1
|
Ji K, Wei X, Kahkoska AR, Zhang J, Zhang Y, Xu J, Wei X, Liu W, Wang Y, Yao Y, Huang X, Mei S, Liu Y, Wang S, Zhao Z, Lu Z, You J, Xu G, Shen Y, Buse JB, Wang J, Gu Z. An orally administered glucose-responsive polymeric complex for high-efficiency and safe delivery of insulin in mice and pigs. NATURE NANOTECHNOLOGY 2024; 19:1880-1891. [PMID: 39223256 PMCID: PMC11646558 DOI: 10.1038/s41565-024-01764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Contrary to current insulin formulations, endogenous insulin has direct access to the portal vein, regulating glucose metabolism in the liver with minimal hypoglycaemia. Here we report the synthesis of an amphiphilic diblock copolymer comprising a glucose-responsive positively charged segment and polycarboxybetaine. The mixing of this polymer with insulin facilitates the formation of worm-like micelles, achieving highly efficient absorption by the gastrointestinal tract and the creation of a glucose-responsive reservoir in the liver. Under hyperglycaemic conditions, the polymer triggers a rapid release of insulin, establishing a portal-to-peripheral insulin gradient-similarly to endogenous insulin-for the safe regulation of blood glucose. This insulin formulation exhibits a dose-dependent blood-glucose-regulating effect in a streptozotocin-induced mouse model of type 1 diabetes and controls the blood glucose at normoglycaemia for one day in non-obese diabetic mice. In addition, the formulation demonstrates a blood-glucose-lowering effect for one day in a pig model of type 1 diabetes without observable hypoglycaemia, showing promise for the safe and effective management of type 1 diabetes.
Collapse
Affiliation(s)
- Kangfan Ji
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Xiangqian Wei
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Anna R Kahkoska
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Juan Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Yang Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Jianchang Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Xinwei Wei
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Wei Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Yuejun Yao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Xuehui Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Shaoqian Mei
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Yun Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Shiqi Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Zhengjie Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Ziyi Lu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Jiahuan You
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Guangzheng Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Sun L, Che L, Li M, Chen K, Leng X, Long Y, Guo X, Palma M, Lu Y. Reinforced Nacre-Like MXene/Sodium Alginate Composite Films for Bioinspired Actuators Driven by Moisture and Sunlight. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406832. [PMID: 39370651 DOI: 10.1002/smll.202406832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Indexed: 10/08/2024]
Abstract
MXene-based soft actuators have attracted increasing attention and shown competitive performance in various intelligent devices such as supercapacitors, bionic robots and artificial muscles. However, the development of robust MXene-based actuators with multi-stimuli responsiveness remains challenging. In this study, a nacre-like structure soft actuator based on MXene and sodium alginate (SA) composite films is prepared using a straightforward solvent casting self-assembly method, which not only enhances the mechanical performance (tensile strength of 72 MPa) but also diversifies the stimuli responsiveness of the material. The composite actuators can be powered by external stimuli from renewable energy sources, from moisture inducing a maximum bending angle of 190 degrees at a relative humidity (RH) of 91%, and sunlight irradiation generating a maximum curvature of 1.45 cm-1 under 100 mW cm-2. The feasibility of practical applications, including moisture-responsive flowers and walkers, sunlight-responsive oscillators, and smart switches, is demonstrated through comprehensive experimental characterization and performance evaluation. The work presented here provides insight into the design of robust actuators via the utilization and conversion of environmentally renewable energy sources.
Collapse
Affiliation(s)
- Linchao Sun
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Lixuan Che
- State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Ming Li
- State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kai Chen
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Xu Leng
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yaojia Long
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Xiaoxi Guo
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Matteo Palma
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
3
|
Thomas ME, Schmitt LD, Lees AJ. A New, Rapid, Colorimetric Chemodosimeter, 4-(Pyrrol-1-yl)pyridine, for Nitrite Detection in Aqueous Solution. ACS OMEGA 2024; 9:37278-37287. [PMID: 39246479 PMCID: PMC11375707 DOI: 10.1021/acsomega.4c05026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/10/2024]
Abstract
With increasing concerns over environmental impact and overall health of both the environment and its people, a need to quantify contaminants is of the utmost importance. Chemosensors with low detection limits and a relative ease of application can address this challenge. Nitrite ions are known to be detrimental to both the environment and human health. A new colorimetric chemodosimeter has been prepared from the homolytic photochemical cleavage of a reaction between pyrrole and pyridine. The product, 4-(pyrrol-1-yl)pyridine, yields a limit of detection of 0.330 (±0.09) ppm for the detection of nitrite in aqueous solution, employing a colorimetric change from yellow to pink. It is also highly selective for nitrite when various competitive anions such as SO3 2-, NO3 -, PO4 3-, SO4 -2, Cl-, F-, I-, Br-, AcO-, and CN- are present in great excess. The molecule's especially high sensitivity to nitrite is apparently the result of a complex supramolecular mechanism, characterized by both dynamic light scattering of the aggregate and the Tyndall effect. Consequently, this new sensor provides a simple, low-cost way to rapidly detect nitrite anions in aqueous solution.
Collapse
Affiliation(s)
- Mallory E Thomas
- Department of Chemistry, Binghamton University, Binghamton, New York 13902-6000, United States
| | - Lynn D Schmitt
- Department of Chemistry, SUNY Cortland, Cortland, New York 13045, United States
| | - Alistair J Lees
- Department of Chemistry, Binghamton University, Binghamton, New York 13902-6000, United States
| |
Collapse
|
4
|
Sahu M, Ganguly M, Sharma P. Role of silver nanoparticles and silver nanoclusters for the detection and removal of Hg(ii). RSC Adv 2024; 14:22374-22392. [PMID: 39010928 PMCID: PMC11247438 DOI: 10.1039/d4ra04182h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Silver metal, being a 3d transition metal in group 11 in the periodic table, is widely used in material science for its distinguished plasmonic properties. Nanoparticles (NPs) and nanoclusters (NCs) are widely used in sensing applications having a surface plasmon band and emissive properties, respectively. Mercury is one of the detrimental toxins and threats to various ecosystems. The distinction between nanoparticles and nanoclusters, the utility and toxicity of heavy metal mercury, fluorometric and colorimetric approaches to the recognition of mercury ions with NPs and NCs, the mechanism of detection, spot detection, and natural water sample analyses were illustrated in detail in this review article. Moreover, the sensing platform and analyte (Hg2+) fate were described for substantiating the mechanism. It was observed that NCs are mostly utilized for fluorometric approaches, while NPs are mostly employed for colorimetric approaches. Fluorometric detection is mainly quenching-based. However, sensing with enhancement was found in a few reports. Adulteration of other metals with silver particles often modifies the sensing platform.
