1
|
Foroutan Kalourazi A, Amirabbas Nazemi S, Unniram Parambil AR, Ferrer M, Shahangian SS, Shahgaldian P. Exploring the Potential of Various Cyclodextrin-Based Derivatives in Enzyme Supramolecular Engineering. Chembiochem 2024:e202400840. [PMID: 39607041 DOI: 10.1002/cbic.202400840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Enzyme stability and activity are pivotal factors for their implementation in different industrial applications. Enzyme supramolecular engineering relies on the fabrication of a tailor-made enzyme nano-environment to ensure enzyme stability without impairing activity. Cyclodextrins (CDs), cyclic oligomers of glucose, act as protein chaperones and stabilize, upon interaction with hydrophobic amino acid residues exposed at the protein surface, its three-dimensional structure. When used to build an organosilica layer shielding an enzyme, they enhance the protective effect of this layer. In the present study, we systematically assessed the protective effects of three organosilane derivatives based on ɑ-, β- and γ-CDs. A model lipase enzyme was immobilized at the surface of silica nanoparticles and shielded in an organosilica layer containing these organosilanes. Besides layer thickness optimization, the effect of different stressors (i. e., temperature, SDS, urea) was tested. Our results showed that organosilica layers produced with CDs improve enzyme thermal stability. They also support enzyme refolding after denaturation under chaotic conditions. Additionally, we demonstrated that the protective effect of the smallest CD derivative tested, namely ɑ-CD, surpassed the other macrocycles studied for conferring the immobilized enzyme with higher resistance to stress conditions. This protection strategy was also applied to a thermostable β-galactosidase enzyme.
Collapse
Affiliation(s)
| | - Seyed Amirabbas Nazemi
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, CH-4132, Switzerland
| | - Ajmal Roshan Unniram Parambil
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, CH-4132, Switzerland
- Swiss Nanoscience Institute, Klingelbergstrasse 82, Basel, CH-4056, Switzerland
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), Consejo Superior de Investigaciones Científicas - CSIC, Marie Curie 2, ES-28049, Madrid, Spain
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Patrick Shahgaldian
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, CH-4132, Switzerland
- Swiss Nanoscience Institute, Klingelbergstrasse 82, Basel, CH-4056, Switzerland
| |
Collapse
|
2
|
Sahoo ST, Sinku A, Daw P. A catalytic approach for the dehydrogenative upgradation of crude glycerol to lactate and hydrogen generation. RSC Adv 2024; 14:37082-37086. [PMID: 39569106 PMCID: PMC11577341 DOI: 10.1039/d4ra07028c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
The ambiguous nature of non-innocent ligand catalysts provides an excellent strategy for developing an efficient catalyst system featuring extended applicability in sustainable catalysis. In this study, we unveil the catalytic activity of an NNN-Ru catalyst for lactic acid synthesis from a mixture of glycerol, ethylene glycol, and methanol. The developed strategy was also implemented to synthesize lactate (up to 80% yield) with good selectivity via the dehydrogenative upgradation of a crude glycerol and ethylene glycol mixture. As an extended utility, the method was utilized for lactate synthesis from triglyceride directly with hydrogen gas generation.
Collapse
Affiliation(s)
- Satabdee Tanaya Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur Transit Campus, (Govt. ITI Building), Engineering School Junction Berhampur 760010 Odisha India
| | - Anurita Sinku
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur Transit Campus, (Govt. ITI Building), Engineering School Junction Berhampur 760010 Odisha India
| | - Prosenjit Daw
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur Transit Campus, (Govt. ITI Building), Engineering School Junction Berhampur 760010 Odisha India
| |
Collapse
|
3
|
Moniruzzaman M, Afrin S, Hossain S, Yoon KS. A Comprehensive Review of CO 2 Hydrogenation into Formate/Formic Acid Catalyzed by Whole Cell Bacteria. Chem Asian J 2024; 19:e202400468. [PMID: 39080499 DOI: 10.1002/asia.202400468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/21/2024] [Indexed: 10/23/2024]
Abstract
The increasing levels of carbon dioxide (CO2) in the atmosphere, primarily due to the use of fossil fuels, pose a significant threat to the environment and necessitate urgent action to mitigate climate change. Carbon capture and utilization technologies that can convert CO2 into economically valuable compounds have gained attention as potential solutions. Among these technologies, biocatalytic CO2 hydrogenation using bacterial whole cells shows promise for the efficient conversion of CO2 into formate, a valuable chemical compound. Although it was discovered nearly a century ago, comprehensive reviews focusing on the utilization of whole-cell bacteria as the biocatalyst in this area remain relatively limited. Therefore, this review provides an analysis of the progress, strategies, and key findings in this field. It covers the use of living cells, resting cells, or genetically modified bacteria as biocatalysts to convert CO2 into formate, either naturally or with the integration of electrochemical and protochemical techniques as sources of protons and electrons. By consolidating the current knowledge in this field, this review article aims to serve as a valuable resource for researchers and practitioners interested in understanding the recent progress, challenges, and potential applications of bacterial whole cell catalyzed CO2 hydrogenation into formate.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Mitsui Chemicals, Inc. Carbon Neutral Research Center (MCI-CNRC), International Institution for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Sadia Afrin
- Department of Chemistry, University of South Dakota, 414 E, Clark Street, Vermillion, SD, 57069, USA
| | - Saddam Hossain
- Department of Chemistry, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Ki-Seok Yoon
- Mitsui Chemicals, Inc. Carbon Neutral Research Center (MCI-CNRC), International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
4
|
Gultekin Subasi B, Bilgin AB, Günal-Köroğlu D, Saricaoglu B, Haque S, Esatbeyoglu T, Capanoglu E. Effect of sonoprocessing on the quality of plant-based analog foods: Compatibility to sustainable development goals, drawbacks and limitations. ULTRASONICS SONOCHEMISTRY 2024; 110:107033. [PMID: 39255592 DOI: 10.1016/j.ultsonch.2024.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
Sonoprocessing (US), as one of the most well-known and widely used green processing techniques, has tremendous benefits to be used in the food industry. The urgent call for global sustainable food production encourages the usage of such techniques more often and effectively. Using ultrasound as a hurdle technology synergistically with other green methods is crucial to improving the efficiency of the protein shift as well as the number of plant-based analog foods (PBAFs) against conventional products. It was revealed that the US has a significant impact when used as an assistant tool with other green technologies rather than being used alone. It increases the protein extraction efficiencies from plant biomasses, improves the techno-functional properties of food compounds, and makes them more applicable for industrial-scale alternative food production in the circular economy. The US aligns well with the objectives outlined in the UN's Sustainable Development Goals (SDGs), and Planetary Boundaries (PBs) framework, demonstrating promising outcomes in life cycle assessment. However, several challenges such as uncontrolled complex matrix effect, free radical formation, uncontrolled microbial growth/germination or off-flavor formation, removal of aromatic compounds, and Maillard reaction, are revealed in an increased number of studies, all of which need to be considered. In addition to a variety of advantages, this review also discusses the drawbacks and limitations of US focusing on PBAF production.
Collapse
Affiliation(s)
- Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Aysenur Betul Bilgin
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Beyza Saricaoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye; Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| |
Collapse
|
5
|
Wang H, Zhan W, Jiang S, Deng K, Wang Z, Xu Y, Yu H, Wang L. Heterointerface-Rich Ni 3N/WO 3 Hierarchical Nanoarrays for Efficient Glycerol Oxidation-Assisted Alkaline Hydrogen Evolution. CHEMSUSCHEM 2024; 17:e202400624. [PMID: 38616165 DOI: 10.1002/cssc.202400624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Glycerol oxidation-assisted water electrolysis has emerged as a cost-effective way of co-producing green hydrogen and HCOOH. Still, preparing highly selective and stable nickel-based metal electrocatalysts remains a challenge. Herein, heterostructure Ni3N/WO3 nanosheet arrays of bifunctional catalysts with large specific surface areas loaded on nickel foam (denoted as Ni3N/WO3/NF) were synthesized. This catalyst was for glycerol oxidation reaction (GOR) and hydrogen evolution reaction (HER) with excellent catalytic performance, a voltage saving of 267 mV compared to oxygen evolution reaction (OER), and a HER overpotential of 104 mV at 100 mA cm-2. The cell voltage in the assembled GOR//HER hybrid electrolysis system reaches 100 mA cm-2 at 1.50 V, 296 mV lower than the potential required for overall water splitting. This work demonstrates that replacing GOR with OER using a cost-effective and highly active Ni-based bifunctional electrocatalyst can make hybrid water electrolysis an energy-efficient, sustainable, and green strategy for hydrogen production.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| | - Wenjie Zhan
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| | - Shaojian Jiang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| |
Collapse
|
6
|
Fernandes GFS, Kim SH, Castagnolo D. Harnessing biocatalysis as a green tool in antibiotic synthesis and discovery. RSC Adv 2024; 14:30396-30410. [PMID: 39318457 PMCID: PMC11420778 DOI: 10.1039/d4ra04824e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Biocatalysis offers a sustainable approach to drug synthesis, leveraging the high selectivity and efficiency of enzymes. This review explores the application of biocatalysis in the early-stage synthesis of antimicrobial compounds, emphasizing its advantages over traditional chemical methods. We discuss various biocatalysts, including enzymes and whole-cell systems, and their role in the selective functionalization and preparation of antimicrobials and antibacterial building blocks. The review underscores the potential of biocatalysis to advance the development of new antibiotics and suggests directions and potential applications of enzymes in drug development.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
- School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | - Seong-Heun Kim
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London 150 Stamford Street London SE1 9NH UK
| | - Daniele Castagnolo
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
7
|
Moreira RC, Leonardi GR, Bicas JL. Lipase-mediated alcoholysis for in situ production of ester bioaromas in licuri oil for cosmetic applications. J Biotechnol 2024; 392:25-33. [PMID: 38876312 DOI: 10.1016/j.jbiotec.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Bioaromas can be produced by lipases either through their hydrolytic or (trans)esterifying activities. Therefore, this work reports the development of a lipase-catalyzed biotransformed licuri oil, forming volatile ethyl esters with odor notes resembling tropical fruits. Ethyl octanoate formation was promoted when 7.0 % (m/v) Lipozyme 435® was used to convert a grain alcohol:licuri oil mixture (51:49, v/v) at 58ºC and 70 rpm for 6 hours. The biotransformed oil has shown antimicrobial activity against Staphylococcus hominis, S. epidermidis, and Corynebacterium xerosis, bacteria associated with bad skin odor. Finally, this biotransformed oil was used without further treatments (e.g., recovery or purification procedures) to prepare two cosmetic formulations (in a dosage of 1.5 %), aiming for both fragrant and deodorant activity.
