1
|
Maity S, Muthig AMT, Sen I, Mrózek O, Belyaev A, Hupp B, Steffen A. A [2.2]Isoindolinophanyl-Based Carbene (iPC) Ligand: Synthesis, Electronic and Photophysical Properties, and Application in Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202409115. [PMID: 38965782 DOI: 10.1002/anie.202409115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/06/2024]
Abstract
Cyclic amino(alkyl) and cyclic amino(aryl) carbenes (cAACs/cAArCs) have been established as very useful ligands for catalytic and photonic applications of transition metal complexes. Herein, we describe the synthesis of a structurally related sterically demanding, electrophilic [2.2]isoindolinophanyl-based carbene (iPC) that bears a [2.2]paracyclophane moiety. The latter leads to more delocalized frontier orbitals and intense green fluorescence of (HiPC)OTf (2) from an intra-ligand charge transfer (1ILCT) state in the solid state. Base-promoted synthesis of the free carbene led to an unusual ring expansion and subsequent dimerization reaction, but the beneficial ligand properties can be exploited by trapping in situ at a metal center. The iPC ligand is a very potent π-chromophore, which participates in low energy metal-to-ligand (ML)CT transitions in [RhCl(CO)2(iPC)] (4) and IL-"through-space"-CT transitions in [Au(iPC)2]OTf (5). The steric demand of the iPC leads to high stability of 5 against air, moisture, or solvent attack, and ultralong-lived green phosphorescence with a lifetime of 185 μs is observed in solution. The beneficial photophysical and electronic properties of the iPC ligand, including a large accessible π surface area, were exploited by employing highly efficient energy transfer (EnT) photocatalysis in a [2+2] styrene cycloaddition reaction using 5, which outperformed other established photocatalysts in comparison.
Collapse
Affiliation(s)
- Sabyasachi Maity
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - André M T Muthig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Indranil Sen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Ondřej Mrózek
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Andrey Belyaev
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Benjamin Hupp
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
2
|
Martínez del Campo T, San Martín D, Gamarra L, Cerrón E, Cembellín S, Yanai H, Almendros P. Indium-Mediated Preparation of Bis(α-hydroxyallenes) or α,α'-Dihydroxyallenynes and Further Gold-Catalyzed Cyclizations. J Org Chem 2024; 89:14228-14232. [PMID: 39288304 PMCID: PMC11460725 DOI: 10.1021/acs.joc.4c01648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
We present the regio- and diastereoselective Barbier-type allenylation reaction of glyoxals mediated by indium to furnish highly valuable syn-bis(α-hydroxyallenes) and syn-α,α'-dihydroxyallenynes. The gold-catalyzed controlled cyclization of these unsaturated diols enables the divergent preparation of three types of oxacycles.
Collapse
Affiliation(s)
- Teresa Martínez del Campo
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Daniel San Martín
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Laura Gamarra
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Eva Cerrón
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Sara Cembellín
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Hikaru Yanai
- School
of Pharmacy, Tokyo University of Pharmacy
and Life Sciences, 1432-1 Horinouchi, Hachioji ,Tokyo192-0392, Japan
| | - Pedro Almendros
- Instituto
de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| |
Collapse
|
3
|
Ramos M, Solà M, Poater A. Hydrophenoxylation of alkynes by gold catalysts: a mini review. J Mol Model 2024; 30:357. [PMID: 39348033 PMCID: PMC11442519 DOI: 10.1007/s00894-024-06152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
CONTEXT The field of chemistry has significantly evolved, with catalysis playing a crucial role in transforming chemical processes. From Valerius' use of sulfuric acid in the sixteenth century to modern advancements, catalysis has driven innovations across various industries. The introduction of gold as a catalyst marked a pivotal shift, expanding its applications beyond ornamentation to homogeneous catalysis. Gold's unique properties, such as its electrophilic nature and flexibility, have enabled its use in synthesizing complex molecules, including those in nanomedicine and sustainable chemical processes. The development of gold-based complexes, particularly in hydroalkoxylation and hydroamination reactions, showcases their efficiency in forming carbon-oxygen bonds under mild conditions. Recent studies on dual gold catalysis and heterobimetallic complexes further highlight gold's versatility in achieving high turnover rates and selectivity. This evolution underscores the potential of gold catalysis in advancing environmentally sustainable methodologies and enhancing the scope of modern synthetic chemistry. The debate about the nature of monogold and dual-gold catalysis is open. METHODS DFT calculations have played a key role in promoting the activation of alkynes, in particular the hydrophenoxylation of alkynes by metal-based catalysts. They not only help identify the most efficient and selective catalysts but also aid in screening for those capable of performing a dual metal catalytic mechanism. The most commonly used functionals are BP86 and B3LYP, with the SVP and 6-31G(d) basis sets employed for geometry optimizations, and M06 with TZVP or 6-311G(d,p) basis sets used for single-point energy calculations in a solvent. Grimme dispersion correction has been explicitly added either in the solvent single point energy calculations or in the gas phase geometry optimizations or in both. To point out that M06 implicitly includes part of this dispersion scheme.
Collapse
Affiliation(s)
- Miguel Ramos
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| |
Collapse
|
4
|
Sekine K, Fuji K, Kawashima K, Mori T, Kuninobu Y. Gold-Catalyzed Synthesis of 5H-Benzo[b]indeno[2,1-d]silines by Insertion of Vinyl Carbocations into the Si-H Bond. Chemistry 2024:e202403163. [PMID: 39289886 DOI: 10.1002/chem.202403163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
We have developed a gold-catalyzed cascade reaction of aryldiynes bearing a hydrosilyl group to afford a variety of unexplored 5H-benzo[b]indeno[2,1-d]silines. The reaction system is applicable to the synthesis of bidirectionally π-extended silacycles from tetra(alkynyl)aryl compounds. Computational studies suggest that 5H-benzo[b]indeno[2,1-d]silines are formed via the insertion of a vinyl carbocation intermediate into the Si-H bond.
Collapse
Affiliation(s)
- Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Kazuto Fuji
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Kyohei Kawashima
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Toshifumi Mori
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| |
Collapse
|
5
|
Bao M, Zhou Y, Yuan H, Dong G, Li C, Xie X, Chen K, Hong K, Yu ZX, Xu X. Catalytic (4+2) Annulation via Regio- and Enantioselective Interception of in-situ Generated Alkylgold Intermediate. Angew Chem Int Ed Engl 2024; 63:e202401557. [PMID: 38775225 DOI: 10.1002/anie.202401557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 07/02/2024]
Abstract
A regio- and stereoselective stepwise (4+2) annulation of N-propargylamides and α,β-unsaturated imines/ketones has been accomplished with synergetic catalysis by a combination of a gold-complex and a chiral quinine-derived squaramide (QN-SQA), leading to highly functionalized chiral tetrahydropyridines/dihydropyrans in good to high yields with generally excellent enantioselectivity. Mechanistic studies and DFT calculations indicate that the in situ formed alkylgold species is the key intermediate in this transformation, and the amide group served as a traceless directing group in this highly selective transformation. This method complements the enantioselective (4+2) annulation of allene reagents, providing the formal internal C-C π-bond cycloaddition products, which is challenging and remains elusive.
Collapse
Affiliation(s)
- Ming Bao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Haoxuan Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Guizhi Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Chao Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kewei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kemiao Hong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Xinfang Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
6
|
Johnson CL, Storm DJ, Sajjad MA, Gyton MR, Duckett SB, Macgregor SA, Weller AS, Navarro M, Campos J. A Gold(I)-Acetylene Complex Synthesised using Single-Crystal Reactivity. Angew Chem Int Ed Engl 2024; 63:e202404264. [PMID: 38699962 DOI: 10.1002/anie.202404264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Using single-crystal to single-crystal solid/gas reactivity the gold(I) acetylene complex [Au(L1)(η2-HC≡CH)][BArF 4] is cleanly synthesized by addition of acetylene gas to single crystals of [Au(L1)(CO)][BArF 4] [L1=tris-2-(4,4'-di-tert-butylbiphenyl)phosphine, ArF=3,5-(CF3)2C6H3]. This simplest gold-alkyne complex has been characterized by single crystal X-ray diffraction, solution and solid-state NMR spectroscopy and periodic DFT. Bonding of HC≡CH with [Au(L1)]+ comprises both σ-donation and π-backdonation with additional dispersion interactions within the cavity-shaped phosphine.
