1
|
Mao G, Zeng Y, Qiu C, Ding G, Li L, Ma L, Dai J, Yin W, Ma Y. Ratiometric fluorescent paper chip for monitoring the freshness of high protein foods. Anal Chim Acta 2025; 1334:343418. [PMID: 39638471 DOI: 10.1016/j.aca.2024.343418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Accurately monitoring the freshness of high-protein foods has significant implications for both food safety and public welfare. Since a large amount of hydrogen sulfide (H2S) is produced during spoilage-related processes, abnormal H2S levels are often considered an important indicator of food spoilage. Therefore, we synthesized novel nanoparticles (NPs) containing Silicon (Si) dots and CdTe quantum dots to accurately assess the amount of sulfide ions (S2-) and thus the quality of high-protein foods in the early stage of storage. As the concentration of S2- increased, the fluorescence intensity of Si/CdTe NPs at λem = 488 nm increased, while the fluorescence intensity at λem = 620 nm was quenched. The fluorescence intensity ratio (F620/F488) was negatively linearly correlated to S2- concentrations in the range of 1-20 μM, with a detection limit of 0.3 μM. Furthermore, to achieve portable detection, we mixed Si/CdTe NPs with sodium carboxymethyl cellulose to prepare effective visual fluorescent sensing paper chips, which exhibited ideal porous structure, good particle dispersion, and excellent fluorescence properties. Incubating the paper chips with high-protein foods allowed for accurate monitoring of food freshness during storage. Therefore, this approach provided a reliable and portable method to determine H2S concentration using a novel concept to ensure the freshness and safety of high-protein foods.
Collapse
Affiliation(s)
- Guobin Mao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuan Zeng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Life Sciences, Henan University, Kaifeng, 475004, China; Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Chunmin Qiu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guangmiao Ding
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Leyao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China; Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Junbiao Dai
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Wen Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Yingxin Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Das P, Saha S, Kumar Guha P, Kumar Bhunia A. Quantum dot-protein interface: Interaction of the CdS quantum dot with human hemoglobin for the study of the energy transfer process and binding mechanism along with detection of the unfolding of hemoglobin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124937. [PMID: 39137709 DOI: 10.1016/j.saa.2024.124937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
In this study, the interaction of the human hemoglobin with cost effective and chemically fabricated CdS quantum dots (QDs) (average sizes ≈3nm) has been investigated. The semiconductor QDs showed maximum visible absorption at 445 nm with excitonic formation and band gap of ≈ 2.88 eV along with hexagonal crystalline phase. The binding of QDs-Hb occurs through corona formation to the ground sate complex formation. The life time of the heme pocket binding and reorganization were found to be t1 = 43 min and t2 = 642 min, respectively. The emission quenching of the Hb has been indicated large energy transfer between CdS QDs and Hb with tertiary deformation of Hb. The binding thermodynamics showed highly exothermic nature. The ultrafast decay during corona formation was studied from TCSPC. The results showed that the energy transfer efficiency increases with the increase of the QDs concentration and maximum ≈71.5 % energy transfer occurs and average ultrafast lifetime varies from 5.45 ns to1.51 ns. The deformation and unfolding of the secondary structure of Hb with changes of the α-helix (≈74 % to ≈51.07 %) and β-sheets (≈8.63 % to ≈10.25 %) have been observed from circular dichroism spectrum. The SAXS spectrum showed that the radius of gyration of CdS QDs-Hb bioconjugate increased (up to 23 ± 0.45 nm) with the increase of the concentration of QDs compare with pure Hb (11 ± 0.23 nm) and Hb becoming more unfolded.
Collapse
Affiliation(s)
- Priyanka Das
- Department of Physics, Vidyasagar University, Paschim Medinipur 721102, West Bengal, India
| | - Satyajit Saha
- Department of Physics, Vidyasagar University, Paschim Medinipur 721102, West Bengal, India
| | - Prasanta Kumar Guha
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Paschim Medinipur, 721302, India; School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur 721302, India
| | - Amit Kumar Bhunia
- Department of Physics, Government General Degree College Gopiballavpur-II, Jhargram 721517, India.
