1
|
Kuroi K, Kanazawa Y, Shinaridome A, Yasuda Y, Jung M, Pack CG, Fujii F. Protein corona formation on different-shaped CdSe/CdS semiconductor nanocrystals. NANOSCALE ADVANCES 2025; 7:560-571. [PMID: 39650619 PMCID: PMC11621831 DOI: 10.1039/d4na00696h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
Nanoparticles (NPs) have been widely studied and applied in medical and pharmaceutical fields. When NPs enter the in vivo environment, they are covered with protein molecules to form the so-called "protein corona". Because NPs and proteins are comparable in size, the shape of NPs has a significant impact on NP-protein interactions. Although NPs of various shapes have been synthesized, how the shape of NPs affects the protein corona is poorly understood, and little is known about the underlying molecular mechanism. In the present study, we synthesized spherical, football-shaped, and rod-shaped semiconductor nanocrystals (SNCs) as model NPs and compared their interaction with human serum albumin (HSA) using fluorescence correlation spectroscopy, fluorescence quenching, Fourier-transform infrared spectroscopy, and thermodynamic analysis. Based on the binding enthalpy and entropy and secondary structural changes of HSA, with the help of hydrodynamic diameter changes of SNCs, we concluded that HSA adopts a conformation or orientation that is appropriate for the local curvature of SNCs. This study demonstrates the effect of NP shape on their interaction with proteins and provides a mechanistic perspective.
Collapse
Affiliation(s)
- Kunisato Kuroi
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
| | - Yuta Kanazawa
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
| | - Akane Shinaridome
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
| | - Yuna Yasuda
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute Daegu 41062 Korea
| | - Chan-Gi Pack
- Convergence Medicine Research Center (CREDIT), Asan Institute for Life Sciences, Asan Medical Center Seoul 05505 Korea
- Department of Biomedical Engineering, University of Ulsan College of Medicine Seoul 05505 Korea
| | - Fumihiko Fujii
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
| |
Collapse
|
2
|
Musicò A, Zendrini A, Reyes SG, Mangolini V, Paolini L, Romano M, Papait A, Silini AR, Di Gianvincenzo P, Neva A, Cretich M, Parolini O, Almici C, Moya SE, Radeghieri A, Bergese P. Extracellular vesicles of different cellular origin feature distinct biomolecular corona dynamics. NANOSCALE HORIZONS 2024; 10:104-112. [PMID: 39559863 DOI: 10.1039/d4nh00320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Initially observed on synthetic nanoparticles, the existence of biomolecular corona and its role in determining nanoparticle identity and function are now beginning to be acknowledged in biogenic nanoparticles, particularly in extracellular vesicles - membrane-enclosed nanoparticle shuttling proteins, nucleic acids, and metabolites which are released by cells for physiological and pathological communication - we developed a methodology based on fluorescence correlation spectroscopy to track biomolecular corona formation on extracellular vesicles derived from human red blood cells and amniotic membrane mesenchymal stromal cells when these vesicles are dispersed in human plasma. The methodology allows for tracking corona dynamics in situ under physiological conditions. Results evidence that the two extracellular vesicle populations feature distinct corona dynamics. These findings indicate that the dynamics of the biomolecular corona may ultimately be linked to the cellular origin of the extracellular vesicles, revealing an additional level of heterogeneity, and possibly of bionanoscale identity, that characterizes circulating extracellular vesicles.
Collapse
Affiliation(s)
- Angelo Musicò
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
- CSGI, Center for Colloid and Surface Science, 50019 Florence, Italy
| | - Andrea Zendrini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
- CSGI, Center for Colloid and Surface Science, 50019 Florence, Italy
| | - Santiago Gimenez Reyes
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, Spain
- Instituto de Fisica del Sur (IFISUR-CONICET), Av. Alem, Bahia Blanca, Argentina
| | - Valentina Mangolini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
- CSGI, Center for Colloid and Surface Science, 50019 Florence, Italy
| | - Lucia Paolini
- CSGI, Center for Colloid and Surface Science, 50019 Florence, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health (DSMC), University of Brescia, Brescia, Italy
| | - Miriam Romano
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
- CSGI, Center for Colloid and Surface Science, 50019 Florence, Italy
| | - Andrea Papait
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Paolo Di Gianvincenzo
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, Spain
| | - Arabella Neva
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili of Brescia, 25123, Brescia, Italy
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - National Research Council of Italy (SCITEC-CNR), 20131 Milan, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Camillo Almici
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili of Brescia, 25123, Brescia, Italy
| | - Sergio E Moya
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, Spain
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
- CSGI, Center for Colloid and Surface Science, 50019 Florence, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
- CSGI, Center for Colloid and Surface Science, 50019 Florence, Italy
- National Inter-university Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
3
|
Almeida MB, Galdiano CMR, Silva Benvenuto FSRD, Carrilho E, Brazaca LC. Strategies Employed to Design Biocompatible Metal Nanoparticles for Medical Science and Biotechnology Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67054-67072. [PMID: 38688024 DOI: 10.1021/acsami.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The applicability of nanomaterials has evolved in biomedical domains thanks to advances in biocompatibility strategies and the mitigation of cytotoxic effects, allowing diagnostics, imaging, and therapeutic approaches. The application of nanoparticles (NP), particularly metal nanoparticles (mNPs), such as gold (Au) and silver (Ag), includes inherent challenges related to the material characteristics, surface modification, and bioconjugation techniques. By tailoring the surface properties through appropriate coating with biocompatible molecules or functionalization with active biomolecules, researchers can reach a harmonious interaction with biological systems or samples (mostly fluids or tissues). Thus, this review highlights the mechanisms associated with the obtention of biocompatible mNP and presents a comprehensive overview of methods that facilitate safe and efficient production. Therefore, we consider this review to be a valuable resource for all researchers navigating this dynamic field.
Collapse
Affiliation(s)
- Mariana Bortholazzi Almeida
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | | | - Filipe Sampaio Reis da Silva Benvenuto
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | - Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
4
|
Li S, Cortez-Jugo C, Ju Y, Caruso F. Approaching Two Decades: Biomolecular Coronas and Bio-Nano Interactions. ACS NANO 2024; 18:33257-33263. [PMID: 39602410 DOI: 10.1021/acsnano.4c13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
It has been nearly two decades since the term "protein corona" was coined. This term has since evolved to "biomolecular corona" or "biocorona" to capture the diverse biomolecules that spontaneously form on the surface of nanoparticles upon exposure to biological fluids and drive nanoparticle interactions with biological systems. In this Perspective, we highlight the significant progress in this field, including studies on nonprotein corona components, lipid nanoparticles, and the role of the corona in endogenous organ targeting. We also discuss research opportunities in this field, particularly the need for improved characterization and standardization of analysis and how recent advances in artificial intelligence and ex vivo models can improve our understanding of the biomolecular corona in guiding nanomedicine design.
Collapse
Affiliation(s)
- Shiyao Li
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Fu F, Crespy D, Landfester K, Jiang S. In situ characterization techniques of protein corona around nanomaterials. Chem Soc Rev 2024; 53:10827-10851. [PMID: 39291461 DOI: 10.1039/d4cs00507d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nanoparticles (NPs) inevitably interact with proteins upon exposure to biological fluids, leading to the formation of an adsorption layer known as the "protein corona". This corona imparts NPs with a new biological identity, directly influencing their interactions with living systems and dictating their fates in vivo. Thus, gaining a comprehensive understanding of the dynamic interplay between NPs and proteins in biological fluids is crucial for predicting therapeutic effects and advancing the clinical translation of nanomedicines. Numerous methods have been established to decode the protein corona fingerprints. However, these methods primarily rely on prior isolation of NP-protein complex from the surrounding medium by centrifugation, resulting in the loss of outer-layer proteins that directly interact with the biological system and determine the in vivo fate of NPs. We discuss here separation techniques as well as in situ characterization methods tailored for comprehensively unraveling the inherent complexities of NP-protein interactions, highlighting the challenges of in situ protein corona characterization and its significance for nanomedicine development and clinical translation.
Collapse
Affiliation(s)
- Fangqin Fu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | | | - Shuai Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
6
|
Sun Y, Zhou Y, Rehman M, Wang YF, Guo S. Protein Corona of Nanoparticles: Isolation and Analysis. CHEM & BIO ENGINEERING 2024; 1:757-772. [PMID: 39974182 PMCID: PMC11792916 DOI: 10.1021/cbe.4c00105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 02/21/2025]
Abstract
Nanoparticles entering biological systems or fluids inevitably adsorb biomolecules, such as protein, on their surfaces, forming a protein corona. Ensuing, the protein corona endows nanoparticles with a new biological identity and impacts the interaction between the nanoparticles and biological systems. Hence, the development of reliable techniques for protein corona isolation and analysis is key for understanding the biological behaviors of nanoparticles. First, this review systematically outlines the approach for isolating the protein corona, including centrifugation, magnetic separation, size exclusion chromatography, flow-field-flow fractionation, and other emerging methods. Next, we review the qualitative and quantitative characterization methods of the protein corona. Finally, we underscore the necessary steps to advance the efficiency and fidelity of protein corona isolation and characterization on nanoparticle surfaces. We anticipate that these insights into protein corona isolation and characterization methodologies will profoundly influence the development of technologies aimed at elucidating bionano interactions and the role of protein corona in various biomedical applications.
