1
|
Yang W, Zhang X, Zhang Y, Gao D, Puglia D, Xu P, Ma P. Preparation of Vitamin- g-Lignin Nanohybrids with Excellent Biological Activity and Fluorescence Performance. Biomacromolecules 2024; 25:4604-4614. [PMID: 38922332 DOI: 10.1021/acs.biomac.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
As a natural renewable biomacromolecule, lignin has some inherently interesting properties such as fluorescence, antioxidation, and antibacterial performance. However, the unsatisfactory fluorescence and biological activities have greatly limited their value-added and large-scale applications. In this work, lignin nanoparticles (LNPs) grafted with vitamin B1 hybrid nanoparticles (LEVs) were obtained by using ethylenediamine and different contents of vitamin B1 through a simple hydrothermal method. The chemical structure, fluorescence properties, and bioactivity were characterized to assess the effects of ethylenediamine and vitamin B1 on the properties of LEVs. It was found that the fluorescence performance of synthesized LEV particles was improved with the increase in the amount of vitamin B1. The free radical scavenging rate (RSA, %) increased to 97.8%, while the antibacterial rates reached up to 99.9%. The antibacterial activity of LEV involved multiple combined mechanisms. The introduction of imine, amide groups, and positively charged VB1 of LEV will make it easier to interact with the negatively charged bacterial phospholipid membranes and cause bacterial lysis and death. Then, the PVA/LEV hydrogel composites were prepared by the freezing-thawing method, and the results showed that PVA/LEV hydrogels had more comprehensive performance such as improved mechanical properties and antioxidant and antibacterial activities, resulting in its great potential to be used as an efficient biomedical material.
Collapse
Affiliation(s)
- Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xujing Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Ying Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Daqian Gao
- Department of Surgery, Yale School of Medicine of Yale University, New Haven 06520, United States
| | - Debora Puglia
- Civil and Environmental Engineering Department, Materials Engineering Center, Perugia University, UdR INSTM, Terni 05100, Italy
| | - Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Xia Q, Heo JW, Chen J, Oh DH, Kim MS, Kim JW, Song SH, Kim YS. Facile synthesis of iminated lignin for enhanced free radical and lead ion scavenging capabilities. Int J Biol Macromol 2024; 272:132734. [PMID: 38815950 DOI: 10.1016/j.ijbiomac.2024.132734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Kraft lignin (KL) holds significant potential as a renewable resource for the development of innovative materials that are currently not fully utilized. In this study, a novel iminated lignin (IL) was synthesized by grafting primary amine lignin (N-KL) onto salicylaldehyde. The effects of the dosage and reaction temperature on the nitrogen content of N-KL were evaluated. The maximum nitrogen content in N-KL reached to 3.32 %. Characterization by spectroscopy techniques (FT-IR, XPS, and NMR), elemental analysis, and gel permeation chromatography confirmed the imination of lignin. Additionally, the antioxidant activity of the lignin samples was investigated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability. Moreover, the DPPH radical scavenging capacity of IL-6 (IC50 = 38.6 ± 3.9 μg/mL) was close to that of commercial antioxidant butylated hydroxytoluene (BHT) (IC50 = 37.7 ± 4.5 μg/mL). Furthermore, the adsorption equilibrium results indicated that IL-6 had a maximum uptake of 115.6 mg/g Pb2+, which was 3.2-fold higher than that of KL. Kinetic adsorption experiments suggested that IL-6 adsorption follows a pseudo-second-order model. Therefore, the synthesized iminated lignin is a promising candidate for the development of environmentally friendly materials with applications as an antioxidant and lead-ion adsorbent.
Collapse
Affiliation(s)
- Qian Xia
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji Won Heo
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jiansong Chen
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 53711, Madison, USA
| | - Do Hun Oh
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Min Soo Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji Woo Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seong Ho Song
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong Sik Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
3
|
Li M, Zhang Y, Ma H, Peng Q, Min D, Zhang P, Jiang L. Improved antioxidant activity of pretreated lignin nanoparticles: Evaluation and self-assembly. Int J Biol Macromol 2024; 267:131472. [PMID: 38599437 DOI: 10.1016/j.ijbiomac.2024.131472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/21/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Lignin nanoparticles (LNPs) have gained significant attention for their potential as natural antioxidants. This study investigated the effect of various pretreatment methods on the lignin structure and subsequent antioxidant activity of LNPs. Among four pretreated LNPs, hydrothermal LNPs exhibited the highest antioxidant activity, surpassing unpretreated, acid-pretreated and kraft LNPs, with an impressive efficacy of 91.6%. The relationship between LNPs' structure and antioxidant activity was revealed by 2D heteronuclear singular quantum correlation (1H13C HSQC) and 31P nuclear magnetic resonance (NMR). 1H13C HSQC suggested the cleavage of β-O-4 ether bonds, as well as a decrease in ferulic acid and p-coumaric acid, which directly influenced the antioxidant activity of LNPs. 31P NMR demonstrated a positive correlation between the total hydroxyl group content and the antioxidant activity. Besides, an isothermal kinetic model for scavenging free radicals was established based on Langmuir kinetic model instead of Freundlich model. Moreover, multilayer LNPs, based on layer-by-layer self-assembly, were prepared and exhibited remarkable antioxidant activity of 95.8%. More importantly, when blended with pure cosmetic cream, the multilayer LNPs maintained antioxidant activity of 86.7%. These finding may promote the practical applications of biomolecules, e.g. lignin additives in cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Mingfu Li
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510316, China; Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou, Guangdong 510316, China
| | - Yingchuan Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | - Hongli Ma
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510316, China; College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Qida Peng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510316, China; College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Pingjun Zhang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510316, China; Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou, Guangdong 510316, China.
| | - Liqun Jiang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510316, China; Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou, Guangdong 510316, China.
| |
Collapse
|
4
|
Das AK, Mitra K, Conte AJ, Sarker A, Chowdhury A, Ragauskas AJ. Lignin - A green material for antibacterial application - A review. Int J Biol Macromol 2024; 261:129753. [PMID: 38286369 DOI: 10.1016/j.ijbiomac.2024.129753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Lignin's antibacterial properties have become increasingly relevant due to the rise of microbial infectious diseases and antibiotic resistance. Lignin is capable of interacting electrostatically with bacteria and contains polyphenols that cause damage to their cell walls. These features make lignin a desirable material to exhibit antibacterial behavior. Therefore, lignin in antibacterial applications offers a novel approach to address the growing need for sustainable and effective antibacterial materials. Recent research has explored the incorporation of lignin in various biomedical applications, such as wound dressings, implants, and drug delivery systems, highlighting their potential as a sustainable alternative to synthetic antibacterial agents. Furthermore, the development of lignin-based nanomaterials with enhanced antimicrobial activity is an active area of research that holds great promise for the future. In this review, we have provided a summary of how lignin can be incorporated into different forms, such as composite and non-composite synthesis of antibacterial agents and their performances. The challenges and future considerations are also discussed in this review article.
Collapse
Affiliation(s)
- Atanu Kumar Das
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, SE- 90183 Umeå, Sweden.
| | - Kangkana Mitra
- Faculty of Pharmacy, University Grenoble Alpes, Grenoble 38400, France.
| | - Austin J Conte
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN 37996, USA
| | - Asim Sarker
- Dhaka Medical College Hospital, Dhaka 1000, Bangladesh
| | - Aysha Chowdhury
- Laboratory of Biophysics and Evolution, CBI, ESPCI, University PSL, CNRS, Paris, France
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, The University of Tennessee Institution of Agriculture, 2506 Jacob Dr, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
5
|
Perveen S, Zhai R, Zhang Y, Kawish M, Shah MR, Chen S, Xu Z, Qiufeng D, Jin M. Boosting photo-induced antimicrobial activity of lignin nanoparticles with curcumin and zinc oxide. Int J Biol Macromol 2023; 253:127433. [PMID: 37838113 DOI: 10.1016/j.ijbiomac.2023.127433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Lignin nanoparticles have gained increasing attention as a potential antimicrobial agent due to their biocompatibility, biodegradability, and low toxicity. However, the limited ability of lignin to act as an antibacterial is a major barrier to its widespread use. Thus, it is crucial to develop novel approaches to amplify lignin's biological capabilities in order to promote its effective utilization. In this study, we modified lignin nanoparticles (LNPs) with photo-active curcumin (Cur), zinc oxide (ZnO), or a combination of both to enhance their antimicrobial properties. The successful modifications of LNPs were confirmed using comprehensive characterization techniques. The antimicrobial efficacy of the modified LNPs was assessed against both gram-positive and gram-negative bacterial strains. The results showed that the modification of LNPs with Cur and ZnO have much higher antibacterial and antibiofilm activities than unmodified LNPs. Moreover, photo illumination resulted in even higher antibacterial activity. Furthermore, atomic force microscopy revealed bacterial cells lysis and membrane damage by ZnO/Cur modified LNPs. Our research demonstrates that ZnO/Cur modified LNPs can serve as novel hybrid materials with enhanced antimicrobial capabilities. In addition, the photo-induced enhancement in antibacterial activity not only demonstrated the versatility of this hybrid material but also opened up interesting potential for bioinspired therapeutics agents.