Collapse
Affiliation(s)
- Chloe L Johnson
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Daniel J Storm
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - M Arif Sajjad
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Matthew R Gyton
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Simon B Duckett
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Stuart A Macgregor
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Andrew S Weller
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Miquel Navarro
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, 41092, Sevilla, Spain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, 41092, Sevilla, Spain
| |
Collapse
|
7
|
Lelouche SNK, Lemir I, Biglione C, Craig T, Bals S, Horcajada P. AuNP/MIL-88B-NH 2 Nanocomposite for the Valorization of Nitroarene by Green Catalytic Hydrogenation. Chemistry 2024; 30:e202400442. [PMID: 38515307 DOI: 10.1002/chem.202400442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
The efficiency of a catalytic process is assessed based on conversion, yield, and time effectiveness. However, these parameters are insufficient for evaluating environmentally sustainable research. As the world is urged to shift towards green catalysis, additional factors such as reaction media, raw material availability, sustainability, waste minimization and catalyst biosafety, need to be considered to accurately determine the efficacy and sustainability of the process. By combining the high porosity and versatility of metal organic frameworks (MOFs) and the activity of gold nanoparticles (AuNPs), efficient, cyclable and biosafe composite catalysts can be achieved. Thus, a composite based on AuNPs and the nanometric flexible porous iron(III) aminoterephthalate MIL-88B-NH2 was successfully synthesized and fully characterized. This nanocomposite was tested as catalyst in the reduction of nitroarenes, which were identified as anthropogenic water pollutants, reaching cyclable high conversion rates at short times for different nitroarenes. Both synthesis and catalytic reactions were performed using green conditions, and even further tested in a time-optimizing one-pot synthesis and catalysis experiment. The sustainability and environmental impact of the catalytic conditions were assessed by green metrics. Thus, this study provides an easily implementable synthesis, and efficient catalysis, while minimizing the environmental and health impact of the process.
Collapse
Affiliation(s)
- Sorraya N K Lelouche
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, 28935, Móstoles, Madrid, Spain
- EID, University Rey Juan Carlos (URJC), Tulipán s/n, Móstoles, 28933, Spain
| | - Ignacio Lemir
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, 28935, Móstoles, Madrid, Spain
| | - Catalina Biglione
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, 28935, Móstoles, Madrid, Spain
| | - Tim Craig
- EMAT and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Sara Bals
- EMAT and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, 28935, Móstoles, Madrid, Spain
| |
Collapse
|
8
|
Jahanbakhshi A, Farahi M. A novel magnetic FSM-16 supported ionic liquid/Pd complex as a high performance and recyclable catalyst for the synthesis of pyrano[3,2- c]chromenes. RSC Adv 2024; 14:16401-16410. [PMID: 38779385 PMCID: PMC11110022 DOI: 10.1039/d4ra01381f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In this work, Fe3O4@FSM-16/IL-Pd was successfully designed and synthesized via a new procedure of palladium(ii) complex immobilization onto magnetic FSM-16 using an ionic liquid, as a novel heterogeneous nanocatalyst. Multiple techniques were employed to characterize this magnetic nanocatalyst such as Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), Field Emission Scanning Electron Microscopy (FE-SEM), thermogravimetric analysis (TGA), Transmission electron microscopy (TEM), and Vibrating Sample Magnetometry (VSM). After complete characterization of the catalyst, its catalytic activity was used for the synthesis of pyrano[3,2-c]chromene-3-carbonitriles via the reaction of 4-hydroxycoumarin, aldehyde, and malononitrile under solvent-free conditions. Also, it can be recovered and reused several times without a significant decrease in its catalytic activity or palladium leaching.
Collapse
Affiliation(s)
- Azar Jahanbakhshi
- Department of Chemistry, Yasouj University Yasouj Iran 75918-74831 +98 7412242167e
| | - Mahnaz Farahi
- Department of Chemistry, Yasouj University Yasouj Iran 75918-74831 +98 7412242167e
| |
Collapse
|
9
|
Chen J, Liu Z, León Rojas AF, Rao W, Chan PWH. Gold-Catalyzed Double Spirocyclization of 3-Ene-1,7-diyne Esters to Dispiroheterocycles. Org Lett 2024; 26:3252-3257. [PMID: 38587463 DOI: 10.1021/acs.orglett.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A synthetic method to prepare dispiroheterocycles containing two all-carbon quaternary centers efficiently that relies on the gold(I)-catalyzed double spirocyclization of 3-ene-1,7-diyne esters is described. The suggested mechanism delineates a rare example of a dispirocyclization featuring two 1,n-acyloxy shifts comprising a 1,3-acyloxy migration and an interrupted 1,5-acyl migration that was achieved with the assistance of residual water in the reaction media.
Collapse
Affiliation(s)
- Jichao Chen
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Zhen Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | | | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | | |
Collapse
|
10
|
Muratov K, Zaripov E, Berezovski MV, Gagosz F. DFT-Enabled Development of Hemilabile (P ∧N) Ligands for Gold(I/III) RedOx Catalysis: Application to the Thiotosylation of Aryl Iodides. J Am Chem Soc 2024; 146:3660-3674. [PMID: 38315643 DOI: 10.1021/jacs.3c08943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Ligand-enabled oxidative addition of Csp2-X bonds to Au(I) centers has recently appeared as a valuable strategy for the development of catalytic RedOx processes. Several cross-coupling reactions that were previously considered difficult to achieve were reported lately, thus expanding the synthetic potential of gold(I) complexes beyond the traditional nucleophilic functionalization of π-systems. MeDalPhos has played an important role in this development and, despite several studies on alternative structures, remains, so far, the only general ligand for such process. We report herein the discovery and DFT-enabled structural optimization of a new family of hemilabile (P∧N) ligands that can promote the oxidative addition of aryl iodides to gold(I). These flexible ligands, which possess a common 2-methylamino heteroaromatic N-donor motif, are structurally and electronically tunable, beyond being easily accessible and affordable. The corresponding Au(I) complexes were shown to outperform the reactivity of (MeDalPhos)Au(I) in a series of alkoxy- and amidoarylations of alkenes. Their synthetic potential and comparatively higher reactivity were further highlighted in the thiotosylation of aryl iodides, a challenging unreported C-S cross-coupling reaction that could not be achieved under classical Pd(0/II) catalysis and that allows for general and divergent access to aryl sulfur derivatives.
Collapse
Affiliation(s)
- Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Emil Zaripov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
11
|
Phearman AS, Ardon Y, Goldberg KI. Insertion of Molecular Oxygen into a Gold(III)-Hydride Bond. J Am Chem Soc 2024; 146:4045-4059. [PMID: 38290523 DOI: 10.1021/jacs.3c12285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The use of molecular oxygen as an oxidant in chemical synthesis has significant environmental and economic benefits, and it is widely used as such in large-scale industrial processes. However, its adoption in highly selective homogeneous catalytic transformations, particularly to produce oxygenated organics, has been hindered by our limited understanding of the mechanisms by which O2 reacts with transition metals. Of particular relevance are the mechanisms of the reactions of oxygen with late transition metal hydrides as these metal centers are better poised to release oxygenated products. Homogeneous catalysis with gold complexes has markedly increased, and herein we report the synthesis and full characterization of a rare AuIII-H, supported by a diphosphine pincer ligand (tBuPCP = 2,6-bis(di-tert-butylphosphinomethyl)benzene). [(tBuPCP)AuIII-H]+ was found to cleanly react with molecular oxygen to yield a stable AuIII-OOH complex that was also fully characterized. Extensive kinetic studies on the reaction via variable temperature NMR spectroscopy have been completed, and the results are consistent with an autoaccelerating radical chain mechanism. The observed kinetic behavior exhibits similarities to that of previously reported PdII-H and PtIV-H reactions with O2 but is not fully consistent with any known O2 insertion mechanism. As such, this study contributes to the nascent fundamental understanding of the mechanisms of aerobic oxidation of late metal hydrides.
