1
|
Gola AK, Dubey A, Pandey SK. Mn(I)-Catalyzed Site-Selective C-H Activation: Unlocking Access to 3-Arylated Succinimides from 2-Arylpyridines and Maleimides. J Org Chem 2024; 89:15020-15025. [PMID: 39378297 DOI: 10.1021/acs.joc.4c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
An efficient and cost-effective Mn(I)-catalyzed site-selective C-H activation of 2-arylpyridines with maleimides has been described. This approach facilitates the synthesis of 3-arylated succinimide derivatives with high site selectivity, chemoselectivity, catalytic efficiency, and outstanding tolerance to numerous functional groups. The practicality of this approach is further evidenced by its successful application in large-scale reactions and the conversion of the synthesized succinimide derivatives into other valuable compounds.
Collapse
Affiliation(s)
- Ajay Kant Gola
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Abhishek Dubey
- Department of Chemistry, R. J. College, A constituent Unit of J. P. University, Chapra 841 301, India
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
2
|
Wang F, Dong G, Yang S, Ji CL, Liu K, Han J, Xie J. Selective Functionalization of Alkenes and Alkynes by Dinuclear Manganese Catalysts. Acc Chem Res 2024; 57:2985-3006. [PMID: 39356824 DOI: 10.1021/acs.accounts.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
ConspectusAlkenes and alkynes are fundamental building blocks in organic synthesis due to their commercial availability, bench-stability, and easy preparation. Selective functionalization of alkenes and alkynes is a crucial step for the synthesis of value-added compounds. Precise control over these reactions allows efficient construction of complex molecules with new functionalities. In recent decades, second- and third-row precious transition metal catalysts (palladium, platinum, rhodium, ruthenium) have been pivotal in the development of metal-catalyzed synthetic methodology. These metals exhibit excellent catalytic activity and selectivity, enabling efficient synthesis of functionalized organic molecules. However, recovery and reuse of precious metals have long been a challenge in this field. In recent years, exploration of earth-abundant metal-catalyzed organic reactions has interested both academic and industrial researchers. The development of such catalytic systems offers a promising approach to overcome the limitations of precious metal catalysts. For example, manganese is the third most naturally abundant transition metal with minimal toxicity and excellent biocompatibility. It exhibits good catalytic activity in several organic reactions, including C-H bond functionalization, selective reduction, and radical reactions. This Account outlines our recent progress in dinuclear manganese catalysis for selective functionalization of alkenes and alkynes. We have established the elementary manganese(I)-catalysis in transmetalation with R-B(OH)2. This finding has enabled us to apply the catalyst for the selective 1,2-difunctionalization of structurally diverse alkenes and alkynes. Mechanistic studies suggest a double manganese center synergistic activation model, as superior to Mn(CO)5Br in some cases. In addition, we have developed a ligand-tuned metalloradical strategy of dinuclear manganese catalysts (Mn2(CO)10), bridging the gap between the organometallics and radical chemistry, highlighting the unique radical functionalization of alkenes. Interestingly, using the same starting materials, different ligands can deliver completely different products. Meanwhile, a cooperative catalysis strategy involving manganese and other catalysts (e.g., cobalt, iminium) has also been developed and is briefly discussed. For manganese/iminium synergistic catalysis, a new mechanism for migratory insertion and demetalization-isomerization in synergistic HOMO-LUMO activation was disclosed. This strategy expands the application of low-valent manganese catalysts for enantioselective C-C bond-forming reactions. New reaction discovery is outpacing mechanism studies for dinuclear manganese catalysis, and future studies with time-resolved spectroscopy will improve understanding of the mechanism. Based on these intriguing findings, the precise functionalization of alkenes and alkynes by dinuclear manganese catalysts will expedite a novel activation model to enable late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guichao Dong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Suqi Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kai Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Eastwood J, Procacci B, Gurung S, Lynam JM, Hunt NT. Understanding the Vibrational Structure and Ultrafast Dynamics of the Metal Carbonyl Precatalyst [Mn(ppy)(CO) 4]. ACS PHYSICAL CHEMISTRY AU 2024; 4:536-545. [PMID: 39346610 PMCID: PMC11428260 DOI: 10.1021/acsphyschemau.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 10/01/2024]
Abstract
The solution phase structure, vibrational spectroscopy, and ultrafast relaxation dynamics of the precatalyst species [Mn(ppy)(CO)4] (1) in solution have been investigated using ultrafast two-dimensional infrared (2D-IR) spectroscopy. By comparing 2D-IR data with the results of anharmonic density functional theory (DFT) calculations, we establish an excellent agreement between measured and predicted inter-mode couplings of the carbonyl stretching vibrational modes of 1 that relates to the atomic displacements of axial and equatorial ligands in the modes and the nature of the molecular orbitals involved in M-CO bonding. Measurements of IR pump-probe spectra and 2D-IR spectra as a function of waiting time reveal the presence of ultrafast (few ps) intramolecular vibrational energy redistribution between carbonyl stretching modes prior to vibrational relaxation. The vibrational relaxation times of the CO-stretching modes of 1 are found to be relatively solvent-insensitive, suggestive of limited solvent-solute interactions in the ground electronic state. Overall, these data provide a detailed picture of the complex potential energy surface, bonding and vibrational dynamics of 1, establishing a fundamental basis for the next steps in understanding and modulating precatalyst behavior.
Collapse
Affiliation(s)
| | - Barbara Procacci
- Department
of Chemistry and York Biomedical Research Institute, University of York, York YO10 5DD, U.K.
| | - Sabina Gurung
- Department
of Chemistry and York Biomedical Research Institute, University of York, York YO10 5DD, U.K.
| | - Jason M. Lynam
- Department
of Chemistry, University of York, York YO10 5DD, U.K.
| | - Neil T. Hunt
- Department
of Chemistry and York Biomedical Research Institute, University of York, York YO10 5DD, U.K.
| |
Collapse
|
4
|
Liu H, Yu Z, Li B, Wang B. Manganese(I)-Catalyzed Direct Addition of C(sp 3)-H Bonds to Aryl Isocyanates. J Org Chem 2024; 89:13429-13437. [PMID: 39225401 DOI: 10.1021/acs.joc.4c01581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The addition of C-H bonds to isocyanates catalyzed by transition metals is a highly auspicious methodology for providing synthetically and biologically important amides. However, the substrates are limited to C(sp2)-H bonds. In this work, an efficient manganese(I)-catalyzed direct addition reaction of C(sp3)-H bonds of 8-methylquinolines to aryl isocyanates has been developed, leading to the synthesis of various α-quinolinyl amide compounds in moderate to high yields. The reaction has a broad range of substrates and a good functional group tolerance. A possible mechanism is proposed based on the experimental results.