Collapse
Affiliation(s)
- Mamta Sahu
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Mainak Ganguly
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Priyanka Sharma
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| |
Collapse
|
5
|
Hada AM, Suarasan S, Muntean M, Potara M, Astilean S. Aptamer-conjugated gold nanoparticles for portable, ultrasensitive naked-eye detection of C-reactive protein based on the Tyndall effect. Anal Chim Acta 2024; 1307:342626. [PMID: 38719405 DOI: 10.1016/j.aca.2024.342626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND C-reactive protein (CRP) represents an early clinical biomarker that indicates the presence of inflammatory or infectious conditions in the human body. Today's procedures approved by the Food and Drug Administration (FDA) imply expensive equipment and highly trained personnel to perform the test. Therefore, a new diagnostic method with high detection efficiency and less cost is urgently needed for delivering rapid and timely results in point-of-care (POC) service. RESULTS Herein, we propose a new, equipment-free, and portable sensing method for the future POC detection of CRP based on the Tyndall effect (TE). In our study, aptamer-conjugated citrate-stabilized gold nanoparticles (apta-AuNPs) are exploited as the sensing platform. The apta-AuNPs' interaction with CRP in a saline environment leads to their aggregation, thus enhancing the scattering of light when the solution is exposed to a 640 nm pointer laser line. Firstly, the enhancement of the scattering light as a function of increasing concentration of CRP in solution is measured spectroscopically using a typical 90-degree angle spectrofluorometer and then the measurements are compared to the classic colorimetric detection using an UV-Vis spectrophotometer. Finally, to achieve high portability and accessibility, we demonstrate that the measurement of CRP concentration can be performed with similar accuracy but in a more direct and inexpensive way by using a laser pointer pen as the excitation source and a camera of a low-budget smartphone as a quantitative reader instead of most expensive spectrofluorometer. SIGNIFICANCE The portable TE-based assay exhibits a wide linear dynamic range (1-60 μg/mL) for the detection of CRP with a limit of detection (LOD) of 92 ng/mL The proposed method is capable to integrate both standard and high-sensitivity CRP analysis in a single procedure with increased sensitivity and prompt delivery of analysis results. Moreover, the sensing procedure is significantly faster than the FDA approved ones with a detection time of only 10 min. Finally, as a proof-of-concept, our findings demonstrate excellent recovery for CRP detection in spiked and diluted urine samples, highlighting the strong potential of this sensing method for POC applications.
Collapse
Affiliation(s)
- Alexandru-Milentie Hada
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania; Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu 1, 400084, Cluj-Napoca, Romania
| | - Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania
| | - Mara Muntean
- Department of Cell and Molecular Biology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Louis Pasteur 6, 400349, Cluj-Napoca, Romania
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania.
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania; Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu 1, 400084, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Hua F, Zhang Z, Zhao Z, Hou X, Qu J, Lv C, Hu Q. The performance of quaternary-ammonium chitosan in wastewater treatment: The overlooked role of solubility. Int J Biol Macromol 2024; 272:132933. [PMID: 38862322 DOI: 10.1016/j.ijbiomac.2024.132933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Quaternary-ammonium chitosan (CT-CTA) is a popular water treatment agent, and its electropositivity and cation strength are improved compared with chitosan. The use of CT-CTA is widely advocated to remove suspended particles and organic matter from wastewater. However, the solubility of CT-CTA is an important factor affecting the performance of CT-CTA, which is a neglected problem in previous studies. In the study, CT-CTA with different solubilities were prepared by adjusting pH from 2 to 7 in preparation, and their applications were explored in wastewater. When the pH was 2, 2.5, or 3, the obtained CT-CTA was a dissolved state. The turbidity and color removal were 95 % - 98 % and 60 % - 74 %, respectively. When the pH was 4, 5, 6, or 7, the obtained CT-CTA was a solid state. The turbidity and color removal were 30 % - 63 % and 90 % - 97 %, respectively. For domestic-wastewater treatment, CT-CTA in a dissolved state removed 92 % of turbidity and 50 % of chemical oxygen demand (COD). CT-CTA in a solid state removed 86 % of turbidity and 64 % of COD with poly aluminum chloride (PAC). The results illustrated the performance of CT-CTA with different solubilities, which can broaden its application in wastewater treatment.
Collapse
Affiliation(s)
- Fangcong Hua
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China
| | - Zonghui Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China
| | - Zhibo Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, PR China.
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China.
| |
Collapse
|
7
|
Ma Y, Yu M, Sun Z, Pan S, Wang Y, Li F, Guo X, Zhao R, Xu Y, Wu X. Biomass-Based, Dual Enzyme-Responsive Nanopesticides: Eco-friendly and Efficient Control of Pine Wood Nematode Disease. ACS NANO 2024; 18:13781-13793. [PMID: 38752333 DOI: 10.1021/acsnano.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Pine wood nematode (PWN) disease is a globally devastating forest disease caused by infestation with PWN, Bursaphelenchus xylophilus, which mainly occurs through the vector insect Japanese pine sawyer (JPS), Monochamus alternatus. PWN disease is notoriously difficult to manage effectively and is known as the "cancer of pine trees." In this study, dual enzyme-responsive nanopesticides (AVM@EC@Pectin) were prepared using nanocoating avermectin (AVM) after modification with natural polymers. The proposed treatment can respond to the cell wall-degrading enzymes secreted by PWNs and vector insects during pine tree infestation to intelligently release pesticides to cut off the transmission and infestation pathways and realize the integrated control of PWN disease. The LC50 value of AVM@EC@Pectin was 11.19 mg/L for PWN and 26.31 mg/L for JPS. The insecticidal activity of AVM@EC@Pectin was higher than that of the commercial emulsifiable concentrate (AVM-EC), and the photostability, adhesion, and target penetration were improved. The half-life (t1/2) of AVM@EC@Pectin was 133.7 min, which is approximately twice that of AVM-EC (68.2 min). Sprayed and injected applications showed that nanopesticides had superior bidirectional transportation, with five-times higher AVM contents detected in the roots relative to those of AVM-EC when sprayed at the top. The safety experiment showed that the proposed treatment had lower toxicity and higher safety for nontarget organisms in the application environment and human cells. This study presents a green, safe, and effective strategy for the integrated management of PWN disease.