Collapse
Affiliation(s)
- Alexander S Phearman
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yotam Ardon
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Karen I Goldberg
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Liu Y, Zhang S, Feng X, Yu X, Yamamoto Y, Bao M. Direct synthesis of phenanthrenyl triflates from 1-biphenylyl-2-diazo-2-aryl ketones and triflic anhydride. Org Biomol Chem 2024; 22:1141-1145. [PMID: 38214226 DOI: 10.1039/d3ob02005c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A strategy for direct synthesis of phenanthrenyl triflates from 1-biphenylyl-2-diazo-2-aryl ketones and triflic anhydride is described. The reaction of 1-biphenylyl-2-diazo-2-aryl ketones with triflic anhydride proceeded smoothly in the presence of 2,6-di-tert-butylpyridine under mild conditions to produce phenanthrenyl triflates in high to excellent yields. The phenanthrenyl triflate products were demonstrated to be utilized as coupling partners in various coupling reactions. The proposed mechanism involves an intramolecular Friedel-Crafts reaction of a vinyl cation intermediate formed in situ.
Collapse
Affiliation(s)
- Yueqiang Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Sheng Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
13
|
Adorinni S, Gentile S, Bellotto O, Kralj S, Parisi E, Cringoli MC, Deganutti C, Malloci G, Piccirilli F, Pengo P, Vaccari L, Geremia S, Vargiu AV, De Zorzi R, Marchesan S. Peptide Stereochemistry Effects from p Ka-Shift to Gold Nanoparticle Templating in a Supramolecular Hydrogel. ACS NANO 2024; 18:3011-3022. [PMID: 38235673 DOI: 10.1021/acsnano.3c08004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The divergent supramolecular behavior of a series of tripeptide stereoisomers was elucidated through spectroscopic, microscopic, crystallographic, and computational techniques. Only two epimers were able to effectively self-organize into amphipathic structures, leading to supramolecular hydrogels or crystals, respectively. Despite the similarity between the two peptides' turn conformations, stereoconfiguration led to different abilities to engage in intramolecular hydrogen bonding. Self-assembly further shifted the pKa value of the C-terminal side chain. As a result, across the pH range 4-6, only one epimer predominated sufficiently as a zwitterion to reach the critical molar fraction, allowing gelation. By contrast, the differing pKa values and higher dipole moment of the other epimer favored crystallization. The four stereoisomers were further tested for gold nanoparticle (AuNP) formation, with the supramolecular hydrogel being the key to control and stabilize AuNPs, yielding a nanocomposite that catalyzed the photodegradation of a dye. Importantly, the AuNP formation occurred without the use of reductants other than the peptide, and the redox chemistry was investigated by LC-MS, NMR, and infrared scattering-type near field optical microscopy (IR s-SNOM). This study provides important insights for the rational design of simple peptides as minimalistic and green building blocks for functional nanocomposites.
Collapse
Affiliation(s)
- Simone Adorinni
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Serena Gentile
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Ottavia Bellotto
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Evelina Parisi
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Maria C Cringoli
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Caterina Deganutti
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Giuliano Malloci
- Physics Department, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Federica Piccirilli
- Elettra Sincrotrone Trieste, 34149 Basovizza, Italy
- Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Paolo Pengo
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, 34149 Basovizza, Italy
| | - Silvano Geremia
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Attilio V Vargiu
- Physics Department, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Rita De Zorzi
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
14
|
Feng GC, Li JC, Huang X, Liu JK, Wu B, Yang JM. Cascade hydroarylation/Diels-Alder cycloaddition of alkynylindoles with electron-deficient alkynes and alkenes. Chem Commun (Camb) 2024; 60:328-331. [PMID: 38063477 DOI: 10.1039/d3cc05210a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Herein, a novel cascade gold(I)-catalyzed hydroarylation of alkynylindoles and subsequent Diels-Alder cycloaddition with electron-deficient alkynes and alkenes is described. A variety of azepino-fused hydrocarbazoles and carbazoles were obtained in moderate to excellent yields. Key features of this methodology are low catalyst loadings, high regioselectivity, broad functional group tolerances, access to important heterocycles, and 100% atom economy.
Collapse
Affiliation(s)
- Guang-Chao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Jun-Chi Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Xiang Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Jin-Ming Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| |
Collapse
|
15
|
Sanil G, Krzeszewski M, Chaładaj W, Danikiewicz W, Knysh I, Dobrzycki Ł, Staszewska-Krajewska O, Cyrański MK, Jacquemin D, Gryko DT. Gold-Catalyzed 1,2-Aryl Shift and Double Alkyne Benzannulation. Angew Chem Int Ed Engl 2023; 62:e202311123. [PMID: 37823245 DOI: 10.1002/anie.202311123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
The tandem intramolecular hydroarylation of alkynes accompanied by a 1,2-aryl shift is described. Harnessing the unique electron-rich character of 1,4-dihydropyrrolo[3,2-b]pyrrole scaffold, we demonstrate that the hydroarylation of alkynes proceeds at the already occupied positions 2 and 5 leading to a 1,2-aryl shift. Remarkably, the reaction proceeds only in the presence of cationic gold catalyst, and it leads to heretofore unknown π-expanded, centrosymmetric pyrrolo[3,2-b]pyrroles. The utility is verified in the preparation of 13 products that bear six conjugated rings. The observed compatibility with various functional groups allows for increased tunability with regard to the photophysical properties as well as providing sites for further functionalization. Computational studies of the reaction mechanism revealed that the formation of the six-membered rings accompanied with a 1,2-aryl shift is both kinetically and thermodynamically favourable over plausible formation of products containing 7-membered rings. Steady-state UV/Visible spectroscopy reveals that upon photoexcitation, the prepared S-shaped N-doped nanographenes undergo mostly radiative relaxation leading to large fluorescence quantum yields. Their optical properties are rationalized through time-dependent density functional theory calculations. We anticipate that this chemistry will empower the creation of new materials with various functionalities.
Collapse
Affiliation(s)
- Gana Sanil
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Witold Danikiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
| | - Łukasz Dobrzycki
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | | | - Michał K Cyrański
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
16
|
Xia S, Li W, Chen H, Zhu C, Han J, Xie J. Gold-Manganese Bimetallic Redox Coupling with Light. J Am Chem Soc 2023. [PMID: 38039269 DOI: 10.1021/jacs.3c08796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
The classical Au(I)/Au(III) redox couple chemistry has been limited to constructing C-C and C-X bonds, and thus, the exploration of the elementary reaction of gold redox coupling is very significant to enrich its organometallic features. Herein, we report the first visible-light-mediated, external oxidant-free Au(I)/Au(III) redox couple using commercially available Mn2(CO)10 to generate Mn-Au(III)-Mn intermediates for bimetallic redox coupling. A wide range of structurally diverse heterodinuclear and polynuclear L-Au(I)-Mn-L' complexes (19 examples, up to >99% yields) are readily constructed, providing a robust strategy for the concise construction of Au-Mn complexes under mild reaction conditions. The mechanistic studies together with DFT calculations support the radical oxidative addition of •Mn(CO)5 to gold and bimetallic reductive elimination mechanisms from highly active Mn-Au(III)-Mn species, representing an important step toward an elementary reaction in gold chemistry research. Furthermore, the resulting Au-Mn complexes exhibit unique catalytic activity, with which divergent reductive coupling of nitroarenes can readily afford azoxybenzenes, azobenzenes, and hydrazobenzenes in moderate to good yields.