Collapse
Affiliation(s)
- Rafael Chelala Moreira
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition, Monteiro Lobato Street, 80, Campinas, SP 13083-862, Brazil
| | - Gislaine Ricci Leonardi
- University of Campinas, School of Pharmaceutical Science, Candido Portinari Street, 200, Campinas, SP 13083-871, Brazil
| | - Juliano Lemos Bicas
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition, Monteiro Lobato Street, 80, Campinas, SP 13083-862, Brazil.
| |
Collapse
|
8
|
Gao R, Kou X, Huang S, Chen G, Ouyang G. Developing Covalent Organic Framework Biocatalysts through Enzyme Encapsulation. Chembiochem 2024; 25:e202400339. [PMID: 38801661 DOI: 10.1002/cbic.202400339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Utilizing covalent organic frameworks (COFs) as porous supports to encapsulate enzyme represents an advanced strategy for constructing COFs biocatalysts, which has inspired numerous interests across various applications. As the structural advantages including ultrastable covalent-bonded linkage, tailorable pore structure, and metal-free biocompatibility, the resultant enzyme-COFs biocatalysts showcase functional enhancement in catalytic activity, chemical stability, long-term durability, and recyclability. This Concept describes the recent advances in the methodological strategies for engineering the COFs biocatalysts, with specific emphasis on the pore entrapment and in situ encapsulation strategies. The structural advantages of the COFs hybrid biocatalysts for organic synthesis, environment- and energy-associated applications are also canvassed. Additionally, the remaining challenges and the forward-looking directions in this field are also discussed. We believe that this Concept can offer useful methodological guidance for developing active and robust COFs biocatalysts.
Collapse
Affiliation(s)
- Rui Gao
- School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, Schoolof Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
9
|
Yan ZX, Li M, Wei HY, Peng SY, Xu DJ, Zhang B, Cheng X. Characterization and Antioxidant Activity of the Polysaccharide Hydrolysate from Lactobacillus plantarum LPC-1 and Their Effect on Spinach (Spinach oleracea L.) Growth. Appl Biochem Biotechnol 2024; 196:6151-6173. [PMID: 38194184 DOI: 10.1007/s12010-023-04843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
This study presents a comparison between two hydrolysis systems (MnO2/H2O2 and ascorbic acid (VC)/H2O2) for the depolymerization of exopolysaccharide (EPS) from Lactobacillus plantarum LPC-1. Response surface methodology (RSM) was used to optimize these two degradation systems, resulting in two H2O2-free degradation products, MEPS (MnO2/H2O2-treated EPS) and VEPS (VC/H2O2-treated EPS), where H2O2 residues in the final products and their antioxidant activity were considered vital points. The relationship between the structural variations of two degraded polysaccharides and their antioxidant activity was characterized. Physicochemical tests showed that H2O2 had a notable impact on determining the total and reducing sugars in the polysaccharides, and both degradation systems efficiently eliminated this effect. After optimization, the average molecular weight of EPS was reduced from 265.75 kDa to 135.41 kDa (MEPS) and 113.11 kDa (VEPS), improving its antioxidant properties. Characterization results showed that the two hydrolysis products had similar major functional groups and monosaccharide composition as EPS. The crystal structure, main chain length, and branched chain number were crucial factors affecting the biological activity of polysaccharides. In pot testing, two degraded polysaccharides improved spinach quality more than EPS due to their lower molecular weights, suggesting the advantages of low-molecular-weight polysaccharides. In summary, these two degradation techniques offer valuable insights for further expanding the utilization of microbial resources.
Collapse
Affiliation(s)
- Zu-Xuan Yan
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Min Li
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hong-Yu Wei
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuai-Ying Peng
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Duan-Jun Xu
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bao Zhang
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Cheng
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
10
|
Ng IS, Wang PH, Ting WW, Juo JJ. Recent progress in one-pot enzymatic synthesis and regeneration of high-value cofactors. Trends Biotechnol 2024:S0167-7799(24)00217-8. [PMID: 39214790 DOI: 10.1016/j.tibtech.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
One-pot enzymatic synthesis is flourishing in synthetic chemistry, heralding a sustainable and green era. Recent advancements enable the creation of complex enzymatic prosthetic groups and regeneration of enzymatic cofactors such as S-adenosylmethionine. The next frontier is to develop the effective and innovative cofactors for essential micronutrients, metabolic modulators, and biomedicines.
Collapse
Affiliation(s)
- I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China.
| | - Po-Hsiang Wang
- Department of Chemical Engineering and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, Republic of China; Graduate Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan, Republic of China.
| | - Wan-Wen Ting
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Jiun-Jang Juo
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| |
Collapse
|
11
|
Oehlmann NN, Schmidt FV, Herzog M, Goldman AL, Rebelein JG. The iron nitrogenase reduces carbon dioxide to formate and methane under physiological conditions: A route to feedstock chemicals. SCIENCE ADVANCES 2024; 10:eado7729. [PMID: 39141735 PMCID: PMC11323892 DOI: 10.1126/sciadv.ado7729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Nitrogenases are the only known enzymes that reduce molecular nitrogen (N2) to ammonia. Recent findings have demonstrated that nitrogenases also reduce the greenhouse gas carbon dioxide (CO2), suggesting CO2 to be a competitor of N2. However, the impact of omnipresent CO2 on N2 fixation has not been investigated to date. Here, we study the competing reduction of CO2 and N2 by the two nitrogenases of Rhodobacter capsulatus, the molybdenum and the iron nitrogenase. The iron nitrogenase is almost threefold more efficient in CO2 reduction and profoundly less selective for N2 than the molybdenum isoform under mixtures of N2 and CO2. Correspondingly, the growth rate of diazotrophically grown R. capsulatus strains relying on the iron nitrogenase notably decreased after adding CO2. The in vivo CO2 activity of the iron nitrogenase facilitates the light-driven extracellular accumulation of formate and methane, one-carbon substrates for other microbes, and feedstock chemicals for a circular economy.
Collapse
Affiliation(s)
- Niels N. Oehlmann
- Research Group Microbial Metalloenzymes, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Frederik V. Schmidt
- Research Group Microbial Metalloenzymes, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Marcello Herzog
- Research Group Microbial Metalloenzymes, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Annelise L. Goldman
- Research Group Microbial Metalloenzymes, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Johannes G. Rebelein
- Research Group Microbial Metalloenzymes, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
12
|
Fontana J, Sparkman-Yager D, Faulkner I, Cardiff R, Kiattisewee C, Walls A, Primo TG, Kinnunen PC, Garcia Martin H, Zalatan JG, Carothers JM. Guide RNA structure design enables combinatorial CRISPRa programs for biosynthetic profiling. Nat Commun 2024; 15:6341. [PMID: 39068154 PMCID: PMC11283517 DOI: 10.1038/s41467-024-50528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Engineering metabolism to efficiently produce chemicals from multi-step pathways requires optimizing multi-gene expression programs to achieve enzyme balance. CRISPR-Cas transcriptional control systems are emerging as important tools for programming multi-gene expression, but poor predictability of guide RNA folding can disrupt expression control. Here, we correlate efficacy of modified guide RNAs (scRNAs) for CRISPR activation (CRISPRa) in E. coli with a computational kinetic parameter describing scRNA folding rate into the active structure (rS = 0.8). This parameter also enables forward design of scRNAs, allowing us to design a system of three synthetic CRISPRa promoters that can orthogonally activate (>35-fold) expression of chosen outputs. Through combinatorial activation tuning, we profile a three-dimensional design space expressing two different biosynthetic pathways, demonstrating variable production of pteridine and human milk oligosaccharide products. This RNA design approach aids combinatorial optimization of metabolic pathways and may accelerate routine design of effective multi-gene regulation programs in bacterial hosts.
Collapse
Affiliation(s)
- Jason Fontana
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - David Sparkman-Yager
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Ian Faulkner
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Ryan Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Cholpisit Kiattisewee
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Aria Walls
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Tommy G Primo
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Patrick C Kinnunen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA, USA
- DOE Agile BioFoundry, Emeryville, CA, USA
| | - Hector Garcia Martin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA, USA
- DOE Agile BioFoundry, Emeryville, CA, USA
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA.
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA.
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Iqbal T, Murugan S, Das D. A chimeric membrane enzyme and an engineered whole-cell biocatalyst for efficient 1-alkene production. SCIENCE ADVANCES 2024; 10:eadl2492. [PMID: 38924395 PMCID: PMC11204201 DOI: 10.1126/sciadv.adl2492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Bioproduction of 1-alkenes from naturally abundant free fatty acids offers a promising avenue toward the next generation of hydrocarbon-based biofuels and green commodity chemicals. UndB is the only known membrane-bound 1-alkene-producing enzyme, with great potential for 1-alkene bioproduction, but the enzyme exhibits limited turnovers, thus restricting its widespread usage. Here, we explore the molecular basis of the limitation of UndB activity and substantially improve its catalytic power. We establish that the enzyme undergoes peroxide-mediated rapid inactivation during catalysis. To counteract this inactivation, we engineered a chimeric membrane enzyme by conjugating UndB with catalase that protected UndB against peroxide and enhanced its number of turnovers tremendously. Notably, our chimeric enzyme is the only example of a membrane enzyme successfully engineered with catalase. We subsequently constructed a whole-cell biocatalytic system and achieved remarkable efficiencies (up to 95%) in the biotransformation of a wide range of fatty acids (both aliphatic and aromatic) into corresponding 1-alkenes with numerous biotechnological applications.