Collapse
Affiliation(s)
- Hongxin Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhichao Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
5
|
Huang T, Du P, Cheng X, Lin YM. Manganese Complexes with Consecutive Mn(IV) → Mn(III) Excitation for Versatile Photoredox Catalysis. J Am Chem Soc 2024; 146:24515-24525. [PMID: 39079011 DOI: 10.1021/jacs.4c07084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Manganese complexes stand out as promising candidates for photocatalyst design, attributed to their eco- and biocompatibility, versatile valence states, and capability for facilitating multiple electronic excitations. However, several intrinsic constraints, such as inadequate visible light response and short excited-state lifetimes, hinder effective photoinduced electron transfer and impede photoredox activation of substrates. To overcome this obstacle, we have developed a class of manganese complexes featuring boron-incorporated N-heterocyclic carbene ligands. These complexes enable prolonged excited-state durations encapsulating both Mn(IV) and Mn(III) oxidation stages, with lifetimes reaching microseconds for Mn(IV) and nanoseconds for Mn(III), concurrently exhibiting robust redox capabilities. They efficiently catalyze direct, site-selective cross-couplings between diverse arenes and aryl bromides, at a low catalyst loading of 0.5 mol %. Their proficiency spans an extensive array of substrates including both highly electron-rich and electron-deficient molecules, which underscore the superior performance of these manganese complexes in tackling intricate transformations. Furthermore, the versatility of these complexes is further highlighted by their successful applications in various photochemical transformations, encompassing reductive cross-couplings for the formation of C-P, C-B, C-S and C-Se bonds, alongside oxidative couplings for creating C-N bonds. This study sheds light on the distinctive photoredox properties and the remarkable catalytic flexibility of manganese complexes, highlighting their immense potential to drive progress in photochemical synthesis and green chemistry applications.
Collapse
Affiliation(s)
- Tao Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pangang Du
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiuliang Cheng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Mei Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Vineet Kumar D, Sundararaju B. Manganese-Catalyzed Z-Selective Allylation of Indoles with Allenyl Derivatives. J Org Chem 2024; 89:10087-10092. [PMID: 38982582 DOI: 10.1021/acs.joc.4c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Herein, we report a manganese-catalyzed Z-selective hydroarylation of allenyl ethylene carbonates (AECs) under mild conditions. The methodology employs an earth-abundant Mn(I)-catalyst, which shows high functional group tolerance, performed at room temperature, resulting in good-to-excellent yields of the products with very high Z-selectivity. Besides, mechanistic insights reveal the substitution effects of the allenes over the control of Z-selectivity.
Collapse
Affiliation(s)
- Doppalapudi Vineet Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur , Uttar Pradesh 208016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur , Uttar Pradesh 208016, India
| |
Collapse
|
7
|
Le Dé Q, Valyaev DA, Simonneau A. Nitrogen Fixation by Manganese Complexes - Waiting for the Rush? Chemistry 2024; 30:e202400784. [PMID: 38709147 DOI: 10.1002/chem.202400784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
Manganese is currently experiencing a great deal of attention in homogeneous catalysis as a sustainable alternative to platinum group metals due to its abundance, affordable price and low toxicity. While homogeneous nitrogen fixation employing well-defined transition metal complexes has been an important part of coordination chemistry, manganese derivatives have been only sporadically used in this research area. In this contribution, the authors systematically cover manganese organometallic chemistry related to N2 activation spanning almost 60 years, identify apparent pitfalls and outline encouraging perspectives for its future development.
Collapse
Affiliation(s)
- Quentin Le Dé
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077, Toulouse cedex 4, France
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077, Toulouse cedex 4, France
| | - Antoine Simonneau
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077, Toulouse cedex 4, France
| |
Collapse
|
8
|
Eastwood JB, Burden TJ, Hammarback LA, Horbaczewskyj C, Tanner TFN, Clark IP, Greetham G, Towrie M, Fairlamb IJS, Lynam JM. The importance of understanding (pre)catalyst activation in versatile C-H bond functionalisations catalysed by [Mn 2(CO) 10]. Chem Sci 2024; 15:9183-9191. [PMID: 38903207 PMCID: PMC11186345 DOI: 10.1039/d4sc01215a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024] Open
Abstract
Mn-catalysed reactions offer great potential in synthetic organic and organometallic chemistry and the success of Mn carbonyl complexes as (pre)catalysts hinges on their stabilisation by strong field ligands enabling Mn(i)-based, redox neutral, catalytic cycles. The mechanistic processes underpinning the activation of the ubiquitous Mn(0) (pre)catalyst [Mn2(CO)10] in C-H bond functionalisation reactions is now reported for the first time. By combining time-resolved infra-red (TRIR) spectroscopy on a ps-ms timescale and in operando studies using in situ infra-red spectroscopy, insight into the microscopic bond activation processes which lead to the catalytic activity of [Mn2(CO)10] has been gained. Using an exemplar system, based on the annulation between an imine, 1, and Ph2C2, 2, TRIR spectroscopy enabled the key intermediate [Mn2(CO)9(1)], formed by CO loss from [Mn2(CO)10], to be identified. In operando studies demonstrate that [Mn2(CO)9(1)] is also formed from [Mn2(CO)10] under the catalytic conditions and is converted into a mononuclear manganacycle, [Mn(CO)4(C^N)] (C^N = cyclometallated imine), a second molecule of 1 acts as the oxidant which is, in turn, reduced to an amine. As [Mn(CO)4(C^N)] complexes are catalytically competent, a direct route from [Mn2(CO)10] into the Mn(i) catalytic reaction coordinate has been determined. Critically, the mechanistic differences between [Mn2(CO)10] and Mn(i) (pre)catalysts have been delineated, informing future catalyst screening studies.
Collapse
Affiliation(s)
| | - Thomas J Burden
- Department of Chemistry, University of York York YO10 5DD UK
| | | | | | - Theo F N Tanner
- Department of Chemistry, University of York York YO10 5DD UK
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Harwell Campus Didcot Oxfordshire OX11 0QX UK
| | - Gregory Greetham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Harwell Campus Didcot Oxfordshire OX11 0QX UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Harwell Campus Didcot Oxfordshire OX11 0QX UK
| | | | - Jason M Lynam
- Department of Chemistry, University of York York YO10 5DD UK
| |
Collapse
|
9
|
Li C, Wang Z, Jin M, Song Z. Palladium-Catalyzed Arylation of C(sp 2)-H Bonds and C(sp 3)-H Bonds with 4-Amino-benzotriazole as the Bidentate Directing Group. J Org Chem 2024; 89:6966-6973. [PMID: 38691095 DOI: 10.1021/acs.joc.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The arylation of C(sp2)-H and C(sp3)-H bonds in carboxylic acids catalyzed by Pd(II) with 4-aminobentriazole as the directing group was investigated. In addition to activation of the C(sp2)-H bond, selective arylation of alkyl carboxylic acids and amino acids in the β position can also be achieved. This strategy involved a 5,5-bicyclic Pd intermediate complex whose structure was determined by X-ray single crystal diffraction analysis. Importantly, the DG (directing group) can be easily removed under mild conditions.
Collapse
Affiliation(s)
- Chengqian Li
- College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. China
| | - Zhuo Wang
- College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. China
| | - Meina Jin
- College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. China
| | - Zhiguang Song
- College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. China
| |
Collapse
|
10
|
Liu H, Tang T, Li B, Wang B. Manganese(I)-catalyzed nucleophilic addition of C(sp 3)-H bonds to aldehydes. Chem Commun (Camb) 2024; 60:5066-5069. [PMID: 38639013 DOI: 10.1039/d4cc01338g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The C-H bond activation catalyzed by a manganese(I) complex has achieved significant development but is limited to C(sp2)-H bonds. In this work, an efficient manganese(I)-catalyzed direct nucleophilic addition reaction of C(sp3)-H bonds to aromatic aldehydes has been developed. This is the first example of manganese(I)-catalyzed C(sp3)-H bond transformation. A manganacycle complex was isolated and proved to be the key active intermediate in the catalytic cycle.
