TCA. A major challenge of MALDI-IMS is optimizing the sample preparation and drying for a particular growth condition and microbial strain. Here we demonstrate how V. cholerae is cultured and prepared for MALDI-IMS analysis and highlight critical steps to ensure proper sample adherence to a MALDI target plate and maintain spatial distributions when applying this technique to any microbial strain. We additionally show how to use both manual interrogation and statistical analyses of MALDI-IMS data to establish the adequacy of the sample preparation protocol. This protocol can serve as a guideline for the development of sample preparation techniques and the acquisition of high quality MALDI-IMS data.
Collapse
Affiliation(s)
- Catherine McCaughey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064
| | - Michael Trebino
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064,Corresponding author, , phone: 831-459-4676
| |
Collapse
|
40
|
Bell SE, Park I, Rubakhin SS, Bashir R, Vlasov Y, Sweedler JV. Droplet Microfluidics with MALDI-MS Detection: The Effects of Oil Phases in GABA Analysis. ACS MEASUREMENT SCIENCE AU 2021; 1:147-156. [PMID: 34939077 PMCID: PMC8679089 DOI: 10.1021/acsmeasuresciau.1c00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 06/01/2023]
Abstract
Microfluidic and mass spectrometry (MS) methods are widely used to sample and probe the chemical composition of biological systems to elucidate chemical correlates of their healthy and disease states. Though matrix-assisted laser desorption/ionization-mass spectrometry (MALDI)-MS has been hyphenated to droplet microfluidics for offline analyses, the effects of parameters related to droplet generation, such as the type of oil phase used, have been understudied. To characterize these effects, five different oil phases were tested in droplet microfluidics for producing samples for MALDI-MS analysis. Picoliter to nanoliter aqueous droplets containing 0.1 to 100 mM γ-aminobutyric acid (GABA) and inorganic salts were generated inside a polydimethylsiloxane microfluidic chip and deposited onto a conductive glass slide. Optical microscopy, Raman spectroscopy, and MALDI-mass spectrometry imaging (MSI) of the droplet samples and surrounding areas revealed patterns of solvent and oil evaporation and analyte deposition. Optical microscopy detected the presence of salt crystals in 50-100 μm diameter dried droplets, and Raman and MSI were used to correlate GABA signals to the visible droplet footprints. MALDI-MS analyses revealed that droplets prepared in the presence of octanol oil led to the poorest detectability of GABA, whereas the oil phases containing FC-40 provided the best detectability; GABA signal was localized to the footprint of 65 pL droplets with a limit of detection of 23 amol. The effect of the surfactant perfluorooctanol on analyte detection was also investigated.
Collapse
Affiliation(s)
- Sara E. Bell
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Insu Park
- Holonyak
Micro & Nanotechnology Laboratory, University
of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S. Rubakhin
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Rashid Bashir
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Holonyak
Micro & Nanotechnology Laboratory, University
of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Electrical and Computer Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yurii Vlasov
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Holonyak
Micro & Nanotechnology Laboratory, University
of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Electrical and Computer Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
41
|
Pathmasiri KC, Nguyen TTA, Khamidova N, Cologna SM. Mass spectrometry-based lipid analysis and imaging. CURRENT TOPICS IN MEMBRANES 2021; 88:315-357. [PMID: 34862030 DOI: 10.1016/bs.ctm.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful tool for in situ mapping of analytes across a sample. With growing interest in lipid biochemistry, the ability to perform such mapping without antibodies has opened many opportunities for MSI and lipid analysis. Herein, we discuss the basics of MSI with particular emphasis on MALDI mass spectrometry and lipid analysis. A discussion of critical advancements as well as protocol details are provided to the reader. In addition, strategies for improving the detection of lipids, as well as applications in biomedical research, are presented.