Collapse
Affiliation(s)
- Tabish Iqbal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | | |
Collapse
|
14
|
Guo L, He R, Chen G, Yang H, Kou X, Huang W, Gao R, Huang S, Huang S, Zhu F, Ouyang G. A Synergetic Pore Compartmentalization and Hydrophobization Strategy for Synchronously Boosting the Stability and Activity of Enzyme. J Am Chem Soc 2024; 146:17189-17200. [PMID: 38864358 DOI: 10.1021/jacs.4c03286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Spatial immobilization of fragile enzymes using a nanocarrier is an efficient means to design heterogeneous biocatalysts, presenting superior stability and recyclability to pristine enzymes. An immobilized enzyme, however, usually compromises its catalytic activity because of inevasible mass transfer issues and the unfavorable conformation changes in a confined environment. Here, we describe a synergetic metal-organic framework pore-engineering strategy to trap lipase (an important hydrolase), which confers lipase-boosted stability and activity simultaneously. The hierarchically porous NU-1003, featuring interconnected mesopore and micropore channels, is precisely modified by chain-adjustable fatty acids on its mesopore channel, into which lipase is trapped. The interconnected pore structure ensures efficient communication between trapped lipase and exterior media, while the fatty acid-mediated hydrophobic pore can activate the opening conformation of lipase by interfacial interaction. Such dual pore compartmentalization and hydrophobization activation effects render the catalytic center of trapped lipase highly accessible, resulting in 1.57-fold and 2.46-fold activities as native lipase on ester hydrolysis and enantioselective catalysis. In addition, the feasibility of these heterogeneous biocatalysts for kinetic resolution of enantiomer is also validated, showing much higher efficiency than native lipase.
Collapse
Affiliation(s)
- Lihong Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongwei He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Huangsheng Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Rui Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuyao Huang
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center), Guangzhou 510070, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou 511436, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
15
|
Swoboda A, Zwölfer S, Duhović Z, Bürgler M, Ebner K, Glieder A, Kroutil W. Multistep Biooxidation of 5-(Hydroxymethyl)furfural to 2,5-Furandicarboxylic Acid with H 2O 2 by Unspecific Peroxygenases. CHEMSUSCHEM 2024; 17:e202400156. [PMID: 38568785 DOI: 10.1002/cssc.202400156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
5-(Hydroxymethyl)furfural (HMF) is a key platform chemical derived from renewable biomass sources, holding great potential as starting material for the synthesis of valuable compounds, thereby replacing petrochemical-derived counterparts. Among these valorised compounds, 2,5-furandicarboxylic acid (FDCA) has emerged as a versatile building block. Here we demonstrate the biocatalytic synthesis of FDCA from HMF via a one-pot three-step oxidative cascade performed via two operative steps under mild reaction conditions employing two unspecific peroxygenases (UPOs) using hydrogen peroxide as the only oxidant. The challenge of HMF oxidation by UPOs is the chemoselectivity of the first step, as one of the two possible oxidation products is only a poor substrate for further oxidation. The unspecific peroxygenase from Marasmius oreades (MorUPO) was found to oxidize 100 mM of HMF to 5-formyl-2-furoic acid (FFCA) with 95 % chemoselectivity. In the sequential one-pot cascade employing MorUPO (TON up to 13535) and the UPO from Agrocybe aegerita (AaeUPO, TON up to 7079), 100 mM of HMF were oxidized to FDCA reaching up to 99 % conversion and yielding 861 mg isolated pure crystalline FDCA, presenting the first example of a gram scale biocatalytic synthesis of FDCA involving UPOs.
Collapse
Affiliation(s)
- Alexander Swoboda
- Austrian Center of Industrial Biotechnology (ACIB GmbH), c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Silvie Zwölfer
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Zerina Duhović
- Austrian Center of Industrial Biotechnology (ACIB GmbH), c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Moritz Bürgler
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Katharina Ebner
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Anton Glieder
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Wolfgang Kroutil
- Austrian Center of Industrial Biotechnology (ACIB GmbH), c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria
| |
Collapse
|
16
|
Nerke P, Korb J, Haala F, Hubmann G, Lütz S. Metabolic bottlenecks of Pseudomonas taiwanensis VLB120 during growth on d-xylose via the Weimberg pathway. Metab Eng Commun 2024; 18:e00241. [PMID: 39021639 PMCID: PMC11252243 DOI: 10.1016/j.mec.2024.e00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
The microbial production of value-added chemicals from renewable feedstocks is an important step towards a sustainable, bio-based economy. Therefore, microbes need to efficiently utilize lignocellulosic biomass and its dominant constituents, such as d-xylose. Pseudomonas taiwanensis VLB120 assimilates d-xylose via the five-step Weimberg pathway. However, the knowledge about the metabolic constraints of the Weimberg pathway, i.e., its regulation, dynamics, and metabolite fluxes, is limited, which hampers the optimization and implementation of this pathway for bioprocesses. We characterized the Weimberg pathway activity of P. taiwanensis VLB120 in terms of biomass growth and the dynamics of pathway intermediates. In batch cultivations, we found excessive accumulation of the intermediates d-xylonolactone and d-xylonate, indicating bottlenecks in d-xylonolactone hydrolysis and d-xylonate uptake. Moreover, the intermediate accumulation was highly dependent on the concentration of d-xylose and the extracellular pH. To encounter the apparent bottlenecks, we identified and overexpressed two genes coding for putative endogenous xylonolactonases PVLB_05820 and PVLB_12345. Compared to the control strain, the overexpression of PVLB_12345 resulted in an increased growth rate and biomass generation of up to 30 % and 100 %, respectively. Next, d-xylonate accumulation was decreased by overexpressing two newly identified d-xylonate transporter genes, PVLB_18545 and gntP (PVLB_13665). Finally, we combined xylonolactonase overexpression with enhanced uptake of d-xylonate by knocking out the gntP repressor gene gntR (PVLB_13655) and increased the growth rate and biomass yield by 50 % and 24 % in stirred-tank bioreactors, respectively. Our study contributes to the fundamental knowledge of the Weimberg pathway in pseudomonads and demonstrates how to encounter the metabolic bottlenecks of the Weimberg pathway to advance strain developments and cell factory design for bioprocesses on renewable feedstocks.
Collapse
Affiliation(s)
- Philipp Nerke
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Jonas Korb
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Frederick Haala
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Georg Hubmann
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| |
Collapse
|
17
|
Hamrick GS, Maddamsetti R, Son HI, Wilson ML, Davis HM, You L. Programming Dynamic Division of Labor Using Horizontal Gene Transfer. ACS Synth Biol 2024; 13:1142-1151. [PMID: 38568420 DOI: 10.1021/acssynbio.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The metabolic engineering of microbes has broad applications, including biomanufacturing, bioprocessing, and environmental remediation. The introduction of a complex, multistep pathway often imposes a substantial metabolic burden on the host cell, restraining the accumulation of productive biomass and limiting pathway efficiency. One strategy to alleviate metabolic burden is the division of labor (DOL) in which different subpopulations carry out different parts of the pathway and work together to convert a substrate into a final product. However, the maintenance of different engineered subpopulations is challenging due to competition and convoluted interstrain population dynamics. Through modeling, we show that dynamic division of labor (DDOL), which we define as the DOL between indiscrete populations capable of dynamic and reversible interchange, can overcome these limitations and enable the robust maintenance of burdensome, multistep pathways. We propose that DDOL can be mediated by horizontal gene transfer (HGT) and use plasmid genomics to uncover evidence that DDOL is a strategy utilized by natural microbial communities. Our work suggests that bioengineers can harness HGT to stabilize synthetic metabolic pathways in microbial communities, enabling the development of robust engineered systems for deployment in a variety of contexts.
Collapse
Affiliation(s)
- Grayson S Hamrick
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Rohan Maddamsetti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Hye-In Son
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Maggie L Wilson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Harris M Davis
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27708, United States
| |
Collapse
|
18
|
Nguyen DT, Mitchell DA, van der Donk WA. Genome Mining for New Enzyme Chemistry. ACS Catal 2024; 14:4536-4553. [PMID: 38601780 PMCID: PMC11002830 DOI: 10.1021/acscatal.3c06322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 04/12/2024]
Abstract
A revolution in the field of biocatalysis has enabled scalable access to compounds of high societal values using enzymes. The construction of biocatalytic routes relies on the reservoir of available enzymatic transformations. A review of uncharacterized proteins predicted from genomic sequencing projects shows that a treasure trove of enzyme chemistry awaits to be uncovered. This Review highlights enzymatic transformations discovered through various genome mining methods and showcases their potential future applications in biocatalysis.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute at the University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Gasteazoro F, Catucci G, Barbieri L, De Angelis M, Dalla Costa A, Sadeghi SJ, Gilardi G, Valetti F. Cascade reactions with two non-physiological partners for NAD(P)H regeneration via renewable hydrogen. Biotechnol J 2024; 19:e2300567. [PMID: 38581100 DOI: 10.1002/biot.202300567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/08/2024]
Abstract
An attractive application of hydrogenases, combined with the availability of cheap and renewable hydrogen (i.e., from solar and wind powered electrolysis or from recycled wastes), is the production of high-value electron-rich intermediates such as reduced nicotinamide adenine dinucleotides. Here, the capability of a very robust and oxygen-resilient [FeFe]-hydrogenase (CbA5H) from Clostridium beijerinckii SM10, previously identified in our group, combined with a reductase (BMR) from Bacillus megaterium (now reclassified as Priestia megaterium) was tested. The system shows a good stability and it was demonstrated to reach up to 28 ± 2 nmol NADPH regenerated s-1 mg of hydrogenase-1 (i.e., 1.68 ± 0.12 U mg-1, TOF: 126 ± 9 min-1) and 0.46 ± 0.04 nmol NADH regenerated s-1 mg of hydrogenase-1 (i.e., 0.028 ± 0.002 U mg-1, TOF: 2.1 ± 0.2 min-1), meaning up to 74 mg of NADPH and 1.23 mg of NADH produced per hour by a system involving 1 mg of CbA5H. The TOF is comparable with similar systems based on hydrogen as regenerating molecule for NADPH, but the system is first of its kind as for the [FeFe]-hydrogenase and the non-physiological partners used. As a proof of concept a cascade reaction involving CbA5H, BMR and a mutant BVMO from Acinetobacter radioresistens able to oxidize indole is presented. The data show how the cascade can be exploited for indigo production and multiple reaction cycles can be sustained using the regenerated NADPH.