Collapse
Affiliation(s)
- Hongxin Liu
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Tingyu Tang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
11
|
Bera S, Kabadwal LM, Banerjee D. Harnessing alcohols as sustainable reagents for late-stage functionalisation: synthesis of drugs and bio-inspired compounds. Chem Soc Rev 2024; 53:4607-4647. [PMID: 38525675 DOI: 10.1039/d3cs00942d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Alcohol is ubiquitous with unparalleled structural diversity and thus has wide applications as a native functional group in organic synthesis. It is highly prevalent among biomolecules and offers promising opportunities for the development of chemical libraries. Over the last decade, alcohol has been extensively used as an environmentally friendly chemical for numerous organic transformations. In this review, we collectively discuss the utilisation of alcohol from 2015 to 2023 in various organic transformations and their application toward intermediates of drugs, drug derivatives and natural product-like molecules. Notable features discussed are as follows: (i) sustainable approaches for C-X alkylation (X = C, N, or O) including O-phosphorylation of alcohols, (ii) newer strategies using methanol as a methylating reagent, (iii) allylation of alkenes and alkynes including allylic trifluoromethylations, (iv) alkenylation of N-heterocycles, ketones, sulfones, and ylides towards the synthesis of drug-like molecules, (v) cyclisation and annulation to pharmaceutically active molecules, and (vi) coupling of alcohols with aryl halides or triflates, aryl cyanide and olefins to access drug-like molecules. We summarise the synthesis of over 100 drugs via several approaches, where alcohol was used as one of the potential coupling partners. Additionally, a library of molecules consisting over 60 fatty acids or steroid motifs is documented for late-stage functionalisation including the challenges and opportunities for harnessing alcohols as renewable resources.
Collapse
Affiliation(s)
- Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
12
|
Zhao CG, Cai J, Du C, Gao Q, Han J, Xie J. Manganese(I)-Catalyzed Enantioselective C(sp 2)-C(sp 3) Bond-Forming for the Synthesis of Skipped Dienes with Synergistic Aminocatalysis. Angew Chem Int Ed Engl 2024; 63:e202400177. [PMID: 38488857 DOI: 10.1002/anie.202400177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 04/09/2024]
Abstract
Mn(I)-catalyzed enantioselective C-C bond-forming reactions represent a great challenge in homogeneous catalysis primarily due to a limited understanding of its mechanistic principles. Herein, we have developed an interesting catalytic strategy that leverages a synergistic combination of a dimeric manganese(I) catalyst and a chiral aminocatalyst to address this issue. A range of conjugated dienals and trienals can exclusively proceed 1,4-hydroalkenylation by using readily available aromatic and aliphatic alkenyl boronic acids as coupling partners, producing a rich library of skipped diene aldehydes in synthetically useful yields and high levels of enantioselectivities. Notably, downstream transformations of these products can not only afford a concise approach to construct enantioenriched skipped trienes but also realize enantioselective total synthesis of analogues to (-)-Blepharocalyxin D in four steps. DFT calculations suggest the 1,4-hydroalkenylation is kinetically more favorable than 1,6-hydroalkenylation.
Collapse
Affiliation(s)
- Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Junzhe Cai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chaoyu Du
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qi Gao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
13
|
Karjee P, Debnath B, Mandal S, Saha S, Punniyamurthy T. One-pot C-N/C-C bond formation and oxidation of donor-acceptor cyclopropanes with tetrahydroisoquinolines: access to benzo-fused indolizines. Chem Commun (Camb) 2024; 60:4068-4071. [PMID: 38506143 DOI: 10.1039/d4cc00810c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
One-pot C-N/C-C bond formation of donor-acceptor cyclopropanes (DACs) with tetrahydroisoquinolines (THIQs) has been achieved to furnish benzo-fused indolizines. These reactions involve a MgI2-catalyzed ring opening of DACs and oxidative annulation using Mn(OAc)3·2H2O. The substrate scope and functional group diversity are the important practical features.
Collapse
Affiliation(s)
- Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
14
|
Fairlamb IJS, Lynam JM. Unveiling Mechanistic Complexity in Manganese-Catalyzed C-H Bond Functionalization Using IR Spectroscopy Over 16 Orders of Magnitude in Time. Acc Chem Res 2024; 57:919-932. [PMID: 38412502 PMCID: PMC10956383 DOI: 10.1021/acs.accounts.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
ConspectusAn understanding of the mechanistic processes that underpin reactions catalyzed by 3d transition metals is vital for their development as potential replacements for scarce platinum group metals. However, this is a significant challenge because of the tendency of 3d metals to undergo mechanistically diverse pathways when compared with their heavier congeners, often as a consequence of one-electron transfer reactions and/or intrinsically weaker metal-ligand bonds. We have developed and implemented a new methodology to illuminate the pathways that underpin C-H bond functionalization pathways in reactions catalyzed by Mn-carbonyl compounds. By integrating measurements performed on catalytic reactions with in situ reaction monitoring and state-of-the-art ultrafast spectroscopic methods, unique insight into the mode of action and fate of the catalyst have been obtained.Using a combination of time-resolved spectroscopy and in situ low-temperature NMR studies, we have shown that photolysis of manganese-carbonyl precatalysts results in rapid (<5 ps) CO dissociation─the same process that occurs under thermal catalytic conditions. This enabled the detection of the key states relevant to catalysis, including solvent and alkyne complexes and their resulting transformation into manganacycles, which results from a migratory insertion reaction into the Mn-C bond. By systematic variation of the substrates (many of which are real-world structurally diverse substrates and not simple benchmark systems) and quantification of the resulting rate constants for the insertion step, a universal model for this migratory insertion process has been developed. The time-resolved spectroscopic method gave insight into fundamental mechanistic pathways underpinning other aspects of modern synthetic chemistry. The most notable was the first direct experimental observation of the concerted metalation deprotonation (CMD) mechanism through which carboxylate groups are able to mediate C-H bond activation at a metal center. This step underpins a host of important synthetic applications. This study demonstrated how the time-resolved multiple probe spectroscopy (TRMPS) method enables the observation of mechanistic process occurring on time scales from several picoseconds through to μs in a single experiment, thereby allowing the sequential observation of solvation, ligand substitution, migratory insertion, and ultimate protonation of a Mn-C bond.These studies have been complemented by an investigation of the "in reaction flask" catalyst behavior, which has provided additional insight into new pathways for precatalyst activation, including evidence that alkyne C-H bond activation may occur before heterocycle activation. Crucial insight into the fate of the catalyst species showed that excess water played a key role in deactivation to give higher-order hydroxyl-bridged manganese carbonyl clusters, which were independently found to be inactive. Traditional in situ IR and NMR spectroscopic analysis on the second time scale bridges the gap to the analysis of real catalytic reaction systems. As a whole, this work has provided unprecedented insight into the processes underpinning manganese-catalyzed reactions spanning 16 orders of magnitude in time.
Collapse
Affiliation(s)
- Ian J. S. Fairlamb
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Jason M. Lynam
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
15
|
Chen Y, Lu Z, He W, Zhu H, Lu W, Shi J, Sheng J, Xie W. Rhodium-catalyzed annulation of hydrazines with vinylene carbonate to synthesize unsubstituted 1-aminoindole derivatives. RSC Adv 2024; 14:4804-4809. [PMID: 38323018 PMCID: PMC10844929 DOI: 10.1039/d3ra07466h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
Herein, we describe rhodium-catalysed C-H bond activation for [3 + 2] annulation using hydrazide and vinylene carbonate, providing an efficient method for synthesising unsubstituted 1-aminoindole compounds. Characterised by high yields, mild reaction conditions, and no need for external oxidants, this transformation demonstrates excellent regioselectivity and a wide tolerance for various functional groups.