Collapse
Affiliation(s)
- Yinuo Sun
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science
Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yaxin Zhou
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science
Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mubashar Rehman
- School
of Biomedical Engineering and Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yi-Feng Wang
- School
of Biomedical Engineering and Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Shutao Guo
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science
Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Niu Y, Yu Y, Shi X, Fu F, Yang H, Mu Q, Crespy D, Landfester K, Jiang S. In Situ Measurement of Nanoparticle-Blood Protein Adsorption and Its Heterogeneity with Single-Nanoparticle Resolution via Dual Fluorescence Quantification. NANO LETTERS 2024; 24:9202-9211. [PMID: 39037031 PMCID: PMC11299225 DOI: 10.1021/acs.nanolett.4c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
The formation of a protein corona gives nanomedicines a distinct biological identity, profoundly influencing their fate in the body. Nonspecific nanoparticle-protein interactions are typically highly heterogeneous, which can lead to unique biological behaviors and in vivo fates for individual nanoparticles that remain underexplored. To address this, we have established an in situ approach that allows quantitative examination of nanoparticle-protein adsorption at the individual nanoparticle level. This method integrates dual fluorescence quantification techniques, wherein the nanoparticles are first individually analyzed via nanoflow cytometry to detect fluorescent signals from adsorbed proteins. The obtained fluorescence intensity is then translated into protein quantities through calibration with microplate reader quantification. Consequently, this approach enables analysis of interparticle heterogeneity of nano-protein interactions, as well as in situ monitoring of protein adsorption kinetics and nanoparticle aggregation status in blood serum, preconditioning for a comprehensive understanding of nano-bio interactions, and predicting in vivo fate of nanomedicines.
Collapse
Affiliation(s)
- Yuanyuan Niu
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Yingjie Yu
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Xinyang Shi
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Fangqin Fu
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Hai Yang
- Department
of Pharmacy, Qingdao Central Hospital, University
of Health and Rehabilitation Sciences, Qingdao 266042, China
| | - Qiang Mu
- The
First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao
Central Medical Group), Qingdao 266042, China
| | - Daniel Crespy
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Katharina Landfester
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shuai Jiang
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
8
|
Megahed S, Wutke N, Liu Y, Klapper M, Schulz F, Feliu N, Parak WJ. Encapsulation of Nanoparticles with Statistical Copolymers with Different Surface Charges and Analysis of Their Interactions with Proteins and Cells. Int J Mol Sci 2024; 25:5539. [PMID: 38791579 PMCID: PMC11122285 DOI: 10.3390/ijms25105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Encapsulation with polymers is a well-known strategy to stabilize and functionalize nanomaterials and tune their physicochemical properties. Amphiphilic copolymers are promising in this context, but their structural diversity and complexity also make understanding and predicting their behavior challenging. This is particularly the case in complex media which are relevant for intended applications in medicine and nanobiotechnology. Here, we studied the encapsulation of gold nanoparticles and quantum dots with amphiphilic copolymers differing in their charge and molecular structure. Protein adsorption to the nanoconjugates was studied with fluorescence correlation spectroscopy, and their surface activity was studied with dynamic interfacial tensiometry. Encapsulation of the nanoparticles without affecting their characteristic properties was possible with all tested polymers and provided good stabilization. However, the interaction with proteins and cells significantly depended on structural details. We identified statistical copolymers providing strongly reduced protein adsorption and low unspecific cellular uptake. Interestingly, different zwitterionic amphiphilic copolymers showed substantial differences in their resulting bio-repulsive properties. Among the polymers tested herein, statistical copolymers with sulfobetaine and phosphatidylcholine sidechains performed better than copolymers with carboxylic acid- and dimethylamino-terminated sidechains.
Collapse
Affiliation(s)
- Saad Megahed
- Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (S.M.); (Y.L.); (F.S.)
- Physics Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Nicole Wutke
- Max Planck Institute für Polymerforschung, 55128 Mainz, Germany; (N.W.); (M.K.)
| | - Yang Liu
- Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (S.M.); (Y.L.); (F.S.)
| | - Markus Klapper
- Max Planck Institute für Polymerforschung, 55128 Mainz, Germany; (N.W.); (M.K.)
| | - Florian Schulz
- Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (S.M.); (Y.L.); (F.S.)
| | - Neus Feliu
- Zentrum für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany;
| | - Wolfgang J. Parak
- Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (S.M.); (Y.L.); (F.S.)
| |
Collapse
|
9
|
He Z, Qu S, Shang L. Perspectives on Protein-Nanoparticle Interactions at the In Vivo Level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7781-7790. [PMID: 38572817 DOI: 10.1021/acs.langmuir.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The distinct features of nanoparticles have provided a vast opportunity of developing new diagnosis and therapy strategies for miscellaneous diseases. Although a few nanomedicines are available in the market or in the translation stage, many important issues are still unsolved. When entering the body, nanomaterials will be quickly coated by proteins from their surroundings, forming a corona on their surface, the so-called protein corona. Studies have shown that the protein corona has many important biological implications, particularly at the in vivo level. For example, they can promote the immune system to rapidly clear these outer materials and prevent nanoparticles from playing their designed role in therapy. In this Perspective, the available techniques for characterizing protein-nanoparticle interactions are critically summarized. Effects of nanoparticle properties and environmental factors on protein corona formation, which can further regulate the in vivo fate of nanoparticles, are highlighted and discussed. Moreover, recent progress on the biomedical application of protein corona-engineered nanoparticles is introduced, and future directions for this important yet challenging research area are also briefly discussed.
Collapse
Affiliation(s)
- Zhenhua He
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 China
| | - Shaohua Qu
- School of Physics and Electronic Information, Yan'an University, Yan'an, Shannxi 716000, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 China
| |
Collapse
|
10
|
Boselli L, Castagnola V, Armirotti A, Benfenati F, Pompa PP. Biomolecular Corona of Gold Nanoparticles: The Urgent Need for Strong Roots to Grow Strong Branches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306474. [PMID: 38085683 DOI: 10.1002/smll.202306474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/20/2023] [Indexed: 04/13/2024]
Abstract
Gold nanoparticles (GNPs) are largely employed in diagnostics/biosensors and are among the most investigated nanomaterials in biology/medicine. However, few GNP-based nanoformulations have received FDA approval to date, and promising in vitro studies have failed to translate to in vivo efficacy. One key factor is that biological fluids contain high concentrations of proteins, lipids, sugars, and metabolites, which can adsorb/interact with the GNP's surface, forming a layer called biomolecular corona (BMC). The BMC can mask prepared functionalities and target moieties, creating new surface chemistry and determining GNPs' biological fate. Here, the current knowledge is summarized on GNP-BMCs, analyzing the factors driving these interactions and the biological consequences. A partial fingerprint of GNP-BMC analyzing common patterns of composition in the literature is extrapolated. However, a red flag is also risen concerning the current lack of data availability and regulated form of knowledge on BMC. Nanomedicine is still in its infancy, and relying on recently developed analytical and informatic tools offers an unprecedented opportunity to make a leap forward. However, a restart through robust shared protocols and data sharing is necessary to obtain "stronger roots". This will create a path to exploiting BMC for human benefit, promoting the clinical translation of biomedical nanotools.
Collapse
Affiliation(s)
- Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
11
|
Wang J, Xu Y, Zhou Y, Zhang J, Jia J, Jiao P, Liu Y, Su G. Modulating the toxicity of engineered nanoparticles by controlling protein corona formation: Recent advances and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169590. [PMID: 38154635 DOI: 10.1016/j.scitotenv.2023.169590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development and widespread application of engineered nanoparticles (ENPs), understanding the fundamental interactions between ENPs and biological systems is essential to assess and predict the fate of ENPs in vivo. When ENPs are exposed to complex physiological environments, biomolecules quickly and inevitably adsorb to ENPs to form a biomolecule corona, such as a protein corona (PC). The formed PC has a significant effect on the physicochemical properties of ENPs and gives them a brand new identity in the biological environment, which determines the subsequent ENP-cell/tissue/organ interactions. Controlling the formation of PCs is therefore of utmost importance to accurately predict and optimize the behavior of ENPs within living organisms, as well as ensure the safety of their applications. In this review, we provide an overview of the fundamental aspects of the PC, including the formation mechanism, composition, and frequently used characterization techniques. We comprehensively discuss the potential impact of the PC on ENP toxicity, including cytotoxicity, immune response, and so on. Additionally, we summarize recent advancements in manipulating PC formation on ENPs to achieve the desired biological outcomes. We further discuss the challenges and prospects, aiming to provide valuable insights for a better understanding and prediction of ENP behaviors in vivo, as well as the development of low-toxicity ENPs.
Collapse
Affiliation(s)
- Jiali Wang
- School of Pharmacy, Nantong University, Nantong 226019, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Yun Zhou
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Jian Zhang
- Digestive Diseases Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 510001, China; Center for Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 510001 Guangzhou, China
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peifu Jiao
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226019, China.
| |
Collapse
|
12
|
Ahmed MA, Hessz D, Gyarmati B, Páncsics M, Kovács N, Gyurcsányi RE, Kubinyi M, Horváth V. A generic approach based on long-lifetime fluorophores for the assessment of protein binding to polymer nanoparticles by fluorescence anisotropy. NANOSCALE 2024; 16:3659-3667. [PMID: 38287773 DOI: 10.1039/d3nr02460a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Quantitation of protein-nanoparticle interactions is essential for the investigation of the protein corona around NPs in vivo and when using synthetic polymer nanoparticles as affinity reagents for selective protein recognition in vitro. Here, a method based on steady-state fluorescence anisotropy measurement is presented as a novel, separation-free tool for the assessment of protein-nanoparticle interactions. For this purpose, a long-lifetime luminescent Ru-complex is used for protein labelling, which exhibits low anisotropy when conjugated to the protein but displays high anisotropy when the proteins are bound to the much larger polymer nanoparticles. As a proof of concept, the interaction of lysozyme with poly(N-isopropylacrylamide-co-N-tert-butylacrylamide-co-acrylic acid) nanoparticles is studied, and fluorescence anisotropy measurements are used to establish the binding kinetics, binding isotherm and a competitive binding assay.