| |
Collapse
|
3
|
Villanueva ME, Bar L, Porcar L, Gerelli Y, Losada-Pérez P. Resolving the interactions between hydrophilic CdTe quantum dots and positively charged membranes at the nanoscale. J Colloid Interface Sci 2025; 677:620-631. [PMID: 39116560 DOI: 10.1016/j.jcis.2024.07.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
The use of quantum dot nanoparticles (QDs) in bio-applications has gained quite some interest and requires a deep understanding of their interactions with model cell membranes. This involves assessing the extent of nanoparticle disruption of the membrane and how it depends on both nanoparticle and membrane physicochemical properties. Surface charge plays an important role in nanoparticle adsorption, which is primarily driven by electrostatic interactions; yet, once adsorbed, most reported works overlook the subsequent spatial nanoparticle insertion and location within the membrane. There is therefore a need for studies to assess the mutual role of membrane and nanoparticle charge into membrane structure and stability at the nanoscale, with a view to better design and control the functionality of these nanomaterials. In this work, we have resolved the extent of the interactions between hydrophilic, negatively charged CdTe QDs and positively charged lipid bilayers. A multiscale combination of surface-sensitive techniques enabled probing how surface charge mediates QD adsorption and membrane reorganization. Increasing membrane surface charge results into a larger adsorption of oppositely charged QDs, concomitantly inducing structural changes. Hydration of the membrane hydrophobic parts by QDs goes deeper into the inner leaflet with increasing membrane charge, resulting in supported lipid bilayers with decreased nanomechanical stability.
Collapse
Affiliation(s)
- M E Villanueva
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, 1050 Brussels, Belgium
| | - L Bar
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, 1050 Brussels, Belgium
| | - L Porcar
- Large-Scale Structure Group, Institut Laue-Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Y Gerelli
- Italian National Research Council - Institute for Complex Systems (CNR-ISC), and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.
| | - P Losada-Pérez
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, 1050 Brussels, Belgium.
| |
Collapse
|
4
|
Feng D, Zhang G, Li Y. Semiconductor Quantum Dots: Synthesis, Properties and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1825. [PMID: 39591066 PMCID: PMC11597419 DOI: 10.3390/nano14221825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Semiconductor nanoparticles of sizes smaller than exciton Bohr diameters undergo quantum confinement and are called quantum dots (QDs), which exhibit size-dependent physicochemical properties [...].
Collapse
Affiliation(s)
- Donghai Feng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Yang Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Khatun MA, Sultana F, Saha I, Karmakar P, Gazi HAR, Islam MM, Show B, Mukhopadhyay S. Lentil Extract-Mediated Ag QD Synthesis: Predilection for Albumin Protein Interaction, Antibacterial Activity, and Its Cytotoxicity for Wi-38 and PC-3 Cell Lines. ACS APPLIED BIO MATERIALS 2024; 7:6568-6582. [PMID: 39259615 DOI: 10.1021/acsabm.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Recent focus has been directed toward semiconductor nanocrystals owing to their unique physicochemical properties. Nevertheless, the synthesis and characterization of quantum dots (QDs) pose considerable challenges, limiting our understanding of their interactions within a biological environment. This research offers valuable insights into the environmentally friendly production of silver quantum dots (Ag QDs) using lentil extract and clarifies their distinct physicochemical characteristics, previously unexplored to our knowledge. These findings pave the path for potential practical applications. The investigation of the phytochemical-assisted Ag QDs' affinity for BSA demonstrated modest interactions, as shown by the enthalpy and entropy changes as well as the associated Gibbs free energy during their association. Steady-state and time-resolved fluorescence spectroscopy further demonstrated a transient effect involving dynamic quenching, predominantly driven by Forster resonance energy transfer. Additionally, the study highlights the potential broad-spectrum antibacterial activity of Ag QDs (<5 nm, a zeta potential of -3.04 mV), exhibiting a remarkable MIC value of 1 μg/mL against Gram-negative bacteria (E. coli) and 1.65 μg/mL against Gram-positive bacteria (S. aureus). They can readily enter cells and tissues due to their minuscule size and the right chemical environment. They cause intracellular pathway disruption, which leads to cell death. This outcome emphasizes the distinctive biocompatibility of the green-synthesized Ag QDs, which has been confirmed by their MTT assay-based cytotoxicity against the PC-3 and Wi-38 cell lines.