Collapse
Affiliation(s)
- Yichun Chen
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Ziqi Lu
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Wenfen He
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Huanyi Zhu
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Weilong Lu
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Junjun Shi
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Jie Sheng
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Wucheng Xie
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| |
Collapse
|
16
|
Tian K, Chang X, Xiao L, Dong XQ, Wang CJ. Stereodivergent synthesis of α-fluoro α-azaaryl γ-butyrolactones via cooperative copper and iridium catalysis. FUNDAMENTAL RESEARCH 2024; 4:77-85. [PMID: 38933830 PMCID: PMC11197661 DOI: 10.1016/j.fmre.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022] Open
Abstract
The development of stereodivergent synthetic methods to access all four stereoisomers of biologically important α-fluoro γ-butyrolactones containing vicinal stereocenters is of great importance and poses a formidable challenge owing to ring strain and steric hindrance. Herein, a novel asymmetric [3+2] annulation of α-fluoro α-azaaryl acetates with vinylethylene carbonate was successfully developed through Cu/Ir-catalyzed cascade allylic alkylation/lactonization, affording a variety of enantioenriched α-fluoro γ-butyrolactones bearing vicinal stereogenic centers with high reaction efficiency and excellent levels of both stereoselectivity and regioselectivity (up to 98% yield, generally >20:1 dr and >99% ee). Notably, all four stereoisomers of these pharmaceutically valuable molecules could be accessed individually via simple permutations of two enantiomeric catalysts. In addition, other azaaryl acetates bearing α-methyl, α-chlorine or α-phenyl group were tolerated well in this transformation. Reaction mechanistic investigations were conducted to explore the process of this bimetallic catalysis based on the results of reaction intermediates, isotopic labelling experiments, and kinetic studies.
Collapse
Affiliation(s)
- Kui Tian
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Lu Xiao
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- Suzhou Institute of Wuhan University, Suzhou 215123, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| |
Collapse
|
17
|
Zhang CP, Wang TZ, Liang YF. Manganese-promoted reductive cross-coupling of disulfides with dialkyl carbonates. Chem Commun (Camb) 2023; 59:14439-14442. [PMID: 37982295 DOI: 10.1039/d3cc04862d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Manganese is a cheap and environmentally friendly metal on Earth. Herein, we report a manganese-promoted reductive cross-coupling using easily available and odorless disulfides as thiolating agents in an excellent 100% sulfur atom economy. The protocol featured a broad substrate scope, including various alkyl disulfides and excellent functional group compatibility, constructing diverse thioethers under simple conditions. Ultimately, thioethers can be prepared in gram-scale reactions and further transformed into structurally complex molecules.
Collapse
Affiliation(s)
- Chao-Peng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
18
|
Yu L, Nakamura H. Short, Scalable Access to Pyrrovobasine. JACS AU 2023; 3:3000-3004. [PMID: 38034961 PMCID: PMC10685420 DOI: 10.1021/jacsau.3c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
A concise gram-scale synthesis of pyrrovobasine (1) is reported. Key transformations include a three-step decagram-scale synthesis of the tetracyclic compound, Mn-mediated direct radical cyclization, and the introduction of a naturally rare pyrraline structure. The synthesis is designed to be applicable to gram-scale synthesis using inexpensive and readily available reagents.
Collapse
Affiliation(s)
- Longhui Yu
- Department of Chemistry, The
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Hugh Nakamura
- Department of Chemistry, The
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
19
|
Zhao CG, Du C, Guo Z, Li W, Han J, Xie J. Merging Manganese and Iminium Catalysis: Selective Hydroalkenylation of Unsaturated Aldehydes and Ketones. Angew Chem Int Ed Engl 2023; 62:e202312414. [PMID: 37696774 DOI: 10.1002/anie.202312414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
The use of synergistic catalytic strategy can usually circumvent the intrinsic limitations of one catalytic system. In this communication, we disclose a cooperative catalysis strategy of manganese and iminium catalysis to realize selective hydroalkenylation of unsaturated aldehydes and ketones. Its success stems from the LUMO activation of unsaturated carbonyl compounds with secondary amines as the organocatalyst and the synergistic HOMO activation of alkenylboronic acids with Mn2 (CO)8 Br2 . This protocol exhibits several synthetic advances, e.g., simple operation, good functional group compatibility and good regioselectivity. The theoretical calculation indicates the migratory insertion followed by demetallation-isomerization process is kinetically more favorable than Michael-like nucleophilic addition. The use of proline-derived organocatalyst can deliver the desired products in moderate enantioselectivity.
Collapse
Affiliation(s)
- Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chaoyu Du
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhenyu Guo
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
20
|
Al Mamari HH, Borel J, Hickey A, Courtney E, Merz J, Zhang X, Friedrich A, Marder TB, McGlacken GP. Regioselective Iridium-Catalyzed C8-H Borylation of 4-Quinolones via Transient O-Borylated Quinolines. Chemistry 2023; 29:e202301734. [PMID: 37280155 DOI: 10.1002/chem.202301734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
The quinolone-quinoline tautomerization is harnessed to effect the regioselective C8-borylation of biologically important 4-quinolones by using [Ir(OMe)(cod)]2 as the catalyst precursor, the silica-supported monodentate phosphine Si-SMAP as the ligand, and B2 pin2 as the boron source. Initially, O-borylation of the quinoline tautomer takes place. Critically, the newly formed 4-(pinBO)-quinolines then undergo N-directed selective Ir-catalyzed borylation at C8. Hydrolysis of the OBpin moiety on workup returns the system to the quinolone tautomer. The C8-borylated quinolines were converted to their corresponding potassium trifluoroborate (BF3 K) salts and to their C8-chlorinated quinolone derivatives. The two-step C-H borylation-chlorination reaction sequence resulted in various C8-Cl quinolones in good yields. Conversion to C8-OH-, C8-NH2 -, and C8-Ar-substituted quinolones was also feasible by using this methodology.
Collapse
Affiliation(s)
- Hamad H Al Mamari
- Department of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al Khoudh 123, Muscat, Sultanate of Oman
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Julie Borel
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Aobha Hickey
- School of Chemistry & Analytical and, Biological Chemistry Research Facility, University College Cork, T12 YN60, Ireland
| | - Eimear Courtney
- School of Chemistry & Analytical and, Biological Chemistry Research Facility, University College Cork, T12 YN60, Ireland
| | - Julia Merz
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Xiaolei Zhang
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Gerard P McGlacken
- School of Chemistry & Analytical and, Biological Chemistry Research Facility, University College Cork, T12 YN60, Ireland
| |
Collapse
|
21
|
Shao F, Ma F, Li Y, Jiang W, Wei Z, Zhong X, Wang H, Wang L, Wang J. Ru Supported on p-phthalic acid-Mn Derived from a Mn Metal-Organic Framework for Thermo- and Electrocatalytic Synthesis of Ethylene-D4 Glycol. CHEMSUSCHEM 2023; 16:e202202395. [PMID: 37012670 DOI: 10.1002/cssc.202202395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Deuterium-labeled polyols are one of the most extensive applied chemicals in biochemistry and biophysics. However, the deuteriation still is insufficient, exhibiting a low deuterated ratio and indistinct reaction mechanism. Herein, Ru supported on MnBCD (MnBDC, derived from Mn p-phthalic acid metal-organic framework) as nanocatalyst with an agglomerated sheet-type structure; this allows the possibility of achieving both thermo- and electrocatalytic hydrogen isotope exchange (HIE) reaction. Furthermore, XPS characterization confirmed that the specific structural changes in the electron density of Ru outer layers were modulated through the impregnation and reduction processes. According to the change of outer electronic structure, hydrogen spillover and electron-rich flow promote the reaction of the catalyst in thermo- and electrocatalytic systems, respectively. In addition, the results indicate that a high deuterated ratio of 97 % can be obtained, hence the catalytic technology has enormous potential for the synthesis of a broad variety of deuterium-labeled compounds.