Collapse
Affiliation(s)
- Yingjian Ma
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Meng Yu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Zhe Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Shouhe Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Yinmin Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Fengyu Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xinyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Rui Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xuemin Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Yu Y, Chen X, Hou D, Zhou J, Zhang P, Shen J, Zhou J. Fluorinated Polydopamine Shell Decorated Fillers in Polytetrafluoroethylene Composite for Achieving Highly Reduced Coefficient of Thermal Expansion. Polymers (Basel) 2024; 16:987. [PMID: 38611245 PMCID: PMC11014320 DOI: 10.3390/polym16070987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The noticeable difference in the coefficient of thermal expansion (CTE) for polytetrafluoroethylene (PTFE) coatings and copper substrates is a major challenge for thermal debonding of the copper-clad laminate (CCL) in high-frequency communications. Theoretically, ceramic fillers with low CTEs in the coating can effectively reduce the gap, and there remains a trade-off between the dispersibility of fillers and the interfacial interactions with the polymeric matrix. Here, we propose a novel approach to prepare a pentafluorobenzoyl chloride (PFBC)-modified polydopamine (PDA) shell on silica particles by using amidation. Such modified particles perform excellent dispersion and exhibit diminished interfacial gaps in the PTFE matrix, which highly reduces CTE to 77 ppm/°C, accounting for only 48.1% of the neat coating. Moreover, the composite exhibits enhanced mechanical strength and toughness, and consequently suppresses thermal debonding in CCL under high-temperature conditions. Therefore, results present a promising potential for its use in the next-generation CCL of high-frequency communication devices.
Collapse
Affiliation(s)
- Yuanying Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (X.C.); (D.H.); (J.Z.); (J.S.)
| | - Xiao Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (X.C.); (D.H.); (J.Z.); (J.S.)
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
| | - Dajun Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (X.C.); (D.H.); (J.Z.); (J.S.)
| | - Jingjing Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (X.C.); (D.H.); (J.Z.); (J.S.)
| | - Pengchao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (X.C.); (D.H.); (J.Z.); (J.S.)
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| | - Jie Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (X.C.); (D.H.); (J.Z.); (J.S.)
| | - Jing Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (X.C.); (D.H.); (J.Z.); (J.S.)
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| |
Collapse
|
9
|
Huang X, Yan Y, Zhang L, Yuan L, Tang Y, Jiang X, Zhu W, Yuan Y, Nie J, Zhang Y. Simple, sensitive, colorimetric detection of pyrophosphate via the analyte-triggered decomposition of metal-organic frameworks regulating their adaptive multi-color Tyndall effect. Anal Bioanal Chem 2024; 416:1821-1832. [PMID: 38363308 DOI: 10.1007/s00216-024-05200-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
This paper describes initially the application of the Tyndall effect (TE) of metal-organic framework (MOF) materials as a colorimetric signaling strategy for the sensitive detection of pyrophosphate ion (PPi). The used MOF NH2-MIL-101(Fe) was prepared with Fe3+ ions and fluorescent ligands of 2-amino terephthalic acid (NH2-BDC). The fluorescence of NH2-BDC in MOF is quenched due to the ligand-to-metal charge transfer effect, while the NH2-MIL-101(Fe) suspension shows a strong TE. In the presence of PPi analyte, the MOFs will undergo decomposition because of the competitive binding of Fe3+ by PPi over NH2-BDC, resulting in a significant decrease in the TE signal and fluorescence restoration from the released ligands. The results demonstrate that the new method only requires a laser pointer pen (for TE creation) and a smartphone (for portable quantitative readout) to detect PPi in a linear concentration range of 1.25-800 μM, with a detection limit of ~210 nM (3σ) which is ~38 times lower than that obtained from traditional fluorescence with a spectrophotometer (linear concentration range, 50-800 µM; detection limit, 8.15 µM). Moreover, the acceptable recovery of PPi in several real samples (i.e., pond water, black tea, and human serum and urine) ranges from 97.66 to 119.15%.
Collapse
Affiliation(s)
- Xueer Huang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Yongkang Yan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Lang Zhang
- Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, 234 Fujiang Road, Nanchong, 637000, People's Republic of China
| | - Lili Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Yiyue Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Xinqing Jiang
- Translational Medicine Research Center, North Sichuan Medical College, 234 Fujiang Road, Nanchong, 637000, People's Republic of China
| | - Wenli Zhu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China.
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China.
| |
Collapse
|
10
|
Liang Z, Chen Z, Zhu Z, Zhang Y, Niu W, Tan S, Wong HM, Li X, Li Q, Qiu H. Colloidal Phenol-Amine Coating on Implants for Improved Anti-Inflammation and Osteogenesis. ACS Biomater Sci Eng 2024; 10:365-376. [PMID: 38118128 DOI: 10.1021/acsbiomaterials.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Phenol-amine coatings have attracted significant attention in recent years owing to their adjustable composition and multifaceted biological functionalities. The current preparation of phenol-amine coatings, however, involves a chemical reaction within the solution or interface, resulting in lengthy preparation times and necessitating specific reaction conditions, such as alkaline environments and oxygen presence. The facile, rapid, and eco-friendly preparation of phenol-amine coatings under mild conditions continues to pose a challenge. In this study, we use a macromolecular phenol-amine, Tanfloc, to form a stable colloid under neutral conditions, which was then rapidly adsorbed on the titanium surface by electrostatic action and then spread and fused to form a continuous coating within several minutes. This nonchemical preparation process was rapid, mild, and free of chemical additives. The in vitro and in vivo results showed that the Tanfloc colloid fusion coating inhibited destructive inflammation, promoted osteogenesis, and enhanced osteointegration. These remarkable advantages of the colloidal phenol-amine fusion coating highlight the suitability of its future application in clinical practice.