Collapse
Affiliation(s)
- Mst Arjina Khatun
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Farhin Sultana
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Ishita Saha
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Parimal Karmakar
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Harun Al Rasid Gazi
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700160, India
| | - Md Maidul Islam
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700160, India
| | - Bibhutibhushan Show
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Subrata Mukhopadhyay
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| |
Collapse
|
6
|
Li D, Ao L, Hu R, Zhang X, Huang L, Jiang C, Gao G, Shen Z, Hu J, Wang J. Kiwi-Inspired Rational Nanoarchitecture with Intensified and Discrete Magneto-Fluorescent Functionalities for Ultrasensitive Point-of-Care Immunoassay. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402676. [PMID: 38847072 DOI: 10.1002/smll.202402676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Indexed: 10/19/2024]
Abstract
Fluorescent lateral flow immunoassays (FLFIA) is a well-established rapid detection technique for quantitative analysis. However, achieving accurate analysis of biomarkers at the pg mL-1 level using FLFIA still poses challenges. Herein, an ultrasensitive FLFIA platform is reported utilizing a kiwi-type magneto-fluorescent silica nanohybrid (designated as MFS) that serves as both a target-enrichment substrate and an optical signal enhancement label. The spatially-layered architecture comprises a Fe3O4 core, an endocarp-fibers like dendritic mesoporous silica, seed-like quantum dots, and a kiwi-flesh like silica matrix. The MFS demonstrates heightened fluorescence brightness, swift magnetic response, excellent size uniformity, and dispersibility in water. Through liquid-phase capturing and fluorescence-enhanced signal amplification, as well as magnetic-enrichment sample amplification and magnetic-separation noise reduction, the MFS-based FLFIA is successfully applied to the detection of cardiac troponin I that achieved a limit of detection at 8.4 pg mL-1, tens of times lower than those of previously published fluorescent and colorimetric lateral flow immunoassays. This work offers insights into the strategic design of magneto-fluorescent synergetic signal amplification on LFIA platform and underscores their prospects in high-sensitive rapid and on-site diagnosis of biomarkers.
Collapse
Affiliation(s)
- Daquan Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lijiao Ao
- Institute of Biomedical Engineering, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, 518020, P. R. China
| | - Rong Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xueqiang Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Chenxing Jiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guosheng Gao
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, 315010, P. R. China
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jun Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
7
|
Ding N, Lei Y, Hu Y, Wei J, Wang W, Zhang R, Cai F. Research Progress of Novel Inorganic Nanomaterials in the Diagnosis and Treatment of Alzheimer's Disease. Neurol India 2024; 72:943-950. [PMID: 39428764 DOI: 10.4103/neurol-india.neurol-india-d-23-00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/27/2024] [Indexed: 10/22/2024]
Abstract
The global increase in the number of Alzheimer's disease (AD) patients has posed numerous treatment challenges. Six Food and Drug Administration-approved medications (e.g., donepezil and memantine) have demonstrated some efficacy but are primarily used to alleviate symptoms. The etiology of AD is unknown, and the blood-brain barrier restricts drug penetration, which severely restricts the use of various therapeutic agents. With their high targeting, long-lasting effect, and multifunctionality, inorganic nanomaterials provide a novel approach to the treatment of AD. A review of inorganic nanoparticles in the diagnosis and therapy of AD. This paper reviews the research literature on the use of inorganic nanomaterials in the treatment of AD. Gold nanoparticles, superparamagnetic iron oxide nanoparticles, magnetic nanoparticles, carbon nanotubes, and quantum dots are among the inorganic nanomaterials studied. As knowledge of the origins of AD remains limited, the majority of studies on inorganic nanomaterials have primarily focused on interventions on Aβ proteins. Adjusting and enhancing the properties of these inorganic nanomaterials, such as core-shell structure design and surface modification, confer benefits for the treatment of AD. Inorganic nanoparticles have a wide spectrum of therapeutic potential for AD. Despite their potential benefits, however, the safety and translation of inorganic nanomaterials into clinical applications remain formidable obstacles.