Collapse
Affiliation(s)
- Siyu Xia
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongliang Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Tang J, Zhang S, Zhou BW, Wang W, Zhao L. Hyperconjugative Aromaticity-Based Circularly Polarized Luminescence Enhancement in Polyaurated Heterocycles. J Am Chem Soc 2023; 145:23442-23451. [PMID: 37870916 DOI: 10.1021/jacs.3c04953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Hyperconjugative aromaticity (HA) frequently appears in metalla-aromatics, but its effect on photophysical properties remains unexplored to date. Herein, we reveal two different HA scenarios in nearly isostructural triaurated indolium and benzofuranylium compounds. The biased HAs show a discernible effect on the spatial arrangement of metal atoms and thus tailor metal parentage in frontier orbitals and the HOMO-LUMO energy gap. Theoretical calculations and structural analyses demonstrate that HA not only influences the degree of electron delocalization over the trimetalated aromatic rings but also affects π-coordination of Au(I) and intercluster aurophilic interaction. Consequently, the triaurated benzofuranylium complex shows better photoluminescence performance (quantum yield up to 49.7%) over the indolium analogue. Furthermore, four pairs of axially chiral bibenzofuran-centered trinuclear and hexanuclear gold clusters were purposefully synthesized to correlate their HA-involved structures with the chiroptical response. The triaurated benzofuranylium complexes exhibit strong circular dichroism (CD) response in solution but CPL silence even in solid film. In contrast, the hexa-aurated homologues display strong CD and intense CPL signals in both aggregated state and solid film (luminescence anisotropy factor glum up to 10-3). Their amplified chiroptical response is finally ascribed to the dominant intermolecular exciton couplings of large assemblies formed through the HA-tailored aggregation of hexanuclear compounds.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Sinopec (Beijing) Research Institute of Chemical Industry, Beijing 100013, China
| | - Siqi Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Bo-Wei Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Liu DY, Han J, Liu K, Cheng Y, Tan H, Yang X, Li W, Xie J. Dinuclear Gold-Catalyzed para-Selective C-H Arylation of Undirected Arenes by Noncovalent Interactions. Angew Chem Int Ed Engl 2023; 62:e202313122. [PMID: 37707123 DOI: 10.1002/anie.202313122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
The regioselectivity of C-H functionalization is commonly achieved by directing groups, electronic factors, or steric hindrance, which facilitate the identification of reaction sites. However, such strategies are less effective for reactants such as simple monofluoroarenes due to their relatively low reactivity and the modest steric demands of the fluorine atom. Herein, we present an undirected gold-catalyzed para-C-H arylation of a wide array of monofluoroarenes using air-stable aryl silanes and germanes at room temperature. A high para-regioselectivity (up to 98 : 2) can be realized by utilizing a dinuclear dppm(AuOTs)2 (dppm=bis(diphenylphosphino)methane) as the catalyst and hexafluorobenzene as the solvent. This provides a general and practical protocol for the concise construction of structurally diverse para-arylated monofluoroarenes through C-H activation manner. It features excellent functional group tolerance and a broad substrate scope (>80 examples). Besides, this strategy is also robust for other simple monosubstituted arenes and heteroarenes. Our mechanistic studies and theoretical calculations suggest that para-C-H selectivity arises from highly electrophilic and structurally flexible dinuclear Ar-Au(III)-Au(I) species, coupled with noncovalent interaction induced by hexafluorobenzene.
Collapse
Affiliation(s)
- Duan-Yang Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Kai Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yaohang Cheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hairen Tan
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaoliang Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
19
|
Sun Q, Hüßler C, Kahle J, Mackenroth AV, Rudolph M, Krämer P, Oeser T, Hashmi ASK. Cascade Reactions of Aryl-Substituted Terminal Alkynes Involving in Situ-Generated α-Imino Gold Carbenes. Angew Chem Int Ed Engl 2023:e202313738. [PMID: 37882411 DOI: 10.1002/anie.202313738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
An efficient, highly selective and divergent synthetic method to construct 2-substituted indoles and aryl-annulated carbazoles via the intermolecular generation of α-imino gold carbenes from terminal alkynes or diynes in combination with sulfilimines is disclosed. Importantly, the tandem reaction is proposed to proceed through an intermolecular gold carbene generation/C-H annulation followed by the activation of a second alkyne leading to 6-endo-dig cyclization, which is significantly different from previous dual activation or 1,6-carbene shift approaches for diyne systems. In the case of ortho-alkynylaniline as starting material, an unexpected regioselective formation of the indole moiety via the intermolecular path, instead of intramolecular hydroamination was discovered. This reactivity paved the way for a one-pot synthesis of the 11H-indolo [3,2-c] quinoline scaffold by exploiting the formed amino indole for a subsequent Pictet-Spengler reaction with aldehydes. The photophysical properties of the carbazoles indicated good violet-blue emission with quantum yields up to 40 %.
Collapse
Affiliation(s)
- Qiaoying Sun
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Christopher Hüßler
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Justin Kahle
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Alexandra V Mackenroth
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Petra Krämer
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thomas Oeser
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - A Stephen K Hashmi
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
20
|
Hussein AA, Ariffin A. Remote Steric and Electronic Effects of N-Heterocyclic Carbene Ligands on Alkene Reactivity and Regioselectivity toward Hydrocupration Reactions: The Role of Expanded-Ring N-Heterocyclic Carbenes. J Org Chem 2023; 88:13009-13021. [PMID: 37649423 DOI: 10.1021/acs.joc.3c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The remote groups in N-heterocyclic carbene (NHC) ligands have a significant influence on metal-catalyzed reactions. We examine how remote bulkiness, electronic groups, and expanded-ring NHCs (ER-NHCs) influence alkene reactivity and regioselectivity toward hydrocupration using density functional theory calculations. The impact of remote steric bulkiness on the Cu-H insertion rate is analyzed, revealing a strong correlation between the steric substituent constant and rate ratio, where a bulky group increases the rate due to reduced steric effects in the transition state (TS). The steric properties of the examined catalysts (with a remote group R2 = CPh3, CHPh2, CH2Ph, CH3, and H) and their corresponding TSs are found to be modulated greatly by the remote steric substitution group and the ring size of the NHC ligand. Enhanced bulkiness enhances the nucleophilic Cu-H moiety. The remote electronic groups have a smaller impact on insertion barrier compared to that of steric hindrance. Furthermore, ER-NHC exploration indicates that NHCs with over five-membered rings have a significantly negative influence on the reaction rate. Finally, with a highly bulky group (R2 = CPh3), anti-Markovnikov insertion preference is attributed to high interaction energy and improved steric properties. Overall, our findings here provide valuable insights for the development of a more effective catalyst in metal-catalyzed reactions.
Collapse
Affiliation(s)
- Aqeel A Hussein
- Department of Medical Laboratory Science, College of Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region 46001, Iraq
- Department of Biology, College of Science, Al-Qasim Green University, Al-Qassim, Babylon 51013, Iraq
| | - Azhar Ariffin
- Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
21
|
Luciani L, Sargentoni N, Graiff C, Monge M, Rodríguez-Castillo M, López-de-Luzuriaga JM, Galassi R. Mechanochemical preparation of strongly emissive monosubstituted triarylphosphane gold(i) compounds activated by hydrogen bonding driven aggregations. RSC Adv 2023; 13:25425-25436. [PMID: 37636510 PMCID: PMC10448354 DOI: 10.1039/d3ra03681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Gold(i) triarylphosphane compounds are a well-known class of coordination compounds displaying from mild to strong emissive properties. Mechanochemical approaches to the preparation, spectroscopic characterization, X-ray diffraction structural determination, and photophysical studies of green emissive neutral linear monophosphane or neutral pseudo-T-shaped or cationic bis-phosphane gold(i) compounds, are herein discussed. The mechanochemical approach to the preparation of gold(i) derivatives was particularly successful for ligands bearing the carboxylic group, while the preparation with esterified ligands yields better results with solvent-mediated methods. The introduction of carboxyl or ester substituents in one aryl group favors the ligand-centered emissions. The analysis of the origin of the emissions was elucidated on the basis of DFT calculations, addressing the emissive behavior to ligand-centered excited states, strongly affected by supramolecular reversible hydrogen bonding aggregation. The study indicates that the ligand with the carboxylic group is particularly suitable for the mechanochemical preparation of emissive gold(i) complexes for material science applications.