Collapse
Affiliation(s)
- Francisco Gasteazoro
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- CICATA Unidad Morelos, Instituto Politécnico Nacional, Mexico D. F., Mexico
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Lisa Barbieri
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- University School for Advanced Studies IUSS Pavia, Pavia, Italy
| | - Melissa De Angelis
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | - Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Francesca Valetti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
20
|
Wu W, Tong Y, Chen P. Regulation Strategy of Nanostructured Engineering on Indium-Based Materials for Electrocatalytic Conversion of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305562. [PMID: 37845037 DOI: 10.1002/smll.202305562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Indexed: 10/18/2023]
Abstract
Electrochemical carbon dioxide reduction (CO2 RR), as an emerging technology, can combine with sustainable energies to convert CO2 into high value-added products, providing an effective pathway to realize carbon neutrality. However, the high activation energy of CO2 , low mass transfer, and competitive hydrogen evolution reaction (HER) leads to the unsatisfied catalytic activity. Recently, Indium (In)-based materials have attracted significant attention in CO2 RR and a series of regulation strategies of nanostructured engineering are exploited to rationally design various advanced In-based electrocatalysts, which forces the necessary of a comprehensive and fundamental summary, but there is still a scarcity. Herein, this review provides a systematic discussion of the nanostructure engineering of In-based materials for the efficient electrocatalytic conversion of CO2 to fuels. These efficient regulation strategies including morphology, size, composition, defects, surface modification, interfacial structure, alloying, and single-atom structure, are summarized for exploring the internal relationship between the CO2 RR performance and the physicochemical properties of In-based catalysts. The correlation of electronic structure and adsorption behavior of reaction intermediates are highlighted to gain in-depth understanding of catalytic reaction kinetics for CO2 RR. Moreover, the challenges and opportunities of In-based materials are proposed, which is expected to inspire the development of other effective catalysts for CO2 RR.
Collapse
Affiliation(s)
- Wenbo Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yun Tong
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Pengzuo Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
21
|
Zhou Y, Zhou S, Lyons S, Sun H, Sweedler JV, Lu Y. Enhancing 2-Pyrone Synthase Efficiency by High-Throughput Mass-Spectrometric Quantification and In Vitro/In Vivo Catalytic Performance Correlation. Chembiochem 2024; 25:e202300849. [PMID: 38116888 DOI: 10.1002/cbic.202300849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Engineering efficient biocatalysts is essential for metabolic engineering to produce valuable bioproducts from renewable resources. However, due to the complexity of cellular metabolic networks, it is challenging to translate success in vitro into high performance in cells. To meet such a challenge, an accurate and efficient quantification method is necessary to screen a large set of mutants from complex cell culture and a careful correlation between the catalysis parameters in vitro and performance in cells is required. In this study, we employed a mass-spectrometry based high-throughput quantitative method to screen new mutants of 2-pyrone synthase (2PS) for triacetic acid lactone (TAL) biosynthesis through directed evolution in E. coli. From the process, we discovered two mutants with the highest improvement (46 fold) in titer and the fastest kcat (44 fold) over the wild type 2PS, respectively, among those reported in the literature. A careful examination of the correlation between intracellular substrate concentration, Michaelis-Menten parameters and TAL titer for these two mutants reveals that a fast reaction rate under limiting intracellular substrate concentrations is important for in-cell biocatalysis. Such properties can be tuned by protein engineering and synthetic biology to adopt these engineered proteins for the maximum activities in different intracellular environments.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX 78712, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
| | - Shuaizhen Zhou
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
| | - Scott Lyons
- Department of Molecular Bioscience, The University of Texas at Austin, 100 E 24th St, Austin, TX 78712, USA
| | - Haoran Sun
- Department of Molecular Bioscience, The University of Texas at Austin, 100 E 24th St, Austin, TX 78712, USA
| | - Jonathan V Sweedler
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX 78712, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
| |
Collapse
|
22
|
Singh S, Kumar Sharma P, Chaturvedi S, Kumar P, Deepak Nannaware A, Kalra A, Kumar Rout P. Biocatalyst for the synthesis of natural flavouring compounds as food additives: Bridging the gap for a more sustainable industrial future. Food Chem 2024; 435:137217. [PMID: 37832337 DOI: 10.1016/j.foodchem.2023.137217] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 10/15/2023]
Abstract
Biocatalysis entails the use of purified enzymes in the manufacturing of flavouring chemicals food industry as well as at the laboratory level. These biocatalysts can significantly accelerate organic chemical processes and improve product stereospecificity. The unique characteristics of biocatalyst helpful in synthesizing the environmentally friendly flavour and aroma compounds used as a food additive in foodstuffs. With methods like enzyme engineering on biotechnological interventions the efficient tuning of produce will fulfil the needs of food industry. This review summarizes the biosynthesis of different flavour and aroma component through microbial catalysts and using advanced techniques which are available for enzyme improvement. Also pointing out their benefits and drawbacks for specific technological processes necessary for successful industrial application of biocatalysts. The article covers the market scenario, cost economics, environmental safety and regulatory framework for the production of food flavoured chemicals by the bioprocess engineering.
Collapse
Affiliation(s)
- Suman Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Praveen Kumar Sharma
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Shivani Chaturvedi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Prashant Kumar
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashween Deepak Nannaware
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alok Kalra
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Prasant Kumar Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
23
|
Rydz J, Sikorska W, Musioł M. Biosynthesis and Biodegradation-Eco-Concept for Polymer Materials. Int J Mol Sci 2024; 25:2674. [PMID: 38473920 DOI: 10.3390/ijms25052674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Polymers have become essential for various aspects of modern life, including packaging, transportation, and electronics [...].
Collapse
Affiliation(s)
- Joanna Rydz
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Wanda Sikorska
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Marta Musioł
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| |
Collapse
|
24
|
Qin Z, Zhou Y, Li Z, Höhne M, Bornscheuer UT, Wu S. Production of Biobased Ethylbenzene by Cascade Biocatalysis with an Engineered Photodecarboxylase. Angew Chem Int Ed Engl 2024; 63:e202314566. [PMID: 37947487 DOI: 10.1002/anie.202314566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Production of commodity chemicals, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), from renewable resources is key for a sustainable society. Biocatalysis enables one-pot multistep transformation of bioresources under mild conditions, yet it is often limited to biochemicals. Herein, we developed a non-natural three-enzyme cascade for one-pot conversion of biobased l-phenylalanine into ethylbenzene. The key rate-limiting photodecarboxylase was subjected to structure-guided semirational engineering, and a triple mutant CvFAP(Y466T/P460A/G462I) was obtained with a 6.3-fold higher productivity. With this improved photodecarboxylase, an optimized two-cell sequential process was developed to convert l-phenylalanine into ethylbenzene with 82 % conversion. The cascade reaction was integrated with fermentation to achieve the one-pot bioproduction of ethylbenzene from biobased glycerol, demonstrating the potential of cascade biocatalysis plus enzyme engineering for the production of biobased commodity chemicals.
Collapse
Affiliation(s)
- Zhaoyang Qin
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, P. R. China
| | - Yi Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, P. R. China
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Matthias Höhne
- Institute of Chemistry, Technische Universität Berlin, Müller-Breslau-Str. 10, 10623, Berlin, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Shuke Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, P. R. China
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17489, Greifswald, Germany
| |
Collapse
|
25
|
Kumokita R, Bamba T, Yasueda H, Tsukida A, Nakagawa K, Kitagawa T, Yoshioka T, Matsuyama H, Yamamoto Y, Maruyama S, Hayashi T, Kondo A, Hasunuma T. High-level phenol bioproduction by engineered Pichia pastoris in glycerol fed-batch fermentation using an efficient pertraction system. BIORESOURCE TECHNOLOGY 2024; 393:130144. [PMID: 38042432 DOI: 10.1016/j.biortech.2023.130144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
This study aimed to establish a high-level phenol bioproduction system from glycerol through metabolic engineering of the yeast Pichia pastoris (Komagataella phaffii). Introducing tyrosine phenol-lyase to P. pastoris led to a production of 59 mg/L of phenol in flask culture. By employing a strain of P. pastoris that overproduces tyrosine-a precursor to phenol-we achieved a phenol production of 1052 mg/L in glycerol fed-batch fermentation. However, phenol concentrations exceeding 1000 mg/L inhibited P. pastoris growth. A phenol pertraction system utilizing a hollow fiber membrane contactor and tributyrin as the organic solvent was developed to reduce phenol concentration in the culture medium. Integrating this system with glycerol fed-batch fermentation resulted in a 214 % increase in phenol titer (3304 mg/L) compared to glycerol fed-batch fermentation alone. These approaches offer a significant framework for the microbial production of chemicals and materials that are highly toxic to microorganisms.