Collapse
Affiliation(s)
- Ning Ding
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P.R. China, Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning, Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Wang H. A Review of Nanotechnology in microRNA Detection and Drug Delivery. Cells 2024; 13:1277. [PMID: 39120308 PMCID: PMC11311607 DOI: 10.3390/cells13151277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play a crucial role in regulating gene expression. Dysfunction in miRNAs can lead to various diseases, including cancers, neurological disorders, and cardiovascular conditions. To date, approximately 2000 miRNAs have been identified in humans. These small molecules have shown promise as disease biomarkers and potential therapeutic targets. Therefore, identifying miRNA biomarkers for diseases and developing effective miRNA drug delivery systems are essential. Nanotechnology offers promising new approaches to addressing scientific and medical challenges. Traditional miRNA detection methods include next-generation sequencing, microarrays, Northern blotting, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Nanotechnology can serve as an effective alternative to Northern blotting and RT-qPCR for miRNA detection. Moreover, nanomaterials exhibit unique properties that differ from larger counterparts, enabling miRNA therapeutics to more effectively enter target cells, reduce degradation in the bloodstream, and be released in specific tissues or cells. This paper reviews the application of nanotechnology in miRNA detection and drug delivery systems. Given that miRNA therapeutics are still in the developing stages, nanotechnology holds great promise for accelerating miRNA therapeutics development.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
9
|
Wang J, Sun X, Xu J, Liu L, Lin P, Luo X, Gao Y, Shi J, Zhang Y. X-ray activated near-infrared persistent luminescence nanoparticles for trimodality in vivo imaging. Biomater Sci 2024; 12:3841-3850. [PMID: 38881248 DOI: 10.1039/d4bm00395k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
As promising luminescence nanoparticles, near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) have received extensive attention in the field of high-sensitivity bioimaging in recent years. However, NIR PLNPs face problems such as short excitation wavelengths and single imaging modes, which limit their applications in in vivo reactivated imaging and multimodal imaging. Here, we report for the first time novel Gd2GaTaO7:Cr3+,Yb3+ (GGTO) NIR PLNPs that integrate X-ray activated NIR persistent luminescence (PersL), high X-ray attenuation and excellent magnetic properties into a single nanoparticle (NP). In this case, Cr3+ is used as the luminescence center. The co-doped Yb3+ and coating effectively enhance the X-ray activated NIR PersL. At the same time, the presence of the high-Z element Ta also makes the GGTO NPs exhibit high X-ray attenuation performance, which can be used as a CT contrast agent to achieve in vivo CT imaging. In addition, since the matrix contains a large amount of Gd, the GGTO NPs show remarkable magnetic properties, which can realize in vivo MR imaging. GGTO NPs combine the trimodal benefits of X-ray reactivated PersL, CT and MR imaging and are suitable for single or combined applications that require high sensitivity and spatial resolution imaging.
Collapse
Affiliation(s)
- Jinyuan Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China.
| | - Jixuan Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Peng Lin
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Xiaofang Luo
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Yan Gao
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
10
|
Guo W, Song X, Liu J, Liu W, Chu X, Lei Z. Quantum Dots as a Potential Multifunctional Material for the Enhancement of Clinical Diagnosis Strategies and Cancer Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1088. [PMID: 38998693 PMCID: PMC11243735 DOI: 10.3390/nano14131088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Quantum dots (QDs) represent a class of nanoscale wide bandgap semiconductors, and are primarily composed of metals, lipids, or polymers. Their unique electronic and optical properties, which stem from their wide bandgap characteristics, offer significant advantages for early cancer detection and treatment. Metal QDs have already demonstrated therapeutic potential in early tumor imaging and therapy. However, biological toxicity has led to the development of various non-functionalized QDs, such as carbon QDs (CQDs), graphene QDs (GQDs), black phosphorus QDs (BPQDs) and perovskite quantum dots (PQDs). To meet the diverse needs of clinical cancer treatment, functionalized QDs with an array of modifications (lipid, protein, organic, and inorganic) have been further developed. These advancements combine the unique material properties of QDs with the targeted capabilities of biological therapy to effectively kill tumors through photodynamic therapy, chemotherapy, immunotherapy, and other means. In addition to tumor-specific therapy, the fluorescence quantum yield of QDs has gradually increased with technological progress, enabling their significant application in both in vivo and in vitro imaging. This review delves into the role of QDs in the development and improvement of clinical cancer treatments, emphasizing their wide bandgap semiconductor properties.