Collapse
Affiliation(s)
- Lorenzo Luciani
- University of Camerino, School of Science and Technology, Chemistry Division c/o ChIP, Via Madonna delle Carceri, 10 Camerino I-62032 Italy
| | - Nicola Sargentoni
- University of Camerino, School of Science and Technology, Chemistry Division c/o ChIP, Via Madonna delle Carceri, 10 Camerino I-62032 Italy
| | - Claudia Graiff
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università degli Studi di Parma Parco Area delle Scienze 17/A Parma I-43124 Italy
| | - Miguel Monge
- Universidad de La Rioja, Departamento de Química, Área de Química Inorgánica, Centro de Investigación en Síntesis Química, Complejo Científico-Tecnológico Madre de Dios, 53 26004 Logroño La Rioja Spain
| | - María Rodríguez-Castillo
- Universidad de La Rioja, Departamento de Química, Área de Química Inorgánica, Centro de Investigación en Síntesis Química, Complejo Científico-Tecnológico Madre de Dios, 53 26004 Logroño La Rioja Spain
| | - José M López-de-Luzuriaga
- Universidad de La Rioja, Departamento de Química, Área de Química Inorgánica, Centro de Investigación en Síntesis Química, Complejo Científico-Tecnológico Madre de Dios, 53 26004 Logroño La Rioja Spain
| | - Rossana Galassi
- University of Camerino, School of Science and Technology, Chemistry Division c/o ChIP, Via Madonna delle Carceri, 10 Camerino I-62032 Italy
| |
Collapse
|
22
|
Ambegave SB, More TR, Patil NT. Gold-based enantioselective bimetallic catalysis. Chem Commun (Camb) 2023. [PMID: 37285287 DOI: 10.1039/d3cc01966g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multimetallic catalysis is a powerful strategy to access complex molecular scaffolds efficiently from easily available starting materials. Numerous reports in the literature have demonstrated the effectiveness of this approach, particularly for capitalizing on enantioselective transformations. Interestingly, gold joined the race of transition metals very late making its use in multimetallic catalysis unthinkable. Recent literature revealed that there is an urgent need to develop gold-based multicatalytic systems based on the combination of gold with other metals for enabling enantioselective transformations that are not possible to capitalize with the use of a single catalyst alone. This review article highlights the progress made in the field of enantioselective gold-based bimetallic catalysis highlighting the power of multicatalysis for accessing new reactivities and selectivities which are beyond the reach of individual catalysts.
Collapse
Affiliation(s)
- Shivhar B Ambegave
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Tushar R More
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| |
Collapse
|
23
|
Ramesh Naidu V, Rafi AA, Tai CW, Bäckvall JE, Córdova A. Regio- and Stereoselective Carbon-Boron Bond Formation via Heterogeneous Palladium-Catalyzed Hydroboration of Enallenes. Chemistry 2023; 29:e202203950. [PMID: 36719323 DOI: 10.1002/chem.202203950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
A highly efficient regio- and stereoselective heterogeneous palladium-catalyzed hydroboration reaction of enallenes was developed. Nanopalladium immobilized on microcrystalline cellulose (MCC) was successfully employed as an efficient catalyst for the enallene hydroboration reaction. The nanopalladium particles were shown by HAADF-STEM to have an average size of 2.4 nm. The cellulose-supported palladium catalyst exhibits high stability and provides vinyl boron products in good to high isolated yields (up to 90 %). The nanopalladium catalyst can be efficiently recycled and it was demonstrated that the catalyst can be used in 7 runs with a maintained high yield (>80 %). The vinylboron compounds prepared from enallenes are important synthetic intermediates that can be used in various organic synthetic transformations.
Collapse
Affiliation(s)
- Veluru Ramesh Naidu
- Arrhenius Laboratory, Department of Organic University, 10691, Stockholm, Sweden
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Abdolrahim A Rafi
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Cheuk-Wai Tai
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 10691, Sweden
| | - Jan-E Bäckvall
- Arrhenius Laboratory, Department of Organic University, 10691, Stockholm, Sweden
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Armando Córdova
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| |
Collapse
|
24
|
Garre MS, Otárola GG, Merino E, Sucunza D, Aguilar E, Quirós MT, Vaquero JJ, García-García P. Gold-catalyzed endo-selective cyclization of alkynylcyclobutanecarboxamides: synthesis of cyclobutane-fused dihydropyridones. Org Biomol Chem 2023; 21:2705-2708. [PMID: 36919647 DOI: 10.1039/d3ob00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Cyclobutane-fused dihydropyridones can be efficiently synthesized by a completely endo-selective gold-catalyzed cyclization of alkynylcyclobutanes bearing an appended amide, which proceeds under mild conditions. The observed selectivity, which is reversed from that previously observed for the cyclization of related alcohols and acids, is supported by DFT calculations.
Collapse
Affiliation(s)
- M Soledad Garre
- Universidad de Alcalá (IRYCIS), Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Campus Científico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain.
| | - Guillermo G Otárola
- Universidad de Alcalá (IRYCIS), Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Campus Científico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain.
| | - Estíbaliz Merino
- Universidad de Alcalá (IRYCIS), Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Campus Científico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain.
| | - David Sucunza
- Universidad de Alcalá (IRYCIS), Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Campus Científico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain.
| | - Enrique Aguilar
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, C/Julián Clavería, 8, 33006 Oviedo, Spain
| | - M Teresa Quirós
- Universidad de Alcalá (IRYCIS), Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Campus Científico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain.
| | - Juan J Vaquero
- Universidad de Alcalá (IRYCIS), Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Campus Científico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain.
| | - Patricia García-García
- Universidad de Alcalá (IRYCIS), Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Campus Científico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
25
|
Gao P, Xu J, Zhou T, Liu Y, Bisz E, Dziuk B, Lalancette R, Szostak R, Zhang D, Szostak M. L-Shaped Heterobidentate Imidazo[1,5-a]pyridin-3-ylidene (N,C)-Ligands for Oxidant-Free Au I /Au III Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218427. [PMID: 36696514 PMCID: PMC9992098 DOI: 10.1002/anie.202218427] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
In the last decade, major advances have been made in homogeneous gold catalysis. However, AuI /AuIII catalytic cycle remains much less explored due to the reluctance of AuI to undergo oxidative addition and the stability of the AuIII intermediate. Herein, we report activation of aryl halides at gold(I) enabled by NHC (NHC=N-heterocyclic carbene) ligands through the development of a new class of L-shaped heterobidentate ImPy (ImPy=imidazo[1,5-a]pyridin-3-ylidene) N,C ligands that feature hemilabile character of the amino group in combination with strong σ-donation of the carbene center in a rigid conformation, imposed by the ligand architecture. Detailed characterization and control studies reveal key ligand features for AuI /AuIII redox cycle, wherein the hemilabile nitrogen is placed at the coordinating position of a rigid framework. Given the tremendous significance of homogeneous gold catalysis, we anticipate that this ligand platform will find widespread application.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Jihong Xu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Yanhong Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052 (Poland)
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373 (Poland)
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383 (Poland)
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| |
Collapse
|
26
|
Halnor SV, Dhote PS, Ramana CV. Construction of the quinobenzoxazine core via gold-catalyzed dual annulation of azide-tethered alkynones with anthranils. Org Biomol Chem 2023; 21:2127-2137. [PMID: 36794667 DOI: 10.1039/d3ob00098b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A new catalytic method for the construction of the quinobenzoxazine core has been developed employing the gold-catalyzed cyclization of o-azidoacetylenic ketones in the presence of anthranils. The overall process comprises of a gold-catalyzed 6-endo-dig cyclisation of o-azidoacetylenic ketone leading to a α-imino gold carbene and subsequent carbene transfer to anthranil leading to the 3-aryl-imino-quinoline-4-one intermediate, which undergoes 6π-electrocyclization and aromatization to form the central quinobenzoxazine core. This transformation provides a new approach to a diverse array of quinobenzoxazine structures, in addition to being scalable and having mild reaction conditions.