Collapse
Affiliation(s)
- Ryota Kumokita
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takahiro Bamba
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hisashi Yasueda
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, 305-8550, Japan
| | - Ayato Tsukida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Keizo Nakagawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Tooru Kitagawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Yoshioka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yasuhito Yamamoto
- Biotechnology Laboratory, Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, 227-8502, Japan
| | - Satoshi Maruyama
- Biotechnology Laboratory, Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, 227-8502, Japan
| | - Takahiro Hayashi
- Biotechnology Laboratory, Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, 227-8502, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
26
|
Jaroensuk J, Sutthaphirom C, Phonbuppha J, Chinantuya W, Kesornpun C, Akeratchatapan N, Kittipanukul N, Phatinuwat K, Atichartpongkul S, Fuangthong M, Pongtharangkul T, Hollmann F, Chaiyen P. A versatile in situ cofactor enhancing system for meeting cellular demands for engineered metabolic pathways. J Biol Chem 2024; 300:105598. [PMID: 38159859 PMCID: PMC10850783 DOI: 10.1016/j.jbc.2023.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
Cofactor imbalance obstructs the productivities of metabolically engineered cells. Herein, we employed a minimally perturbing system, xylose reductase and lactose (XR/lactose), to increase the levels of a pool of sugar phosphates which are connected to the biosynthesis of NAD(P)H, FAD, FMN, and ATP in Escherichia coli. The XR/lactose system could increase the amounts of the precursors of these cofactors and was tested with three different metabolically engineered cell systems (fatty alcohol biosynthesis, bioluminescence light generation, and alkane biosynthesis) with different cofactor demands. Productivities of these cells were increased 2-4-fold by the XR/lactose system. Untargeted metabolomic analysis revealed different metabolite patterns among these cells, demonstrating that only metabolites involved in relevant cofactor biosynthesis were altered. The results were also confirmed by transcriptomic analysis. Another sugar reducing system (glucose dehydrogenase) could also be used to increase fatty alcohol production but resulted in less yield enhancement than XR. This work demonstrates that the approach of increasing cellular sugar phosphates can be a generic tool to increase in vivo cofactor generation upon cellular demand for synthetic biology.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Chalermroj Sutthaphirom
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Jittima Phonbuppha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Wachirawit Chinantuya
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand; Faculty of Science, Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Mahidol University, Bangkok, Thailand
| | - Chatchai Kesornpun
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Nattanon Akeratchatapan
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Narongyot Kittipanukul
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Kamonwan Phatinuwat
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand
| | | | - Mayuree Fuangthong
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand; Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | | | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
27
|
Cerdán L, Álvarez B, Fernández LÁ. Massive integration of large gene libraries in the chromosome of Escherichia coli. Microb Biotechnol 2024; 17:e14367. [PMID: 37971317 PMCID: PMC10832519 DOI: 10.1111/1751-7915.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
Large gene libraries are frequently created in Escherichia coli plasmids, which can induce cell toxicity and expression instability due to the high gene dosage. To address these limitations, gene libraries can be integrated in a single copy into the bacterial chromosome. Here, we describe an efficient system for the massive integration (MAIN) of large gene libraries in the E. coli chromosome that generates in-frame gene fusions that are expressed stably. MAIN uses a thermosensitive integrative plasmid that is linearized in vivo to promote extensive integration of the gene library via homologous recombination. Positive and negative selections efficiently remove bacteria lacking gene integration in the target site. We tested MAIN with a library of 107 VHH genes that encode nanobodies (Nbs). The integration of VHH genes into a custom target locus of the E. coli chromosome enabled stable expression and surface display of the Nbs. Next-generation DNA sequencing confirmed that MAIN preserved the diversity of the gene library after integration. Finally, we screened the integrated library to select Nbs that bind a specific antigen using magnetic and fluorescence-activated cell sorting. This allowed us to identify Nbs binding the epidermal growth factor receptor that were not previously isolated in a similar screening of a multicopy plasmid library. Our results demonstrate that MAIN enables large gene library integration into the E. coli chromosome, creating stably expressed in-frame fusions for functional screening.
Collapse
Affiliation(s)
- Lidia Cerdán
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Beatriz Álvarez
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Luis Ángel Fernández
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| |
Collapse
|
28
|
Sokolova N, Peng B, Haslinger K. Design and engineering of artificial biosynthetic pathways-where do we stand and where do we go? FEBS Lett 2023; 597:2897-2907. [PMID: 37777818 DOI: 10.1002/1873-3468.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
The production of commodity and specialty chemicals relies heavily on fossil fuels. The negative impact of this dependency on our environment and climate has spurred a rising demand for more sustainable methods to obtain such chemicals from renewable resources. Herein, biotransformations of these renewable resources facilitated by enzymes or (micro)organisms have gained significant attention, since they can occur under mild conditions and reduce waste. These biotransformations typically leverage natural metabolic processes, which limits the scope and production capacity of such processes. In this mini-review, we provide an overview of advancements made in the past 5 years to expand the repertoire of biotransformations in engineered microorganisms. This ranges from redesign of existing pathways driven by retrobiosynthesis and computational design to directed evolution of enzymes and de novo pathway design to unlock novel routes for the synthesis of desired chemicals. We highlight notable examples of pathway designs for the production of commodity and specialty chemicals, showcasing the potential of these approaches. Lastly, we provide an outlook on future pathway design approaches.
Collapse
Affiliation(s)
- Nika Sokolova
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| | - Bo Peng
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| |
Collapse
|
29
|
Wagner N, Wen L, Frazão CJR, Walther T. Next-generation feedstocks methanol and ethylene glycol and their potential in industrial biotechnology. Biotechnol Adv 2023; 69:108276. [PMID: 37918546 DOI: 10.1016/j.biotechadv.2023.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Microbial fermentation processes are expected to play an important role in reducing dependence on fossil-based raw materials for the production of everyday chemicals. In order to meet the growing demand for biotechnological products in the future, alternative carbon sources that do not compete with human nutrition must be exploited. The chemical conversion of the industrially emitted greenhouse gas CO2 into microbially utilizable platform chemicals such as methanol represents a sustainable strategy for the utilization of an abundant carbon source and has attracted enormous scientific interest in recent years. A relatively new approach is the microbial synthesis of products from the C2-compound ethylene glycol, which can also be synthesized from CO2 and non-edible biomass and, in addition, can be recovered from plastic waste. Here we summarize the main chemical routes for the synthesis of methanol and ethylene glycol from sustainable resources and give an overview of recent metabolic engineering work for establishing natural and synthetic microbial assimilation pathways. The different metabolic routes for C1 and C2 alcohol-dependent bioconversions were compared in terms of their theoretical maximum yields and their oxygen requirements for a wide range of value-added products. Assessment of the process engineering challenges for methanol and ethylene glycol-based fermentations underscores the theoretical advantages of new synthetic metabolic routes and advocates greater consideration of ethylene glycol, a C2 substrate that has received comparatively little attention to date.
Collapse
Affiliation(s)
- Nils Wagner
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Linxuan Wen
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Cláudio J R Frazão
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Thomas Walther
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany.
| |
Collapse
|
30
|
Pucci EFQ, Buffo MM, Del Bianco Sousa M, Tardioli PW, Badino AC. An innovative multi-enzymatic system for gluconic acid production from starch using Aspergillus niger whole-cells. Enzyme Microb Technol 2023; 171:110309. [PMID: 37690395 DOI: 10.1016/j.enzmictec.2023.110309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
The use of multi-enzymatic systems for the industrial production of chemical compounds is currently considered an important green tool in synthetic organic chemistry. Gluconic acid is a multi-functional organic acid widely used in the chemical, pharmaceutical, food, textile, and construction industries. Its industrial production from glucose by fermentation using Aspergillus niger has drawbacks including high costs related to cell growth and maintenance of cell viability. This study presents an innovative one-step multi-enzymatic system for gluconic acid production from starch using Aspergillus niger whole-cells in association with amylolytic enzymes. Using soluble starch as substrate, the following results were achieved for 96 h of reaction: 134.5 ± 4.3 g/L gluconic acid concentration, 98.2 ± 1.3 % gluconic acid yield, and 44.8 ± 1.4 gGA/gwhole-cells biocatalyst yield. Although the process has been developed using starch as raw material, the approach is feasible for any substrate or residue that can be hydrolyzed to glucose.
Collapse
Affiliation(s)
| | - Mariane Molina Buffo
- Laboratory of Fermentation Processes, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Marina Del Bianco Sousa
- Laboratory of Fermentation Processes, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Paulo Waldir Tardioli
- Graduate Program in Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil; Laboratory of Enzymatic Processes, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil.
| | - Alberto Colli Badino
- Graduate Program in Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil; Laboratory of Fermentation Processes, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
31
|
Hwang HG, Ye DY, Jung GY. Biosensor-guided discovery and engineering of metabolic enzymes. Biotechnol Adv 2023; 69:108251. [PMID: 37690614 DOI: 10.1016/j.biotechadv.2023.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
A variety of chemicals have been produced through metabolic engineering approaches, and enhancing biosynthesis performance can be achieved by using enzymes with high catalytic efficiency. Accordingly, a number of efforts have been made to discover enzymes in nature for various applications. In addition, enzyme engineering approaches have been attempted to suit specific industrial purposes. However, a significant challenge in enzyme discovery and engineering is the efficient screening of enzymes with the desired phenotype from extensive enzyme libraries. To overcome this bottleneck, genetically encoded biosensors have been developed to specifically detect target molecules produced by enzyme activity at the intracellular level. Especially, the biosensors facilitate high-throughput screening (HTS) of targeted enzymes, expanding enzyme discovery and engineering strategies with advances in systems and synthetic biology. This review examines biosensor-guided HTS systems and highlights studies that have utilized these tools to discover enzymes in diverse areas and engineer enzymes to enhance their properties, such as catalytic efficiency, specificity, and stability.
Collapse
Affiliation(s)
- Hyun Gyu Hwang
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
32
|
Zheng M, Li Y, Zhang Q, Wang W. Impacts of QM region sizes and conformation numbers on modelling enzyme reactions: a case study of polyethylene terephthalate hydrolase. Phys Chem Chem Phys 2023; 25:31596-31603. [PMID: 37917137 DOI: 10.1039/d3cp04519f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A quantum mechanics/molecular mechanics (QM/MM) approach is a broadly used tool in computational enzymology. Treating the QM region with a high-level DFT method is one of the important branches. Here, taking leaf-branch compost cutinase-catalyzed polyethylene terephthalate depolymerization as an example, the convergence behavior of energy barriers as well as key structural and charge features with respect to the size of the QM region (up to 1000 atoms) is systematically investigated. BP86/6-31G(d)//CHARMM and M06-2X/6-311G(d,p)//CHARMM level of theories were applied for geometry optimizations and single-point energy calculations, respectively. Six independent enzyme conformations for all the four catalytic steps (steps (i)-(iv)) were considered. Most of the twenty-four cases show that at least 500 QM atoms are needed while only two rare cases show that ∼100 QM atoms are sufficient for convergence when only a single conformation was considered. This explains why most previous studies showed that 500 or more QM atoms are required while a few others showed that ∼100 QM atoms are sufficient for DFT/MM calculations. More importantly, average energy barriers and key structural/charge features from six conformations show an accelerated convergence than that in a single conformation. For instance, to reach energy barrier convergence (within 2.0 kcal mol-1) for step (ii), only ∼100 QM atoms are required if six conformations are considered while 500 or more QM atoms are needed with a single conformation. The convergence is accelerated to be more rapid if hundreds and thousands of conformations were considered, which aligns with previous findings that only several dozens of QM atoms are required for convergence with semi-empirical QM/MM MD simulations.