Collapse
Affiliation(s)
- Fangjun Shao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Fandong Ma
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yuanan Li
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenjie Jiang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhongzhe Wei
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xing Zhong
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Ligeng Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jianguo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
22
|
Pang Y, Chen S, Han J, Zhu C, Zhao CG, Xie J. Dimeric Manganese-Catalyzed Hydroalkenylation of Alkynes with a Versatile Silicon-Based Directing Group. Angew Chem Int Ed Engl 2023; 62:e202306922. [PMID: 37283307 DOI: 10.1002/anie.202306922] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/08/2023]
Abstract
Herein, we present a manganese-catalyzed, branched-selective hydroalkenylation of terminal alkynes, under mild conditions through facile installation of a versatile silanol as a removable directing group. With an alkenyl boronic acid as the coupling partner, this reaction produces stereodefined (E,E)-1,3-dienes with high regio-, chemo- and stereoselectivity. The protocol features mild reaction conditions such as room temperature and an air atmosphere, while maintaining excellent functional group compatibility. The resulting 1,3-dienesilanol products serve as versatile building blocks, as the removal of the silanol group allows for the synthesis of both branched terminal 1,3-dienes for downstream coupling reactions, as well as stereoselective construction of linear (E,E)-1,3-dienes and (E,E,E)- or (E,E,Z)-1,3,5-trienes. In addition, a Diels-Alder cycloaddition can smoothly and selectively deliver silicon-containing pentasubstituted cyclohexene derivatives. Mechanistic investigations, in conjunction with DFT calculations, suggest a bimetallic synergistic activation model to account for the observed enhanced catalytic efficiency and good regioselectivity.
Collapse
Affiliation(s)
- Yubo Pang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuai Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
23
|
Parammal A, Singh S, Kumar M, Xavier JS, Subramanian P. Robust Synthesis of Terpenoid Scaffolds under Mn(I)-Catalysis. J Org Chem 2023. [PMID: 37463248 DOI: 10.1021/acs.joc.3c00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The 6/6/5-fused tricyclic scaffold is a central feature of structurally complex terpenoid natural products. A step-economical cascade transformation that leads to a complex molecular skeleton is regarded as a sustainable methodology. Therefore, we report the first Mn(I)-catalyzed C(sp2)-H chemoselective in situ dienylation and diastereoselective intramolecular Diels-Alder reaction using iso-pentadienyl carbonate to access 6/6/5-fused tricyclic scaffolds. To the best of our knowledge, there is no such report thus far to utilize iso-pentadienyl carbonate as a substrate in C-H activation catalysis. Extensive mechanistic studies, such as the isolation of catalytically active organo-manganese(I) complexes, 1,3-dienyl-intermediates, and isotopic labeling experiments have supported the proposed mechanism of this cascade reaction.
Collapse
Affiliation(s)
- Athira Parammal
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Shubham Singh
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Manoj Kumar
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Joe Sam Xavier
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | | |
Collapse
|
24
|
Burden TJ, Fernandez KPR, Kagoro M, Eastwood JB, Tanner TFN, Whitwood AC, Clark IP, Towrie M, Krieger J, Lynam JM, Fairlamb IJS. Coumarin C-H Functionalization by Mn(I) Carbonyls: Mechanistic Insight by Ultra-Fast IR Spectroscopic Analysis. Chemistry 2023; 29:e202203038. [PMID: 36625067 PMCID: PMC10947090 DOI: 10.1002/chem.202203038] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Mn(I) C-H functionalization of coumarins provides a versatile and practical method for the rapid assembly of fused polycyclic pyridinium-containing coumarins in a regioselective manner. The synthetic strategy enables application of bench-stable organomanganese reagents in both photochemical- and thermal-promoted reactions. The cyclomanganated intermediates, and global reaction system, provide an ideal testing ground for structural characterization of the active Mn(I) carbonyl-containing species, including transient species observable by ultra-fast time-resolved spectroscopic methods. The thermodynamic reductive elimination product, solely encountered from reaction between alkynes and air-stable organometallic cyclomanganated coumarins, has enabled characterization of a critical seven-membered Mn(I) intermediate, detected by time-resolved infrared spectroscopy, enabling the elucidation of the temporal profile of key steps in the reductive elimination pathway. Quantitative data are provided. Manganated polycyclic products are readily decomplexed by AgBF4 , opening-up an efficient route to the formation of π-extended hybrid coumarin-pyridinium compounds.
Collapse
Affiliation(s)
- Thomas J. Burden
- Department of ChemistryUniversity of York HeslingtonYorkYO10 5DDUK
| | | | - Mary Kagoro
- Department of ChemistryUniversity of York HeslingtonYorkYO10 5DDUK
| | | | | | | | - Ian P. Clark
- Central Laser FacilityResearch Complex at Harwell STFC Rutherford Appleton Laboratory Harwell Campus DidcotOxfordshireOX11 0QXUK
| | - Michael Towrie
- Central Laser FacilityResearch Complex at Harwell STFC Rutherford Appleton Laboratory Harwell Campus DidcotOxfordshireOX11 0QXUK
| | | | - Jason M. Lynam
- Department of ChemistryUniversity of York HeslingtonYorkYO10 5DDUK
| | | |
Collapse
|
25
|
Yang C, Zhou X, Shen L, Ke Z, Jiang H, Zeng W. Mn(I)-catalyzed sigmatropic rearrangement of β, γ-unsaturated alcohols. Nat Commun 2023; 14:1862. [PMID: 37012237 PMCID: PMC10070501 DOI: 10.1038/s41467-023-37299-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Sigmatropic rearrangement provides a versatile strategy to site-selectively reorganize carbon-skeleton with high atom- and step-economy. Herein, we disclose a Mn(I)-catalyzed sigmatropic rearrangement of β, γ-unsaturated alcohols via C-C σ bond activation. A variety of α-aryl-allylic alcohols and α-aryl-propargyl alcohols could undergo in-situ 1,2- or 1,3- sigmatropic rearrangements to allow for converting to complex structural arylethyl- and arylvinyl- carbonyl compounds under a simple catalytic system. More importantly, this catalysis model can be further applied to assemble macrocyclic ketones through bimolecular [2n + 4] coupling-cyclization and monomolecular [n + 1] ring-extension. The presented skeleton rearrangement would be a useful tool complementary to the traditional molecular rearrangement.
Collapse
Affiliation(s)
- Can Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Xiaoyu Zhou
- School of Materials Science and Engineering, PFCM Lab, Sun Yat-sen University, 510275, Guangzhou, China
| | - Lixing Shen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PFCM Lab, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China.
| |
Collapse
|
26
|
Baroliya PK, Dhaker M, Panja S, Al-Thabaiti SA, Albukhari SM, Alsulami QA, Dutta A, Maiti D. Transition Metal-Catalyzed C-H Functionalization Through Electrocatalysis. CHEMSUSCHEM 2023:e202202201. [PMID: 36881013 DOI: 10.1002/cssc.202202201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Electrochemically promoted transition metal-catalyzed C-H functionalization has emerged as a promising area of research over the last few decades. However, development in this field is still at an early stage compared to traditional functionalization reactions using chemical-based oxidizing agents. Recent reports have shown increased attention on electrochemically promoted metal-catalyzed C-H functionalization. From the standpoint of sustainability, environmental friendliness, and cost effectiveness, electrochemically promoted oxidation of a metal catalyst offers a mild, efficient, and atom-economical alternative to traditional chemical oxidants. This Review discusses advances in the field of transition metal-electrocatalyzed C-H functionalization over the past decade and describes how the unique features of electricity enable metal-catalyzed C-H functionalization in an economic and sustainable way.