Collapse
Affiliation(s)
- Koralege C Pathmasiri
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Nigina Khamidova
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States; Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
42
|
Tang X, Zhao M, Chen Z, Huang J, Chen Y, Wang F, Wan K. Visualizing the spatial distribution of metabolites in Clausena lansium (Lour.) skeels using matrix-assisted laser desorption/ionization mass spectrometry imaging. PHYTOCHEMISTRY 2021; 192:112930. [PMID: 34481177 DOI: 10.1016/j.phytochem.2021.112930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Clausena lansium (Lour.) Skeels (Rutaceae) is a natural bioactive plant. Its roots, stems, leaves, and seeds are widely used in Chinese traditional and folk medicine. Although the characterization and functional analysis of bioactive components in Clausena lansium (Lour.) Skeels has been widely reported, the spatial distribution of these compounds within the main plant tissues remains undefined. Here, we adopted matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to reveal the spatial distribution of active alkaloids, coumarins, sugars and organic acids in C. lansium. Using a combined wet and dry matrix covering method to enhance sensitivity, we detected alkaloids throughout the fruit including 3-methylcarbazole and murrastinine which were especially rich in the kernel tissues but were restricted to the stem xylem and medulla and in the leaf epidermal region. Interestingly, murrayanine and heptaphylline were mainly found in pulp tissues with very low content in the stems and leaves while girinimbine was only distributed within the outer kernel skin. Coumarins were mainly distributed in the fruit pericarp and leaf vein tissues but with no clear spatial specificity in stems. Lastly, hexoses were mainly evident in the fruit pulp, although sucrose was also found in the pericarp, pulp, and pulp fibers with citric acid being distributed throughout the fruit. The accurate spatial and chemical information obtained provides new insights into the specific accumulation of metabolites in individual tissues.
Collapse
Affiliation(s)
- Xuemei Tang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China
| | - Meiyan Zhao
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhiting Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianxiang Huang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China
| | - Yan Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Fuhua Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China
| | - Kai Wan
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
43
|
Tressler C, Tilley S, Yang E, Donohue C, Barton E, Creissen A, Glunde K. Factorial Design to Optimize Matrix Spraying Parameters for MALDI Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2728-2737. [PMID: 34699220 PMCID: PMC9867919 DOI: 10.1021/jasms.1c00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Matrix deposition is a critical step in obtaining reproducible and spatially representative matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging data. To date, few limited studies have examined the optimization of matrix spraying parameters for maximizing analyte extraction while minimizing analyte delocalization. Herein, we present a study using automated pneumatic spraying with a heated sample-holder tray to determine an optimized model for mouse whole kidney lipid imaging using a 2,5-dihydroxybenzoic acid matrix in which the solvent flow rate, nozzle velocity, and sample heating were optimized using a two-level factorial experimental design. Parameters examined to determine the optimum model include the number of analytes, the matrix crystal size, off tissue delocalization, the signal intensity, and spray time. Our results show that sample heating using a heated tray while spraying improves the MALDI imaging performance. This improvement is possible because higher solvent flow rates can be used in the pneumatic sprayer, allowing for better sample extraction, while sample delocalization is minimized due to sample heating.
Collapse
Affiliation(s)
- Caitlin Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Sloane Tilley
- HTX Technologies, LLC, Chapel Hill, North Carolina 27516, United States
| | - Ethan Yang
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Christopher Donohue
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Eric Barton
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Alain Creissen
- HTX Technologies, LLC, Chapel Hill, North Carolina 27516, United States
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
44
|
Zang Q, Wang M, Zhu Y, Wang L, Luo Z, Li X, He J, Zhang R, Abliz Z. Enhanced On-Tissue Chemical Derivatization with Hydrogel Assistance for Mass Spectrometry Imaging. Anal Chem 2021; 93:15373-15380. [PMID: 34748327 DOI: 10.1021/acs.analchem.1c03118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The improvement of on-tissue chemical derivatization for mass spectrometry imaging (MSI) of low-abundance and/or poorly ionizable functional molecules in biological tissue without delocalization is challenging. Here, we developed a novel hydrogel-assisted chemical derivatization (HCD) approach coupled with airflow-assisted desorption electrospray ionization (AFADESI)-MSI, allowing for enhanced visualization of inaccessible molecules in biological tissues. The derivatization reagent Girard's P (GP) reagent was creatively packaged into a hydrogel to form HCD blocks that have reactivity to carbonyl compounds as well as the feasibility of "cover/uncover" contact mode with tissue sections. The HCD blocks provided a favorable liquid microenvironment for the derivatization reaction and reduced matrix effects from derivatization reagents and tissue without obvious molecular migration, thus improving the derivatization efficiency. With this methodology, unusual carbonyl metabolites, including 166 fatty aldehydes (FALs) and 100 oxo fatty acids (FAs), were detected and visualized in rat brain, kidney, and liver tissue. This study provides a new approach to enhance chemical labeling for in situ tissue submetabolome profiling and improves our knowledge of the molecular histology and complex metabolism of biological tissues.