Collapse
Affiliation(s)
- ZhaoJia Liang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - ZiRui Chen
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - ZhongQing Zhu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - YaBing Zhang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - WeiRui Niu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Shuang Tan
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Hai Ming Wong
- Faculty of Dentistry, The Prince Philip Dental Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - XiangYang Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - QuanLi Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen 518172, China
| | - Hua Qiu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| |
Collapse
|
11
|
Santos MM, Santos AM, Nascimento Júnior JAC, Andrade TDA, Rajkumar G, Frank LA, Serafini MR. The management of osteoarthritis symptomatology through nanotechnology: a patent review. J Microencapsul 2023; 40:475-490. [PMID: 37698545 DOI: 10.1080/02652048.2023.2258955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Osteoarthritis is considered a degenerative joint disease that is characterised by inflammation, chronic pain, and functional limitation. The increasing development of nanotechnology in drug delivery systems has provided new ideas and methods for osteoarthritis therapy. This review aimed to evaluate patents that have developed innovations, therapeutic strategies, and alternatives using nanotechnology in osteoarthritis treatment. The results show patents deposited from 2015 to November 2021 in the online databases European Patent Office and World Intellectual Property Organisation. A total of 651 patents were identified for preliminary assessment and 16 were selected for full reading and discussion. The evaluated patents are focused on the intraarticular route, oral route, and topical route for osteoarthritis treatment. The intraarticular route presented a higher patent number, followed by the oral and topical routes, respectively. The development of new technologies allows us to envision a promising and positive future in osteoarthritis treatment.
Collapse
Affiliation(s)
| | | | | | | | - Gomathi Rajkumar
- Department of Botany, Sri Sarada College for Women (Autonomous), Affiliated to Periyar University, Salem, India
| | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
12
|
Zhang Y, Zhao X, Qin Y, Li X, Chang Y, Shi Z, Song M, Sun W, Xiao J, Li Z, Qing G. Order-order assembly transition-driven polyamines detection based on iron-sulfur complexes. Commun Chem 2023; 6:146. [PMID: 37420027 PMCID: PMC10328931 DOI: 10.1038/s42004-023-00942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023] Open
Abstract
Innovative modes of response can greatly push forward chemical sensing processes and subsequently improve sensing performance. Classical chemical sensing modes seldom involve the transition of a delicate molecular assembly during the response. Here, we display a sensing mode for polyamine detection based on an order-order transition of iron-sulfur complexes upon their assembly. Strong validation proves that the unique order-order transition of the assemblies is the driving force of the response, in which the polyamine captures the metal ion of the iron-sulfur complex, leading it to decompose into a metal-polyamine product, accompanied by an order-order transition of the assemblies. This mechanism makes the detection process more intuitive and selective, and remarkably improves the detection efficiency, achieving excellent polyamines specificity, second-level response, convenient visual detection, and good recyclability of the sensing system. Furthermore, this paper also provides opportunities for the further application of the iron-sulfur platform in environment-related fields.
Collapse
Affiliation(s)
- Yahui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiangyu Zhao
- Sixth Laboratory, Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, 96 Nankai Road, Dalian, 116045, P. R. China
| | - Yue Qin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaopei Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yongxin Chang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhenqiang Shi
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Mengyuan Song
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wenjing Sun
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Jie Xiao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zan Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
- College of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan, 430200, P. R. China.
| |
Collapse
|
13
|
Jin W, Nan J, Chen M, Song L, Wu F. Superior performance of novel chitosan-based flocculants in decolorization of anionic dyes: Responses of flocculation performance to flocculant molecular structures and hydrophobicity and flocculation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131273. [PMID: 36996540 DOI: 10.1016/j.jhazmat.2023.131273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
To achieve economical and efficient decolorization, two novel flocculants, weakly hydrophobic comb-like chitosan-graft-poly (N, N-Dimethylacrylamide) (CSPD) and strongly hydrophobic chain-like chitosan-graft-L-Cyclohexylglycine (CSLC) were synthesized in this study. To assess the effectiveness and application of CSPD and CSLC, the impacts of factors, including flocculant dosages, initial pH, initial dye concentrations, co-existing inorganic ions and turbidities, on the decolorization performance were explored. The results suggested that the optimum decolorizing efficiencies of the five anionic dyes ranged from 83.17% to 99.40%. Moreover, for accurately controlling flocculation performance, the responses to flocculant molecular structures and hydrophobicity in flocculation using CSPD and CSLC were studied. The Comb-like structure gives CSPD a wider dosage range for effective decolorization and better efficiencies with large molecule dyes under weak alkaline conditions. The strong hydrophobicity makes CSLC more effective in decolorization and more suitable for removing small molecule dyes under weak alkaline conditions. Meanwhile, the responses of removal efficiency and floc size to flocculant hydrophobicity are more sensitive. Mechanism studies revealed that charge neutralization, hydrogen bonding and hydrophobic association worked together in the decolorization of CSPD and CSLC. This study has provided meaningful guidance for developing flocculants in the treatment of diverse printing and dyeing wastewater.
Collapse
Affiliation(s)
- Wenxing Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Meng Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Langrun Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fangmin Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
14
|
Yan K, Wang L, Zhu Z, Duan S, Hua Z, Xu P, Xu H, Hu C, Wang Y, Di B. Cucurbituril-protected dual-readout gold nanoclusters for sensitive fentanyl detection. Analyst 2023; 148:1253-1258. [PMID: 36779286 DOI: 10.1039/d2an01748b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A large number of cases showed that fentanyl (FEN) has become the main cause of death from illegal drug overdose owing to its potent effect on respiratory depression, which has emerged as a grave threat to public health and safety. However, traditional analytical methods require cost-prohibitive equipment, complex pretreatment procedures, and technically trained experts, thus highlighting the urgent need to develop a cost-effective, straightforward, and highly sensitive method to detect FEN. This work demonstrated a dual-readout sensor FGGC-AuNCs@Q7 for FEN detection, which is based on the molecular recognition and self-assembly between the macrocycle cucurbit[7]uril (Q7) and FEN, accompanying spontaneous visual Tyndall effect and fluorescence optical responses of the gold nanoclusters within seconds. A detection limit of 1 ng mL-1 and a linear range of 9 to 148 000 ng mL-1 were achieved for fluorescence detection on FEN, with favorable selectivity in the presence of other illicit drugs or common interferents. The proposed method has been proved by its satisfactory application for the analysis of human urine.