Collapse
Affiliation(s)
- Marwa A Ahmed
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
- Department of Chemistry, Faculty of Science, Arish University, 45511 El-Arish, North Sinai, Dahyet El Salam, Egypt
| | - Dóra Hessz
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA-BME "Lendület" Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Benjámin Gyarmati
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Mirkó Páncsics
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - Norbert Kovács
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - Róbert E Gyurcsányi
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
- MTA-BME "Lendület" Chemical Nanosensors Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- ELKH-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Miklós Kubinyi
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Viola Horváth
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
- ELKH-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
13
|
Fu P, Yin S, Cheng H, Xu W, Jiang J. Engineered Exosomes for Drug Delivery in Cancer Therapy: A Promising Approach and Application. Curr Drug Deliv 2024; 21:817-827. [PMID: 37438904 DOI: 10.2174/1567201820666230712103942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
A significant amount of research effort is currently focused on investigating the role of exosomes in various cancers. These tiny vesicles, apart from acting as biomarkers, also play a crucial role in tumor formation and development. Several studies have demonstrated that exosomes can be a drug delivery vehicle for cancer therapy. In this paper, we highlight the key advantages of exosomes as a drug delivery candidate, with a particular focus on their low immunogenicity, natural targeting ability and suitable mechanical properties. Furthermore, we propose that the selection of appropriate exosomes and drug loading methods based on therapeutic goals and product heterogeneity is essential for preparing engineered exosomes. We comprehensively analyzed the superiorities of current drug-loading methods to improve the creation of designed exosomes. Moreover, we systematically review the applications of engineered exosomes in various therapies such as immunotherapy, gene therapy, protein therapy, chemotherapy, indicating that engineered exosomes have the potential to be reliable and, safe drug carriers that can address the unmet needs in cancer clinical practice.
Collapse
Affiliation(s)
- Peiwen Fu
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Siqi Yin
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huiying Cheng
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|
14
|
Santander EA, Bravo G, Chang-Halabi Y, Olguín-Orellana GJ, Naulin PA, Barrera MJ, Montenegro FA, Barrera NP. The Adsorption of P2X2 Receptors Interacting with IgG Antibodies Revealed by Combined AFM Imaging and Mechanical Simulation. Int J Mol Sci 2023; 25:336. [PMID: 38203505 PMCID: PMC10778698 DOI: 10.3390/ijms25010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The adsorption of proteins onto surfaces significantly impacts biomaterials, medical devices, and biological processes. This study aims to provide insights into the irreversible adsorption process of multiprotein complexes, particularly focusing on the interaction between anti-His6 IgG antibodies and the His6-tagged P2X2 receptor. Traditional approaches to understanding protein adsorption have centered around kinetic and thermodynamic models, often examining individual proteins and surface coverage, typically through Molecular Dynamics (MD) simulations. In this research, we introduce a computational approach employing Autodesk Maya 3D software for the investigation of multiprotein complexes' adsorption behavior. Utilizing Atomic Force Microscopy (AFM) imaging and Maya 3D-based mechanical simulations, our study yields real-time structural and kinetic observations. Our combined experimental and computational findings reveal that the P2X2 receptor-IgG antibody complex likely undergoes absorption in an 'extended' configuration. Whereas the P2X2 receptor is less adsorbed once is complexed to the IgG antibody compared to its individual state, the opposite is observed for the antibody. This insight enhances our understanding of the role of protein-protein interactions in the process of protein adsorption.
Collapse
Affiliation(s)
- Eduardo A. Santander
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Graciela Bravo
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Yuan Chang-Halabi
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Gabriel J. Olguín-Orellana
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Pamela A. Naulin
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Mario J. Barrera
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Felipe A. Montenegro
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Nelson P. Barrera
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| |
Collapse
|
15
|
Gahtori P, Gunwant V, Pandey R. How Does pH Affect the Adsorption of Human Serum Protein in the Presence of Hydrophobic and Hydrophilic Nanoparticles at Air-Water and Lipid-Water Interfaces? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15487-15498. [PMID: 37878019 DOI: 10.1021/acs.langmuir.3c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
This study investigates interaction between hydrophilic (11-mercaptoundecanoic acid (MUA)) and hydrophobic (1-undecanethiol (UDT)) gold nanoparticles (GNPs) with human serum albumin (HSA) protein on air-water and lipid-water interfaces at pH 3 and 7. Vibrational sum frequency generation (VSFG) spectroscopy is used to analyze changes in the intensity of interfacial water molecules and the C-H group of the protein. At the air-water interface, the hydrophobic interaction between the HSA protein and hydrophobic GNPs at pH 3 leads to their accumulation at the interface, resulting in an increased C-H intensity of the protein with a slight decrease in water intensity. Whereas, at pH 7, where the negative charge of the protein results in the reduced surface activity of the HSA compared to pH 3, the interaction between alkyl chain of the hydrophobic GNPs and alkyl group of the protein results in the adsorption of the protein-capped GNPs at the interface. This leads to an increased intensity of the C-H group of protein and water molecules. However, negatively charged hydrophilic GNPs do not induce significant changes in the interfacial water structure or the C-H group of the protein due to the electrostatic force of repulsion with the negatively charged HSA at pH 7. In contrast, at the lipid-water interface, both hydrophobic and hydrophilic GNPs interact with HSA protein, causing disordering of interfacial water molecules at pH 3 and ordering at pH 7. Interestingly, similar behavior of the protein with both types of GNPs results in comparable ordering/disordering at the interface depending on the pH of solution. Furthermore, the VSFG results obtained with the deuterated lipid suggest that changes in ordering and disorder occur due to increased protein adsorption in the presence of GNPs, causing alterations in the membrane structure. These findings give a better understanding of the mechanisms that govern protein-nanoparticle interaction and their consequential effects on the structure, function, and behavior of molecules at the biological membrane interface, which is crucial for developing safe and effective nanoparticle-based therapeutics.
Collapse
Affiliation(s)
- Preeti Gahtori
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Vineet Gunwant
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
16
|
Cornwell SE, Okocha SO, Ferrari E. Multivariate Analysis of Protein-Nanoparticle Binding Data Reveals a Selective Effect of Nanoparticle Material on the Formation of Soft Corona. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2901. [PMID: 37947745 PMCID: PMC10647827 DOI: 10.3390/nano13212901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
When nanoparticles are introduced into the bloodstream, plasma proteins accumulate at their surface, forming a protein corona. This corona affects the properties of intravenously administered nanomedicines. The firmly bound layer of plasma proteins in direct contact with the nanomaterial is called the "hard corona". There is also a "soft corona" of loosely associated proteins. While the hard corona has been extensively studied, the soft corona is less understood due to its inaccessibility to analytical techniques. Our study used dynamic light scattering to determine the dissociation constant and thickness of the protein corona formed in solutions of silica or gold nanoparticles mixed with serum albumin, transferrin or prothrombin. Multivariate analysis showed that the nanoparticle material had a greater impact on binding properties than the protein type. Serum albumin had a distinct binding pattern compared to the other proteins tested. This pilot study provides a blueprint for future investigations into the complexity of the soft protein corona, which is key to developing nanomedicines.
Collapse
Affiliation(s)
| | | | - Enrico Ferrari
- Department of Life Sciences, University of Lincoln, Lincolnshire, Lincoln LN6 7TS, UK
| |
Collapse
|
17
|
Gao LX, Hao H, Yu YQ, Chen JL, Chen WQ, Gong ZD, Liu Y, Jiang FL. Protein Labeling Facilitates the Understanding of Protein Corona Formation via Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15275-15284. [PMID: 37853521 DOI: 10.1021/acs.langmuir.3c01986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Once nanoparticles enter into the biological milieu, nanoparticle-biomacromolecule complexes, especially the protein corona, swiftly form, which cause obvious effects on the physicochemical properties of both nanoparticles and proteins. Here, the thermodynamic parameters of the interactions between water-soluble GSH-CdSe/ZnS core/shell quantum dots (GSH-QDs) and human serum albumin (HSA) were investigated with the aid of labeling fluorescence of HSA. It was proved that the labeling fluorescence originating from a fluorophore (BDP-CN for instance) could be used to investigate the interactions between QDs and HSA. Gel electrophoresis displayed that the binding ratio between HSA and QDs was ∼2:1 by direct visualization. Fluorescence resonance energy transfer (FRET) results indicated that the distance between the QDs and the fluorophore BDP-CN in HSA was 7.2 nm, which indicated that the distance from the fluorophore to the surface of the QDs was ∼4.8 nm. Fluorescence correlation spectroscopy (FCS) results showed that HSA formed a monolayer of a protein corona with a thickness of 5.5 nm. According to the spatial structure of HSA, we could speculate that the binding site of QDs was located at the side edge (not the triangular plane) of HSA with an equilateral triangular prism. The elaboration of the thermodynamic parameters, binding ratio, and interaction orientation will highly improve the fundamental understanding of the formation of protein corona. This work has guiding significance for the exploration of the interactions between proteins and nanomaterials.
Collapse
Affiliation(s)
- Lian-Xun Gao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hao Hao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ying-Qi Yu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ji-Lei Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wen-Qi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zuo-Dong Gong
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
18
|
Fu L, Zhang Y, Farokhzad RA, Mendes BB, Conde J, Shi J. 'Passive' nanoparticles for organ-selective systemic delivery: design, mechanism and perspective. Chem Soc Rev 2023; 52:7579-7601. [PMID: 37817741 PMCID: PMC10623545 DOI: 10.1039/d2cs00998f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Nanotechnology has shown tremendous success in the drug delivery field for more effective and safer therapy, and has recently enabled the clinical approval of RNA medicine, a new class of therapeutics. Various nanoparticle strategies have been developed to improve the systemic delivery of therapeutics, among which surface modification of targeting ligands on nanoparticles has been widely explored for 'active' delivery to a specific organ or diseased tissue. Meanwhile, compelling evidence has recently been reported that organ-selective targeting may also be achievable by systemic administration of nanoparticles without surface ligand modification. In this Review, we highlight this unique set of 'passive' nanoparticles and their compositions and mechanisms for organ-selective delivery. In particular, the lipid-based, polymer-based, and biomimetic nanoparticles with tropism to different specific organs after intravenous administration are summarized. The underlying mechanisms (e.g., protein corona and size effect) of these nanosystems for organ selectivity are also extensively discussed. We further provide perspectives on the opportunities and challenges in this exciting area of organ-selective systemic nanoparticle delivery.