Collapse
Affiliation(s)
- Swapnil V Halnor
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pawan S Dhote
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India.
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
27
|
Zhang Y, Ren D. Mechanisms for Catalytic CO Oxidation on SiAu n ( n = 1-5) Cluster. Molecules 2023; 28:1917. [PMID: 36838905 PMCID: PMC9962203 DOI: 10.3390/molecules28041917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Significant progress has been made in understanding the reactivity and catalytic activity of gas-phase and loaded gold clusters for CO oxidation. However, little research has focused on mixed silicon/gold clusters (SiAun) for CO oxidation. In the present work, we performed density function theory (DFT) calculations for a SiAun (n = 1-5) cluster at the CAM-B3LYP/aug-cc-pVDZ-PP level and investigated the effects on the reactivity and catalytic activity of the SiAun cluster for CO oxidation. The calculated results show that the effect is very low for the activation barriers for the formation of OOCO intermediates on SiAu clusters, SiAu3 clusters, and SiAu5 clusters in the catalytic oxidation of CO and the activation energy barriers for the formation of OCO intermediates on OSiAu3, OSiAu4, and OSiAu5. Our calculations show that, compared with the conventional small Au cluster, the incorporation of Si enhances the catalytic performance towards CO oxidation.
Collapse
Affiliation(s)
| | - Dasen Ren
- College of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
28
|
Wang T, Wan Y, Xu M, Wang Y, Hong XJ, Gao H, Zhou Z, Yi W, Zeng Z. Regio- and stereospecific cis-hydrophenoxylation of ynamides with acidic phenols. Org Biomol Chem 2023; 21:3073-3078. [PMID: 36786411 DOI: 10.1039/d3ob00082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Herein we describe a self-acid-enabled chemo-, regio-, and stereospecific cis-hydrophenoxylation of ynamides under reagent-free conditions. The presence of a non-polar solvent such as toluene was found to be beneficial to facilitate the rate-limiting proton transfer between phenols and ynamides to form an intimate ion pair, which is followed by a swift nucleophilic attack of the phenolate oxygen on keteniminium, fulfilling the overall hydrofunctionalization event. This protocol is operationally simple and easily scalable, tolerates a wide variety of functional groups, and shows good compatibility with the requirements of modern green chemistry.
Collapse
Affiliation(s)
- Ting Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Yuyan Wan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Mingyao Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Yi Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Xu-Jia Hong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Zhongyi Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| |
Collapse
|
29
|
Xie JM, Zhu YL, Fu YM, Zhu CF, Cheng LJ, You YE, Wu X, Li YG. Gold-Catalyzed Cascade Reaction of 2-Alkynyl Aryl Azides with Enecarbamates for Direct Synthesis of α-(3-Indolyl)ketones. Org Lett 2023; 25:421-425. [PMID: 36622839 DOI: 10.1021/acs.orglett.2c04147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
α-(3-Indolyl)ketones are essential building blocks for the generation of biologically active molecules. We described a new method for the direct assembly of α-(3-indolyl)ketones through the cascade reaction of 2-alkynyl aryl azides with enecarbamates, in which the in situ generated α-imino gold carbene intermediate was trapped by enecarbamate to achieve umpolung reactivity of indole at the 3-position.
Collapse
Affiliation(s)
- Jin-Ming Xie
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| | - Yun-Long Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| | - Yan-Ming Fu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| | - Cheng-Feng Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| | - Lan-Jun Cheng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| | - Yang-En You
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| | - Xiang Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| | - You-Gui Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei230009, China
| |
Collapse
|
30
|
Hou J, Li B, Jang W, Yun J, Eyimegwu FM, Kim JH. Integration of Gold Nanoparticles into Crosslinker-Free Polymer Particles and Their Colloidal Catalytic Property. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:416. [PMID: 36770377 PMCID: PMC9920725 DOI: 10.3390/nano13030416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
This work demonstrates the incorporation of gold nanoparticles (AuNPs) into crosslinker-free poly(N-isopropylacrylamide), PNIPAM, particles in situ and the examination of their structural and catalytic properties. The formation process of the AuNPs across the crosslinker-free PNIPAM particles are compared to that of crosslinked PNIPAM particles. Given the relatively larger free volume across the crosslinker-free polymer network, the AuNPs formed by the in situ reduction of gold ions are detectably larger and more polydisperse, but their overall integration efficiency is slightly inferior. The structural features and stability of these composite particles are also examined in basic and alcoholic solvent environments, where the crosslinker-free PNIPAM particles still offer comparable physicochemical properties to the crosslinked PNIPAM particles. Interestingly, the crosslinker-free composite particles as a colloidal catalyst display a higher reactivity toward the homocoupling of phenylboronic acid and reveal the importance of the polymer network density. As such, the capability to prepare composite particles in a controlled polymer network and reactive metal nanoparticles, as well as understanding the structure-dependent physicochemical properties, can allow for the development of highly practical catalytic systems.