Collapse
Affiliation(s)
- Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
33
|
Schelch S, Eibinger M, Zuson J, Kuballa J, Nidetzky B. Modular bioengineering of whole-cell catalysis for sialo-oligosaccharide production: coordinated co-expression of CMP-sialic acid synthetase and sialyltransferase. Microb Cell Fact 2023; 22:241. [PMID: 38012629 PMCID: PMC10683312 DOI: 10.1186/s12934-023-02249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND In whole-cell bio-catalysis, the biosystems engineering paradigm shifts from the global reconfiguration of cellular metabolism as in fermentation to a more focused, and more easily modularized, optimization of comparably short cascade reactions. Human milk oligosaccharides (HMO) constitute an important field for the synthetic application of cascade bio-catalysis in resting or non-living cells. Here, we analyzed the central catalytic module for synthesis of HMO-type sialo-oligosaccharides, comprised of CMP-sialic acid synthetase (CSS) and sialyltransferase (SiaT), with the specific aim of coordinated enzyme co-expression in E. coli for reaction flux optimization in whole cell conversions producing 3'-sialyllactose (3SL). RESULTS Difference in enzyme specific activity (CSS from Neisseria meningitidis: 36 U/mg; α2,3-SiaT from Pasteurella dagmatis: 5.7 U/mg) was compensated by differential protein co-expression from tailored plasmid constructs, giving balance between the individual activities at a high level of both (α2,3-SiaT: 9.4 × 102 U/g cell dry mass; CSS: 3.4 × 102 U/g cell dry mass). Finally, plasmid selection was guided by kinetic modeling of the coupled CSS-SiaT reactions in combination with comprehensive analytical tracking of the multistep conversion (lactose, N-acetyl neuraminic acid (Neu5Ac), cytidine 5'-triphosphate; each up to 100 mM). The half-life of SiaT in permeabilized cells (≤ 4 h) determined the efficiency of 3SL production at 37 °C. Reaction at 25 °C gave 3SL (40 ± 4 g/L) in ∼ 70% yield within 3 h, reaching a cell dry mass-specific productivity of ∼ 3 g/(g h) and avoiding intermediary CMP-Neu5Ac accumulation. CONCLUSIONS Collectively, balanced co-expression of CSS and SiaT yields an efficient (high-flux) sialylation module to support flexible development of E. coli whole-cell catalysts for sialo-oligosaccharide production.
Collapse
Affiliation(s)
- Sabine Schelch
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Manuel Eibinger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Jasmin Zuson
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Jürgen Kuballa
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029, Hamburg, Germany
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria.
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria.
| |
Collapse
|
34
|
Michailidou F. The Scent of Change: Sustainable Fragrances Through Industrial Biotechnology. Chembiochem 2023; 24:e202300309. [PMID: 37668275 DOI: 10.1002/cbic.202300309] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Indexed: 09/06/2023]
Abstract
Current environmental and safety considerations urge innovation to address the need for sustainable high-value chemicals that are embraced by consumers. This review discusses the concept of sustainable fragrances, as high-value, everyday and everywhere chemicals. Current and emerging technologies represent an opportunity to produce fragrances in an environmentally and socially responsible way. Biotechnology, including fermentation, biocatalysis, and genetic engineering, has the potential to reduce the environmental footprint of fragrance production while maintaining quality and consistency. Computational and in silico methods, including machine learning (ML), are also likely to augment the capabilities of sustainable fragrance production. Continued innovation and collaboration will be crucial to the future of sustainable fragrances, with a focus on developing novel sustainable ingredients, as well as ethical sourcing practices.
Collapse
Affiliation(s)
- Freideriki Michailidou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| |
Collapse
|
35
|
Hamrick GS, Maddamsetti R, Son HI, Wilson ML, Davis HM, You L. Programming dynamic division of labor using horizontal gene transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560696. [PMID: 37873187 PMCID: PMC10592921 DOI: 10.1101/2023.10.03.560696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The metabolic engineering of microbes has broad applications, including in biomanufacturing, bioprocessing, and environmental remediation. The introduction of a complex, multi-step pathway often imposes a substantial metabolic burden on the host cell, restraining the accumulation of productive biomass and limiting pathway efficiency. One strategy to alleviate metabolic burden is division of labor (DOL), in which different subpopulations carry out different parts of the pathway and work together to convert a substrate into a final product. However, the maintenance of different engineered subpopulations is challenging due to competition and convoluted inter-strain population dynamics. Through modeling, we show that dynamic division of labor (DDOL) mediated by horizontal gene transfer (HGT) can overcome these limitations and enable the robust maintenance of burdensome, multi-step pathways. We also use plasmid genomics to uncover evidence that DDOL is a strategy utilized by natural microbial communities. Our work suggests that bioengineers can harness HGT to stabilize synthetic metabolic pathways in microbial communities, enabling the development of robust engineered systems for deployment in a variety of contexts.
Collapse
|
36
|
Zhu Q, Zheng Y, Zhang Z, Chen Y. Enzyme immobilization on covalent organic framework supports. Nat Protoc 2023; 18:3080-3125. [PMID: 37674094 DOI: 10.1038/s41596-023-00868-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/01/2023] [Indexed: 09/08/2023]
Abstract
Enzymes are natural catalysts with high catalytic activity, substrate specificity and selectivity. Their widespread utilization in industrial applications is limited by their sensitivity to harsh reaction conditions and difficulties relating to their removal and re-use after the reaction is complete. These limitations can be addressed by immobilizing the enzymes in solid porous supports. Covalent organic frameworks (COFs) are ideal candidate carriers because of their good biocompatibility, long-term water stability and large surface area. In post-synthetic immobilization, the enzyme is added to an existing COF; this has had limited success because of enzyme leaching and pore blockage by enzymes that are too large. Direct-immobilization methods-building the COF around the enzyme-allow tailored incorporation of proteins of any size and result in materials with lower levels of leaching and better mass transport of reactants and products. This protocol describes direct-immobilization methods that can be used to fabricate enzyme@COF (@ = engulfing) biocomposites with rationally programmed structures and functions. If COF construction requires harsh reaction conditions, the enzyme can be protected by using a removable metal-organic framework. Alternatively, a direct in situ approach, in which the enzyme and the COF monomers assemble under very mild conditions, can be used. Examples of both approaches are described: enzyme@COF-42-B/43-B capsules (enzymes including catalase, glucose oxidase, etc.) with ZIF-90 or ZPF-2 as protectors, and lipase@NKCOF-98/99 via in situ direct-immobilization methods (synthesis timing: 30-100 min). Example assays for physical and functional characterization of the COF and enzyme@COF materials are also described.
Collapse
Affiliation(s)
- Qianqian Zhu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China
- College of Chemistry, Nankai University, Tianjin, P.R. China
| | - Yunlong Zheng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China
- College of Pharmacy, Nankai University, Tianjin, P.R. China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China.
- College of Chemistry, Nankai University, Tianjin, P.R. China.
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China.
- College of Pharmacy, Nankai University, Tianjin, P.R. China.
| |
Collapse
|
37
|
Kim B, Oh SJ, Hwang JH, Kim HJ, Shin N, Joo JC, Choi KY, Park SH, Park K, Bhatia SK, Yang YH. Complementation of reducing power for 5-hydroxyvaleric acid and 1,5-pentanediol production via glucose dehydrogenase in Escherichia coli whole-cell system. Enzyme Microb Technol 2023; 170:110305. [PMID: 37595400 DOI: 10.1016/j.enzmictec.2023.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
One of the key intermediates, 5-hydroxyvaleric acid (5-HV), is used in the synthesis of polyhydroxyalkanoate monomer, δ-valerolactone, 1,5-pentanediol (1,5-PDO), and many other substances. Due to global environmental problems, eco-friendly bio-based synthesis of various platform chemicals and key intermediates are socially required, but few previous studies on 5-HV biosynthesis have been conducted. To establish a sustainable bioprocess for 5-HV production, we introduced gabT encoding 4-aminobutyrate aminotransferase and yqhD encoding alcohol dehydrogenase to produce 5-HV from 5-aminovaleric acid (5-AVA), through glutarate semialdehyde in Escherichia coli whole-cell reaction. As, high reducing power is required to produce high concentrations of 5-HV, we newly introduced glucose dehydrogenase (GDH) for NADPH regeneration system from Bacillus subtilis 168. By applying GDH with D-glucose and optimizing the parameters, 5-HV conversion rate from 5-AVA increased from 47% (w/o GDH) to 82% when using 200 mM (23.4 g/L) of 5-AVA. Also, it reached 56% conversion in 2 h, showing 56 mM/h (6.547 g/L/h) productivity from 200 mM 5-AVA, finally reaching 350 mM (41 g/L) and 14.6 mM/h (1.708 g/L/h) productivity at 24 h when 1 M (117.15 g/L) 5-AVA was used. When the whole-cell system with GDH was expanded to produce 1,5-PDO, its production was also increased 5-fold. Considering that 5-HV and 1,5-PDO production depends heavily on the reducing power of the cells, we successfully achieved a significant increase in 5-HV and 1,5-PDO production using GDH.