Collapse
Affiliation(s)
- Liyi Fu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yang Zhang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ryan A Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bárbara B Mendes
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
19
|
Dolci M, Wang Y, Nooteboom SW, Soto Rodriguez PED, Sánchez S, Albertazzi L, Zijlstra P. Real-Time Optical Tracking of Protein Corona Formation on Single Nanoparticles in Serum. ACS NANO 2023; 17:20167-20178. [PMID: 37802067 PMCID: PMC10604089 DOI: 10.1021/acsnano.3c05872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
The formation of a protein corona, where proteins spontaneously adhere to the surface of nanomaterials in biological environments, leads to changes in their physicochemical properties and subsequently affects their intended biomedical functionalities. Most current methods to study protein corona formation are ensemble-averaging and either require fluorescent labeling, washing steps, or are only applicable to specific types of particles. Here we introduce real-time all-optical nanoparticle analysis by scattering microscopy (RONAS) to track the formation of protein corona in full serum, at the single-particle level, without any labeling. RONAS uses optical scattering microscopy and enables real-time and in situ tracking of protein adsorption on metallic and dielectric nanoparticles with different geometries directly in blood serum. We analyzed the adsorbed protein mass, the affinity, and the kinetics of the protein adsorption at the single particle level. While there is a high degree of heterogeneity from particle to particle, the predominant factor in protein adsorption is surface chemistry rather than the underlying nanoparticle material or size. RONAS offers an in-depth understanding of the mechanisms related to protein coronas and, thus, enables the development of strategies to engineer efficient bionanomaterials.
Collapse
Affiliation(s)
- Mathias Dolci
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Yuyang Wang
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sjoerd W. Nooteboom
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | | | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute for
Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys,
23, 08010 Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven The Netherlands
| | - Peter Zijlstra
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
20
|
Saunders C, de Villiers CA, Stevens MM. Single Particle Chemical Characterisation of Nanoformulations for Cargo Delivery. AAPS J 2023; 25:94. [PMID: 37783923 DOI: 10.1208/s12248-023-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/25/2023] [Indexed: 10/04/2023] Open
Abstract
Nanoparticles can encapsulate a range of therapeutics, from small molecule drugs to sensitive biologics, to significantly improve their biodistribution and biostability. Whilst the regulatory approval of several of these nanoformulations has proven their translatability, there remain several hurdles to the translation of future nanoformulations, leading to a high rate of candidate nanoformulations failing during the drug development process. One barrier is that the difficulty in tightly controlling nanoscale particle synthesis leads to particle-to-particle heterogeneity, which hinders manufacturing and quality control, and regulatory quality checks. To understand and mitigate this heterogeneity requires advancements in nanoformulation characterisation beyond traditional bulk methods to more precise, single particle techniques. In this review, we compare commercially available single particle techniques, with a particular focus on single particle Raman spectroscopy, to provide a guide to adoption of these methods into development workflows, to ultimately reduce barriers to the translation of future nanoformulations.
Collapse
Affiliation(s)
- Catherine Saunders
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Camille A de Villiers
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
- Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
21
|
Najer A, Rifaie-Graham O, Yeow J, Adrianus C, Chami M, Stevens MM. Differences in Human Plasma Protein Interactions between Various Polymersomes and Stealth Liposomes as Observed by Fluorescence Correlation Spectroscopy. Macromol Biosci 2023; 23:e2200424. [PMID: 36447300 PMCID: PMC7615495 DOI: 10.1002/mabi.202200424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Indexed: 12/05/2022]
Abstract
A significant factor hindering the clinical translation of polymersomes as vesicular nanocarriers is the limited availability of comparative studies detailing their interaction with blood plasma proteins compared to liposomes. Here, polymersomes are self-assembled via film rehydration, solvent exchange, and polymerization-induced self-assembly using five different block copolymers. The hydrophilic blocks are composed of anti-fouling polymers, poly(ethylene glycol) (PEG) or poly(2-methyl-2-oxazoline) (PMOXA), and all the data is benchmarked to PEGylated "stealth" liposomes. High colloidal stability in human plasma (HP) is confirmed for all but two tested nanovesicles. In situ fluorescence correlation spectroscopy measurements are then performed after incubating unlabeled nanovesicles with fluorescently labeled HP or the specific labeled plasma proteins, human serum albumin, and clusterin (apolipoprotein J). The binding of HP to PMOXA-polymersomes could explain their relatively short circulation times found previously. In contrast, PEGylated liposomes also interact with HP but accumulate high levels of clusterin, providing them with their known prolonged circulation time. The absence of significant protein binding for most PEG-polymersomes indicates mechanistic differences in protein interactions and associated downstream effects, such as cell uptake and circulation time, compared to PEGylated liposomes. These are key observations for bringing polymersomes closer to clinical translation and highlighting the importance of such comparative studies.
Collapse
Affiliation(s)
- Adrian Najer
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ, UK
| | - Omar Rifaie-Graham
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ, UK
| | - Jonathan Yeow
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ, UK
| | - Christopher Adrianus
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ, UK
| | - Mohamed Chami
- BioEM lab, Biozentrum, University of Basel, Mattenstrasse 26, Basel 4058, Switzerland
| | - Molly M. Stevens
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ, UK
| |
Collapse
|
22
|
Nienhaus K, Nienhaus GU. Mechanistic Understanding of Protein Corona Formation around Nanoparticles: Old Puzzles and New Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301663. [PMID: 37010040 DOI: 10.1002/smll.202301663] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Although a wide variety of nanoparticles (NPs) have been engineered for use as disease markers or drug delivery agents, the number of nanomedicines in clinical use has hitherto remained small. A key obstacle in nanomedicine development is the lack of a deep mechanistic understanding of NP interactions in the bio-environment. Here, the focus is on the biomolecular adsorption layer (protein corona), which quickly enshrouds a pristine NP exposed to a biofluid and modifies the way the NP interacts with the bio-environment. After a brief introduction of NPs for nanomedicine, proteins, and their mutual interactions, research aimed at addressing fundamental properties of the protein corona, specifically its mono-/multilayer structure, reversibility and irreversibility, time dependence, as well as its role in NP agglomeration, is critically reviewed. It becomes quite evident that the knowledge of the protein corona is still fragmented, and conflicting results on fundamental issues call for further mechanistic studies. The article concludes with a discussion of future research directions that should be taken to advance the understanding of the protein corona around NPs. This knowledge will provide NP developers with the predictive power to account for these interactions in the design of efficacious nanomedicines.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76049, Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76049, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
23
|
Ogunlusi T, Driskell JD. Controlled Temporal Release of Serum Albumin Immobilized on Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3720-3728. [PMID: 36857653 DOI: 10.1021/acs.langmuir.2c03429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Proteins adsorbed to gold nanoparticles (AuNPs) form bioconjugates and are critical to many emerging technologies for drug delivery, diagnostics, therapies, and other biomedical applications. A thorough understanding of the interaction between the immobilized protein and AuNP is essential for the bioconjugate to perform as designed. Here, we explore a correlation between the number of solvent-accessible thiol groups on a protein and the protein desorption rate from the AuNP surface in the presence of a competing protein. The chemical modification of human serum albumin (HSA) was carried out to install additional free thiols using Traut's reagent and create a library of HSA analogues by tailoring the molar excess of the Traut's reagent. We pre-adsorbed HSA variants onto the AuNP surface, and the resulting bioconjugates were then exposed to IgG antibody, and protein exchange was monitored as a function of time. We found that the rate of HSA displacement from the AuNP correlated with the experimentally measured number of accessible free thiol groups. Additionally, bioconjugates were synthesized using thiolated analogues of bovine serum albumin (BSA) and suspended in serum as a model for a complex sample matrix. Similarly, desorption rates with serum proteins were modulated with solvent-accessible thiols on the immobilized protein. These results further highlight the key role of Au-S bonds in the formation of protein-AuNP conjugates and provide a pathway to systematically control the number of free thiols on a protein, enabling the controlled release of protein from the surface of AuNP.
Collapse
Affiliation(s)
- Tosin Ogunlusi
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jeremy D Driskell
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| |
Collapse
|
24
|
Traldi F, Liu P, Albino I, Ferreira L, Zarbakhsh A, Resmini M. Protein-Nanoparticle Interactions Govern the Interfacial Behavior of Polymeric Nanogels: Study of Protein Corona Formation at the Air/Water Interface. Int J Mol Sci 2023; 24:2810. [PMID: 36769129 PMCID: PMC9917661 DOI: 10.3390/ijms24032810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Biomedical applications of nanoparticles require a fundamental understanding of their interactions and behavior with biological interfaces. Protein corona formation can alter the morphology and properties of nanomaterials, and knowledge of the interfacial behavior of the complexes, using in situ analytical techniques, will impact the development of nanocarriers to maximize uptake and permeability at cellular interfaces. In this study we evaluate the interactions of acrylamide-based nanogels, with neutral, positive, and negative charges, with serum-abundant proteins albumin, fibrinogen, and immunoglobulin G. The formation of a protein corona complex between positively charged nanoparticles and albumin is characterized by dynamic light scattering, circular dichroism, and surface tensiometry; we use neutron reflectometry to resolve the complex structure at the air/water interface and demonstrate the effect of increased protein concentration on the interface. Surface tensiometry data suggest that the structure of the proteins can impact the interfacial properties of the complex formed. These results contribute to the understanding of the factors that influence the bio-nano interface, which will help to design nanomaterials with improved properties for applications in drug delivery.