Collapse
Affiliation(s)
- Wenqi Guo
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Xueru Song
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Jiaqi Liu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Wanyi Liu
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Zengjie Lei
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| |
Collapse
|
11
|
Qi L, Liu S, Ping J, Yao X, Chen L, Yang D, Liu Y, Wang C, Xiao Y, Qi L, Jiang Y, Fang X. Recent Advances in Fluorescent Nanoparticles for Stimulated Emission Depletion Imaging. BIOSENSORS 2024; 14:314. [PMID: 39056590 PMCID: PMC11274644 DOI: 10.3390/bios14070314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024]
Abstract
Stimulated emission depletion (STED) microscopy, as a popular super-resolution imaging technique, has been widely used in bio-structure analysis and resolving the dynamics of biological processes beyond the diffraction limit. The performance of STED critically depends on the optical properties of the fluorescent probes. Ideally, the probe should process high brightness and good photostability, and exhibit a sensitive response to the depletion beam. Organic dyes and fluorescent proteins, as the most widely used STED probes, suffer from low brightness and exhibit rapid photobleaching under a high excitation power. Recently, luminescent nanoparticles (NPs) have emerged as promising fluorescent probes in biological imaging due to their high brightness and good photostability. STED imaging using various kinds of NPs, including quantum dots, polymer dots, carbon dots, aggregation-induced emission dots, etc., has been demonstrated. This review will comprehensively review recent advances in fluorescent NP-based STED probes, discuss their advantages and pitfalls, and outline the directions for future development.
Collapse
Affiliation(s)
- Liqing Qi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Songlin Liu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- School of Chemistry and Materials, University of Science and Technology of China, Hefei 230026, China
| | - Jiantao Ping
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Xingxing Yao
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Long Chen
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dawei Yang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Yijun Liu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Chenjing Wang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Yating Xiao
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
| | - Lubin Qi
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Yifei Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- School of Chemistry and Materials, University of Science and Technology of China, Hefei 230026, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
| | - Xiaohong Fang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- School of Chemistry and Materials, University of Science and Technology of China, Hefei 230026, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
- Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Xu J, Huang BB, Lai CM, Lu YS, Shao JW. Advancements in the synthesis of carbon dots and their application in biomedicine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112920. [PMID: 38669742 DOI: 10.1016/j.jphotobiol.2024.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
As a sort of fluorescent carbon nanomaterial with a particle size of less than 10 nm, carbon dots (CDs) have their own merits of good dispersibility in water, stable optical properties, strong chemical inertness, stable optical properties, and good biosecurity. These excellent peculiarities facilitated them like sensing, imaging, medicine, catalysis, and optoelectronics, making them a new star in the field of nanotechnology. In particular, the development of CDs in the fields of chemical probes, imaging, cancer therapy, antibacterial and drug delivery has become a hot topic in current research. Although the biomedical applications in CDs have been demonstrated in many research articles, a systematic summary of their role in biomedical applications is scarce. In this review, we introduced the basic information of CDs in detail, including synthesis approaches of CDs as well as their favorable properties including photoluminescence and low cytotoxicity. Subsequently, the application of CDs in the field of biomedicine was emphasized. Finally, the main challenges and research prospects of CDs in this field were proposed, which might provide some detailed information in designing new CDs in this promising biomedical field.