Collapse
Affiliation(s)
- Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeong Chan Joo
- Deparment of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Gyeonggi-do, Republic of Korea; Department of Energy Systems Research, Ajou University, Gyeonggi-do, Republic of Korea
| | - See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Pimviriyakul P, Buttranon S, Soithongcharoen S, Supawatkon C, Disayabootr K, Watthaisong P, Tinikul R, Jaruwat A, Chaiyen P, Chitnumsub P, Maenpuen S. Structure and biochemical characterization of an extradiol 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Acinetobacter baumannii. Arch Biochem Biophys 2023; 747:109768. [PMID: 37769893 DOI: 10.1016/j.abb.2023.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
3,4-Dihydroxyphenylacetate (DHPA) 2,3-dioxygenase (EC 1.13.11.15) from Acinetobacter baumannii (AbDHPAO) is an enzyme that catalyzes the 2,3-extradiol ring-cleavage of DHPA in the p-hydroxyphenylacetate (HPA) degradation pathway. While the biochemical reactions of various DHPAOs have been reported, only structures of DHPAO from Brevibacterium fuscum and their homologs are available. Here, we report the X-ray structure and biochemical characterization of an Fe2+-specific AbDHPAO that shares 12% sequence identity to the enzyme from B. fuscum. The 1.8 Å X-ray structure of apo-AbDHPAO was determined with four subunits per asymmetric unit, consistent with a homotetrameric structure. Interestingly, the αβ-sandwiched fold of the AbDHPAO subunit is different from the dual β-barrel-like motif of the well-characterized B. fuscum DHPAO structures; instead, it is similar to the structures of non-DHPA extradiol dioxygenases from Comamonas sp. and Sphingomonas paucimobilis. Similarly, these extradiol dioxygenases share the same chemistry owing to a conserved 2-His-1-carboxylate catalytic motif. Structure analysis and molecular docking suggested that the Fe2+ cofactor and substrate binding sites consist of the conserved residues His12, His57, and Glu238 forming a 2-His-1-carboxylate motif ligating to Fe2+ and DHPA bound with Fe2+ in an octahedral coordination. In addition to DHPA, AbDHPAO can also use other 3,4-dihydroxyphenylacetate derivatives with different aliphatic carboxylic acid substituents as substrates, albeit with low reactivity. Altogether, this report provides a better understanding of the structure and biochemical properties of AbDHPAO and its homologs, which is advancing further modification of DHPAO in future applications.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Supacha Buttranon
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand; School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Sahachat Soithongcharoen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand; School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Cheerapat Supawatkon
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand; School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Kasidis Disayabootr
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Pratchaya Watthaisong
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand.
| |
Collapse
|
39
|
Zhao Z, Wu W, Jia L, Guo X. Sodium phosphate solid base catalysts for production of novel biodiesel by transesterification reaction. RSC Adv 2023; 13:26700-26708. [PMID: 37681035 PMCID: PMC10481383 DOI: 10.1039/d3ra03565d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
The efficient sodium phosphate (Na3PO4) solid base catalysts were prepared and applied in the production of novel biodiesel: ethylene glycol monomethyl ether monolaurate (EGMEML) by transesterification. The calcined sodium phosphate catalysts (NaP-T) were characterized using thermogravimetry analysis (TG-DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) and so on. The effects of calcination temperature of Na3PO4 and main reaction parameters such as molar ratio of ethylene glycol monomethyl ether (EGME) to methyl laurate (ML), dosage of catalyst, reaction time and temperature on the yield of EGMEML were examined. The results showed that the maximum yield of EGMEML could reach 90% under 120 °C within 4 h and 5 wt% of Na3PO4 calcined at 400°, and the catalysts displayed good stability and recovery. In addition, the kinetics of transesterification reaction was explored and the results showed that the transesterification reaction followed 1st order kinetics when a large excess of EGME was used, the activation energy (Ea) was found to be 40.2 kJ mol-1.
Collapse
Affiliation(s)
- Zhenglong Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 P. R. China
| | - Wenwang Wu
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 P. R. China
| | - Lihua Jia
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 P. R. China
| | - Xiangfeng Guo
- College of Chemistry, Guangdong University of Petrochemical Technology Maoming Guangdong 525000 P. R. China
| |
Collapse
|
40
|
Arnold ND, Garbe D, Brück TB. Isolation, biochemical characterization, and genome sequencing of two high-quality genomes of a novel chitinolytic Jeongeupia species. Microbiologyopen 2023; 12:e1372. [PMID: 37642486 PMCID: PMC10404844 DOI: 10.1002/mbo3.1372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Chitin is the second most abundant polysaccharide worldwide as part of arthropods' exoskeletons and fungal cell walls. Low concentrations in soils and sediments indicate rapid decomposition through chitinolytic organisms in terrestrial and aquatic ecosystems. The enacting enzymes, so-called chitinases, and their products, chitooligosaccharides, exhibit promising characteristics with applications ranging from crop protection to cosmetics, medical, textile, and wastewater industries. Exploring novel chitinolytic organisms is crucial to expand the enzymatical toolkit for biotechnological chitin utilization and to deepen our understanding of diverse catalytic mechanisms. In this study, we present two long-read sequencing-based genomes of highly similar Jeongeupia species, which have been screened, isolated, and biochemically characterized from chitin-amended soil samples. Through metabolic characterization, whole-genome alignments, and phylogenetic analysis, we could demonstrate how the investigated strains differ from the taxonomically closest strain Jeongeupia naejangsanensis BIO-TAS4-2T (DSM 24253). In silico analysis and sequence alignment revealed a multitude of highly conserved chitinolytic enzymes in the investigated Jeongeupia genomes. Based on these results, we suggest that the two strains represent a novel species within the genus of Jeongeupia, which may be useful for environmentally friendly N-acetylglucosamine production from crustacean shell or fungal biomass waste or as a crop protection agent.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Department of ChemistryWerner‐Siemens Chair for Synthetic Biotechnology (WSSB), TUM School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Daniel Garbe
- Department of ChemistryWerner‐Siemens Chair for Synthetic Biotechnology (WSSB), TUM School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Thomas B. Brück
- Department of ChemistryWerner‐Siemens Chair for Synthetic Biotechnology (WSSB), TUM School of Natural Sciences, Technical University of MunichGarchingGermany
| |
Collapse
|
41
|
Wynands B, Kofler F, Sieberichs A, da Silva N, Wierckx N. Engineering a Pseudomonas taiwanensis 4-coumarate platform for production of para-hydroxy aromatics with high yield and specificity. Metab Eng 2023; 78:115-127. [PMID: 37209862 PMCID: PMC10360455 DOI: 10.1016/j.ymben.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Aromatics are valuable bulk or fine chemicals with a myriad of important applications. Currently, their vast majority is produced from petroleum associated with many negative aspects. The bio-based synthesis of aromatics contributes to the much-required shift towards a sustainable economy. To this end, microbial whole-cell catalysis is a promising strategy allowing the valorization of abundant feedstocks derived from biomass to yield de novo-synthesized aromatics. Here, we engineered tyrosine-overproducing derivatives of the streamlined chassis strain Pseudomonas taiwanensis GRC3 for efficient and specific production of 4-coumarate and derived aromatics. This required pathway optimization to avoid the accumulation of tyrosine or trans-cinnamate as byproducts. Although application of tyrosine-specific ammonia-lyases prevented the formation of trans-cinnamate, they did not completely convert tyrosine to 4-coumarate, thereby displaying a significant bottleneck. The use of a fast but unspecific phenylalanine/tyrosine ammonia-lyase from Rhodosporidium toruloides (RtPAL) alleviated this bottleneck, but caused phenylalanine conversion to trans-cinnamate. This byproduct formation was greatly reduced through the reverse engineering of a point mutation in prephenate dehydratase domain-encoding pheA. This upstream pathway engineering enabled efficient 4-coumarate production with a specificity of >95% despite using an unspecific ammonia-lyase, without creating an auxotrophy. In shake flask batch cultivations, 4-coumarate yields of up to 21.5% (Cmol/Cmol) from glucose and 32.4% (Cmol/Cmol) from glycerol were achieved. Additionally, the product spectrum was diversified by extending the 4-coumarate biosynthetic pathway to enable the production of 4-vinylphenol, 4-hydroxyphenylacetate, and 4-hydroxybenzoate with yields of 32.0, 23.0, and 34.8% (Cmol/Cmol) from glycerol, respectively.
Collapse
Affiliation(s)
- Benedikt Wynands
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Franziska Kofler
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Anka Sieberichs
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Nadine da Silva
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
42
|
Chen G, Huang S, Ma X, He R, Ouyang G. Encapsulating and stabilizing enzymes using hydrogen-bonded organic frameworks. Nat Protoc 2023:10.1038/s41596-023-00828-5. [PMID: 37198321 DOI: 10.1038/s41596-023-00828-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/01/2023] [Indexed: 05/19/2023]
Abstract
Enzymes are outstanding natural catalysts with exquisite 3D structures, initiating countless life-sustaining biotransformations in living systems. The flexible structure of an enzyme, however, is highly susceptible to non-physiological environments, which greatly limits its large-scale industrial applications. Seeking suitable supports to immobilize fragile enzymes is one of the most efficient routes to ameliorate the stability problem. This protocol imparts a new bottom-up strategy for enzyme encapsulation using a hydrogen-bonded organic framework (HOF-101). In short, the surface residues of the enzyme can trigger the nucleation of HOF-101 around its surface through the hydrogen-bonded biointerface. As a result, a series of enzymes with different surface chemistries are able to be encapsulated within a highly crystalline HOF-101 scaffold, which has long-range ordered mesochannels. The details of experimental procedures are described in this protocol, which involve the encapsulating method, characterizations of materials and biocatalytic performance tests. Compared with other immobilization methods, this enzyme-triggering HOF-101 encapsulation is easy to operate and affords higher loading efficiency. The formed HOF-101 scaffold has an unambiguous structure and well-arranged mesochannels, favoring mass transfer and understanding of the biocatalytic process. It takes ~13.5 h for successful synthesis of enzyme-encapsulated HOF-101, 3-4 d for characterizations of materials and ~4 h for the biocatalytic performance tests. In addition, no specific expertise is necessary for the preparation of this biocomposite, although the high-resolution imaging requires a low-electron-dose microscope technology. This protocol can provide a useful methodology to efficiently encapsulate enzymes and design biocatalytic HOF materials.
Collapse
Affiliation(s)
- Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China.
| | - Siming Huang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Ma
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Rongwei He
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China.