Collapse
Affiliation(s)
- Samina Perveen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Muhammad Kawish
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Deng Qiufeng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
6
|
Sun SC, Sun SF, Xu Y, Wen JL, Yuan TQ. Green and sustainable production of high-purity lignin microparticles with well-preserved substructure and enhanced anti-UV/oxidant activity using peroxide-promoted alkaline deep eutectic solvent. Int J Biol Macromol 2023; 253:127057. [PMID: 37751817 DOI: 10.1016/j.ijbiomac.2023.127057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/26/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
Deep eutectic solvents (DESs) have emerged as promising and eco-friendly solvents for the efficient extraction of lignin from biomass due to their low cost and environmental benefits. Nevertheless, the prevalent use of acidic DESs in lignin extraction often results in excessive depolymerization and recondensation of lignin, thereby impeding its downstream applications. In this study, we developed a range of alkaline DESs (ADESs), both pure and peroxide-containing, for the extraction of high-quality lignin from bamboo. Moreover, carbon dioxide (CO2) was employed for the precipitation and regeneration of the extracted lignin. The obtained lignin fractions were comprehensively characterized in terms of yield, purity, morphology, solubility, structural features, and anti-UV/oxidant activity. The results showed that the monoethanolamine-based ADES demonstrated superior performance among the pure ADESs. Structural analysis confirmed the well-preserved substructures of lignin fractions obtained using ADESs, with β-O-4 bond retention ranging from 49.8 % to 68.4 %. The incorporation of a suitable amount of peroxide improved lignin yield, morphology, solubility, and anti-UV/oxidant activity. Additionally, the anti-UV/oxidant activity of lignin exhibited a positive correlation with its phenolic hydroxyl content. This study provides a valuable reference for the green and sustainable production and valorization of lignin within the existing biorefinery framework.
Collapse
Affiliation(s)
- Shao-Chao Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Fei Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian 116034, China
| | - Ying Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Zhu Z, Yang C, Keyhani NO, Liu S, Pu H, Jia P, Wu D, Stevenson PC, Fernández-Grandon GM, Pan J, Chen Y, Guan X, Qiu J. Characterization of Terpenoids from the Ambrosia Beetle Symbiont and Laurel Wilt Pathogen Harringtonia lauricola. J Fungi (Basel) 2023; 9:1175. [PMID: 38132776 PMCID: PMC10744799 DOI: 10.3390/jof9121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1-6) and three hopane triterpenes (7-9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts for the first time. All compounds were tested for various in vitro bioactivities. Six compounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54-26.06 μM. Antimicrobial activity bioassays revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 μg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 μg/mL. Compounds 4, 5, and 9 also displayed free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2-), with IC50 values of compounds 2, 4, and 6 ~3.45-14.04 μg/mL and 22.87-53.31 μg/mL towards DPPH and O2-, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids from this group of fungal insect symbionts and plant pathogens.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Chenjie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA;
| | - Sen Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Huili Pu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Peisong Jia
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China;
| | - Philip C. Stevenson
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (P.C.S.); (G.M.F.-G.)
| | | | - Jieming Pan
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China;
| | - Yuxi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junzhi Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| |
Collapse
|
8
|
Ge H, Liu Y, Liu F. Up to Date Review of Nature-Inspired Superhydrophobic Textiles: Fabrication and Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7015. [PMID: 37959613 PMCID: PMC10649416 DOI: 10.3390/ma16217015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
In recent years, with the rapid development of the economy and great progress in science and technology, people have become increasingly concerned about their quality of life and physical health. In order to pursue a higher life, various functional and biomimetic textiles have emerged one after another and have been sought after by people. There are many animal and plant surfaces with special wettability in nature, and their unique "micro-nano structures" and low surface energy have attracted extensive attention from researchers. Researchers have prepared various textiles with superhydrophobic features by mimicking these unique structures. This review introduces the typical organisms with superhydrophobicity in nature, using lotus, water strider, and cicada as examples, and describes their morphological features and excellent superhydrophobicity. The theoretical model, commonly used raw materials, and modification technology of superhydrophobic surfaces are analyzed. In addition, the application areas and the current study status of superhydrophobic surfaces for textiles are also summarized. Finally, the development prospects for superhydrophobic textiles based on bionic technology are discussed.
Collapse
Affiliation(s)
| | - Yu Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| | - Fujuan Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| |
Collapse
|
9
|
Almutairi T, Al-Rasheed HH, Alaqil ZM, Hajri AK, Elsayed NH. Green Synthesis of Magnetic Supramolecules β-Cyclodextrin/Iron Oxide Nanoparticles for Photocatalytic and Antibacterial Applications. ACS OMEGA 2023; 8:32067-32077. [PMID: 37692231 PMCID: PMC10483690 DOI: 10.1021/acsomega.3c04117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Iron oxide nanoparticles (Fe3O4NPs) are a fascinating field of study due to their wide range of practical applications in environmental and medical contexts. This study presents a straightforward, environmentally friendly method for producing Fe3O4NPs utilizing β-cyclodextrin (β-CD) as a reducing and capping agent. This approach results in the rapid and effective eco-friendly synthesis of β-CD/Fe3O4NPs. The properties and characteristics of β-CD/Fe3O4NPs were investigated using various methods, including ultraviolet-visible (UV/vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetry analysis (TGA), and vibrating-sample magnetometry (VSM). The absorption of β-CD/Fe3O4NPs caused a distinct peak at 349 nm, as evidenced by the results of UV/vis studies. This peak was attributed to the absorption of surface plasmon resonance. The crystalline nature of β-CD/Fe3O4NPs was confirmed through XRD analysis. The SEM and TEM analyses have verified the geometry and structural characteristics of β-CD/Fe3O4NPs. The β-CD/Fe3O4NPs exhibited remarkable effectiveness in the decomposing efficiency (%) of methylene blue (MB) dye with 52.2, 94.1, and 100% for 0.2, 0.4, and 0.6 g β-CD/Fe3O4NPs, respectively. In addition, the highest efficiency in hunting radicals was observed (347.2 ± 8.2 mg/g) at 100 mg/mL β-CD/Fe3O4NPs; the combination of β-CD/Fe3O4NPs exhibited remarkable effectiveness in inhibiting the growth of some bacteria that cause infections. The capabilities of β-CD/Fe3O4NPs for various applications showed that these materials could be used in photocatalytic, antioxidants, and antibacterial. Additionally, the eco-friendly synthesis of these materials makes them a promising option for the remediation of harmful pollutants and microbes.