Collapse
Affiliation(s)
- Jia Xu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bing-Bing Huang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chun-Mei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu-Sheng Lu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
13
|
Shen S, Gao Q, Hu Z, Fan D. A fingerprint-like supramolecular-assembled Ag 3PO 4/polydopamine/g-C 3N 4 heterojunction nanocomposite for enhanced solar-driven oxygen evolution in vivo. J Colloid Interface Sci 2024; 663:212-226. [PMID: 38401442 DOI: 10.1016/j.jcis.2024.02.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
Biocompatible photocatalytic water-splitting systems are promising for tissue self-oxygenation. Herein, a structure-function dual biomimetic fingerprint-like silver phosphate/polydopamine/graphitic carbon nitride (Ag3PO4/PDA/g-C3N4) heterojunction nanocomposite is proposed for enhanced solar-driven oxygen (O2) evolution in vivo in situ. Briefly, a porous nitrogen-defected g-C3N4 nanovoile (CN) is synthesized as the base. Dopamine molecules are controllably inserted into the CN interlayer, forming PDA spacers (4.28 nm) through self-polymerization-induced supramolecular-assembly. Ag3PO4 nanoparticles are then in situ deposited to create Ag3PO4/PDA/CN. The fingerprint-like structure of PDA/CN enlarges the layer spacing, thereby accelerating mass transfer and increasing reaction sites. The PDA spacer roles as excellent light harvester, electronic-ionic conductor, and redox pair through conformational changes, resulting in tailored electronic band structure, optimized carrier behavior, and reduced electrochemical impedance. In physiological conditions, Ag3PO4/PDA/CN exhibits O2 evolution rate of 45.35 μmol⋅g-1⋅h-1, 9-fold of bulk g-C3N4. The biocompatibility and in vivo oxygen supply effectiveness for biomedical applications have been verified in animal models.
Collapse
Affiliation(s)
- Shihong Shen
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Qian Gao
- School of Physics, Nankai University, Tianjin 300071, PR China
| | - Zhenpeng Hu
- School of Physics, Nankai University, Tianjin 300071, PR China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
14
|
Vargas-Reyes M, Bruna N, Ramos-Zúñiga J, Valenzuela-Ibaceta F, Rivas-Álvarez P, Navarro CA, Pérez-Donoso JM. Biosynthesis of photostable CdS quantum dots by UV-resistant psychrotolerant bacteria isolated from Union Glacier, Antarctica. Microb Cell Fact 2024; 23:140. [PMID: 38760827 PMCID: PMC11100238 DOI: 10.1186/s12934-024-02417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Quantum Dots (QDs) are fluorescent nanoparticles with exceptional optical and optoelectronic properties, finding widespread utility in diverse industrial applications. Presently, chemically synthesized QDs are employed in solar cells, bioimaging, and various technological domains. However, many applications demand QDs with prolonged lifespans under conditions of high-energy radiation. Over the past decade, microbial biosynthesis of nanomaterials has emerged as a sustainable and cost-effective process. In this context, the utilization of extremophile microorganisms for synthesizing QDs with unique properties has recently been reported. RESULTS In this study, UV-resistant bacteria were isolated from one of the most extreme environments in Antarctica, Union Glacier at the Ellsworth Mountains. Bacterial isolates, identified through 16 S sequencing, belong to the genera Rhodococcus, Pseudarthrobacter, and Arthrobacter. Notably, Rhodococcus sp. (EXRC-4 A-4), Pseudarthrobacter sp. (RC-2-3), and Arthrobacter sp. (EH-1B-1) tolerate UV-C radiation doses ≥ 120 J/m². Isolated UV-resistant bacteria biosynthesized CdS QDs with fluorescence intensities 4 to 8 times higher than those biosynthesized by E. coli, a mesophilic organism tolerating low doses of UV radiation. Transmission electron microscopy (TEM) analysis determined QD sizes ranging from 6 to 23 nm, and Fourier-transform infrared (FTIR) analysis demonstrated the presence of biomolecules. QDs produced by UV-resistant Antarctic bacteria exhibit high photostability after exposure to UV-B radiation, particularly in comparison to those biosynthesized by E. coli. Interestingly, red fluorescence-emitting QDs biosynthesized by Rhodococcus sp. (EXRC-4 A-4) and Arthrobacter sp. (EH-1B-1) increased their fluorescence emission after irradiation. Analysis of methylene blue degradation after exposure to irradiated QDs biosynthesized by UV-resistant bacteria, indicates that the QDs transfer their electrons to O2 for the formation of reactive oxygen species (ROS) at different levels. CONCLUSIONS UV-resistant Antarctic bacteria represent a novel alternative for the sustainable generation of nanostructures with increased radiation tolerance-two characteristics favoring their potential application in technologies requiring continuous exposure to high-energy radiation.