Collapse
Affiliation(s)
- Federico Traldi
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, UK
| | - Pengfei Liu
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, UK
| | - Inês Albino
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197 Coimbra, Portugal
| | - Lino Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3060-197 Coimbra, Portugal
| | - Ali Zarbakhsh
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, UK
| | - Marina Resmini
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
25
|
Zhang T, Dong C, Ren J. Probing the Protein Corona of Nanoparticles in a Fluid Flow by Single-Particle Differenced Resonance Light Scattering Correlation Spectroscopy. Anal Chem 2023; 95:2029-2038. [PMID: 36607829 DOI: 10.1021/acs.analchem.2c04568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The protein corona of nanoparticles (NPs) plays a crucial role in determining NPs' biological fates. Here, a novel measurement strategy was proposed to in situ investigate the protein corona formed in the NPs with the home-built dual-wavelength laser-irradiated differenced resonance light scattering correlation spectroscopy (D-RLSCS) technique, combined with the modified generation method of the D-RLSCS curve. With the measurement strategy, the dissociation constants and the binding rates between proteins and gold nanoparticles (GNPs) were determined based on the binding-induced ratiometric diffusion change of NPs (the ratio of characteristic rotational diffusion time to translational one), using the formation of the protein corona of bovine serum albumin (BSA) or fibrinogen (FIB) on gold nanoparticles as a model. It was found that BSA shows a stronger binding constant and faster binding rate to gold nanospheres (GNSs) compared with those of FIB. Meanwhile, the dynamic behavior of the protein corona in a fluid flow mimicking biological vessels was further studied based on the combination of the D-RLSCS technique with a microfluidic channel. The measurement results indicated that some "loose" protein corona layers would strip off the surface of NPs within the microchannel due to the fluid sheath force. This method can provide the comprehensive information of a protein corona by averaging the diffusion behavior of many particles different from some conventional methods and overcome the shortcomings of conventional correlation spectroscopy methods.
Collapse
Affiliation(s)
- Tian Zhang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, P. R. China
| |
Collapse
|
26
|
Kim W, Ly NK, He Y, Li Y, Yuan Z, Yeo Y. Protein corona: Friend or foe? Co-opting serum proteins for nanoparticle delivery. Adv Drug Deliv Rev 2023; 192:114635. [PMID: 36503885 PMCID: PMC9812987 DOI: 10.1016/j.addr.2022.114635] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
For systemically delivered nanoparticles to reach target tissues, they must first circulate long enough to reach the target and extravasate there. A challenge is that the particles end up engaging with serum proteins and undergo immune cell recognition and premature clearance. The serum protein binding, also known as protein corona formation, is difficult to prevent, even with artificial protection via "stealth" coating. Protein corona may be problematic as it can interfere with the interaction of targeting ligands with tissue-specific receptors and abrogate the so-called active targeting process, hence, the efficiency of drug delivery. However, recent studies show that serum protein binding to circulating nanoparticles may be actively exploited to enhance their downstream delivery. This review summarizes known issues of protein corona and traditional strategies to control the corona, such as avoiding or overriding its formation, as well as emerging efforts to enhance drug delivery to target organs via nanoparticles. It concludes with a discussion of prevailing challenges in exploiting protein corona for nanoparticle development.
Collapse
Affiliation(s)
- Woojun Kim
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Nhu Ky Ly
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Université Paris Cité, Faculté de Santé, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Yanying He
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yongzhe Li
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Zhongyue Yuan
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
27
|
Chen S, Huang Z, Visalakshan RM, Liu H, Bachhuka A, Wu Y, Dabare PRL, Luo P, Liu R, Gong Z, Xiao Y, Vasilev K, Chen Z, Chen Z. Plasma polymerized bio-interface directs fibronectin adsorption and functionalization to enhance "epithelial barrier structure" formation via FN-ITG β1-FAK-mTOR signaling cascade. Biomater Res 2022; 26:88. [PMID: 36572920 PMCID: PMC9791785 DOI: 10.1186/s40824-022-00323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/15/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Transepithelial medical devices are increasing utilized in clinical practices. However, the damage of continuous natural epithelial barrier has become a major risk factor for the failure of epithelium-penetrating implants. How to increase the "epithelial barrier structures" (focal adhesions, hemidesmosomes, etc.) becomes one key research aim in overcoming this difficulty. Directly targeting the in situ "epithelial barrier structures" related proteins (such as fibronectin) absorption and functionalization can be a promising way to enhance interface-epithelial integration. METHODS Herein, we fabricated three plasma polymerized bio-interfaces possessing controllable surface chemistry. Their capacity to adsorb and functionalize fibronectin (FN) from serum protein was compared by Liquid Chromatography-Tandem Mass Spectrometry. The underlying mechanisms were revealed by molecular dynamics simulation. The response of gingival epithelial cells regarding the formation of epithelial barrier structures was tested. RESULTS Plasma polymerized surfaces successfully directed distinguished protein adsorption profiles from serum protein pool, in which plasma polymerized allylamine (ppAA) surface favored adsorbing adhesion related proteins and could promote FN absorption and functionalization via electrostatic interactions and hydrogen bonds, thus subsequently activating the ITG β1-FAK-mTOR signaling and promoting gingival epithelial cells adhesion. CONCLUSION This study offers an effective perspective to overcome the current dilemma of the inferior interface-epithelial integration by in situ protein absorption and functionalization, which may advance the development of functional transepithelial biointerfaces. Tuning the surface chemistry by plasma polymerization can control the adsorption of fibronectin and functionalize it by exposing functional protein domains. The functionalized fibronectin can bind to human gingival epithelial cell membrane integrins to activate epithelial barrier structure related signaling pathway, which eventually enhances the formation of epithelial barrier structure.
Collapse
Affiliation(s)
- Shoucheng Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zhuwei Huang
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | | | - Haiwen Liu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Akash Bachhuka
- grid.410367.70000 0001 2284 9230Department of Electronics, Electric and Automatic Engineering, Rovira i Virgili University (URV), Tarragona, 43003 Spain
| | - You Wu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Panthihage Ruvini L. Dabare
- grid.1026.50000 0000 8994 5086Academic Unit of Science, Technology, Engineering and Mathematics (STEM), University of South Australia, Mawson Lakes, SA 5095 Australia
| | - Pu Luo
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Runheng Liu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zhuohong Gong
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Yin Xiao
- grid.1024.70000000089150953Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Australia
| | - Krasimir Vasilev
- grid.1026.50000 0000 8994 5086Academic Unit of Science, Technology, Engineering and Mathematics (STEM), University of South Australia, Mawson Lakes, SA 5095 Australia
| | - Zhuofan Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zetao Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| |
Collapse
|
28
|
Qu S, Qiao Z, Zhong W, Liang K, Jiang X, Shang L. Chirality-Dependent Dynamic Evolution of the Protein Corona on the Surface of Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44147-44157. [PMID: 36153958 DOI: 10.1021/acsami.2c11874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Elucidating the biological behavior of engineered nanoparticles, for example, the protein corona, is important for the development of safe and efficient nanomedicine, but our current understanding is still limited due to its highly dynamic nature and lack of adequate analytical tools. In the present work, we demonstrate the establishment of a fluorescence resonance energy transfer (FRET)-based platform for monitoring the dynamic evolution behavior of the protein corona in complex biological media. With human serum albumin and lysozyme as the model serum proteins, the protein exchange process of the preformed corona on the surface of chiral quantum dots (QDs) upon feeding either individual protein or human serum was monitored in situ by FRET. Important parameters characterizing the evolution process of protein corona could be obtained upon quantitative analysis of FRET data. Further combining real-time FRET monitoring with gel electrophoresis experiments revealed that the nature of the protein initially adsorbed on the surface of QDs significantly affects the subsequent dynamic exchange behavior of the protein corona. Furthermore, our results also revealed that only a limited proportion of proteins are involved in the protein exchange, and the exchange process exhibits a significant dependence on the surface chirality of QDs. This work demonstrates the feasibility of FRET as a powerful tool to exploit the dynamic evolution process of the protein corona, which can provide theoretical guidance for further design of advanced nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Shaohua Qu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Zihan Qiao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Kangqiang Liang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Xiue Jiang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| |
Collapse
|
29
|
Latreille PL, Rabanel JM, Le Goas M, Salimi S, Arlt J, Patten SA, Ramassamy C, Hildgen P, Martinez VA, Banquy X. In Situ Characterization of the Protein Corona of Nanoparticles In Vitro and In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203354. [PMID: 35901787 DOI: 10.1002/adma.202203354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/23/2022] [Indexed: 06/15/2023]
Abstract
A new theoretical framework that enables the use of differential dynamic microscopy (DDM) in fluorescence imaging mode to quantify in situ protein adsorption onto nanoparticles (NP) while simultaneously monitoring for NP aggregation is proposed. This methodology is used to elucidate the thermodynamic and kinetic properties of the protein corona (PC) in vitro and in vivo. The results show that protein adsorption triggers particle aggregation over a wide concentration range and that the formed aggregate structures can be quantified using the proposed methodology. Protein affinity for polystyrene (PS) NPs is observed to be dependent on particle concentration. For complex protein mixtures, this methodology identifies that the PC composition changes with the dilution of serum proteins, demonstrating a Vroman effect never quantitatively assessed in situ on NPs. Finally, DDM allows monitoring of the evolution of the PC in vivo. This results show that the PC composition evolves significantly over time in zebrafish larvae, confirming the inherently dynamic nature of the PC. The performance of the developed methodology allows to obtain quantitative insights into nano-bio interactions in a vast array of physiologically relevant conditions that will serve to further improve the design of nanomedicine.