Collapse
Affiliation(s)
- Prabhat Kumar Baroliya
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Mukesh Dhaker
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Shaeel Ahmed Al-Thabaiti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Soha M Albukhari
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Qana A Alsulami
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
27
|
Tohidi MM, Paymard B, Vasquez-García SR, Fernández-Quiroz D. Recent progress in applications of cobalt catalysts in organic reactions. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
28
|
Wang Z, Chen S, Chen C, Yang Y, Wang C. Manganese-Catalyzed Hydrogenative Desulfurization of Thioamides. Angew Chem Int Ed Engl 2023; 62:e202215963. [PMID: 36428247 DOI: 10.1002/anie.202215963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Earth-abundant transition metal catalysis has emerged as an important alternative to noble transition metal catalysis in hydrogenation reactions. However, there has been no Earth-abundant transition metal catalyzed hydrogenation of thioamides reported so far, presumably due to the poisoning of catalysts by sulfur-containing molecules. Herein, we described the first manganese-catalyzed hydrogenative desulfurization of thioamides to amines or imines. The key to success is the use of MnBr(CO)5 instead of commonly-employed pincer-manganese catalysts, together with simple NEt3 and CuBr. This protocol features excellent selectivity on sole cleavage of the C=S bond of thioamides, in contrast to the only known Ru-catalyzed hydrogenation of thioamides, and unprecedented chemo-selectivity tolerating vulnerable functional groups such as nitrile, ketone, aldehyde, ester, sulfone, nitro, olefin, alkyne and heterocycle, which are usually susceptible to common hydride-type reductive protocols.
Collapse
Affiliation(s)
- Zelong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Silin Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Wuyi University, School of Biotechnology and Health Sciences, Jiangmen, 529020, China
| | - Chao Chen
- Wuyi University, School of Biotechnology and Health Sciences, Jiangmen, 529020, China.,Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Yunhui Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Desai B, Uppuluru A, Dey A, Deshpande N, Dholakiya BZ, Sivaramakrishna A, Naveen T, Padala K. The recent advances in cobalt-catalyzed C(sp 3)-H functionalization reactions. Org Biomol Chem 2023; 21:673-699. [PMID: 36602117 DOI: 10.1039/d2ob01936a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decades, reactions involving C-H functionalization have become a hot theme in organic transformations because they have a lot of potential for the streamlined synthesis of complex molecules. C(sp3)-H bonds are present in most organic species. Since organic molecules have massive significance in various aspects of life, the exploitation and functionalization of C(sp3)-H bonds hold enormous importance. In recent years, the first-row transition metal-catalyzed direct and selective functionalization of C-H bonds has emerged as a simple and environmentally friendly synthetic method due to its low cost, unique reactivity profiles and easy availability. Therefore, research advancements are being made to conceive catalytic systems that foster direct C(sp3)-H functionalization under benign reaction conditions. Cobalt-based catalysts offer mild and convenient reaction conditions at a reasonable expense compared to conventional 2nd and 3rd-row transition metal catalysts. Consequently, the probing of Co-based catalysts for C(sp3)-H functionalization is one of the hot topics from the outlook of an organic chemist. This review primarily focuses on the literature from 2018 to 2022 and sheds light on the substrate scope, selectivity, benefits and limitations of cobalt catalysts for organic transformations.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Ajay Uppuluru
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Ashutosh Dey
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Neha Deshpande
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Bharatkumar Z Dholakiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Kishor Padala
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India. .,Central Tribal University of Andhra Pradesh, Kondakarakam Village, Cantonment, Vizianagaram, Andhra Pradesh, 535003, India
| |
Collapse
|
30
|
Maayuri R, Gandeepan P. Manganese-catalyzed hydroarylation of multiple bonds. Org Biomol Chem 2023; 21:441-464. [PMID: 36541044 DOI: 10.1039/d2ob01674e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transition metal-catalyzed C-H activation has become a promising strategy in organic synthesis due to its improved atom-, step- and resource economy. Considering the Earth's abundance, economic benefits, and low toxicity, 3d metal catalysts for C-H activation have received a significant focus. In particular, organometallic manganese-catalyzed C-H activation has proven to be versatile and suitable for a wide range of transformations such as C-H addition to π-components, arylation, alkylation, alkynylation, amination, and many more. Among them, manganese-catalyzed C-H addition to C-C and C-heteroatom multiple bonds exhibited unique and promising reactivity to construct a wide range of complex organic molecules. In this review, we highlight the developments in the field of manganese-catalyzed hydroarylation of multiple bonds via C-H activation with a range of applications until August 2022.
Collapse
Affiliation(s)
- Rajaram Maayuri
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.
| |
Collapse
|
31
|
Cui Y, Wang R, Yang C, Wang A, Jing Y, Zhang S. Annulation of m-Substituted Aromatic Ketones with Diphenylacetylene Catalyzed by Ruthenium: A Reliable Route to Substituted Naphthalene Derivatives. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s107036322212043x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
32
|
Torres-Calis A, García JJ. Homogeneous Manganese-Catalyzed Hydrofunctionalizations of Alkenes and Alkynes: Catalytic and Mechanistic Tendencies. ACS OMEGA 2022; 7:37008-37038. [PMID: 36312376 PMCID: PMC9608411 DOI: 10.1021/acsomega.2c05109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In recent years, many manganese-based homogeneous catalytic precursors have been developed as powerful alternatives in organic synthesis. Among these, the hydrofunctionalizations of unsaturated C-C bonds correspond to outstanding ways to afford compounds with more versatile functional groups, which are commonly used as building blocks in the production of fine chemicals and feedstock for the industrial field. Herein, we present an account of the Mn-catalyzed homogeneous hydrofunctionalizations of alkenes and alkynes with the main objective of finding catalytic and mechanistic tendencies that could serve as a platform for the works to come.
Collapse
|
33
|
Yi ZY, Xiao L, Chang X, Dong XQ, Wang CJ. Iridium-Catalyzed Asymmetric Cascade Allylation/Retro-Claisen Reaction. J Am Chem Soc 2022; 144:20025-20034. [PMID: 36264302 DOI: 10.1021/jacs.2c08811] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An enantiomerically enriched 3-hydroxymethyl pentenal unit is one of the key structural cores in plenty of natural products and drug candidates with significant biological activities. However, very few synthetic methodologies for the facile construction of the related skeletons have been reported to date. Herein, an elegant iridium-catalyzed asymmetric cascade allylation/retro-Claisen reaction of readily available β-diketones with VEC was successfully developed, and a wide range of functionalized chiral 3-hydroxymethyl pentenal derivatives could be prepared in good yields with excellent enantioselectivities. Various 1,3-diketones and functionalized ketones containing different electron-withdrawing groups on the β-position were well tolerated as outstanding partners with high reactivity and excellent regio-/chemo-/enantioselectivity. The synthetic utility of product chiral 3-hydroxymethyl pentenal derivatives was well shown through gram-scale transformation, hydrogenation, cyclopropanation, hydroboration, and olefin metathesis. Moreover, this elegant protocol demonstrated synthetic applications in the concise synthesis of synthetically useful chiral building block (S)-Taniguchi lactone and the formal synthesis of natural product cytisine. A rational reaction pathway was proposed based on the experimental results and control experiments.