Collapse
Affiliation(s)
- Tahani
M. Almutairi
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hessa H. Al-Rasheed
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Zainab M. Alaqil
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Amira K. Hajri
- Department
of Chemistry, Alwajh College, University
of Tabuk, Tabuk 47512, Saudi Arabia
| | - Nadia H. Elsayed
- Department
of Polymers and Pigments, National Research
Centre, Dokki, Cairo 12311, Egypt
| |
Collapse
|
10
|
He X, Chen X, Yang Y, Liu Y, Xie Y. Acorus calamus var. angustatus Besser: Insight into current research on ethnopharmacological use, phytochemistry, pharmacology, toxicology, and pharmacokinetics. PHYTOCHEMISTRY 2023; 210:113626. [PMID: 36871902 DOI: 10.1016/j.phytochem.2023.113626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 05/09/2023]
Abstract
A. calamus var. angustatus Besser is an important traditional medicinal herb commonly used in China and other Asian countries. This study is the first systematic review of the literature to thoroughly analyze the ethnopharmacological application, phytochemistry, pharmacology, toxicology and pharmacokinetic properties of A. calamus var. angustatus Besser and provides a rationale for future research and prospects for application in clinical treatment. Information on relevant studies investigating A. calamus var. angustatus Besser was collected from SciFinder, the Web of Science, PubMed, CNKI, Elsevier, ResearchGate, ACS, Flora of China, and Baidu Scholar, etc. up to December 2022. In addition, information was also obtained from Pharmacopeias, books on Chinese herbal classics, local books, as well as PhD and MS dissertations. A. calamus var. angustatus Besser has played an important role in the herbal treatment of coma, convulsion, amnesia, and dementia for thousands of years. Studies investigating the chemical constituents of A. calamus var. angustatus Besser have isolated and identified 234 small-molecule compounds and a few polysaccharides. Among them, simple phenylpropanoids represented by asarone analogues and lignans are the two main active ingredients, which can be considered characteristic chemotaxonomic markers of this herb. In vitro and in vivo pharmacological studies indicated that crude extracts and active compounds from A. calamus var. angustatus Besser display a wide range of pharmacological activities, especially as treatment for Alzheimer's disease (AD), and anticonvulsant, antidepressant-like, anxiolytic-like, anti-fatigue, anti-Parkinson, neuroprotection, and brain protection properties, providing more evidence to explain the traditional medicinal uses and ethnopharmacology. The clinical therapeutic dose of A. calamus var. angustatus Besser does not present any toxic effects, but its main active ingredients α-asarone and β-asarone at excessive dose may lead to toxicity, and in particular, their respective epoxide metabolites may exert potential toxicity to the liver. This review provides a reference and further information for the future development and clinical application of A. calamus var. angustatus Besser.
Collapse
Affiliation(s)
- Xirui He
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China.
| | - Xufei Chen
- Department of Anesthesiology, The General Hospital of the Western Theater Command, Chengdu, China
| | - Yan Yang
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yujie Liu
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yulu Xie
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
11
|
Wang D, Liu L, Shen R, Chen Y, Diao M, Yao J. Fascinating polyphenol lignin extracted from sawdust via a green and recyclable solvent route. Int J Biol Macromol 2023; 234:123780. [PMID: 36822281 DOI: 10.1016/j.ijbiomac.2023.123780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Due to the complexity, heterogeneity and recalcitrant structure of lignin, the extraction of multifunctional lignin directly from lignocellulose is still a challenge. Here, a green and recyclable route was proposed to separate high-quality lignin and tailor its functionalities. Through tuning the components of deep eutectic solvent (DES) and separation procedures, DES extracted lignin (DESL) exhibited high purity of 99.6 %, yield of 83.2 % and phenolic hydroxyl content of 8.33 wt%. The results of FTIR and 13C NMR demonstrated that DESL possessed more oxygen-containing reactive groups compared with commercial lignin (CL), enabling DESL with more superior functional activities. DESL exhibited higher antioxidant activity with the DPPH capture rate of 73.2 %. Meanwhile, DESL showed strong bactericidal effects against E. coli (100 %) and S. aureus (100 %) due to higher phenolic hydroxyl content, which could destroy bacterial cell membranes and inhibit bacterial metabolism by interacting with phospholipid layer and protein. Additionally, DESL displayed strong UV absorption and could be blended with polyurethane to enhance UV shielding property of polyurethane composite film with >50 of UPF value. In summary, DES treatment is a suitable strategy for high-quality lignin separation, which opens a broad spectrum of possibilities for lignin valorization.
Collapse
Affiliation(s)
- Dengfeng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lin Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China.
| | - Rongsheng Shen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangliu Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengyuan Diao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Juming Yao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China.
| |
Collapse
|
12
|
Zhang X, Ji G, Gao M, Huang J, Li T, Wang Y, Wang S, Dong W. Designing Strong, Tough, Fluorescent, and UV-Shielding PLA Materials by Incorporating a Phenolic Compound-Based Multifunctional Modifier. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17268-17278. [PMID: 36961886 DOI: 10.1021/acsami.3c01293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The realization of high stiffness, high extensibility, and multi-functions for polylactic acid (PLA) is a vital issue for its practical applications. Herein, hydroxyalkylated tannin acid (mTA), a phenolic compound-based modifier with plentiful flat aromatic structures and flexible isopropanol oligomers, is designed and fabricated to act as the multifunctional modifier for PLA. The mTA exhibits the capability of emitting fluorescence and blocking UV light due to the combination of flat aromatic structures and plentiful flexible chains. Besides, mTA with high grafting degree (h-mTA) shows an excellent compatibility to PLA due to the hydrogen bonding interface and the high affinity of grafted isopropanol oligomers to PLA. As a result, the as-prepared PLA/h-mTA20 composite exhibits a strikingly improved extensibility by 61.2 times while maintaining the high yield strength of PLA. Moreover, PLA/h-mTA can serve as a fluorescent material with multi-mode responsiveness as well as a UV-shielding material with high transparency. We envision that this work opens a novel yet facile way to prepare a strong, tough, and multifunctional PLA material with expanded application scopes and will promote the practical applications of phenolic compounds in polymers.
Collapse
Affiliation(s)
- Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guangyao Ji
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mengying Gao
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
13
|
Qiu J, Yuan S, Xiao H, Liu J, Shen T, Tan Z, Zhuang W, Ying H, Li M, Zhu C. Study on lignin amination for lignin/SiO 2 nano-hybrids towards sustainable natural rubber composites. Int J Biol Macromol 2023; 233:123547. [PMID: 36740123 DOI: 10.1016/j.ijbiomac.2023.123547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Lignin-based hybrid fillers are of increasing importance with regards to the valorization of low-value biomass and the requirement of sustainability in rubber industry, however, a facile lignin modification approach tuning the supramolecular interactions to favor the assembly of the hybrids is in demand. This study aimed to design a lignin/SiO2 nano-hybrid via an in-situ assembly of diethylamine grafted lignin (DL) and SiO2, and investigate its reinforcing effect on natural rubber (NR). DL was prepared through Mannich modification of lignin, and the grafted diethylamine can be clearly identified by FTIR, NMR and elemental analysis. The resultant hybrid (DLSi) displays as homogeneous nanospheres with well integrated DL and SiO2 components as shown in the TEM images, and the hybrid (DLSi1) prepared with weight ratio of DL/SiO2 = 1/2 shows a minimum particle size of 101.8 nm and significantly reduced polarity. Compared to the reference composite filled only with carbon black (CB), NR composites filled with DLSi/CB of 10/40 phr shows comparable mechanical properties and reduced rolling resistance, which is due to the low particle size, homogenous dispersion and strong rubber-filler interfacial affinity. Such remarkable performance suggests that the DLSi hybrid can be a promising versatile biobased filler for the application in gasoline-saving "green" tires.
Collapse
Affiliation(s)
- Jiabao Qiu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Shuai Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Honggang Xiao
- National Engineering Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jinfu Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Tao Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; National Engineering Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Zhuotao Tan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; National Engineering Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; National Engineering Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; National Engineering Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Ming Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; National Engineering Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China.