Collapse
Affiliation(s)
- Pierre-Luc Latreille
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Jean-Michel Rabanel
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
- INRS, Centre Armand Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Marine Le Goas
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Sina Salimi
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Jochen Arlt
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Shunmoogum A Patten
- INRS, Centre Armand Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Charles Ramassamy
- INRS, Centre Armand Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Patrice Hildgen
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Vincent A Martinez
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
30
|
Preeyanka N, Akhuli A, Dey H, Chakraborty D, Rahaman A, Sarkar M. Realization of a Model-Free Pathway for Quantum Dot-Protein Interaction Beyond Classical Protein Corona or Protein Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10704-10715. [PMID: 35970517 DOI: 10.1021/acs.langmuir.2c01789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although in recent times nanoparticles (NPs) are being used in various biological applications, their mechanism of binding interactions still remains hazy. Usually, the binding mechanism is perceived to be mediated through either the protein corona (PC) or protein complex (PCx). Herein, we report that the nanoparticle (NP)-protein interaction can also proceed via a different pathway without forming the commonly observed PC or PCx. In the present study, the NP-protein interaction between less-toxic zinc-silver-indium-sulfide (ZAIS) quantum dots (QDs) and bovine serum albumin (BSA) was investigated by employing spectroscopic and microscopic techniques. Although the analyses of data obtained from fluorescence and thermodynamic studies do indicate the binding between QDs and BSA, they do not provide clear experimental evidence in favor of PC or PCx. Quite interestingly, high-resolution transmission electron microscopy (HRTEM) studies have shown the formation of a new type of species where BSA protein molecules are adsorbed onto some portion of a QD surface rather than the entire surface. To the best of our knowledge, we believe that this is the first direct experimental evidence in favor of a model-free pathway for NP-protein interaction events. Thus, the outcome of the present study, through experimental evidence, clearly suggests that NP-protein interaction can proceed by following a pathway that is different from classical PC and PCx.
Collapse
Affiliation(s)
- Naupada Preeyanka
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| | - Amit Akhuli
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| | - Himani Dey
- School of Biological Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| | - Debabrata Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| | - Abdur Rahaman
- School of Biological Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| |
Collapse
|
31
|
Wang Y, Soto Rodriguez PED, Woythe L, Sánchez S, Samitier J, Zijlstra P, Albertazzi L. Multicolor Super-Resolution Microscopy of Protein Corona on Single Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37345-37355. [PMID: 35961006 PMCID: PMC9412947 DOI: 10.1021/acsami.2c06975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Nanoparticles represent a promising class of material for nanomedicine and molecular biosensing. The formation of a protein corona due to nonspecific particle-protein interactions is a determining factor for the biological fate of nanoparticles in vivo and strongly impacts the performance of nanoparticles when used as biosensors. Nonspecific interactions are usually highly heterogeneous, yet little is known about the heterogeneity of the protein corona that may lead to inter- and intraparticle differences in composition and protein distribution. Here, we present a super-resolution microscopic approach to study the protein corona on single silica nanoparticles and subsequent cellular interactions using multicolor stimulated emission depletion (STED) microscopy. We demonstrate that STED resolves structural features of protein corona on single particles including the distribution on the particle surface and the degree of protein internalization in porous particles. Using multicolor measurements of multiple labeled protein species, we determine the composition of the protein corona at the single-particle level. We quantify particle-to-particle differences in the composition and find that the composition is considerably influenced by the particle geometry. In a subsequent cellular uptake measurement, we demonstrate multicolor STED of protein corona on single particles internalized by cells. Our study shows that STED microscopy opens the window toward mechanistic understanding of protein coronas and aids in the rational design of nanoparticles as nanomedicines and biosensors.
Collapse
Affiliation(s)
- Yuyang Wang
- Department
of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Paul E. D. Soto Rodriguez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Laura Woythe
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeige Lluís Companys 23, 08010 Barcelona, Spain
| | - Josep Samitier
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department
of Electronics and Biomedical Engineering, University of Barcelona (UB), 08028 Barcelona, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Peter Zijlstra
- Department
of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| |
Collapse
|
32
|
Wang H, Nienhaus K, Shang L, Nienhaus GU. Highly luminescent positively charged quantum dots interacting with proteins and cells. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haixia Wang
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Li Shang
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany
- Department of Physics University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
| |
Collapse
|
33
|
Wen M, Li J, Zhong W, Xu J, Qu S, Wei H, Shang L. High-Throughput Colorimetric Analysis of Nanoparticle-Protein Interactions Based on the Enzyme-Mimic Properties of Nanoparticles. Anal Chem 2022; 94:8783-8791. [PMID: 35676761 DOI: 10.1021/acs.analchem.2c01618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While an in-depth understanding of the biological behavior of engineered nanoparticles (NPs) is of great importance for their various applications, it remains challenging to quantitatively characterize NP-protein interactions in a simple and high-throughput manner. In the present work, we propose a new, colorimetric approach capable of quantitatively analyzing the adsorption of proteins onto the surface of NPs by their distinct peroxidase-mimic properties. Taking cationic AuNPs as an example, we demonstrate that this colorimetric method is capable of evaluating NP-protein interactions in a simple and high-throughput manner in multiwell plates. Important binding parameters (e.g., the binding affinity) of three different serum proteins (bovine serum albumin, transferrin, and lysozyme) as well as human serum to AuNPs with three different sizes (average diameters of 5, 10, and 15 nm) have been obtained. Based on a quantitative analysis of NP-protein interactions, we observe that the binding affinity and the inhibition efficiency of the nanozyme activity of AuNPs are strongly affected by the characteristics of proteins as well as the sizes of NPs. These results illustrate the great potential of the present colorimetric method as a simple, low-cost, and high-throughput platform for quantitatively investigating NP-protein interactions.
Collapse
Affiliation(s)
- Mengyao Wen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Juanmin Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Jie Xu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Shaohua Qu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| |
Collapse
|
34
|
Yang XD, Gong B, Chen W, Qian C, Du M, Yu HQ. In-situ quantitative monitoring the organic contaminants uptake onto suspended microplastics in aquatic environments. WATER RESEARCH 2022; 215:118235. [PMID: 35247605 DOI: 10.1016/j.watres.2022.118235] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Microplastics act as a source of organic contaminants in aquatic environments and thus affect their environmental fate and toxicity. Because of the weak and reversible interactions between microplastics and organic species, the organic coronas vary with their surrounding environments. Thus, in order to evaluate the possible environmental risks of microplastics, methods for evaluating the dynamic uptake of organic contaminants onto suspended microplastics in aquatic environments are greatly desired. In this work, a UV-vis spectroscopy-based approach was developed for in-situ monitoring organic contaminants uptake onto suspended microplastics after correcting the light scattering interference from microplastics suspensions and establishing the nonlinear relationship between concentration and light absorbance of organic species. The inverse adding-doubling method based on radiative transfer theory was adopted to correct the light scattering effect of suspensions. Then, the resulting mixed absorption spectra were decomposed to calculate the concentrations of the aqueous and adsorbed organic species simultaneously with a nonlinear calibration method. The uptake processes of bisphenol A and p-nitrophenol onto nylon 66 microparticles were monitored with this approach and confirmed by high-performance liquid chromatography analysis. The approach was validated by applying it to natural water samples, and the equilibrium adsorption capacity was found to be interfered mainly by the protein-like substances. This approach has high accuracy, good reproducibility, remarkable universality, and ease of handling, and also provides a potential tool for characterizing the corona formation process on suspended particles both in natural and artificial environments, such as eco-corona formation and engineering surface modification on nano/micro-particles.
Collapse
Affiliation(s)
- Xu-Dan Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bo Gong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chen Qian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Meng Du
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
35
|
Blondy T, Poly J, Linot C, Boucard J, Allard-Vannier E, Nedellec S, Hulin P, Hénoumont C, Larbanoix L, Muller RN, Laurent S, Ishow E, Blanquart C. Impact of RAFT chain transfer agents on the polymeric shell density of magneto-fluorescent nanoparticles and their cellular uptake. NANOSCALE 2022; 14:5884-5898. [PMID: 35373226 DOI: 10.1039/d1nr06769a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The impact of nanoparticle surface chemistry on cell interactions and especially cell uptake has become evident over the last few years in nanomedicine. Since PEG polymers have proved to be ideal tools for attaining stealthiness and favor escape from the in vivo mononuclear phagocytotic system, the accurate control of their geometry is of primary importance and can be achieved through reversible addition-fragmentation transfer (RAFT) polymerization. In this study, we demonstrate that the residual groups of the chain transfer agents (CTAs) introduced in the main chain exert a significant impact on the cellular internalization of functionalized nanoparticles. High-resolution magic angle spinning 1H NMR spectroscopy and fluorescence spectroscopy permitted by the magneto-fluorescence properties of nanoassemblies (NAs) revealed the compaction of the PEG comb-like shell incorporating CTAs with a long alkyl chain, without changing the overall surface potential. As a consequence of the capability of alkyl units to self-assemble at the NA surface while hardly contributing more than 0.5% to the total polyelectrolyte weight, denser PEGylated NAs showed notably less internalization in all cells of the tumor microenvironment (tumor cells, macrophages and healthy cells). Interestingly, such differentiated uptake is also observed between pro-inflammatory M1-like and immunosuppressive M2-like macrophages, with the latter more efficiently phagocytizing NAs coated with a less compact PEGylated shell. In contrast, the NA diffusion inside multicellular spheroids, used to mimic solid tumors, appeared to be independent of the NA coating. These results provide a novel effort-saving approach where the sole variation of the chemical nature of CTAs in RAFT PEGylated polymers strikingly modulate the cell uptake of nanoparticles upon the organization of their surface coating and open the pathway toward selectively addressing macrophage populations for cancer immunotherapy.
Collapse
Affiliation(s)
- Thibaut Blondy
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France.
| | - Julien Poly
- IS2M-UMR CNRS 7361, Université de Haute Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France
| | - Camille Linot
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France.
| | - Joanna Boucard
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France.