Collapse
Affiliation(s)
- Jian Hou
- School of Intelligent Manufacturing, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Bin Li
- School of Intelligent Manufacturing, Luoyang Institute of Science and Technology, Luoyang 471023, China
- Henan International Joint Laboratory of Cutting Tools and Precision Machining, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Wongi Jang
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| | - Jaehan Yun
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| | - Faith M Eyimegwu
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| | - Jun-Hyun Kim
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| |
Collapse
|
31
|
Ali HS, Hussein AA, Obies M. Impact of counteranions on N-heterocyclic carbene gold(i)-catalyzed cyclization of propargylic amide. RSC Adv 2023; 13:2896-2902. [PMID: 36756396 PMCID: PMC9850360 DOI: 10.1039/d2ra06210k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
N-Heterocyclic carbene (NHC) Au(i)-catalyzed organic synthesis has recently been receiving increasing attention, especially with the activation of alkynes. In contrast, counteranions, being widely problematic in Au(i)-catalyzed transformations, are commonly considered as innocent partners and are not respectably included in a computational model. Herein, we report density functional theory (DFT) investigations of the Au(i)-catalyzed cyclization of propargylic amides to exploit the mechanistic effect of several counteranions to shed some light for further future developments. Among the counteranions used in this study, NTf2 -, ClO4 -, TsO-, TFA-, TfO-, MsO-, and SbF6 -, both the cyclization and protodeauration step favor the 5-exo-dig product over the 6-endo-dig product when the alkyne moiety is terminated with hydrogen. These anions reveal a crucial influence on the energy profile through lowering the barriers of the reaction. Mechanistically, the results obtained from all counteranions show that the protodeauration is slower than the cyclization. By using an energetic span model, the results clearly indicate that the rate-determining state is the protodeauration step for all counteranions, and thus protodeauration is the turnover-limiting step. The turnover frequency (TOF) results for the formation of the 5-exo-dig product show cyclization reactivity in the order of MsO- > TFA- > ClO4 - > NTf2 - > TfO- > TsO- ≫ SbF6 -, whereas an order of TFA- > MsO- > NTf2 - > TfO- ≈ ClO4 - > SbF6 - ⋙ TsO- is calculated for the protodeauration, suggesting that SbF6 - and TsO- are disfavored due to their slow protodeauration. In this regard, and for the 6-endo-dig pathway, our conclusions demonstrate an order of TfO- > TFA- > MsO- > NTf2 - > ClO4 - > TsO- ⋙ SbF6 - for the cyclization and TFA- > TsO- > MsO- > TfO- > NTf2 - > ClO4 - ⋙ SbF6 - for the protodeauration, advocating that the anions SbF6 -, NTf2 - and ClO4 - are unlikely partners for the 6-endo-dig pathway because of their slow protodeauration. Finally, the findings here advise that any engineering of the counteranion to increase the efficiency of catalytic system would be more effective on the protodeauration step rather than the cyclization step.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford12 Mansfield RoadOxford OX1 3TAUK
| | - Aqeel A. Hussein
- Department of Medical Laboratory Science, College of Science, Komar University of Science and TechnologySulaymaniyah 46001Kurdistan RegionIraq
| | - Mohammed Obies
- College of Pharmacy, University of Babylon51002HillahBabylonIraq
| |
Collapse
|
32
|
Xu Z, Zeng J, Cai M. An MCM-41-immobilized dichloro(pyridine-2-carboxylato)gold(III) complex: an efficient and recyclable catalyst for the annulation of anthranils and ynamides. Dalton Trans 2023; 52:806-817. [PMID: 36594393 DOI: 10.1039/d2dt03733e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new mesoporous MCM-41-immobilized dichloro(pyridine-2-carboxylato)gold(III) complex [MCM-41-PicAuCl2] was synthesized via an addition reaction of a dichloro(3-hydroxypyridine-2-carboxylato)gold(III) complex to triethoxy(3-isocyanatopropyl)silane, followed by immobilization on MCM-41 and was characterized by different physico-chemical techniques. In the presence of 5 mol% of MCM-41-PicAuCl2, the annulation reaction between anthranils and ynamides proceeded smoothly under mild conditions to afford diverse 6- or 5-formylindoles with high atom economy and good to excellent yields. This new heterogenized gold(III) complex can be easily recovered through a simple filtration process and recycled more than seven times without any apparent loss of its catalytic efficiency.
Collapse
Affiliation(s)
- Zhaohui Xu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Jiajun Zeng
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Mingzhong Cai
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| |
Collapse
|
33
|
Tathe AG, Saswade SS, Patil NT. Gold-catalyzed multicomponent reactions. Org Chem Front 2023. [DOI: 10.1039/d3qo00272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Multicomponent reactions (MCRs) have emerged as an important branch in organic synthesis for the creation of complex molecular structures. This review is focused on gold-catalyzed MCRs with a special emphasis on the recent developments.
Collapse
|
34
|
Heckershoff R, Eberle L, Richert N, Delavier C, Bruckschlegel M, Schäfer MR, Krämer P, Rominger F, Rudolph M, Hashmi ASK. Versatile access to nitrogen-rich π-extended indolocarbazoles via a Pictet–Spengler approach. Org Chem Front 2023. [DOI: 10.1039/d2qo01459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A bidirectional Pictet-Spengler Reaction allows easy access to nitrogen-rich aromatics with seven fused rings. Photophysical measurements and computational methods show significant differences to parent N-heteropolycycles with fewer nitrogen atoms.
Collapse
Affiliation(s)
- Robin Heckershoff
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Lukas Eberle
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Nick Richert
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Christian Delavier
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Michael Bruckschlegel
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Moritz R. Schäfer
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Petra Krämer
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
35
|
Abstract
A novel class of stable monoareno-pentalenes is introduced that have an olefinic proton on each five-membered ring of the pentalene subunit. Their synthesis was accomplished via a regioselective carbopalladation cascade reaction between ortho-arylacetyleno gem-dibromoolefins and TIPS-acetylene. These molecules could be experimental probes of magnetic (anti)aromaticity effects.
Collapse
Affiliation(s)
- Péter
J. Mayer
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt 2., Budapest, 1117, Hungary,Institute
of Chemistry, University of Szeged, Rerrich tér 1., Szeged, 6720, Hungary
| | - Gábor London
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt 2., Budapest, 1117, Hungary,E-mail:
| |
Collapse
|
36
|
Asoh T, Tashiro H, Terada M, Nakamura I. Gold-Catalyzed Intermolecular Alkyne Insertion into the N-S Bond in Sulfenamides. Org Lett 2022; 24:9264-9268. [PMID: 36512340 DOI: 10.1021/acs.orglett.2c03831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold-catalyzed reactions between sulfenamides and terminal alkynes proceeded via cis-insertion of alkynes into the N-S bond in sulfenamides, affording the corresponding β-sulfenylenamines in yields up to 90%. Mechanistic studies revealed that the reactions proceeded via nucleophilic attack of the sulfenamide nitrogen atom on the π-activated alkyne, followed by tosylate-assisted intermolecular transfer of the sulfenyl group.
Collapse
Affiliation(s)
- Takato Asoh
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroki Tashiro
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Itaru Nakamura
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
37
|
Maier S, Heckershoff R, Hippchen N, Brödner K, Rominger F, Freudenberg J, Hashmi ASK, Bunz UHF. Substituted Cyclopentannulated Tetraazapentacenes. Chemistry 2022; 28:e202201842. [PMID: 35983676 PMCID: PMC9826220 DOI: 10.1002/chem.202201842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 01/11/2023]
Abstract
Brominated pentannulated dihydrotetraazapentacenes were prepared by gold- or palladium-catalyzed 5-endo-dig cyclization of TIPS-ethynylated dihydrotetraazaacenes (TIPS = triisopropylsilyl). Post-functionalization was demonstrated by Sonogashira alkynylation and Rosenmund-von Braun cyanation. Calculations predict these species to act as n-type semiconductors, which was verified for two derivates through characterization in organic field-effect transistors.
Collapse
Affiliation(s)
- Steffen Maier
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Robin Heckershoff
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Nikolai Hippchen
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Kerstin Brödner
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Jan Freudenberg
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced Materials (CAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| |
Collapse
|
38
|
Liu C, Bolognani A, Song L, Van Meervelt L, Peshkov VA, Van der Eycken EV. Gold(I)-Catalyzed Intramolecular Bicyclization: Divergent Construction of Quinazolinone and Ampakine Analogues. Org Lett 2022; 24:8536-8541. [DOI: 10.1021/acs.orglett.2c03547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Chao Liu
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Adriano Bolognani
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 Jiangsu, China
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Vsevolod A. Peshkov
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou 215123, P. R. China
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan 010000, Republic of Kazakhstan
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, Moscow 117198, Russia
| |
Collapse
|
39
|
Nugegoda D, Tzouras NV, Nolan SP, Delcamp JH. N-Heterocyclic Carbene Gold Complexes in a Photocatalytic CO 2 Reduction Reaction. Inorg Chem 2022; 61:18802-18809. [DOI: 10.1021/acs.inorgchem.2c03487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dinesh Nugegoda
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University Park 38677, Mississippi, United States
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, Ghent 9000 S-3, Belgium
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, Ghent 9000 S-3, Belgium
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University Park 38677, Mississippi, United States
| |
Collapse
|
40
|
Tanaka K, Morita F. Enantioselective Helicene Synthesis by Rhodium-Catalyzed [2+2+2] Cycloaddition. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology
| | | |
Collapse
|
41
|
Virumbrales C, El-Remaily MAEAAA, Suárez-Pantiga S, Fernández-Rodríguez MA, Rodríguez F, Sanz R. Gold(I) Catalysis Applied to the Stereoselective Synthesis of Indeno[2,1- b]thiochromene Derivatives and Seleno Analogues. Org Lett 2022; 24:8077-8082. [DOI: 10.1021/acs.orglett.2c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cintia Virumbrales
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | | | - Samuel Suárez-Pantiga
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Manuel A. Fernández-Rodríguez
- Facultad de Farmacia, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Campus Científico-Tecnológico, Universidad de Alcalá (IRYCIS), Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Spain
| | - Félix Rodríguez
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, C/Julián Clavería, 8, 33006 Oviedo, Spain
| | - Roberto Sanz
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
42
|
Heckershoff R, May G, Däumer J, Eberle L, Krämer P, Rominger F, Rudolph M, Mulks FF, Hashmi ASK. Entropy-Induced Selectivity Switch in Gold Catalysis: Fast Access to Indolo[1,2-a]quinolines. Chemistry 2022; 28:e202201816. [PMID: 35699266 DOI: 10.1002/chem.202201816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/07/2023]
Abstract
New N-heterocyclic compounds for organic functional materials and their efficient syntheses are highly demanded. A surprising entropy-induced selectivity switch in the gold-catalyzed intramolecular hydroarylation of 2-ethynyl N-aryl indoles was found and its exploitation led to straightforward syntheses of indolo[1,2-a]quinolines. Experimental and computational mechanistic investigations gave insight into this uncommon selectivity phenomenon and into the special reactivity of the indolo[1,2-a]quinolines. The high functional group tolerance of this methodology enabled access to a diverse scope with high yields. In addition, bidirectional approaches, post-functionalization reactions, and π-extension of the core structure were feasible. An in-depth study of the photophysical properties explored the structure-effect relationship for different derivatives and revealed a high potential of these compounds for future applications as functional materials.