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; National Engineering Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
14
|
Du B, Li W, Zhu H, Xu J, Wang Q, Shou X, Wang X, Zhou J. A functional lignin for heavy metal ions adsorption and wound care dressing. Int J Biol Macromol 2023; 239:124268. [PMID: 37003375 DOI: 10.1016/j.ijbiomac.2023.124268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Recently, the application of lignin activation by demethylation to improve reactivity and enrich multiple functions has intensively attracted attention. However, it is still challenge up to now due to the low reactivity and complexity of lignin structure. Here, an effective demethylation way was explored by microwave-assisted method for substantially enhancing the hydroxyl (-OH) content and retaining the structure of lignin. Then, the optimum demethylated lignin was used to removal heavy metal ions and promote wound healing, respectively. In detail, for microwave-assisted demethylated poplar lignin (M-DPOL), the contents of phenolic (Ar-OH) and total hydroxyl (Tot-OH) groups reached the maximum for 60 min at 90 °C in DMF with 7.38 and 9.13 mmol/g, respectively. After demethylation, with this M-DPOL as lignin-based adsorbent, the maximum adsorption capacity (Qmax) for Pb2+ ions reached 104.16 mg/g. Based on the isotherm, kinetic and thermodynamic models analyses, the chemisorption occurred in monolayer on the surface of M-DPOL, and all adsorption processes were endothermic and spontaneous. Meanwhile, M-DPOL as a wound dressing had excellent antioxidant property, outstanding bactericidal activity and remarkable biocompatibility, suggesting that it did not interfere with cell proliferation. Besides, the wounded rats treated with M-DPOL significantly promoted its formation of re-epithelialization and wound healing of full-thickness skin defects. Overall, microwave-assisted method of demethylated lignin can offer great advantages for heavy metal ions removal and wound care dressing, which facilitates high value application of lignin.
Collapse
Affiliation(s)
- Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Wanjing Li
- Department of Cardiology, Shaanxi Province People's Hospital and The Third Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710018, China
| | - Hongwei Zhu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jingyu Xu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qingyu Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Xiling Shou
- Department of Cardiology, Shaanxi Province People's Hospital and The Third Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710018, China.
| | - Xing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
15
|
Ivanova D, Toneva M, Simeonov E, Nikolova B, Semkova S, Antov G, Yaneva Z. Newly Synthesized Lignin Microparticles as Bioinspired Oral Drug-Delivery Vehicles: Flavonoid-Carrier Potential and In Vitro Radical-Scavenging Activity. Pharmaceutics 2023; 15:pharmaceutics15041067. [PMID: 37111553 PMCID: PMC10142347 DOI: 10.3390/pharmaceutics15041067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023] Open
Abstract
The aim of the present study was to synthesize lignin microparticles, to evaluate their physicochemical, spectral, morphological and structural characteristics, to examine their encapsulation and in vitro release potential and behaviour towards the flavonoid morin in simulated physiological medium and to assess the in vitro radical-scavenging potential of the morin-loaded lignin microcarrier systems. The physicochemical, structural and morphological characteristics of alkali lignin, lignin particles (LP) and morin-encapsulated lignin microparticles (LMP) were determined based on particle size distribution, SEM, UV/Vis spectrophotometric, FTIR and potentiometric titration analyses. The encapsulation efficiency of LMP was 98.1%. The FTIR analyses proved that morin was successfully encapsulated in the LP without unexpected chemical reactions between the flavonoid and the heteropolymer. The in vitro release performance of the microcarrier system was successfully mathematically described by Korsmeyer–Peppas and the sigmoidal models outlining the general role of diffusion during the initial stages of the in vitro release process in simulated gastric fluid (SGF), and the predominant contribution of biopolymer relaxation and erosion was determined in simulated intestinal medium (SIF). The higher radical-scavenging potential of LMP, as compared to that of LP, was proven via DPPH and ABTS assays. The synthesis of lignin microcarriers not only provides a facile approach for the utilization of the heteropolymer but also determines its potential for the design of drug-delivery matrices.
Collapse
|
16
|
Wang C, Feng X, Shang S, Liu H, Song Z, Zhang H. Lignin/sodium alginate hydrogel for efficient removal of methylene blue. Int J Biol Macromol 2023; 237:124200. [PMID: 36972829 DOI: 10.1016/j.ijbiomac.2023.124200] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
In this work, a class of bio-based hydrogels (LN-NH-SA hydrogel) were prepared from aminated lignin and sodium alginate. The physical and chemical properties of the LN-NH-SA hydrogel were fully characterized using field emission scanning electron microscopy, thermogravimetric analysis, fourier transform infrared spectroscopy, N2 adsorption-desorption isotherms, and other techniques. LN-NH-SA hydrogels were tested for the adsorption of dyes (methyl orange and methylene blue). The LN-NH-SA@3 hydrogel showed better adsorption efficiency for MB with a maximum adsorption capacity of 388.81 mg·g-1, a bio-based adsorbent with a high adsorption capacity. The adsorption process followed the pseudo-second-order model and fitted to the Freundlich isotherm equation. More importantly, LN-NH-SA@3 hydrogel maintained 87.64 % adsorption efficiency after 5 cycles. Overall, the proposed hydrogel with environmentally friendly and low cost is promising for the absorption of dye contamination.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Xuezhen Feng
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - He Liu
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China.
| |
Collapse
|
17
|
Dong Y, Li Y, Fan B, Peng W, Qian W, Ji X, Gan D, Liu P. Long-term antibacterial, antioxidative, and bioadhesive hydrogel wound dressing for infected wound healing applications. Biomater Sci 2023; 11:2080-2090. [PMID: 36723067 DOI: 10.1039/d2bm01981g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bacterial infection and oxidative stress hinder clinical wound healing. Therefore, wound dressings with antibacterial and antioxidative properties are urgently needed. In this study, a type of quaternized lignin (QL) functionalized poly(hexamethylene biguanide) hydrochloride (PHMB) complex incorporated polyacrylamide (QL-PHMB-PAM) hydrogel was developed as a multifunctional dressing material for the promotion of infected wound repair. Owing to the abundant catechol groups of quaternized lignin, the QL-PHMB-PAM hydrogel exhibited robust repeatable adhesiveness to various substrates with antioxidative properties. Additionally, the antibacterial components of PHMB in the QL-PHMB-PAM composite hydrogel showed high efficiency and long-term antibacterial activity against Staphylococcus aureus (S.aureus), Escherichia coli (E.coli), and methicillin-resistant S. aureus (MRSA; up to 100%). Furthermore, in vivo experiments indicated that this multifunctional hydrogel accelerated the healing of S. aureus-infected wounds by promoting the reconstruction of blood vessels and hair follicles. These results demonstrate that this antioxidative, antibacterial, and bioadhesive hydrogel is a promising alternative wound dressing material for the prevention of bacterial infections and the acceleration of infected wound regeneration.
Collapse
Affiliation(s)
- Yaning Dong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Youxin Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Birong Fan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Wan Peng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Weijian Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Xiaoxue Ji
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Pingsheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| |
Collapse
|
18
|
Heo JW, Chen J, Kim MS, Kim JW, Zhang Z, Jeong H, Kim YS. Eco-friendly and facile preparation of chitosan-based biofilms of novel acetoacetylated lignin for antioxidant and UV-shielding properties. Int J Biol Macromol 2023; 225:1384-1393. [PMID: 36435473 DOI: 10.1016/j.ijbiomac.2022.11.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
The development of eco-friendly, sustainable, biodegradable, and biocompatible green biopolymer composites is becoming increasingly important. In this study, acetoacetylated lignin (ATL) was obtained via an eco-friendly, facile one-step synthesis reaction, and chitosan (CS)-containing ATL films (CSL) were prepared. The chemical structural analysis of ATL confirmed that the acetoacetyl groups were successfully grafted onto kraft lignin (KL). ATL with adequate acetoacetyl groups exhibited enhanced molecular weight and antioxidant and ultraviolet (UV)-shielding properties. In particular, ATL, with a half maximal inhibitory concentration (IC50) of 23.8 μg·mL-1, exhibited superior antioxidant activity than butylated hydroxytoluene (38.3 μg·mL-1) and KL (50.0 μg·mL-1). When ATL was incorporated into the CS solution to prepare biofilms, the antioxidant activity, UV-shielding property, water resistance, and thermal stability of the CSL greatly improved. Notably, the UV-A and UV-B shielding properties of the 2 % CSL were 130 % and 78 % higher than those of the pure CS film, respectively. Therefore, ATL designed with lignin-derived multifunctional properties has potential applications as an antioxidant and UV-shielding bio-additive and shows significant prospects in food packaging and biomedical applications.