Collapse
Affiliation(s)
- Zhi-Yuan Yi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lu Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
34
|
Wang L, Lin J, Xia C, Sun W. Manganese-catalyzed asymmetric transfer hydrogenation of hydrazones. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Hammarback LA, Eastwood JB, Burden TJ, Pearce CJ, Clark IP, Towrie M, Robinson A, Fairlamb IJS, Lynam JM. A comprehensive understanding of carbon-carbon bond formation by alkyne migratory insertion into manganacycles. Chem Sci 2022; 13:9902-9913. [PMID: 36199635 PMCID: PMC9431456 DOI: 10.1039/d2sc02562k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Migratory insertion (MI) is one of the most important processes underpinning the transition metal-catalysed formation of C-C and C-X bonds. In this work, a comprehensive model of MI is presented, based on the direct observation of the states involved in the coupling of alkynes with cyclometallated ligands, augmented with insight from computational chemistry. Time-resolved spectroscopy demonstrates that photolysis of complexes [Mn(C^N)(CO)4] (C^N = cyclometalated ligand) results in ultra-fast dissociation of a CO ligand. Performing the experiment in a toluene solution of an alkyne results in the initial formation of a solvent complex fac-[Mn(C^N)(toluene)(CO)3]. Solvent substitution gives an η2-alkyne complex fac-[Mn(C^N)(η2-R1C2R2)(CO)3] which undergoes MI of the unsaturated ligand into the Mn-C bond. These data allowed for the dependence of second order rate constants for solvent substitution and first order rate constants for C-C bond formation to be determined. A systematic investigation into the influence of the alkyne and C^N ligand on this process is reported. The experimental data enabled the development of a computational model for the MI reaction which demonstrated that a synergic interaction between the metal and the nascent C-C bond controls both the rate and regiochemical outcome of the reaction. The time-resolved spectroscopic method enabled the observation of a multi-step reaction occurring over 8 orders of magnitude in time, including the formation of solvent complexes, ligand substitution and two sequential C-C bond formation steps.
Collapse
Affiliation(s)
| | | | - Thomas J Burden
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Callum J Pearce
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus Didcot Oxfordshire OX11 0QX UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus Didcot Oxfordshire OX11 0QX UK
| | - Alan Robinson
- Syngenta Crop Protection AG Münchwilen Breitenloh 5,4333 Switzerland
| | - Ian J S Fairlamb
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jason M Lynam
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
36
|
Han J, Yu H, Zi W. Carboxylic Acid-Directed Manganese(I)-Catalyzed Regioselective Hydroarylation of Unactivated Alkenes. Org Lett 2022; 24:6154-6158. [PMID: 35952363 DOI: 10.1021/acs.orglett.2c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A carboxylic acid-directed regioselective hydroarylation reaction of unactivated alkenes with aryl boronic acids was reported. This transformation was enabled by homogeneous manganese catalyst MnBr(CO)5 in the presence of KOH and H2O in the m-xylene reaction medium. Both internal and terminal alkenes worked well in this transformation, and a series of functional groups were tolerated. This reaction not only provided an expeditious method to prepare γ-aryl carboxylic acids from simple starting materials but also would inspire further studies in employing homogeneous manganese catalysis in organic synthesis.
Collapse
Affiliation(s)
- Jingqiang Han
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huimin Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China
| |
Collapse
|
37
|
Jei BB, Yang L, Ackermann L. Selective Labeling of Peptides with o-Carboranes via Manganese(I)-Catalyzed C-H Activation. Chemistry 2022; 28:e202200811. [PMID: 35420234 PMCID: PMC9320968 DOI: 10.1002/chem.202200811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 12/15/2022]
Abstract
A robust method for the selective labeling of peptides via manganese(I) catalysis was devised to achieve the C-2 alkenylation of tryptophan containing peptides with 1-ethynyl-o-carboranes. The manganese-catalyzed C-H activation was accomplished with high catalytic efficiency, and featured low toxicity, high functional group tolerance and excellent E-stereoselectivity. This approach unravels a promising tool for the assembly of o-carborane with structurally complex peptides of relevance to applications in boron neutron capture therapy.
Collapse
Affiliation(s)
- Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Long Yang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
38
|
Li F, Long L, He YM, Li Z, Chen H, Fan QH. Manganese-Catalyzed Asymmetric Formal Hydroamination of Allylic Alcohols: A Remarkable Macrocyclic Ligand Effect. Angew Chem Int Ed Engl 2022; 61:e202202972. [PMID: 35438237 DOI: 10.1002/anie.202202972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 12/23/2022]
Abstract
A unique family of chiral peraza N6 -macrocyclic ligands, which are conformationally rigid and have a tunable saddle-shaped cavity, is described. Utilizing their manganese(I) complexes, the first example of earth-abundant transition metal-catalyzed asymmetric formal anti-Markovnikov hydroamination of allylic alcohols was realized, providing a practical access to synthetically important chiral γ-amino alcohols in excellent yields and enantioselectivities (up to 99 % yield and 98 % ee). The single-crystal structure of a MnI complex indicates that the manganese atom coordinates with the chiral dialkylamine moiety in a bidentate fashion. Further DFT calculations revealed that five of the six nitrogen atoms in the ligand were engaged in multiple noncovalent interactions with Mn, an isopropanol molecule, and a β-amino ketone intermediate via coordination, hydrogen bonding, and/or CH⋅⋅⋅π interactions in the transition state, showing a remarkable role of the macrocyclic framework.
Collapse
Affiliation(s)
- Faju Li
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Linhong Long
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Mei He
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Zeyu Li
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Qing-Hua Fan
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
39
|
Li F, Long L, He Y, Li Z, Chen H, Fan Q. Manganese‐Catalyzed Asymmetric Formal Hydroamination of Allylic Alcohols: A Remarkable Macrocyclic Ligand Effect. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Faju Li
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Linhong Long
- CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Yan‐Mei He
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Zeyu Li
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
40
|
Towards ligand simplification in manganese-catalyzed hydrogenation and hydrosilylation processes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Wang X, Wang H, Zhou C, Yang L, Fu L, Li G. Native carboxyl group-assisted C-H acetoxylation of hydrocinnamic and phenylacetic acids. Chem Commun (Camb) 2022; 58:4993-4996. [PMID: 35357385 DOI: 10.1039/d2cc00459c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The use of a native directing group to promote C-H activation is highly desirable. Herein, we report a method of native carboxyl-assisted, Pd(II)-catalyzed ortho-C-H acetoxylation of both hydrocinnamic and phenylacetic acids that can be found in many biologically active molecules as the key moieties. Based on the broad scope and the application potential showcased with drug molecules, it is anticipated that this C-H acetoxylation reaction will find attractive applicability in future synthetic endeavors.
Collapse
Affiliation(s)
- Xinchao Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China.,Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, China.
| | - Hang Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, China.
| | - Chunlin Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, China.
| | - Lei Yang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, China.
| | - Lei Fu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, China.