Collapse
Affiliation(s)
- Kun Yan
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| | - Lancheng Wang
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| | - Zhihang Zhu
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| | - Shiqi Duan
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| | - Zhendong Hua
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China.
| | - Peng Xu
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China.
| | - Hui Xu
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| | - Chi Hu
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| | - Youmei Wang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China.
| | - Bin Di
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| |
Collapse
|
15
|
Pan F, Hua F, Yan Y, Huang X, Yuan L, Tang Y, Yuan Y, Nie J, Zhang Y. Sensitive, specific, smartphone-based quantitative sensing of glyphosate by integrating analyte-triggered anti-aggregation/anti-autocatalysis of metal nanoparticles with Tyndall-effect colorimetric signaling. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
Flórez-Fernández N, Pontes JF, Guerreiro F, Afonso IT, Lollo G, Torres MD, Domínguez H, da Costa AMR, Grenha A. Fucoidan from Fucus vesiculosus: Evaluation of the Impact of the Sulphate Content on Nanoparticle Production and Cell Toxicity. Mar Drugs 2023; 21:115. [PMID: 36827156 PMCID: PMC9966594 DOI: 10.3390/md21020115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The composition of seaweeds is complex, with vitamins, phenolic compounds, minerals, and polysaccharides being some of the factions comprising their structure. The main polysaccharide in brown seaweeds is fucoidan, and several biological activities have been associated with its structure. Chitosan is another marine biopolymer that is very popular in the biomedical field, owing to its suitable features for formulating drug delivery systems and, particularly, particulate systems. In this work, the ability of fucoidan to produce nanoparticles was evaluated, testing different amounts of a polymer and using chitosan as a counterion. Nanoparticles of 200-300 nm were obtained when fucoidan prevailed in the formulation, which also resulted in negatively charged nanoparticles. Adjusting the pH of the reaction media to 4 did not affect the physicochemical characteristics of the nanoparticles. The IC50 of fucoidan was determined, in both HCT-116 and A549 cells, to be around 160 µg/mL, whereas it raised to 675-100 µg/mL when nanoparticles (fucoidan/chitosan = 2/1, w/w) were tested. These marine materials (fucoidan and chitosan) provided features suitable to formulate polymeric nanoparticles to use in biomedical applications.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- Drug Delivery Laboratory, Centre for Marine Sciences (CCMAR), Faculty of Sciences and Technology, Universidade do Algarve, 8005-139 Faro, Portugal
- CINBIO, Universidade de Vigo, 32004 Ourense, Spain
- Grupo Biomasa y Desarrollo Sostenible (EQ-2), Departamento de Ingeniería Química, Facultad de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Jorge F. Pontes
- Drug Delivery Laboratory, Centre for Marine Sciences (CCMAR), Faculty of Sciences and Technology, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Filipa Guerreiro
- Drug Delivery Laboratory, Centre for Marine Sciences (CCMAR), Faculty of Sciences and Technology, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Inês T. Afonso
- Drug Delivery Laboratory, Centre for Marine Sciences (CCMAR), Faculty of Sciences and Technology, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Giovanna Lollo
- University of Lyon, Université Claude Bernard Lyon 1, LAGEPP CNRS, UMR 5007, 69622 Villeurbanne, France
| | - Maria Dolores Torres
- CINBIO, Universidade de Vigo, 32004 Ourense, Spain
- Grupo Biomasa y Desarrollo Sostenible (EQ-2), Departamento de Ingeniería Química, Facultad de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Herminia Domínguez
- CINBIO, Universidade de Vigo, 32004 Ourense, Spain
- Grupo Biomasa y Desarrollo Sostenible (EQ-2), Departamento de Ingeniería Química, Facultad de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Ana M. Rosa da Costa
- Algarve Chemistry Research Center (CIQA) and Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana Grenha
- Drug Delivery Laboratory, Centre for Marine Sciences (CCMAR), Faculty of Sciences and Technology, Universidade do Algarve, 8005-139 Faro, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
17
|
Li D, Wen Q, Zhou Y, Li D, Xi H, Huang G, Liang J, Xiao X, Zhu W. A dual-mode sensor based on colorimetric and Tyndall effect of gold nanoparticles for ultra-sensitive detection of Hg 2. ANAL SCI 2023; 39:565-571. [PMID: 36680671 DOI: 10.1007/s44211-023-00273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
Mercury ion (Hg2+) is the most widespread and highly toxic environmental pollutant, which exerts numerous adverse effects on environmental and human health. There is an urgent need to develop a convenient method for detecting Hg2+. Herein, a novel dual-mode sensor based on colorimetric and Tyndall effect of gold nanoparticles was developed for ultra-sensitive determination of Hg2+. In this strategy, a polyA-modified Au probe with high uniformity was assembled successfully. Both modes were based on Hg2+-induced aggregation of the probes. Hg2+ was reflected according to the color variations of solution and the Tyndall effect of Au reporter. With the aid of a laser pointer, the Tyndall mode demonstrated about 615-fold improvement on sensitivity compared with the colorimetry way. Taking advantages of low cost and convenient assembly of polyA-based Au probe and the combination of colorimetry and Tyndall effect, our strategy determined the Hg2+ with high sensitivity and wide range. By changing probes or nanoparticles, the proposed strategy is expected to be a universal platform for detecting other analytes in environmental and even biological samples. A novel dual-mode sensor based on colorimetric and tyndall effect of gold nanoparticles for ultra-sensitive determination of Hg2+ was exploited.