Collapse
Affiliation(s)
- Ji Won Heo
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jiansong Chen
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Min Soo Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji Woo Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Zhili Zhang
- Changgang Institute of Paper Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hanseob Jeong
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Yong Sik Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
19
|
Xing R, Song Y, Gao T, Cai X, Yao J, Liu Q, Zhang C. High capacity and fast removal of Cr(vi) by alkali lignin-based poly(tetraethylene pentamine-pyrogallol) sorbent. RSC Adv 2023; 13:1627-1639. [PMID: 36688065 PMCID: PMC9827104 DOI: 10.1039/d2ra07143f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
In this work, a novel alkali lignin-based adsorption material, alkali lignin-based poly(tetraethylene pentamine-pyrogallol) (AL-PTAP), was prepared using a Mannich reaction and catechol-amine reaction for removal of Cr(vi). It was characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The effects of tetraethylene pentamine (TEPA) dosage, pyrogallol (PL) dosage, contact time, pH, temperature and other factors on the adsorption behavior of the adsorbent were systematically investigated. These experimental data show that the adsorption behavior conforms to the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity is 769.2 mg g-1 at 303 K, which is much higher than that of alkali lignin (AL). AL-PTAP can achieve a removal rate of almost 100% for Cr(vi) solutions with a concentration of less than 90 mg L-1 at 1 min. Furthermore, the toxic Cr(vi) is partly reduced to nontoxic Cr(iii) during the adsorption process. Therefore, AL-PTAP is a fast and efficient alkali lignin-based adsorbent, which is expected to improve the utilization value of alkali lignin in Cr(vi) wastewater treatment.
Collapse
Affiliation(s)
- Rufei Xing
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) #3501 Daxue Road, Western University Science Park Jinan 250353 Shandong Province P. R. China +86 13806410075
| | - Yanxin Song
- School of Chemical Engineering & Pharmacy, Jining Technician College #3166 Chongwen Road Jining 272100 Shandong Province P. R. China +86 15668106398
| | - Tingting Gao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Xiaoxia Cai
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) #3501 Daxue Road, Western University Science Park Jinan 250353 Shandong Province P. R. China +86 13806410075
| | - Jinshui Yao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) #3501 Daxue Road, Western University Science Park Jinan 250353 Shandong Province P. R. China +86 13806410075
| | - Qinze Liu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) #3501 Daxue Road, Western University Science Park Jinan 250353 Shandong Province P. R. China +86 13806410075
| | - Changbin Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Science Beijing 100085 P. R. China
| |
Collapse
|
20
|
Maruthapandi M, Gupta A, Saravanan A, Jacobi G, Banin E, Luong JHT, Gedanken A. Ultrasonic-assisted synthesis of lignin-capped Cu 2O nanocomposite with antibiofilm properties. ULTRASONICS SONOCHEMISTRY 2023; 92:106241. [PMID: 36470127 PMCID: PMC9722477 DOI: 10.1016/j.ultsonch.2022.106241] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Under ultrasonication, cuprous oxide (Cu2O) microparticles (<5 µm) were fragmented into nanoparticles (NPs, ranging from 10 to 30 nm in diameter), and interacted strongly with alkali lignin (Mw = 10 kDa) to form a nanocomposite. The ultrasonic wave generates strong binding interaction between lignin and Cu2O. The L-Cu nanocomposite exhibited synergistic effects with enhanced antibiofilm activities against E. coli, multidrug-resistant (MDR) E. coli, S. aureus (SA), methicillin-resistant SA, and P. aeruginosa (PA). The lignin-Cu2O (L-Cu) nanocomposite also imparted notable eradication of such bacterial biofilms. Experimental evidence unraveled the destruction of bacterial cell walls by L-Cu, which interacted strongly with the bacterial membrane. After exposure to L-Cu, the bacterial cells lost the integrated structural morphology. The estimated MIC for biofilm inhibition for the five tested pathogens was 1 mg/mL L-Cu (92 % lignin and 8 % Cu2ONPs, w/w %). The MIC for bacterial eradication was noticeably lower; 0.3 mg/mL (87 % lignin + 13 % Cu2ONPs, w/w %) for PA and SA, whereas this value was appreciably higher for MDR E. coli (0.56 mg/mL, 86 % lignin and 14 % Cu2O NPs). Such results highlighted the potential of L-Cu as an alternative to neutralize MDR pathogens.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Akanksha Gupta
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Arumugam Saravanan
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Gila Jacobi
- The Mina and Everard Goodman Faculty of Life Sciences, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - John H T Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
21
|
Zhang Y, Yang D, Qiu X, Li Z. UV-Assisted Room-Temperature Fabrication of Lignin-Based Nanosilver Complexes for Photothermal-Mediated Sterilization. ACS APPLIED BIO MATERIALS 2022; 5:5943-5952. [PMID: 36433898 DOI: 10.1021/acsabm.2c00882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Green and controllable preparation of silver nanoparticles (AgNPs) remains a great challenge. In this work, ethanol-extracted lignin-based nanosilver composites (AgNPs@EL) were synthesized at room temperature with the assistance of ultraviolet (UV) radiation. The ethanol-extracted lignin (EL) could serve as natural dispersion carriers and reducing agents for AgNPs. The reducing ability of EL could be further improved under UV irradiation, which enables the rapid synthesis of AgNPs at room temperature. More importantly, due to the good photothermal conversion capacity of EL, AgNPs@EL exhibits remarkably enhanced photothermal performance and excellent photothermal antibacterial ability, which could cause 7.2 and 5.3 log10 CFU/mL reduction against Escherichia coli and Staphylococcus aureus, respectively, under near-infrared (NIR) irradiation (808 nm, 1.8 W/cm2) for 5 min. Furthermore, the composite film obtained by impregnating bacterial cellulose onto AgNPs@EL solution also shows significantly improved mechanical properties and photothermal antimicrobial activity. Therefore, this work may provide insights into the design of lignin-based photothermal-mediated antimicrobial materials.
Collapse
Affiliation(s)
- Yingchun Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Zhixian Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| |
Collapse
|
22
|
Chen C, Zheng N, Wu W, Tang M, Feng W, Zhang W, Li X, Jiang Y, Pang J, Min D, Fu L. Self-Adhesive and Conductive Dual-Network Polyacrylamide Hydrogels Reinforced by Aminated Lignin, Dopamine, and Biomass Carbon Aerogel for Ultrasensitive Pressure Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54127-54140. [PMID: 36413754 DOI: 10.1021/acsami.2c12914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conductive hydrogels have attracted extensive interest owing to its potential in soft robotics, electronic skin, and human monitoring. However, insufficient mechanical properties, lower adhesivity, and unsatisfactory conductivity seriously hinder potential applications in this emerging field. Herein, a highly elastic conductive hydrogel with a combination of favorable mechanical properties, self-adhesiveness, and excellent electrical performance was achieved by the synergistic effect of aminated lignin (AL), polydopamine (PDA), polyacrylamide (PAM) chains, and biomass carbon aerogel (C-SPF). In detail, AL was applied to induce slow oxidative polymerization of DA for preparing the sticky hydrogel containing PDA. Then, C-SPF carbon aerogel was used as a matrix to construct a dual-network structured composite hydrogel by combining with the hydrogels derived from PDA, AL, and PAM. The as-prepared conductive hydrogel displayed excellent mechanical performance, strong adhesive strength, and repeatable adhesivity. The prepared hydrogel-based pressure sensor possessed fast response (0.6 s loading and 0.8 s unloading stress time), high response (maximum RCR = 1.8 × 104), wide working pressure range (from 0 to 240.0 kPa), and excellent durability (stable 500 compression cycles with 30% deformation). In addition, the prepared sensor also displayed ultrahigh sensitivity (170 kPa-1), which was near 4 orders of magnitude higher than the conventional lignin-modified PAM hydrogels. The multiple interactions between hydrogel components and the mechanical properties of hydrogel were also verified by molecular dynamics investigation. Moreover, the excellent cytocompatibility and antibacterial activity of this composite hydrogel ensured high potential in various applications such as human/machine interaction, artificial intelligence, personal healthcare, and wearable devices.