Collapse
Affiliation(s)
- Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Manjiangcuo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lingzhi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhigang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
45
|
Lee PY, Yeoh Y, Omar N, Pung YF, Lim LC, Low TY. Molecular tissue profiling by MALDI imaging: recent progress and applications in cancer research. Crit Rev Clin Lab Sci 2021; 58:513-529. [PMID: 34615421 DOI: 10.1080/10408363.2021.1942781] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) imaging is an emergent technology that has been increasingly adopted in cancer research. MALDI imaging is capable of providing global molecular mapping of the abundance and spatial information of biomolecules directly in the tissues without labeling. It enables the characterization of a wide spectrum of analytes, including proteins, peptides, glycans, lipids, drugs, and metabolites and is well suited for both discovery and targeted analysis. An advantage of MALDI imaging is that it maintains tissue integrity, which allows correlation with histological features. It has proven to be a valuable tool for probing tumor heterogeneity and has been increasingly applied to interrogate molecular events associated with cancer. It provides unique insights into both the molecular content and spatial details that are not accessible by other techniques, and it has allowed considerable progress in the field of cancer research. In this review, we first provide an overview of the MALDI imaging workflow and approach. We then highlight some useful applications in various niches of cancer research, followed by a discussion of the challenges, recent developments and future prospect of this technique in the field.
Collapse
Affiliation(s)
- Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yeelon Yeoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nursyazwani Omar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, University of Nottingham Malaysia, Selangor, Malaysia
| | - Lay Cheng Lim
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Ajith A, Sthanikam Y, Banerjee S. Chemical analysis of the human brain by imaging mass spectrometry. Analyst 2021; 146:5451-5473. [PMID: 34515699 DOI: 10.1039/d1an01109j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Analysis of the chemical makeup of the brain enables a deeper understanding of several neurological processes. Molecular imaging that deciphers the spatial distribution of neurochemicals with high specificity and sensitivity is an exciting avenue in this aspect. The past two decades have witnessed a significant surge of mass spectrometry imaging (MSI) that can simultaneously map the distribution of hundreds to thousands of biomolecules in the tissue specimen at a fairly high resolution, which is otherwise beyond the scope of other molecular imaging techniques. In this review, we have documented the evolution of MSI technologies in imaging the anatomical distribution of neurochemicals in the human brain in the context of several neuro diseases. This review also addresses the potential of MSI to be a next-generation molecular imaging technique with its promising applications in neuropathology.
Collapse
Affiliation(s)
- Akhila Ajith
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India.
| | - Yeswanth Sthanikam
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India.
| | - Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India.
| |
Collapse
|
47
|
Wang Y, Hummon AB. MS imaging of multicellular tumor spheroids and organoids as an emerging tool for personalized medicine and drug discovery. J Biol Chem 2021; 297:101139. [PMID: 34461098 PMCID: PMC8463860 DOI: 10.1016/j.jbc.2021.101139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
MS imaging (MSI) is a powerful tool in drug discovery because of its ability to interrogate a wide range of endogenous and exogenous molecules in a broad variety of samples. The impressive versatility of the approach, where almost any ionizable biomolecule can be analyzed, including peptides, proteins, lipids, carbohydrates, and nucleic acids, has been applied to numerous types of complex biological samples. While originally demonstrated with harvested organs from animal models and biopsies from humans, these models are time consuming and expensive, which makes it necessary to extend the approach to 3D cell culture systems. These systems, which include spheroid models, prepared from immortalized cell lines, and organoid cultures, grown from patient biopsies, can provide insight on the intersection of molecular information on a spatial scale. In particular, the investigation of drug compounds, their metabolism, and the subsequent distribution of their metabolites in 3D cell culture systems by MSI has been a promising area of study. This review summarizes the different ionization methods, sample preparation steps, and data analysis methods of MSI and focuses on several of the latest applications of MALDI-MSI for drug studies in spheroids and organoids. Finally, the application of this approach in patient-derived organoids to evaluate personalized medicine options is discussed.
Collapse
Affiliation(s)
- Yijia Wang
- Department of Chemistry and Biochemistry, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
48
|
Kulkarni AS, Huang L, Qian K. Material-assisted mass spectrometric analysis of low molecular weight compounds for biomedical applications. J Mater Chem B 2021; 9:3622-3639. [PMID: 33871513 DOI: 10.1039/d1tb00289a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Low molecular weight compounds play an important role in encoding the current physiological state of an individual. Laser desorption/ionization mass spectrometry (LDI MS) offers high sensitivity with low cost for molecular detection, but it is not able to cover small molecules due to the drawbacks of the conventional matrix. Advanced materials are better alternatives, showing little background interference and high LDI efficiency. Herein, we first classify the current materials with a summary of compositions and structures. Matrix preparation protocols are then reviewed, to enhance the selectivity and reproducibility of MS data better. Finally, we highlight the biomedical applications of material-assisted LDI MS, at the tissue, bio-fluid, and cellular levels. We foresee that the advanced materials will bring far-reaching implications in LDI MS towards real-case applications, especially in clinical settings.