Collapse
Affiliation(s)
- Dandan Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Qilin Wen
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Yanyu Zhou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Dan Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Huai Xi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Guidan Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Jinhua Liang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Xiaofen Xiao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Wenyuan Zhu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China.
| |
Collapse
|
18
|
Sadiq Z, Safiabadi Tali SH, Hajimiri H, Al-Kassawneh M, Jahanshahi-Anbuhi S. Gold Nanoparticles-Based Colorimetric Assays for Environmental Monitoring and Food Safety Evaluation. Crit Rev Anal Chem 2023; 54:2209-2244. [PMID: 36629748 DOI: 10.1080/10408347.2022.2162331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent years have witnessed an exponential increase in the research on gold nanoparticles (AuNPs)-based colorimetric sensors to revolutionize point-of-use sensing devices. Hence, this review is compiled focused on current progress in the design and performance parameters of AuNPs-based sensors. The review begins with the characteristics of AuNPs, followed by a brief explanation of synthesis and functionalization methods. Then, the mechanisms of AuNPs-based sensors are comprehensively explained in two broad categories based on the surface plasmon resonance (SPR) characteristics of AuNPs and their peroxidase-like catalytic properties (nanozyme). SPR-based colorimetric sensors further categorize into aggregation, anti-aggregation, etching, growth-mediated, and accumulation-based methods depending on their sensing mechanisms. On the other hand, peroxidase activity-based colorimetric sensors are divided into two methods based on the expression or inhibition of peroxidase-like activity. Next, the analytes in environmental and food samples are classified as inorganic, organic, and biological pollutants, and recent progress in detection of these analytes are reviewed in detail. Finally, conclusions are provided, and future directions are highlighted. Improving the sensitivity, reproducibility, multiplexing capabilities, and cost-effectiveness for colorimetric detection of various analytes in environment and food matrices will have significant impact on fast testing of hazardous substances, hence reducing the pollution load in environment as well as rendering food contamination to ensure food safety.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Hasti Hajimiri
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
19
|
Dual-mode detection of fluorine-containing pesticides (bifenthrin, flufenoxuron, diflubenzuron) via ratiometric fluorescence and the Tyndall Effect of fluorescent organic nanoparticles. Food Chem 2023; 399:134008. [DOI: 10.1016/j.foodchem.2022.134008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 12/29/2022]
|
20
|
Analyte-triggered in situ “off–on” of Tyndall effect for smartphone-based quantitative nanosensing of Ag+ ions. Photochem Photobiol Sci 2022; 22:631-640. [PMID: 36436206 DOI: 10.1007/s43630-022-00341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022]
Abstract
This work describes two new colorimetric methods for smartphone-based point-of-care nanosensing of toxic Ag+ ions. They were based on the analyte-triggered in situ "off-on" of Tyndall effect (TE) of non-plasmonic colloid or plasmonic metal nanoprobes. The first TE-inspired assay (TEA) focused on the initial analytical application of precipitation reactions where a non-plasmonic AgCl colloid could be formed once mixing the analyte with a NaCl solution. Such AgCl colloid displayed strong visual TE signals after their irradiation by a laser pointer pen, which unexpectedly achieved a detection limit of ~ 400 nM. The second TEA was further designed to reduce the limit down to ~ 78 nM using the analyte's oxidizability towards 3,3',5,5'-tetramethylbenzidine molecules. The redox reaction could create positively charged products that could make negatively charged plasmonic gold nanoparticles aggregate through electrostatic interactions to remarkably amplify their TE responses. Both limits were lower than the minimum allowable Ag+ level (~ 460 nM) in drinking water issued by the World Health Organization. The satisfactory recovery results for detecting Ag+ ions in river, pond, tap, and drinking water additionally demonstrated good selectivity, accuracy and practicality of the proposed methods for potential point-of-need uses in environmental analysis, public health, water safety, etc.
Collapse
|
21
|
Non-instrumental and Ultrasensitive Detection of Acetamiprid Residue Based on Tyndall Effect of Silver Nanoparticles. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Ge X, Gao M, He B, Cao N, Li K, Liu Y, Tang S, Liu K, Zhang J, Hu F, Zheng L, Situ B. Rapid and high-throughput testing of antifungal susceptibility using an AIEgen-based analytical system. Biomaterials 2022; 287:121618. [PMID: 35691187 DOI: 10.1016/j.biomaterials.2022.121618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
Abstract
The increasing resistance among fungi to antimicrobials are posing global threats to health. Early treatment with appropriate antifungal drugs guided by the antifungal susceptibility testing (AFST) can dramatically reduce the mortality of severe fungal infections. However, the long test time (24-48 h) of the standard AFSTs cannot provide timely results due to the slow growth of the pathogen. Herein, we report a new AFST that is independent of growth rate analysis using a luminogen with aggregation-induced emission characteristics (AIEgen) named DMASP. DMASP is a water-soluble small-molecule probe that can readily penetrate the dense fungal cell wall. Based on its mitochondria-targeting ability and AIE characteristics, fungal activity can be dynamically indicated via real-time fluorescence monitoring. This allows fungal susceptibility to various antimicrobials to be assessed within 12 h in a wash-free, one-step manner. This method may serve as a promising tool to rapidly detect possible drug-resistant fungal strain and guide the precise use of antimicrobial against fungal diseases.