Collapse
Affiliation(s)
- Changzhou Chen
- College of Light Industry and Food Engineering, Guangxi University, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning530004, China
| | - Na Zheng
- College of Light Industry and Food Engineering, Guangxi University, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning530004, China
| | - Weixin Wu
- College of Light Industry and Food Engineering, Guangxi University, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning530004, China
| | - Mengqi Tang
- College of Light Industry and Food Engineering, Guangxi University, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning530004, China
| | - Wenyao Feng
- College of Light Industry and Food Engineering, Guangxi University, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning530004, China
| | - Wei Zhang
- College of Light Industry and Food Engineering, Guangxi University, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning530004, China
| | - Xiangyu Li
- College of Light Industry and Food Engineering, Guangxi University, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning530004, China
| | - Yan Jiang
- College of Light Industry and Food Engineering, Guangxi University, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning530004, China
| | - Jinhui Pang
- State Key Laboratory Base of Eco-chemical Engineering, Qingdao University of Science & Technology, Qingdao266042, China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi University, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning530004, China
| | - Lianhua Fu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
23
|
Wei L, Li J, Yang Y, Zhu M, Zhao M, Yang J, Yang Z, Zhou L, Zhou S, Gong J, Jiang X, Liu J, Li Y, Zhang J. Characterization and potential bioactivity of polyphenols of Rosa rugosa. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Kim B, Kim Y, Lee Y, Oh J, Jung Y, Koh WG, Chung JJ. Reactive Oxygen Species Suppressive Kraft Lignin-Gelatin Antioxidant Hydrogels for Chronic Wound Repair. Macromol Biosci 2022; 22:e2200234. [PMID: 36067493 DOI: 10.1002/mabi.202200234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/05/2022] [Indexed: 12/25/2022]
Abstract
Chronic wound is difficult to repair because the normal wound healing mechanism is inhibited by the continuous inflammatory response. The delayed inflammatory responses generate high level of reactive oxygen species (ROS) at the wound sites, which leads to a longer inflammatory phase and induces a vicious cycle that interferes with the normal wound healing process. Therefore, ROS scavenging is an important factor for chronic wound healing. In this study, antioxidant hydrogel is developed by cross-linking kraft lignin, an antioxidant agent, and gelatin (Klig-Gel). Klig-Gel hydrogel is fabricated via ring opening reaction with epichlorohydrin as a cross-linker. High ROS scavenging activities are confirmed by various antioxidant evaluations, and in vitro natural antioxidant expression tests show reduction of oxidative stress. Mechanical properties of Klig-Gel hydrogel are tailorable by introducing different amount of kraft lignin to the hydrogel system. Biocompatibility is confirmed regardless of the kraft lignin content. Klig-Gel hydrogel is a promising ROS scavenging material that can be applied in various chronic wound healing applications.
Collapse
Affiliation(s)
- Byulhana Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonho Lee
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Joomin Oh
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.,School of Electrical and Electronic Engineering, YU-KIST, Yonsei University, Seoul, 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Justin J Chung
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| |
Collapse
|
25
|
Komisarz K, Majka TM, Kurczab M, Pielichowski K. Synthesis and Characterization of Thermally Stable Lignosulfonamides. Molecules 2022; 27:7231. [PMID: 36364069 PMCID: PMC9659201 DOI: 10.3390/molecules27217231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2023] Open
Abstract
Lignin, a highly aromatic macromolecule building plant cells, and cellulose are two of the most commonly occurring natural polymers. Lignosulfonate is a grade of technical lignin, obtained as a by-product in the paper and wood pulping industries, a result of the used lignin isolation method, i.e., sulfite process. In this work, sodium lignosulfonate is used as a starting material to manufacture sulfonamide derivatives of lignin in a two-step modification procedure. Since this direction of the lignin modification is rather rarely investigated and discussed, it makes a good starting point to expand the state of knowledge and explore the properties of lignosulfonamides. Materials obtained after modification underwent characterization by FTIR, SS-NMR, WAXD, SEM, and TGA. Spectroscopic measurements confirmed the incorporation of dihexylamine into the lignin structure and the formation of lignosulfonamide. The crystalline structure of the material was not affected by the modification procedure, as evidenced by the WAXD, with only minute morphological changes of the surface visible on the SEM imaging. The obtained materials were characterized by improved parameters of thermal stability in relation to the raw material. As-prepared sulfonamide lignin derivatives with a potential application as a filler in biopolymeric composites may become a new class of functional, value-added, sustainable additives.
Collapse
Affiliation(s)
- Karolina Komisarz
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | | | | | | |
Collapse
|
26
|
Morena AG, Tzanov T. Antibacterial lignin-based nanoparticles and their use in composite materials. NANOSCALE ADVANCES 2022; 4:4447-4469. [PMID: 36341306 PMCID: PMC9595106 DOI: 10.1039/d2na00423b] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/19/2022] [Indexed: 06/01/2023]
Abstract
Lignin, one of the most abundant biopolymers on earth, has been traditionally considered a low-value by-product of the pulp and paper industries. This renewable raw material, besides being a source of valuable molecules for the chemical industry, also has antioxidant, UV-absorbing, and antibacterial properties in its macromolecular form. Moreover, lignin in the form of nanoparticles (LigNPs) presents advantages over bulk lignin, such as higher reactivity due to its larger surface-to-volume ratio. In view of the rapid surge of antimicrobial resistance (AMR), caused by the overuse of antibiotics, continuous development of novel antibacterial agents is needed. The use of LigNPs as antibacterial agents is a suitable alternative to conventional antibiotics for topical application or chemical disinfectants for surfaces and packaging. Besides, their multiple and unspecific targets in the bacterial cell may prevent the emergence of AMR. This review summarizes the latest developments in antibacterial nano-formulated lignin, both in dispersion and embedded in materials. The following roles of lignin in the formulation of antibacterial NPs have been analyzed: (i) an antibacterial active in nanoformulations, (ii) a reducing and capping agent for antimicrobial metals, and (iii) a carrier of other antibacterial agents. Finally, the review covers the inclusion of LigNPs in films, fibers, hydrogels, and foams, for obtaining antibacterial lignin-based nanocomposites for a variety of applications, including food packaging, wound healing, and medical coatings.
Collapse
Affiliation(s)
- A Gala Morena
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya Rambla Sant Nebridi 22 Terrassa 08222 Spain +34 93 739 82 25 +34 93 739 85 70
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya Rambla Sant Nebridi 22 Terrassa 08222 Spain +34 93 739 82 25 +34 93 739 85 70
| |
Collapse
|
27
|
Morena A, Bassegoda A, Natan M, Jacobi G, Banin E, Tzanov T. Antibacterial Properties and Mechanisms of Action of Sonoenzymatically Synthesized Lignin-Based Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37270-37279. [PMID: 35960019 PMCID: PMC9412960 DOI: 10.1021/acsami.2c05443] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/01/2022] [Indexed: 06/02/2023]
Abstract
In recent years, lignin has drawn increasing attention for different applications due to its intrinsic antibacterial and antioxidant properties, coupled with biodegradability and biocompatibility. However, chemical modification or combination with metals is usually required to increase its antimicrobial functionality and produce biobased added-value materials for applications wherein bacterial growth should be avoided, such as biomedical and food industries. In this work, a sonoenzymatic approach for the simultaneous functionalization and nanotransformation of lignin to prepare metal-free antibacterial phenolated lignin nanoparticles (PheLigNPs) is developed. The grafting of tannic acid, a natural phenolic compound, onto lignin was achieved by an environmentally friendly approach using laccase oxidation upon the application of high-intensity ultrasound to rearrange lignin into NPs. PheLigNPs presented higher antibacterial activity than nonfunctionalized LigNPs and phenolated lignin in the bulk form, indicating the contribution of both the phenolic content and the nanosize to the antibacterial activity. Studies on the antibacterial mode of action showed that bacteria in contact with the functionalized NPs presented decreased metabolic activity and high levels of reactive oxygen species (ROS). Moreover, PheLigNPs demonstrated affinity to the bacterial surface and the ability to cause membrane destabilization. Antimicrobial resistance studies showed that the NPs did not induce resistance in pathogenic bacteria, unlike traditional antibiotics.