Collapse
Affiliation(s)
- Anuja Shreeram Kulkarni
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China.
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| |
Collapse
|
49
|
Expanding Molecular Coverage in Mass Spectrometry Imaging of Microbial Systems Using Metal-Assisted Laser Desorption/Ionization. Microbiol Spectr 2021; 9:e0052021. [PMID: 34287059 PMCID: PMC8552643 DOI: 10.1128/spectrum.00520-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mass spectrometry imaging (MSI) is becoming an increasingly popular analytical technique to investigate microbial systems. However, differences in the ionization efficiencies of distinct MSI methods lead to biases in terms of what types and classes of molecules can be detected. Here, we sought to increase the molecular coverage of microbial colonies by employing metal-assisted laser desorption/ionization (MetA-LDI) MSI, and we compared our results to more commonly utilized matrix-assisted laser desorption/ionization MALDI MSI. We found substantial (∼67%) overlap in the molecules detected in our analysis of Bacillus subtilis colony biofilms using both methods, but each ionization technique did lead to the identification of a unique subset of molecular species. MetA-LDI MSI tended to identify more small molecules and neutral lipids, whereas MALDI MSI more readily detected other lipids and surfactin species. Putative annotations were made using METASPACE, Metlin, and the BsubCyc database. These annotations were then confirmed from analyses of replicate bacterial colonies using liquid extraction surface analysis tandem mass spectrometry. Additionally, we analyzed B. subtilis biofilms in a polymer-based emulated soil micromodel using MetA-LDI MSI to better understand bacterial processes and metabolism in a native, soil-like environment. We were able to detect different molecular signatures within the micropore regions of the micromodel. We also show that MetA-LDI MSI can be used to analyze microbial biofilms from electrically insulating material. Overall, this study expands the molecular universe of microbial metabolism that can be visualized by MSI. IMPORTANCE Matrix-assisted laser desorption/ionization mass spectrometry imaging is becoming an important technique to investigate molecular processes within microbial colonies and microbiomes under different environmental conditions. However, this method is limited in terms of the types and classes of molecules that can be detected. In this study, we utilized metal-assisted laser desorption/ionization mass spectrometry imaging, which expanded the range of molecules that could be imaged from microbial samples. One advantage of this technique is that the addition of a metal helps facilitate ionization from electrically nonconductive substrates, which allows for the investigation of biofilms grown in polymer-based devices, like soil-emulating micromodels.
Collapse
|
50
|
Nambiar S, Kahn N, Gummer JPA. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging by Freeze-Spot Deposition of the Matrix. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1829-1836. [PMID: 34047188 DOI: 10.1021/jasms.1c00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Imaging mass spectrometry has emerged as a powerful metabolite measurement approach to capture the spatial dimension of metabolite distribution in a biological sample. In matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI), deposition of the chemical-matrix onto the sample serves to simultaneously extract biomolecules to the sample surface and concurrently render the sample amenable to MALDI. However, matrix application may mobilize sample metabolites and will dictate the efficiency of matrix crystallization, together limiting the lateral resolution which may be optimally achieved by MSI. Here, we describe a matrix application technique, herein referred to as the "freeze-spot" method, conceived as a low-cost preparative approach requiring minimal amounts of chemical matrix while maintaining the spatial dimension of sample metabolites for MALDI-MSI. Matrix deposition was achieved by pipette spot application of the matrix-solubilized within a solvent solution with a freezing point above that of a chilled sample stage to which the sample section is mounted. The matrix solution freezes on contact with the sample and the solvent is removed by sublimation, leaving a fine crystalline matrix on the sample surface. Freeze-spotting is quick to perform, found particularly useful for MALDI-MSI of small sample sections, and well suited to efficient and cost-effective method development pipelines, while capable of maintaining the lateral resolution required by MSI.
Collapse
Affiliation(s)
- Shabarinath Nambiar
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Nusrat Kahn
- School of Environmental Science, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Joel P A Gummer
- School of Science, Edith Cowan University, Joondalup, Western Australia 6027, Australia
- ChemCentre, Bentley, Western Australia 6102, Australia
| |
Collapse
|