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Emilie Allard-Vannier
- EA 6295 'Nanomédicaments et Nanosondes', Université de Tours, Tours, F-37200, France
| | - Steven Nedellec
- Nantes Université, INSERM, UMS 016, CNRS, UMS 3556, F-44000 Nantes, France
| | - Phillipe Hulin
- Nantes Université, INSERM, UMS 016, CNRS, UMS 3556, F-44000 Nantes, France
| | - Céline Hénoumont
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, B-7000 Mons, Belgium
| | - Lionel Larbanoix
- Center for Microscopy and Molecular Imaging, 8 rue Adrienne Bolland à Gosselies, 6041 Gosselies, Belgium
| | - Robert N Muller
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, B-7000 Mons, Belgium
| | - Sophie Laurent
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, B-7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging, 8 rue Adrienne Bolland à Gosselies, 6041 Gosselies, Belgium
| | - Eléna Ishow
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Christophe Blanquart
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France.
| |
Collapse
|
36
|
Nienhaus K, Xue Y, Shang L, Nienhaus GU. Protein adsorption onto nanomaterials engineered for theranostic applications. NANOTECHNOLOGY 2022; 33:262001. [PMID: 35294940 DOI: 10.1088/1361-6528/ac5e6c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The key role of biomolecule adsorption onto engineered nanomaterials for therapeutic and diagnostic purposes has been well recognized by the nanobiotechnology community, and our mechanistic understanding of nano-bio interactions has greatly advanced over the past decades. Attention has recently shifted to gaining active control of nano-bio interactions, so as to enhance the efficacy of nanomaterials in biomedical applications. In this review, we summarize progress in this field and outline directions for future development. First, we briefly review fundamental knowledge about the intricate interactions between proteins and nanomaterials, as unraveled by a large number of mechanistic studies. Then, we give a systematic overview of the ways that protein-nanomaterial interactions have been exploited in biomedical applications, including the control of protein adsorption for enhancing the targeting efficiency of nanomedicines, the design of specific protein adsorption layers on the surfaces of nanomaterials for use as drug carriers, and the development of novel nanoparticle array-based sensors based on nano-bio interactions. We will focus on particularly relevant and recent examples within these areas. Finally, we conclude this topical review with an outlook on future developments in this fascinating research field.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Li Shang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| |
Collapse
|
37
|
Kelesidis GA, Gao D, Starsich FHL, Pratsinis SE. Light Extinction by Agglomerates of Gold Nanoparticles: A Plasmon Ruler for Sub-10 nm Interparticle Distances. Anal Chem 2022; 94:5310-5316. [PMID: 35312292 PMCID: PMC8988125 DOI: 10.1021/acs.analchem.1c05145] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmon rulers relate the shift of resonance wavelength, λl, of gold agglomerates to the average distance, s, between their constituent nanoparticles. These rulers are essential for monitoring the dynamics of biomolecules (e.g., proteins and DNA) by determining their small (<10 nm) coating thickness. However, existing rulers for dimers and chains estimate coating thicknesses smaller than 10 nm with rather large errors (more than 200%). Here, the light extinction of dimers, 7- and 15-mers of gold nanoparticles with diameter dp = 20-80 nm and s = 1-50 nm is simulated. Such agglomerates shift λl up to 680 nm due to plasmonic coupling, in excellent agreement with experimental data by microscopy, dynamic light scattering, analytical centrifugation, and UV-visible spectroscopy. Subsequently, a new plasmon ruler is derived for gold nanoagglomerates that enables the accurate determination of sub-10 nm coating thicknesses, in excellent agreement also with tedious microscopy measurements.
Collapse
Affiliation(s)
- Georgios A Kelesidis
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, Institute of Energy & Process Engineering, ETH Zürich, Sonneggstrasse 3, Zürich CH-8092, Switzerland
| | - Daniel Gao
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, Institute of Energy & Process Engineering, ETH Zürich, Sonneggstrasse 3, Zürich CH-8092, Switzerland
| | - Fabian H L Starsich
- Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Energy & Process Engineering, ETH Zürich, Sonneggstrasse 3, Zürich CH-8092, Switzerland.,Particles-Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen CH-9014, Switzerland
| | - Sotiris E Pratsinis
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, Institute of Energy & Process Engineering, ETH Zürich, Sonneggstrasse 3, Zürich CH-8092, Switzerland
| |
Collapse
|
38
|
Enhanced Stability and Mechanical Properties of a Graphene–Protein Nanocomposite Film by a Facile Non-Covalent Self-Assembly Approach. NANOMATERIALS 2022; 12:nano12071181. [PMID: 35407299 PMCID: PMC9000757 DOI: 10.3390/nano12071181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023]
Abstract
Graphene-based nanocomposite films (NCFs) are in high demand due to their superior photoelectric and thermal properties, but their stability and mechanical properties form a bottleneck. Herein, a facile approach was used to prepare nacre-mimetic NCFs through the non-covalent self-assembly of graphene oxide (GO) and biocompatible proteins. Various characterization techniques were employed to characterize the as-prepared NCFs and to track the interactions between GO and proteins. The conformational changes of various proteins induced by GO determined the film-forming ability of NCFs, and the binding of bull serum albumin (BSA)/hemoglobin (HB) on GO’s surface was beneficial for improving the stability of as-prepared NCFs. Compared with the GO film without any additive, the indentation hardness and equivalent elastic modulus could be improved by 50.0% and 68.6% for GO–BSA NCF; and 100% and 87.5% for GO–HB NCF. Our strategy should be facile and effective for fabricating well-designed bio-nanocomposites for universal functional applications.
Collapse
|
39
|
Berger S, Berger M, Bantz C, Maskos M, Wagner E. Performance of nanoparticles for biomedical applications: The in vitro/ in vivo discrepancy. BIOPHYSICS REVIEWS 2022; 3:011303. [PMID: 38505225 PMCID: PMC10903387 DOI: 10.1063/5.0073494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/04/2022] [Indexed: 03/21/2024]
Abstract
Nanomedicine has a great potential to revolutionize the therapeutic landscape. However, up-to-date results obtained from in vitro experiments predict the in vivo performance of nanoparticles weakly or not at all. There is a need for in vitro experiments that better resemble the in vivo reality. As a result, animal experiments can be reduced, and potent in vivo candidates will not be missed. It is important to gain a deeper knowledge about nanoparticle characteristics in physiological environment. In this context, the protein corona plays a crucial role. Its formation process including driving forces, kinetics, and influencing factors has to be explored in more detail. There exist different methods for the investigation of the protein corona and its impact on physico-chemical and biological properties of nanoparticles, which are compiled and critically reflected in this review article. The obtained information about the protein corona can be exploited to optimize nanoparticles for in vivo application. Still the translation from in vitro to in vivo remains challenging. Functional in vitro screening under physiological conditions such as in full serum, in 3D multicellular spheroids/organoids, or under flow conditions is recommended. Innovative in vivo screening using barcoded nanoparticles can simultaneously test more than hundred samples regarding biodistribution and functional delivery within a single mouse.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Martin Berger
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Christoph Bantz
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, D-55129 Mainz, Germany
| | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
40
|
Latreille PL, Le Goas M, Salimi S, Robert J, De Crescenzo G, Boffito DC, Martinez VA, Hildgen P, Banquy X. Scratching the Surface of the Protein Corona: Challenging Measurements and Controversies. ACS NANO 2022; 16:1689-1707. [PMID: 35138808 DOI: 10.1021/acsnano.1c05901] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This Review aims to provide a systematic analysis of the literature regarding ongoing debates in protein corona research. Our goal is to portray the current understanding of two fundamental and debated characteristics of the protein corona, namely, the formation of mono- or multilayers of proteins and their binding (ir)reversibility. The statistical analysis we perform reveals that these characterisitics are strongly correlated to some physicochemical factors of the NP-protein system (particle size, bulk material, protein type), whereas the technique of investigation or the type of measurement (in situ or ex situ) do not impact the results, unlike commonly assumed. Regarding the binding reversibility, the experimental design (either dilution or competition experiments) is also shown to be a key factor, probably due to nontrivial protein binding mechanisms, which could explain the paradoxical phenomena reported in the literature. Overall, we suggest that to truly predict and control the protein corona, future efforts should be directed toward the mechanistic aspects of protein adsorption.
Collapse
Affiliation(s)
- Pierre-Luc Latreille
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Marine Le Goas
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Sina Salimi
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Jordan Robert
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montreal H3C 3A7, Canada
| | - Daria C Boffito
- Department of Chemical Engineering, Polytechnique Montréal, Montreal H3C 3A7, Canada
| | - Vincent A Martinez
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, U.K
| | - Patrice Hildgen
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
41
|
Liu R, Liu K, Cui G, Tan M. Change of Cell Toxicity of Food-Borne Nanoparticles after Forming Protein Coronas with Human Serum Albumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1261-1271. [PMID: 34978192 DOI: 10.1021/acs.jafc.1c06814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) can form protein coronas with plasma proteins after entering the biological environment due to their surface adsorption ability. In this study, the effects of protein coronas of roast squid food-borne nanoparticles (FNPs) with human serum albumin (HSA) on the HepG-2 and normal rat kidney (NRK) cells were investigated. The hydrodynamic diameters of the HSA and HSA-FNPs were 8 and 13 nm, respectively. The cytotoxicity and cell membrane damage of FNPs to HepG-2 cells increased with the increase of roasting temperature. The presence of 4.78 × 10-3 mol/L FNPs increased the numbers of cellular necrosis and prolonged the G2 phase of the cell cycle. The formation of protein coronas of squid FNPs mitigated the autophagy phenomenon by FNPs on HepG-2 cells. Moreover, protein coronas reduced the mitochondrial membrane potential in the HepG-2 and NRK cells and the production of reactive oxygen species caused by FNPs. The abnormal contents of oxidative stress indicators such as glutathione, superoxide dismutase, malondialdehyde, and catalase in HepG-2 and NRK cells induced by FNPs were alleviated due to the presence of HSA. These results suggested that the protein coronas formed by HSA on FNPs mitigated the cytotoxicity compared with the bare FNPs, thus providing insights into the interaction of squid FNPs with HSA.