Collapse
Affiliation(s)
- Angela
Gala Morena
- Group
of Molecular and Industrial Biotechnology, Department of Chemical
Engineering, Universitat Politècnica
de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Arnau Bassegoda
- Group
of Molecular and Industrial Biotechnology, Department of Chemical
Engineering, Universitat Politècnica
de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Michal Natan
- The
Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel
| | - Gila Jacobi
- The
Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel
| | - Ehud Banin
- The
Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel
| | - Tzanko Tzanov
- Group
of Molecular and Industrial Biotechnology, Department of Chemical
Engineering, Universitat Politècnica
de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| |
Collapse
|
28
|
Chen K, Zhou X, Wang D, Li J, Qi D. Synthesis and characterization of a broad-spectrum TiO2@lignin UV-protection agent with high antioxidant and emulsifying activity. Int J Biol Macromol 2022; 218:33-43. [DOI: 10.1016/j.ijbiomac.2022.06.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 01/08/2023]
|
29
|
Yadav V, Banerjee S, Bairagi S, Baisoya S, Ali SW. Green synthesis of sodium lignosulfonate nanoparticles using chitosan for significantly enhanced multifunctional characteristics. Int J Biol Macromol 2022; 211:380-389. [PMID: 35569681 DOI: 10.1016/j.ijbiomac.2022.05.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Nanoparticles of green materials have gained enormous interest due to their broad range of applications in several disciplines since they have significantly improved multifunctional activities. This article attempts a sustainable green approach to synthesize sodium lignosulfonate nanoparticles (SLS NPs) using another biomolecule, i.e., chitosan. The synthesized SLS NPs (with an average diameter of ~125 nm to 129 nm) have demonstrated synergetic efficacy by exhibiting outstanding multifunctional properties due to the presence of two types of biomolecules (i.e., lignosulfonate as well as chitosan) in their structure. The synthesized SLS NPs have bestowed excellent antibacterial activity against both the Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. Moreover, SLS NPs have displayed ~92% antioxidant property. Having polyphenolic entities in the structure of SLS NPs, they have shown UV-visible absorption peak at 224 nm, which directly indicates that they can act as an outstanding UV protective agent which has also been proven experimentally.
Collapse
Affiliation(s)
- Vivek Yadav
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sourav Banerjee
- School of Interdisciplinary Research (SIRe), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Satyaranjan Bairagi
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sujata Baisoya
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - S Wazed Ali
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; School of Interdisciplinary Research (SIRe), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
30
|
Lu X, Gu X, Shi Y. A review on lignin antioxidants: Their sources, isolations, antioxidant activities and various applications. Int J Biol Macromol 2022; 210:716-741. [PMID: 35526770 DOI: 10.1016/j.ijbiomac.2022.04.228] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Lignin, a biopolymer obtained from agricultural/forestry residues or paper pulping wastewater, is rich in aromatic structure, which is central to its adoption as a candidate to natural antioxidants. Through insight into its structural features from biomass, different functional groups would influence lignin antioxidant activity, wherein phenolic content is the most important factor, hence massive studies have focused on its improvement via different pretreatments and post-processing methods. Besides, lignin nanoparticles and chemical modifications are also efficient methods to improve antioxidant activity via increasing free content and decreasing bond dissociation enthalpy of phenolic hydroxyl. Lignin samples exhibit comparable radicals scavenging ability to commercial ones, showing their potential as renewable alternatives of synthesized antioxidants. Besides, their applications have also been discussed, which demonstrates lignin potential as an inexpensive antioxidant additive and consequent improvements on multiple functionalities. This review is dedicated to summarize lignin antioxidants extracted from biomass resources, methods to improve their antioxidant activity and their applications, which is beneficial for realizing lignin valorization.
Collapse
Affiliation(s)
- Xinyu Lu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| | - Xiaoli Gu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China.
| | - Yijun Shi
- Division of Machine Elements, Luleå University of Technology, SE97187 Luleå, Sweden.
| |
Collapse
|
31
|
Bellini C, Antonucci S, Morillas-Becerril L, Scarpa S, Tavano R, Mancin F, Di Lisa F, Papini E. Nanoparticles Based on Cross-Linked Poly(Lipoic Acid) Protect Macrophages and Cardiomyocytes from Oxidative Stress and Ischemia Reperfusion Injury. Antioxidants (Basel) 2022; 11:antiox11050907. [PMID: 35624771 PMCID: PMC9137738 DOI: 10.3390/antiox11050907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
The control of radical damage and oxidative stress, phenomena involved in a large number of human pathologies, is a major pharmaceutical and medical goal. We here show that two biocompatible formulations of Pluronic-stabilized, poly (lipoic acid)-based nanoparticles (NP) effectively antagonized the formation of radicals and reactive oxygen species (ROS). These NPs, not only intrinsically scavenged radicals in a-cellular DPPH/ABTS assays, but also inhibited the overproduction of ROS induced by tert-Butyl hydroperoxide (t-BHP) in tumor cells (HeLa), human macrophages and neonatal rat ventricular myocytes (NRVMs). NPs were captured by macrophages and cardiomyocytes much more effectively as compared to HeLa cells and non-phagocytic leukocytes, eventually undergoing intracellular disassembly. Notably, NPs decreased the mitochondrial ROS generation induced by simulated Ischemia/Reperfusion Injury (IRI) in isolated cardiomyocytes. NPs also prevented IRI-triggered cardiomyocyte necrosis, mitochondrial dysfunction, and alterations of contraction-related intracellular Ca2+ waves. Hence, NPs appear to be an effective and cardiomyocyte-selective drug to protect against damages induced by post-ischemic reperfusion.
Collapse
Affiliation(s)
- Chiara Bellini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (S.A.); (S.S.); (R.T.)
- CRIBI—Centre for Innovative Biotechnology Research, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Salvatore Antonucci
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (S.A.); (S.S.); (R.T.)
| | - Lucía Morillas-Becerril
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35121 Padova, Italy; (L.M.-B.); (F.M.)
| | - Sara Scarpa
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (S.A.); (S.S.); (R.T.)
- CRIBI—Centre for Innovative Biotechnology Research, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Regina Tavano
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (S.A.); (S.S.); (R.T.)
- CRIBI—Centre for Innovative Biotechnology Research, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35121 Padova, Italy; (L.M.-B.); (F.M.)
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (S.A.); (S.S.); (R.T.)
- Correspondence: (F.D.L.); (E.P.)
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (S.A.); (S.S.); (R.T.)
- CRIBI—Centre for Innovative Biotechnology Research, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
- Correspondence: (F.D.L.); (E.P.)
| |
Collapse
|
32
|
Li M, Huang W, Ren C, Wu Q, Wang S, Huang J. Preparation of lignin nanospheres based superhydrophobic surfaces with good robustness and long UV resistance. RSC Adv 2022; 12:11517-11525. [PMID: 35425027 PMCID: PMC9006127 DOI: 10.1039/d2ra01245f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Lignin is an ideal substance for preparation of functional materials. Specifically, lignin nanospheres (LNPs) are formed by self-assembly of lignin molecules and show great application prospects in drug delivery, electrochemistry, catalysis, etc. At present, most superhydrophobic surfaces are mainly built using non-degradable inorganic particles and are still beset by defects such as poor environmental performance, easy aging, and low mechanical strength. In this study, an aqueous mixture containing LNPs, cellulose nanocrystals (CNCs) and polyvinyl alcohol (PVA) was sprayed onto wood surfaces and then modified by 1H,1H,2H,2H-perfluorooctyltrichlorosilane (FOTS) to obtain a superhydrophobic surface. In the superhydrophobic surface, LNPs were used as the main structural materials instead of inorganic particles, CNC was used as a reinforcement material and PVA was used as an adhesive. The resulting superhydrophobic surface showed a water contact angle (WCA) of 162°, good robustness resistance and long UV resistance in which the superhydrophobicity was still retained after exposure to ultra-high UV light (power of 1000 W) for 7 h, providing more directions for high-value application of lignin.