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, China. .,Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
42
|
He Y, Du C, Han J, Han J, Zhu C, Xie J. Manganese‐Catalyzed Anti‐Markovnikov
Hydroarylation of Enamides: Modular Synthesis of Arylethylamines. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yijie He
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chaoyu Du
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jian Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 China
| |
Collapse
|
43
|
Charvet S, Médebielle M, Vantourout JC. Mn-Mediated α-Radical Addition of Carbonyls to Olefins: Systematic Study, Scope, and Electrocatalysis. J Org Chem 2022; 87:5690-5702. [DOI: 10.1021/acs.joc.2c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sylvain Charvet
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 1 rue Victor Grignard, 69622 Villeurbanne, France
| | - Maurice Médebielle
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 1 rue Victor Grignard, 69622 Villeurbanne, France
| | - Julien C. Vantourout
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 1 rue Victor Grignard, 69622 Villeurbanne, France
| |
Collapse
|
44
|
Li X, Zhang X, Zhang F, Luo X, Luo H. Construction of Pyridine Ring Systems by Mn(OAc)
2
‐Promoted Formal Dehydrative Dehydroaromatizing [4+2] Cycloaddition of Enamides with Maleimides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaolan Li
- Department of Chemistry & Chemical Engineering Gannan Normal University Ganzhou Jiangxi, 341000 People's Republic of China
| | - Xiuqi Zhang
- Department of Chemistry & Chemical Engineering Gannan Normal University Ganzhou Jiangxi, 341000 People's Republic of China
| | - Fukuan Zhang
- Department of Chemistry & Chemical Engineering Gannan Normal University Ganzhou Jiangxi, 341000 People's Republic of China
| | - Xuzhong Luo
- Department of Chemistry & Chemical Engineering Gannan Normal University Ganzhou Jiangxi, 341000 People's Republic of China
| | - Haiqing Luo
- Department of Chemistry & Chemical Engineering Gannan Normal University Ganzhou Jiangxi, 341000 People's Republic of China
| |
Collapse
|
45
|
Zhu Q, Gu Y, Wang X, Zhang C, Ma J. Discovery of Electronic Structure and Interfacial Interaction Features in Catalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3959-3968. [PMID: 35337185 DOI: 10.1021/acs.langmuir.2c00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The selective transformation of inert bonds (C-H, C-O, C-C, C-F, etc.) via various catalysts is one of the most challenging areas, with applications in organic synthesis, materials science, and biological and pharmaceutical chemistry. The catalytic performance of homogeneous and heterogeneous catalysts can be rationally controlled in two ways: (i) electronic structure modulation of the active site, such as the metal center, ligands, and coordination modes, to improve the catalytic activity and stability and (ii) tuning intermolecular or interfacial interactions to promoting the reaction kinetics by accelerating the transmission of electrons between the catalyst and solvents or support. The rational design of catalysts based on adjustable features, such as metal (monometallic or bimetallic) active sites, crystal phase, ligands, solvents, and supports for inert bond activation under mild conditions remains a challenge. This Perspective summarizes the features of electronic structures, interfacial interactions, and their effects on molecular catalysis, metal-organic frameworks (MOFs), and natural mineral catalysis. The discovery of efficient catalysts could be promoted using machine-learning methods with high-performance descriptors. More attention should be paid to high-throughput quantum-chemical computations and experiments, automatic searches of chemical reaction pathways, and efficient machine-learning or deep-learning methods to accelerate catalyst design and synthesis in the future.
Collapse
Affiliation(s)
- Qin Zhu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yuming Gu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xinzhu Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Chenyang Zhang
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, P. R. China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
46
|
Verma SK, Punji B. Manganese-Catalyzed C(sp2)-H Alkylation of Indolines and Arenes with Unactivated Alkyl Bromides. Chem Asian J 2022; 17:e202200103. [PMID: 35289105 DOI: 10.1002/asia.202200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Indexed: 11/10/2022]
Abstract
Selective C(sp 2 ) - H bond alkylation of indoline, carbazole and (2-pyridinyl)arenes with unactivated alkyl bromides is achieved using MnBr 2 catalyst in the absence of an external ligand. The alkylation uses a simple LiHMDS base and avoids the necessity of Grignard reagent, unlike other Mn-catalyzed C - H functionalization. This reaction proceeded either through a five- or a less-favored six-membered metallacycle, and tolerated diverse functionalities, including alkenyl, alkynyl, silyl, aryl ether, pyrrolyl, indolyl, carbazolyl and alkyl bearing fatty alcohol and polycyclic-steroid moieties. Alkylation follows a single electron transfer (SET) pathway involving 1e oxidative addition of alkyl bromide and a rate-limiting C-H metalation.
Collapse
Affiliation(s)
- Suryadev K Verma
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR, Organic Chemistry Division, Dr. Homi Bhabha Road, Pune, 411008, Pune, INDIA
| | - Benudhar Punji
- National Chemical Laboratory CSIR, Chemical Engineering Division, Dr. Homi Bhabha Road, 411008, Pune, INDIA
| |
Collapse
|
47
|
Ali S, Rani A, Khan S. Manganese-Catalyzed C-H Functionalizations Driven via Weak Coordination: Recent Developments and Perspectives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
49
|
Cembellín S, Maisuls I, Daniliuc CG, Osthues H, Doltsinis NL, Strassert CA, Glorius F. One-step synthesis of indolizino[3,4,5- ab]isoindoles by manganese(I)-catalyzed C-H activation: structural studies and photophysical properties. Org Biomol Chem 2022; 20:796-800. [PMID: 35006235 DOI: 10.1039/d1ob02246f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein, a regioselective synthesis of indolizino[3,4,5-ab]isoindoles, a valuable class of heterocycles with interesting luminescence properties, is described using manganese(I)-catalyzed C-H activation. The reported transformation proceeds in one-step and employs readily available 2-phenylpyridines as starting materials. Furthermore, the obtained single products exhibit blue-greenish fluorescence with high quantum yields.
Collapse
Affiliation(s)
- Sara Cembellín
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany.,Organic Chemistry Department, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Iván Maisuls
- Institute for Inorganic and Analytical Chemistry, Center for Nanotechnology, Center for Soft Nanoscience, Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Helena Osthues
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Nikos L Doltsinis
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Cristian A Strassert
- Institute for Inorganic and Analytical Chemistry, Center for Nanotechnology, Center for Soft Nanoscience, Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
50
|
Mohanty SR, Prusty N, Banjare SK, Nanda T, Ravikumar PC. Overcoming the Challenges toward Selective C(6)-H Functionalization of 2-Pyridone with Maleimide through Mn(I)-Catalyst: Easy Access to All-Carbon Quaternary Center. Org Lett 2022; 24:848-852. [PMID: 35040656 DOI: 10.1021/acs.orglett.1c04121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An earth-abundant and inexpensive Mn(I)-catalyzed alkylation of 2-pyridone with maleimide has been reported for the first time, in contrast to previously reported Diels-Alder products. Notably, an unexpected rearrangement has been discovered in the presence of acetic acid, which also provides a unique class of compounds bearing three different N-heterocycles with an all-carbon quaternary center. Furthermore, single crystal X-ray and HRMS revealed a five-membered manganacycle intermediate. This methodology tolerates a wide variety of functional groups delivering the alkylated products in moderate to excellent yields.
Collapse
Affiliation(s)
- Smruti Ranjan Mohanty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Jatani, Khurda, Odisha 752050, India
| | - Namrata Prusty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Jatani, Khurda, Odisha 752050, India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Jatani, Khurda, Odisha 752050, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Jatani, Khurda, Odisha 752050, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Jatani, Khurda, Odisha 752050, India
| |
Collapse
|