Collapse
Affiliation(s)
- Ronggang Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, Liaoning 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Kangjing Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, Liaoning 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, Liaoning 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, Liaoning 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| |
Collapse
|
42
|
Valdeperez D, Wutke N, Ackermann LM, Parak WJ, Klapper M, Pelaz B. Colloidal stability of polymer coated zwitterionic Au nanoparticles in biological media. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
McColman S, Li R, Osman S, Bishop A, Wilkie KP, Cramb DT. Serum proteins on nanoparticles: early stages of the "protein corona". NANOSCALE 2021; 13:20550-20563. [PMID: 34859798 DOI: 10.1039/d1nr06137b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoparticles in biological systems such as the bloodstream are exposed to a complex solution of biomolecules. A "corona" monolayer of proteins has historically been thought to form on nanoparticles upon introduction into such environments. To examine the first steps of protein binding, Fluorescence Correlation/Cross Correlation Spectroscopy and Fluorescence Resonance Energy Transfer were used to directly analyze four different nanoparticle systems. CdSe/ZnS core/shell quantum dots, 100 nm diameter polystyrene fluospheres, 200 nm diameter polystyrene fluospheres, and 200 nm diameter PEG-grafted DOTAP liposomes were studied with respect to serum protein binding, using bovine serum albumin as a model. Surface heterogeneity is found to be a key factor in protein binding to these nanoparticles, and as such we present a novel conceptualization of the early hard corona as low-ratio, non-uniform binding rather than a uniform monolayer.
Collapse
Affiliation(s)
- Sarah McColman
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria Street, Toronto ON M5B 2 K3, Canada.
- Institute for Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto ON M5B 1 T8, Canada
- Department of Chemistry, Faculty of Science, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Rui Li
- Department of Chemistry, Faculty of Science, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Selena Osman
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria Street, Toronto ON M5B 2 K3, Canada.
- Institute for Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto ON M5B 1 T8, Canada
| | - Amanda Bishop
- Department of Chemistry, Faculty of Science, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Kathleen P Wilkie
- Department of Mathematics, Faculty of Science, Ryerson University, 350 Victoria Street, Toronto ON M5B 2 K3, Canada
| | - David T Cramb
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria Street, Toronto ON M5B 2 K3, Canada.
- Institute for Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto ON M5B 1 T8, Canada
- Department of Chemistry, Faculty of Science, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
44
|
Galdino FE, Picco AS, Capeletti LB, Bettini J, Cardoso MB. Inside the Protein Corona: From Binding Parameters to Unstained Hard and Soft Coronas Visualization. NANO LETTERS 2021; 21:8250-8257. [PMID: 34554750 DOI: 10.1021/acs.nanolett.1c02416] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proteins spontaneously adsorb on nanoparticle surfaces when injected into the bloodstream. It drastically modifies the nanoparticle's fate and how they interact with organs and cells. Although this protein layer (protein corona) has been widely studied, the robustness of the most employed characterization methods and the visualization of its unstained fractions remain open questions. Here, synchrotron-based small-angle X-ray scattering was used to follow the corona formation and estimate binding parameters. At the same time, transmission electron microscopy under cryogenic conditions associated with cross-correlation image processing and energy-filtered transmission electron microscopy allowed to determine protein corona morphology and thickness together with the visualization of its unstained hard and soft fractions. The above-presented strategy shows tremendous potential for deciphering fundamental protein corona aspects and can contribute to rational medical nanoparticle engineering.
Collapse
Affiliation(s)
- Flávia E Galdino
- Brazilian Synchrotron Light Laboratory (LNLS), National Center for Research in Energy and Materials (CNPEM) CP 6154, CEP 13083-970 Campinas, São Paulo, Brazil
- Institute of Chemistry, University of Campinas (UNICAMP), CP 6154, CEP 13083-970 Campinas, São Paulo,Brazil
| | - Agustin S Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, 64 y Diag. 113, 1900 La Plata, Argentina
| | - Larissa B Capeletti
- Brazilian Synchrotron Light Laboratory (LNLS), National Center for Research in Energy and Materials (CNPEM) CP 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Jefferson Bettini
- Brazilian Nanotechnology National Laboratory (LNNano), National Center for Research in Energy and Materials (CNPEM) CP 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Mateus B Cardoso
- Brazilian Synchrotron Light Laboratory (LNLS), National Center for Research in Energy and Materials (CNPEM) CP 6154, CEP 13083-970 Campinas, São Paulo, Brazil
- Institute of Chemistry, University of Campinas (UNICAMP), CP 6154, CEP 13083-970 Campinas, São Paulo,Brazil
| |
Collapse
|
45
|
Smolková B, MacCulloch T, Rockwood TF, Liu M, Henry SJW, Frtús A, Uzhytchak M, Lunova M, Hof M, Jurkiewicz P, Dejneka A, Stephanopoulos N, Lunov O. Protein Corona Inhibits Endosomal Escape of Functionalized DNA Nanostructures in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46375-46390. [PMID: 34569777 PMCID: PMC9590277 DOI: 10.1021/acsami.1c14401] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
DNA nanostructures (DNs) can be designed in a controlled and programmable manner, and these structures are increasingly used in a variety of biomedical applications, such as the delivery of therapeutic agents. When exposed to biological liquids, most nanomaterials become covered by a protein corona, which in turn modulates their cellular uptake and the biological response they elicit. However, the interplay between living cells and designed DNs are still not well established. Namely, there are very limited studies that assess protein corona impact on DN biological activity. Here, we analyzed the uptake of functionalized DNs in three distinct hepatic cell lines. Our analysis indicates that cellular uptake is linearly dependent on the cell size. Further, we show that the protein corona determines the endolysosomal vesicle escape efficiency of DNs coated with an endosome escape peptide. Our study offers an important basis for future optimization of DNs as delivery systems for various biomedical applications.
Collapse
Affiliation(s)
- Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Tara MacCulloch
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Tyler F Rockwood
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Minghui Liu
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Skylar J W Henry
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), Prague 14021, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague 18223, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague 18223, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Nicholas Stephanopoulos
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| |
Collapse
|
46
|
Tan X, Welsher K. Particle‐by‐Particle In Situ Characterization of the Protein Corona via Real‐Time 3D Single‐Particle‐Tracking Spectroscopy**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaochen Tan
- Department of Chemistry Duke University Durham NC 27708 USA
| | - Kevin Welsher
- Department of Chemistry Duke University Durham NC 27708 USA
| |
Collapse
|
47
|
Tan X, Welsher K. Particle-by-Particle In Situ Characterization of the Protein Corona via Real-Time 3D Single-Particle-Tracking Spectroscopy*. Angew Chem Int Ed Engl 2021; 60:22359-22367. [PMID: 34015174 PMCID: PMC8763617 DOI: 10.1002/anie.202105741] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/05/2022]
Abstract
Nanoparticles (NPs) adsorb proteins when exposed to biological fluids, forming a dynamic protein corona that affects their fate in biological environments. A comprehensive understanding of the protein corona is lacking due to the inability of current techniques to precisely measure the full corona in situ at the single-particle level. Herein, we introduce a 3D real-time single-particle tracking spectroscopy to "lock-on" to single freely diffusing polystyrene NPs and probe their individual protein coronas, primarily using bovine serum albumin (BSA) as a model system. The fluorescence signals and diffusive motions of the tracked NPs enable quantification of the "hard corona" using mean-squared displacement analysis. Critically, this method's particle-by-particle nature enabled a lock-in-type frequency filtering approach to extract the full protein corona, despite the typically confounding effect of high background signal from unbound proteins. From these results, the dynamic in situ full protein corona is observed to contain twice the number of proteins compared to the ex situ-measured "hard" protein corona.
Collapse
Affiliation(s)
- Xiaochen Tan
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| | - Kevin Welsher
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
48
|
Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Gao J, Zeng L, Yao L, Wang Z, Yang X, Shi J, Hu L, Liu Q, Chen C, Xia T, Qu G, Zhang XE, Jiang G. Inherited and acquired corona of coronavirus in the host: Inspiration from the biomolecular corona of nanoparticles. NANO TODAY 2021; 39:101161. [PMID: 33897804 PMCID: PMC8052473 DOI: 10.1016/j.nantod.2021.101161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 05/18/2023]
Abstract
The family of coronavirus are named for their crown shape. Encoded by the genetic material inherited from the coronavirus itself, this intrinsic well-known "viral corona" is considered an "inherited corona". After contact with mucosa or the entrance into the host, bare coronaviruses can become covered by a group of dissolved biomolecules to form one or multiple layers of biomolecules. The layers acquired from the surrounding environment are named the "acquired corona". We highlight here the possible role of the acquired corona in the pathogenesis of coronaviruses, which will generate fresh insight into the nature of various coronavirus-host interactions.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziniu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Centre for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, Centre for Environmental Implications of Nanotechnology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Advanced Static and Dynamic Fluorescence Microscopy Techniques to Investigate Drug Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13060861. [PMID: 34208080 PMCID: PMC8230741 DOI: 10.3390/pharmaceutics13060861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
In the past decade(s), fluorescence microscopy and laser scanning confocal microscopy (LSCM) have been widely employed to investigate biological and biomimetic systems for pharmaceutical applications, to determine the localization of drugs in tissues or entire organisms or the extent of their cellular uptake (in vitro). However, the diffraction limit of light, which limits the resolution to hundreds of nanometers, has for long time restricted the extent and quality of information and insight achievable through these techniques. The advent of super-resolution microscopic techniques, recognized with the 2014 Nobel prize in Chemistry, revolutionized the field thanks to the possibility to achieve nanometric resolution, i.e., the typical scale length of chemical and biological phenomena. Since then, fluorescence microscopy-related techniques have acquired renewed interest for the scientific community, both from the perspective of instrument/techniques development and from the perspective of the advanced scientific applications. In this contribution we will review the application of these techniques to the field of drug delivery, discussing how the latest advancements of static and dynamic methodologies have tremendously expanded the experimental opportunities for the characterization of drug delivery systems and for the understanding of their behaviour in biologically relevant environments.
Collapse
|