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
43
|
Pfeiffer M, Ribar A, Nidetzky B. A selective and atom-economic rearrangement of uridine by cascade biocatalysis for production of pseudouridine. Nat Commun 2023; 14:2261. [PMID: 37081027 PMCID: PMC10116470 DOI: 10.1038/s41467-023-37942-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
As a crucial factor of their therapeutic efficacy, the currently marketed mRNA vaccines feature uniform substitution of uridine (U) by the corresponding C-nucleoside, pseudouridine (Ψ), in 1-N-methylated form. Synthetic supply of the mRNA building block (1-N-Me-Ψ-5'-triphosphate) involves expedient access to Ψ as the principal challenge. Here, we show selective and atom-economic 1N-5C rearrangement of β-D-ribosyl on uracil to obtain Ψ from unprotected U in quantitative yield. One-pot cascade transformation of U in four enzyme-catalyzed steps, via D-ribose (Rib)-1-phosphate, Rib-5-phosphate (Rib5P) and Ψ-5'-phosphate (ΨMP), gives Ψ. Coordinated function of the coupled enzymes in the overall rearrangement necessitates specific release of phosphate from the ΨMP, but not from the intermediary ribose phosphates. Discovery of Yjjg as ΨMP-specific phosphatase enables internally controlled regeneration of phosphate as catalytic reagent. With driving force provided from the net N-C rearrangement, the optimized U reaction yields a supersaturated product solution (∼250 g/L) from which the pure Ψ crystallizes (90% recovery). Scale up to 25 g isolated product at enzyme turnovers of ∼105 mol/mol demonstrates a robust process technology, promising for Ψ production. Our study identifies a multistep rearrangement reaction, realized by cascade biocatalysis, for C-nucleoside synthesis in high efficiency.
Collapse
Affiliation(s)
- Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, A-8010, Graz, Austria
| | - Andrej Ribar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, A-8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, A-8010, Graz, Austria.
| |
Collapse
|
44
|
France SP, Lewis RD, Martinez CA. The Evolving Nature of Biocatalysis in Pharmaceutical Research and Development. JACS AU 2023; 3:715-735. [PMID: 37006753 PMCID: PMC10052283 DOI: 10.1021/jacsau.2c00712] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/19/2023]
Abstract
Biocatalysis is a highly valued enabling technology for pharmaceutical research and development as it can unlock synthetic routes to complex chiral motifs with unparalleled selectivity and efficiency. This perspective aims to review recent advances in the pharmaceutical implementation of biocatalysis across early and late-stage development with a focus on the implementation of processes for preparative-scale syntheses.
Collapse
|
45
|
Ravi SN, Sankaranarayanan M. Enhanced synthesis of 3-hydroxypropionic acid by eliminating by-products using recombinant Escherichia coli as a whole cell biocatalyst. Top Catal 2023. [DOI: 10.1007/s11244-023-01796-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
46
|
Trisrivirat D, Tinikul R, Chaiyen P. Synthetic microbes and biocatalyst designs in Thailand. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:28-40. [PMID: 39416912 PMCID: PMC11446377 DOI: 10.1016/j.biotno.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 10/19/2024]
Abstract
Furthering the development of the field of synthetic biology in Thailand is included in the Thai government's Bio-Circular-Green (BCG) economic policy. The BCG model has increased collaborations between government, academia and private sectors with the specific aim of increasing the value of bioindustries via sustainable approaches. This article provides a critical review of current academic research related to synthetic biology conducted in Thailand during the last decade including genetic manipulation, metabolic engineering, cofactor enhancement to produce valuable chemicals, and analysis of synthetic cells using systems biology. Work was grouped according to a Design-Build-Test-Learn cycle. Technical areas directly supporting development of synthetic biology for BCG in the future such as enzyme catalysis, enzyme engineering and systems biology related to culture conditions are also discussed. Key activities towards development of synthetic biology in Thailand are also discussed.
Collapse
Affiliation(s)
- Duangthip Trisrivirat
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| |
Collapse
|
47
|
Checkerboard arranged G4 nanostructure-supported electrochemical platform and its application to unique bio-enzymes examination. Bioelectrochemistry 2023; 149:108282. [DOI: 10.1016/j.bioelechem.2022.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
|
48
|
The Mobility of the Cap Domain Is Essential for the Substrate Promiscuity of a Family IV Esterase from Sorghum Rhizosphere Microbiome. Appl Environ Microbiol 2023; 89:e0180722. [PMID: 36602332 PMCID: PMC9888213 DOI: 10.1128/aem.01807-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Metagenomics offers the possibility to screen for versatile biocatalysts. In this study, the microbial community of the Sorghum bicolor rhizosphere was spiked with technical cashew nut shell liquid, and after incubation, the environmental DNA (eDNA) was extracted and subsequently used to build a metagenomic library. We report the biochemical features and crystal structure of a novel esterase from the family IV, EH0, retrieved from an uncultured sphingomonad after a functional screen in tributyrin agar plates. EH0 (optimum temperature [Topt], 50°C; melting temperature [Tm], 55.7°C; optimum pH [pHopt], 9.5) was stable in the presence of 10 to 20% (vol/vol) organic solvents and exhibited hydrolytic activity against p-nitrophenyl esters from acetate to palmitate, preferably butyrate (496 U mg-1), and a large battery of 69 structurally different esters (up to 30.2 U mg-1), including bis(2-hydroxyethyl)-terephthalate (0.16 ± 0.06 U mg-1). This broad substrate specificity contrasts with the fact that EH0 showed a long and narrow catalytic tunnel, whose access appears to be hindered by a tight folding of its cap domain. We propose that this cap domain is a highly flexible structure whose opening is mediated by unique structural elements, one of which is the presence of two contiguous proline residues likely acting as possible hinges, which together allow for the entrance of the substrates. Therefore, this work provides a new role for the cap domain, which until now was thought to be an immobile element that contained hydrophobic patches involved in substrate prerecognition and in turn substrate specificity within family IV esterases. IMPORTANCE A better understanding of structure-function relationships of enzymes allows revelation of key structural motifs or elements. Here, we studied the structural basis of the substrate promiscuity of EH0, a family IV esterase, isolated from a sample of the Sorghum bicolor rhizosphere microbiome exposed to technical cashew nut shell liquid. The analysis of EH0 revealed the potential of the sorghum rhizosphere microbiome as a source of enzymes with interesting properties, such as pH and solvent tolerance and remarkably broad substrate promiscuity. Its structure resembled those of homologous proteins from mesophilic Parvibaculum and Erythrobacter spp. and hyperthermophilic Pyrobaculum and Sulfolobus spp. and had a very narrow, single-entry access tunnel to the active site, with access controlled by a capping domain that includes a number of nonconserved proline residues. These structural markers, distinct from those of other substrate-promiscuous esterases, can help in tuning substrate profiles beyond tunnel and active site engineering.
Collapse
|
49
|
Corsini F, Gusmerotti NM, Frey M. Fostering the Circular Economy with Blockchain Technology: Insights from a Bibliometric Approach. CIRCULAR ECONOMY AND SUSTAINABILITY 2023; 3:1-21. [PMID: 36685985 PMCID: PMC9840946 DOI: 10.1007/s43615-023-00250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/31/2022] [Indexed: 01/24/2023]
Abstract
The circular economy is an emerging paradigm with important economic, environmental, and societal implications. As the world faces such paradigm shifts, new and radical technologies are urgently needed to enable it; blockchain technology can assist to accomplish the aforementioned circular economy shift given its decentralization and distributiveness principles as well as its smart contract capability. This study represents one of the first attempts to analyze those academic research domains together adopting a science mapping technique. By adopting such approach, the study envisages research challenges, highlights important research gaps, and proposes future paths in the blockchain and circular economy fields. Among the others, key findings show that blockchain technology as a tool for promoting the circular economy has been extensively researched at the micro (i.e., firm) and meso levels (i.e., supply chain) more effort on how blockchain can support the development of circular smart cites and measurement tools for providing information to stakeholders and assisting in policy creation expresses the greatest potential in terms of novel research. Moreover, the research suggests that another possible stream of research might be dealing on how blockchain together with physical technologies (e.g., 3D printing, RFID), can support the transition towards the circular economy.
Collapse
Affiliation(s)
- Filippo Corsini
- Istituto Di Management, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | | | - Marco Frey
- Istituto Di Management, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| |
Collapse
|
50
|
Lin YH, Tu WC, Urban PL. Kinetic Profiling of Homogeneous and Heterogeneous Biocatalysts in Continuous Flow by Online Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:109-118. [PMID: 36515652 DOI: 10.1021/jasms.2c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Enzyme kinetics is normally assessed by performing individual kinetic measurements using batch-type reactors (test tubes, microtiter plates), in which enzymes are mixed with different substrates. Some drawbacks of conventional methods are the large amounts of experimental materials, long analysis times, and limitations of spectrophotometry. Therefore, we have developed a method for facile determination of enzyme kinetics using online flow-based mass spectrometry. A concentration ramp of substrate or product was created by dynamically adjusting flow rates of pumps delivering stock solution of substrate and diluent. Precise kinetic measurements were performed by reaction product quantification and initial rate calculation. In the presence of ascending substrate concentrations, the rate of a target enzyme (penicillinase)-catalyzed hydrolysis was varied. By measuring the reaction product continuously, Michaelis constants (KM) could be calculated. The enzyme kinetic measurements for hydrolysis of penicillins were conducted based on this simple, rapid, and low sample consumption online flow device. In the homogeneous reaction, the KM values for amoxicillin, ampicillin, penicillin G, and penicillin V were 254.9 ± 14.5, 29.2 ± 0.3, 2.6 ± 0.1, and 5.4 ± 0.1 μM, respectively. In the heterogeneous reaction, the KM values for amoxicillin, ampicillin, penicillin G, and penicillin V were 408.9 ± 75.1, 114.4 ± 8.0, 21.8 ± 0.7, and 83.3 ± 4.8 μM, respectively. Apart from enzyme assay, the showcased method for the generation of temporal concentration ramps can be utilized to perform rapid quantity calibrations for mass spectrometric analyses.
Collapse
Affiliation(s)
- Yun-Hsuan Lin
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu300044, Taiwan
| | - Wei-Chien Tu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu300044, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu300044, Taiwan
| |
Collapse
|