Collapse
Affiliation(s)
- Xiaoxue Ge
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Bairong He
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Nannan Cao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Kerun Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yong Liu
- Kingmed Virology Diagnostic & Translational Center, Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, 510330, China
| | - Sanmei Tang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jing Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fang Hu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
23
|
Sun Y, Yuan K, Mo X, Chen X, Deng Y, Liu C, Yuan Y, Nie J, Zhang Y. Tyndall-Effect-inspired assay with gold nanoparticles for the colorimetric discrimination and quantification of mercury ions and glutathione. Talanta 2022; 238:122999. [PMID: 34857332 DOI: 10.1016/j.talanta.2021.122999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022]
Abstract
This work initially reports a new nanosening method for simple, sensitive, specific, visual detection of mercury (II) (Hg2+) and glutathione (GSH) using the Tyndall Effect (TE) of the same colloidal gold nanoparticle (GNP) probes for efficient colorimetric signaling amplification. For the TE-inspired assay (TEA) method, arginine (Arg) molecules are pre-modified on the GNPs' surfaces (Arg-GNPs). Upon the Hg2+ introduction, it can be specifically coordinated with the terminal -NH2 and -COOH groups of the Arg molecules to make the Arg-GNPs aggregate, producing a significantly-enhanced TE signal in the reaction solution after its irradiation by a 635-nm red laser pointer pen. On the other hand, the introduction of the GSH results in the production of the original Arg-GNPs' weak TE response, as it is able to bind such metal ion via mercury-thiol reactions to inhibit the above aggregation. Under the optimal conditions, the utility of the new TEA method is well demonstrated to quantitatively detect the Hg2+ and GSH with the aid of a smartphone as a portable TE reader during the linear concentration ranges of 50-3000 and 10-3000 nM, respectively. The detection limits for the Hg2+ and GSH are estimated to be as low as ∼3.5 and ∼0.3 nM, respectively. The recovery results obtained from the detection of Hg2+ in the complex tap and pond water samples and the assay of GSH in real human serum and urine samples are also satisfactory.
Collapse
Affiliation(s)
- Yao Sun
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Kaijing Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Xiaomei Mo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Xuejiang Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Yanan Deng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Chang Liu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China.
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China.
| |
Collapse
|
24
|
Saqib M, Bashir S, Ali S, Hao R. Highly selective and sensitive detection of mercury (II) and dopamine based on the efficient electrochemiluminescence of Ru(bpy)32+ with acridine orange as a coreactant. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Yuan K, Sun Y, Liang F, Pan F, Hu M, Hua F, Yuan Y, Nie J, Zhang Y. Tyndall-effect-based colorimetric assay with colloidal silver nanoparticles for quantitative point-of-care detection of creatinine using a laser pointer pen and a smartphone. RSC Adv 2022; 12:23379-23386. [PMID: 36090387 PMCID: PMC9382227 DOI: 10.1039/d2ra03598g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, this paper initially reports a new colorimetric Tyndall effect-inspired assay (TEA) for simple, low-cost, sensitive, specific, and point-of-care detection of creatinine (an important small biomolecule) by making use of silver nanoparticles (AgNPs) as model colloidal nanoprobes for visual light scattering signaling. The naked-eye TEA method adopts negatively-charged citrate-capped AgNPs (Cit-AgNPs) prepared by sodium citrate reduction. In the presence of alkaline conditions, the creatinine analyte can form carbanion/oxoanion amino tautomers which in turn crosslink with carboxylate groups on the Cit-AgNPs via a hydrogen bonding network to mediate the aggregation of such colloidal nanoprobes showing a significantly-enhanced TE signal that was created and quantified by a hand-held laser pointer pen and a smartphone, respectively. The results demonstrate that the resulting equipment-free method with the TE readout could enable the portable quantification of creatinine with a detection limit of ∼55 nM, which was ∼90–2334 times lower than that obtained from AgNP-based colorimetric approaches with the most common localized surface plasma resonance signaling. Moreover, it shows a larger analytical sensitivity up to ∼580.8227 signal per nM, offering ∼2.4–232-fold improvement in comparison with many of the recent instrumental creatinine nanosensors. The accuracy and practicality of the developed nanosensing system was additionally confirmed with satisfactory recovery results ranging from ca. 98.52 to 100.36% when analyzing a set of real complex human urine samples. This work describes a new nanosensor for one-step ultrasensitive naked-eye detection of creatinine based on the target-triggered aggregation of silver nanoparticles showing dramatically enhanced Tyndall effect.![]()
Collapse
Affiliation(s)
- Kaijing Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, P. R. China
| | - Yao Sun
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, P. R. China
| | - Fenchun Liang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, P. R. China
| | - Fenglan Pan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, P. R. China
| | - Miao Hu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, P. R. China
| | - Fei Hua
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, P. R. China
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, P. R. China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, P. R. China
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, P. R. China
| |
Collapse
|
26
|
Tian X, Zuo M, Niu P, Velmurugan K, Wang K, Zhao Y, Wang L, Hu XY. Orthogonal Design of a Water-Soluble meso-Tetraphenylethene-Functionalized Pillar[5]arene with Aggregation-Induced Emission Property and Its Therapeutic Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37466-37474. [PMID: 34314153 DOI: 10.1021/acsami.1c07106] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An orthogonal strategy was utilized for synthesizing a novel water-soluble pillar[5]arene (m-TPEWP5) with tetraphenylethene-functionalized on the bridged methylene group (meso-position) of the pillararene skeleton. The obtained macrocycle exhibit both the aggregation-induced emission (AIE) effect and interesting host-guest property. Moreover, it can be made to bind with a tailor-made camptothecin-based prodrug guest (DNS-G) to form AIE-nanoparticles based on host-guest interaction and the fluorescence resonance energy transfer process for fabricating a drug delivery system. This novel type of water-soluble AIE-active macrocycle can serve as a potential fluorescent material for cancer diagnosis and therapy. In addition, the present orthogonal strategy for designing meso-functionalized aromatic macrocycles may pave a new avenue for creating novel supramolecular structures and functional materials.
Collapse
Affiliation(s)
- Xueqi Tian
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Pengbo Niu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yue Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Leyong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
27
|
Wang J, Liu AY, Wu BC, Wen QL, Pu ZF, Zhao RX, Ling J, Cao Q. Highly selective and rapid detection of silver ions by using a "turn on" non-fluorescent cysteine stabilized gold nanocluster probe. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2099-2106. [PMID: 33881062 DOI: 10.1039/d1ay00241d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cysteine is widely used as a stabilizer for the preparation of fluorescent gold nanoclusters (Au NCs) with different fluorescence properties. Herein, by using cysteine as a stabilizer and controlling the synthesis conditions, a new non-fluorescent cysteine stabilized gold nanocluster (Cys-Au NCs) probe was prepared and a new strategy for "turning on" the fluorescence of the Cys-Au NCs was studied for rapid and selective detection of silver ions. In this strategy, the addition of silver ions to non-fluorescent Cys-Au NCs solution could quickly induce a visible fluorescence "turn on" phenomenon in 30 s. Further studies indicated that this fluorescence "turn on" phenomenon is specific for silver ions and the "turn on" fluorescence intensity has a linear relationship with the amount of silver ions in the range from 3.0 to 30.0 μM. Therefore, the non-fluorescent Cys-Au NCs were applied to the detection of silver ions in environmental water samples and a limit of detection (LOD) of 0.26 μM was obtained. This research sheds light on new applications of Au NCs and proposes a simple, rapid, sensitive, and visual method for the detection of metal ions.