Collapse
Affiliation(s)
- Mengmeng Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Wentao Huang
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Changying Ren
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Qiang Wu
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Siqun Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China .,Center for Renewable Carbon, University of Tennessee Knoxville Tennessee 37996 USA
| | - Jingda Huang
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| |
Collapse
|
33
|
Ni S, Bian H, Zhang Y, Fu Y, Liu W, Qin M, Xiao H. Starch-Based Composite Films with Enhanced Hydrophobicity, Thermal Stability, and UV-Shielding Efficacy Induced by Lignin Nanoparticles. Biomacromolecules 2022; 23:829-838. [PMID: 35191679 DOI: 10.1021/acs.biomac.1c01288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thehighly efficient utilization of lignin is of great importance for the development of the biorefinery industry. Herein, a novel "core-shell" lignin nanoparticle (LNP) with a diameter of around 135 nm was prepared, after the lignin was isolated from the effluent of formic acid fractionation via dialysis. In an attempt to endow composite materials with vital functionalities, the LNP was added to the starch film and the starch/polyvinyl alcohol (PVA) or starch/polyethylene oxide (PEO) composite film. The results showed that the hydrophobicity performance of the synthesized films was enhanced significantly. Specifically, the dynamic water contact angle value of the starch/PVA composite film with 1% (wt) addition of LNPs could be maintained as high as 122° for 180 s; the starch/PEO composite film also achieved an excellent water contact angle above 120°. The addition of LNPs promoted the formation of some rough structures on the film surface, as shown by the scanning electron microscopy images, which could repel the water molecules efficiently and are closely related to the enhanced hydrophobicity of the starch film. What is more, the as-prepared LNP conferred strengthened thermal stability and ultraviolet blocking properties on the starch composite film. The structural combination of the polymer film with LNPs holds the promise for providing advanced functionalities to the composite material with wide applications.
Collapse
Affiliation(s)
- Shuzhen Ni
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yongchao Zhang
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Yingjuan Fu
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wenxia Liu
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Menghua Qin
- Organic Chemistry Laboratory, Taishan University, Tai'an 271021, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, Canada
| |
Collapse
|
34
|
Liu Q, Zhang H, Ren H, Zhai H. Structural analysis of light-colored separated lignin (lignocresol) and its antioxidant properties. Int J Biol Macromol 2022; 197:169-178. [PMID: 34968541 DOI: 10.1016/j.ijbiomac.2021.12.144] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022]
Abstract
The use of lignin is limited by its heterogeneity and complexity. This study was processed using different methods to obtain spruce milled wood lignin (SMWL), spruce kraft lignin (SKL), and spruce lignocresol (SLC) for comparative analysis of the structure and antioxidant activity. SMWL has a complete softwood lignin side-chains structure and lignin carbohydrate complexes. SKL contains fewer ether bonds, while more conjugate structures and condensed structures contribute to the color. However, the α-position of the lignin side chain eliminates most of the hydroxyl and ether bonds (β-O-4/α-OH, phenylcoumaran, and dibenzodioxocine structure) and effectively grafts p-cresol in the phase separation reaction. It not only inhibits the self-condensation of lignin, but also forms the 1,1-diarylpropane unit while protecting β-O-4 linkages from not breaking. Importantly, SLC has few conjugate structures that result in the lightest color among all lignin isolated. Besides, SLC has a high yield and contains trace carbohydrates, indicating that the phase separation method can achieve great amounts of purity separated lignin. The antioxidant activity of lignin was evaluated, results show that 85% of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals were scavenged at the end of 60 min. Owing to its unique color, structural properties, and continuous antioxidant activity, SLC has the potential to manufacture antioxidant cosmetics.
Collapse
Affiliation(s)
- Qi Liu
- College of Chemical Engineering, NanJing Forestry University, NanJing 210037, Jiangsu, China
| | - Haonan Zhang
- College of Chemical Engineering, NanJing Forestry University, NanJing 210037, Jiangsu, China
| | - Hao Ren
- College of Chemical Engineering, NanJing Forestry University, NanJing 210037, Jiangsu, China.
| | - Huamin Zhai
- College of Chemical Engineering, NanJing Forestry University, NanJing 210037, Jiangsu, China
| |
Collapse
|
35
|
Yang W, Ding H, Liu T, Ou R, Lin J, Puglia D, Xu P, Wang Q, Dong W, Du M, Ma P. Design of Intrinsically Flame-Retardant Vanillin-Based Epoxy Resin for Thermal-Conductive Epoxy/Graphene Aerogel Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59341-59351. [PMID: 34859998 DOI: 10.1021/acsami.1c19727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Vanillin, as a lignin-derived mono-aromatic compound, has attracted increasing attention due to its special role as an intermediate for the synthesis of different biobased polymers. Herein, intrinsically flame-retardant and thermal-conductive vanillin-based epoxy/graphene aerogel (GA) composites were designed. First, a bifunctional phenol intermediate (DN-bp) was synthesized by coupling vanillin with 4, 4'-diaminodiphenylmethane and DOPO, and the epoxy monomer (MEP) was obtained by the epoxidation reaction with DN-bp and epichlorohydrin. Then, various amounts of MEP and diglycidyl ether of bisphenol A (DER) were mixed and cured. Interestingly, the flexural strength and modulus were greatly enhanced from 72.8 MPa and 1.3 GPa to 90.3 MPa and 2.8 GPa, respectively, at 30 wt % MEP, due to the rigidity of MEP and strong intermolecular N-H hydrogen bonding interactions. Meanwhile, the cured epoxy achieved a UL-94 V0 rating with a low P content of 1.06%. The flame-retardant vanillin-based epoxy was then impregnated into the thermal conductive 3D GA networks. The obtained epoxy/graphene composite showed excellent flame retardancy and thermal conductivity [λ = 0.592 W/(m·K)] with only 0.5 wt % graphene in the system. Based on these results, we believe that this work would represent a novel solution for the preparation of high-performance biobased flame-retardant multipurpose epoxies.
Collapse
Affiliation(s)
- Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Ding
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Rongxian Ou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jieying Lin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Debora Puglia
- Civil and Environmental Engineering Department, Materials Engineering Center, Perugia University, UdR INSTM, Terni 05100, Italy
| | - Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qingwen Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Mingliang Du
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
36
|
Yang W, Xu F, Ma X, Guo J, Li C, Shen S, Puglia D, Chen J, Xu P, Kenny J, Ma P. Highly-toughened PVA/nanocellulose hydrogels with anti-oxidative and antibacterial properties triggered by lignin-Ag nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112385. [PMID: 34579904 DOI: 10.1016/j.msec.2021.112385] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/01/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
In this study, Ag nanoparticles were firstly reduced on the surface of lignin nanoparticles (LNPAg) by direct reaction of silver nitrate without the use of a catalyst. Thermogravimetric analysis, Zeta potential and transmission electron microscopy measurements were performed to give evidence of the effectiveness of the reaction. After that, glutaraldehyde crosslinked PVA hydrogels, were produced by addition of unmodified LNP and Ag loaded LNP (LNPAg) in presence of cellulose nanocrystals (CNC). Thermal, mechanical, rheological, microstructural and biological anti-oxidative and anti-bacterial properties of the resulted hydrogels were investigated. It was proved that all the three nanofillers were homogeneously dispersed in PVA, and the pore diameter of the hydrogels was in the range of 0.5-2.0 μm. Nevertheless, the hydrogels showed high toughness, long-term and repeatable adhesiveness to a variety of substrates. In particular, composite hydrogels containing LNPAg nanoparticles showed excellent radical scavenging and antibacterial activities. Consequently, the effects of PVA-2CNC-2LNPAg on wound healing in mice model of full-thickness skin resection were evaluated by hematoxylin and eosin staining, taking as a reference the PVA-2CNC-2LNP system. The results showed that the wound healing time of PVA-2CNC-2LNPAg group was faster than that of neat PVA and PVA-2CNC, highlighting the role of LNPAg in enhancing the contact-active anti-oxidative and antibacterial activities mechanism in composite hydrogels. We expected that PVA hydrogels incorporating LNPAg could be used as green and efficient biomedical wound dressing materials.
Collapse
Affiliation(s)
- Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Fei Xu
- Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Xinyu Ma
- Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chengcheng Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Sudan Shen
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, China
| | - Debora Puglia
- Civil and Environmental Engineering Department, Materials Engineering Center, Perugia University, UdR INSTM, Terni, Italy
| | - Jiwei Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
| | - Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jose Kenny
- Civil and Environmental Engineering Department, Materials Engineering Center, Perugia University, UdR INSTM, Terni, Italy
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|