Collapse
Affiliation(s)
- Robin Heckershoff
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Garrett May
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Janika Däumer
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lukas Eberle
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Petra Krämer
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Florian F Mulks
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141 (Republic of, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
43
|
Toledano-Pinedo M, Martínez del Campo T, Yanai H, Almendros P. Au(I) as a π-Lewis Base Catalyst: Controlled Synthesis of Sterically Congested Bis(triflyl)enals from α-Allenols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mireia Toledano-Pinedo
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Teresa Martínez del Campo
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Hikaru Yanai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Pedro Almendros
- Instituto de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
44
|
Mandal D, Kumar A, Patil NT. Gold catalysis in organic synthesis: fifteen years of research in India. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
45
|
Yang JM, Yao ML, Li JC, Liu JK, Wu B. Access to Azepino-Annulated Benzo[ c]carbazoles Enabled by Gold-Catalyzed Hydroarylation of Alkynylindoles and Subsequent Oxidative Cyclization. Org Lett 2022; 24:6505-6509. [PMID: 36047768 DOI: 10.1021/acs.orglett.2c02293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report a facile and efficient synthetic method to construct azepino[1,2-a]indoles through a novel gold(I)-catalyzed intramolecular hydroarylation of alkynylindoles. A wide range of functional groups can be well tolerated in this transformation, and the corresponding highly functionalized azepino[1,2-a]indole skeletons were obtained in moderate to excellent yields. Subsequent oxidation of the products gave the interesting and valuable polycyclic carbazoles, which were widely used as the key building blocks in materials science.
Collapse
Affiliation(s)
- Jin-Ming Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Meng-Lian Yao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Jun-Chi Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| |
Collapse
|
46
|
Formation and Intramolecular Capture of α-Imino Gold Carbenoids in the Au(I)-Catalyzed [3 + 2] Reaction of Anthranils, 1,2,4-Oxadiazoles, and 4,5-Dihydro-1,2,4-Oxadiazoles with Ynamides. Catalysts 2022. [DOI: 10.3390/catal12080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
α-Imino gold carbenoid species have been recognized as key intermediates in a plethora of processes involving gold-activated alkynes. Here, we explored the pathways of the Au(I)-catalyzed [3 + 2] reaction between the mild nucleophiles: anthranil, 1,2,4-oxadiazole, or 4,5-dihydro-1,2,4-oxadiazole, and an ynamide, PhC≡C-N(Ts)Me, proceeding via the formation of the aforementioned α-imino gold carbene intermediate which, after intramolecular capture, regioselectively produces 2-amino-3-phenyl-7-acyl indoles, N-acyl-5-aminoimidazoles, or N-alkyl-4-aminoimidazoles, respectively. In all cases, the regioselectivity of the substituents at 2, 3 in the 7-acyl-indole ring and 4, 5 in the substituted imidazole ring is decided at the first transition state, involving the attack of nitrogen on the C1 or C2 carbon of the activated ynamide. A subsequent and steep energy drop furnishes the key α-imino gold carbene. These features are more pronounced for anthranil and 4,5-dihydro-1,2,4-oxadiazole reactions. Strikingly, in the 4,5-dihydro-1,2,4-oxadiazole reaction the significant drop of energy is due to the formation of an unstable α-imino gold carbene, which after a spontaneous benzaldehyde elimination is converted to a stabilized one. Compared to anthranil, the reaction pathways for 1,2,4-oxadiazoles or 4,5-dihydro-1,2,4-oxadiazoles are found to be significantly more complex than anticipated in the original research. For instance, compared to the formation of a five-member ring from the α-imino gold carbene, one competitive route involves the formation of intermediates consisting of a four-member ring condensed with a three-member ring, which after a metathesis and ring expansion led to the imidazole ring.
Collapse
|
47
|
Cai X, Li G, Hu W, Zhu Y. Catalytic Conversion of CO 2 over Atomically Precise Gold-Based Cluster Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Guangjun Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Weigang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
48
|
Hou J, Egemole FO, Eyimegwu FM, Yun J, Jang W, Byun H, Kim J. Experimental Selection of Bases for Colloidal Gold‐Polymer Composite Catalyst in Homocoupling Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202202370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jian Hou
- School of Intelligent Manufacturing Luoyang Institute of Science and Technology Luoyang 471023 China
- Department of Chemical Engineering Keimyung University 2800 Dalgubeol Daero Daegu 42601 South Korea
| | - Franklin O. Egemole
- Department of Chemistry Illinois State University 4160 Campus Box Normal IL 61790, U.S.A
| | - Faith M. Eyimegwu
- Department of Chemistry Illinois State University 4160 Campus Box Normal IL 61790, U.S.A
| | - Jaehan Yun
- Department of Chemical Engineering Keimyung University 2800 Dalgubeol Daero Daegu 42601 South Korea
- Department of Chemistry Illinois State University 4160 Campus Box Normal IL 61790, U.S.A
| | - Wongi Jang
- Department of Chemical Engineering Keimyung University 2800 Dalgubeol Daero Daegu 42601 South Korea
- Department of Chemistry Illinois State University 4160 Campus Box Normal IL 61790, U.S.A
| | - Hongsik Byun
- Department of Chemical Engineering Keimyung University 2800 Dalgubeol Daero Daegu 42601 South Korea
| | - Jun‐Hyun Kim
- Department of Chemistry Illinois State University 4160 Campus Box Normal IL 61790, U.S.A
| |
Collapse
|
49
|
Asadi Z, Sadjadi S, Nekoomanesh‐Haghighi M, Posada‐Pérez S, Solà M, Bahri‐Laleh N, Poater A. Lubricant hydrogenation over a functionalized clay‐based Pd catalyst: A combined computational and experimental study. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zahra Asadi
- Polymerization Engineering Department Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| | - Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals Iran Polymer and Petrochemical Institute Tehran Iran
| | | | - Sergio Posada‐Pérez
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Girona Catalonia Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Girona Catalonia Spain
| | - Naeimeh Bahri‐Laleh
- Polymerization Engineering Department Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Girona Catalonia Spain
| |
Collapse
|
50
|
Dinuclear Silver(I) and Gold(I) Complexes with Chiral Oxazoline-NHC Ligands. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|