Collapse
Affiliation(s)
- Jun Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - An-Yong Liu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Bi-Chao Wu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Qiu-Lin Wen
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Zheng-Fen Pu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Rui-Xian Zhao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Jian Ling
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Qiue Cao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
28
|
Deng Z, Jin W, Yin Q, Huang J, Huang Z, Fu H, Yuan Y, Zou J, Nie J, Zhang Y. Ultrasensitive visual detection of Hg2+ ions via the Tyndall effect of gold nanoparticles. Chem Commun (Camb) 2021; 57:2613-2616. [DOI: 10.1039/d0cc08003a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work describes a new nanosensor for one-step ultrasensitive naked-eye detection of Hg2+ ions based on the target-triggered aggregation of gold nanoparticles showing a dramatically enhanced Tyndall effect.
Collapse
|
29
|
Chen X, Sun Y, Mo X, Gao Q, Deng Y, Hu M, Zou J, Nie J, Zhang Y. On-site, rapid and visual method for nanomolar Hg 2+ detection based on the thymine–Hg 2+–thymine triggered “double” aggregation of Au nanoparticles enhancing the Tyndall effect. RSC Adv 2021; 11:36859-36865. [PMID: 35494369 PMCID: PMC9043572 DOI: 10.1039/d1ra07211k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 01/07/2023] Open
Abstract
This work describes a new nanosensor for the simple, rapid, portable, colorimetric analysis of mercury(ii) (Hg2+) ions by combining the sensitive Tyndall effect (TE) of colloidal Au nanoparticles (AuNPs) with specific thymine–Hg2+–thymine (T–Hg2+–T) coordination chemistry for the first time. For the TE-inspired assay (TEA), in the presence of Hg2+ in a sample, the analyte can selectively mediate the hybridization of three types of flexible single-stranded DNAs (ssDNAs) to form stable rigid double-stranded DNAs (dsDNAs) via the T–Hg2+–T ligand interaction. Subsequent self-assembly of the dsDNAs with terminal thiol groups on the AuNPs' surfaces led to their “double” aggregation in addition to the lack of sufficient ssDNAs as the stabilizing molecules in a high-salt solution, resulting in a remarkably enhanced TE signal that positively relied on the Hg2+ level. The results demonstrated that such a TEA method enabled rapid naked-eye qualitative analysis of 625 nM Hg2+ within 10 min with an inexpensive laser pointer pen as an inexpensive handheld light source to generate the TE response. Making use of a smartphone for portable TE readout could further quantitatively detect the Hg2+ ions in a linear concentration range from 156 to 2500 nM with a limit of detection as low as 25 nM. Moreover, the developed equipment-free nanosensor was also used to analyze the Hg2+ ions in real samples including tap water, drinking water, and pond water, the obtained recoveries were within the range of 93.68 to 108.71%. To the best of our knowledge, this is the first report of using the AuNPs and functional nucleic acids to design a TE-based biosensor for the analysis of highly toxic heavy metal ions. A new equipment-free colorimetric nanosensor was initially developed for quantitative point-of-need detection of nanomolar Hg2+ ions based on the enhancement in Tyndall effect of Au nanoparticles via their target-triggered “double” aggregation.![]()
Collapse
Affiliation(s)
- Xuejiang Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Yao Sun
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Xiaomei Mo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Qian Gao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Yanan Deng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Miao Hu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Jianmei Zou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
30
|
Chen Y, Zhang L, Huang J, Deng Z, Yuan Y, Zou J, Nie J, Zhang Y. Enhanced functional DNA biosensor for distance-based read-by-eye quantification of various analytes based on starch-hydrolysis-adjusted wettability change in paper devices. RSC Adv 2020; 10:28121-28127. [PMID: 35519114 PMCID: PMC9055663 DOI: 10.1039/d0ra04619a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022] Open
Abstract
Low-cost, equipment-free and quantitative detection of a wide range of analytes of interest at home and in the field holds the potential to revolutionize disease diagnosis, environmental pollution monitoring, and food safety analysis. Herein, we describe a functional DNA biosensor for the first time that integrates analyte-directed assembly of enzyme-coated microbead probes for robust yet efficient signal amplification with a simple quantitative detection motif of distance measurement on portable paper devices based on starch-hydrolysis-adjusted wettability change of paper. Its utility is well demonstrated with highly sensitive and specific detection of model analytes ranging from adenosine (an important small biomolecule; 1.6 μM detection limit) to interferon-γ (a protein marker; 0.3 nM detection limit) and Pb2+ (a highly toxic metal ion; 0.5 nM detection limit) by simply using an inexpensive, ubiquitous ruler. The developed general method with the distance-measuring readout should be easily tailored for the portable, read-by-eye, quantitative detection of many other types of analytical targets by taking advantage of their specific functional DNA partners like aptamers and DNAzymes.
Collapse
Affiliation(s)
- Yijing Chen
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| | - Lang Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| | - Jinkun Huang
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| | - Zihao Deng
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| | - Yali Yuan
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| | - Jianmei Zou
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| | - Yun Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| |
Collapse
|
31
|
Saqib M, Bashir S, Kitte SA, Li H, Jin Y. Acridine orange as a coreactant for efficient electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium(ii) and its use in selective and sensitive detection of thiourea. Chem Commun (Camb) 2020; 56:5154-5157. [DOI: 10.1039/d0cc01273d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduced a novel coreactant for efficient anodic electrochemiluminescence of Ru(bpy)32+ and applied it for the sensitive detection of thiourea for the first time.
Collapse
Affiliation(s)
- Muhammad Saqib
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Shahida Bashir
- Faculty of Science
- Department of Mathematics
- University of Gujrat
- Gujrat 50700
- Pakistan
| | - Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|