Collapse
Affiliation(s)
- Matías Vargas-Reyes
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Nicolás Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Javiera Ramos-Zúñiga
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Felipe Valenzuela-Ibaceta
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Paula Rivas-Álvarez
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Claudio A Navarro
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - José M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile.
| |
Collapse
|
15
|
Nonappa. Seeing the Supracolloidal Assemblies in 3D: Unraveling High-Resolution Structures Using Electron Tomography. ACS MATERIALS AU 2024; 4:238-257. [PMID: 38737122 PMCID: PMC11083119 DOI: 10.1021/acsmaterialsau.3c00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 05/14/2024]
Abstract
Transmission electron microscopy (TEM) imaging has revolutionized modern materials science, nanotechnology, and structural biology. Its ability to provide information about materials' structure, composition, and properties at atomic-level resolution has enabled groundbreaking discoveries and the development of innovative materials with precision and accuracy. Electron tomography, single particle reconstruction, and microcrystal electron diffraction techniques have paved the way for the three-dimensional (3D) reconstruction of biological samples, synthetic materials, and hybrid nanostructures at near atomic-level resolution. TEM tomography using a series of two-dimensional (2D) projections has been used extensively in biological science, but in recent years it has become an important method in synthetic nanomaterials and soft matter research. TEM tomography offers unprecedented morphological details of 3D objects, internal structures, packing patterns, growth mechanisms, and self-assembly pathways of self-assembled colloidal systems. It complements other analytical tools, including small-angle X-ray scattering, and provides valuable data for computational simulations for predictive design and reverse engineering of nanomaterials with the desired structure and properties. In this perspective, I will discuss the importance of TEM tomography in the structural understanding and engineering of self-assembled nanostructures with specific emphasis on colloidal capsids, composite cages, biohybrid superlattices with complex geometries, polymer assemblies, and self-assembled protein-based superstructures.
Collapse
Affiliation(s)
- Nonappa
- Faculty of Engineering and Natural
Sciences, Tampere University, FI-33720 Tampere, Finland
| |
Collapse
|
16
|
Li M, Gao X, Ren X, Ai Y, Zhang B, Zou G. Potential-selective electrochemiluminescence of AgInS 2/ZnS nanocrystals and its immunoassay application. Chem Commun (Camb) 2024; 60:4958-4961. [PMID: 38629343 DOI: 10.1039/d4cc00888j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Potential-selective electrochemiluminescence (ECL) with tunable maximum-emission-potential ranging from 0.95 to 0.30 V is achieved using AgInS2/ZnS nanocrystals, which is promising in the design of multiplexed bioassay on commercialized ECL setups. The model system AgInS2/ZnS/N2H4 exhibits efficient ECL around 0.30 V and can be exploited for sensitive immunoassays with less electrochemical interference and crosstalk.
Collapse
Affiliation(s)
- Mengwei Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Xiaoxuan Ren
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Yaojia Ai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
17
|
Zhang M, Zhang Z, Niu X, Ti H, Zhou Y, Gao B, Li Y, Liu J, Chen X, Li H. Interplay Between Intracellular Transport Dynamics and Liquid‒Liquid Phase Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308338. [PMID: 38447188 PMCID: PMC11109639 DOI: 10.1002/advs.202308338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Liquid‒liquid phase separation (LLPS) is a ubiquitous process in which proteins, RNA, and biomolecules assemble into membrane-less compartments, playing important roles in many biological functions and diseases. The current knowledge on the biophysical and biochemical principles of LLPS is largely from in vitro studies; however, the physiological environment in living cells is complex and not at equilibrium. The characteristics of intracellular dynamics and their roles in physiological LLPS remain to be resolved. Here, by using single-particle tracking of quantum dots and dynamic monitoring of the formation of stress granules (SGs) in single cells, the spatiotemporal dynamics of intracellular transport in cells undergoing LLPS are quantified. It is shown that intracellular diffusion and active transport are both reduced. Furthermore, the formation of SG droplets contributes to increased spatial heterogeneity within the cell. More importantly, the study demonstrated that the LLPS of SGs can be regulated by intracellular dynamics in two stages: the reduced intracellular diffusion promotes SG assembly and the microtubule-associated transport facilitates SG coalescences. The work on intracellular dynamics not only improves the understanding of the mechanism of physiology phase separations occurring in nonequilibrium environments but also reveals an interplay between intracellular dynamics and LLPS.
Collapse
Affiliation(s)
- Ming‐Li Zhang
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Ziheng Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Xue‐Zhi Niu
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Hui‐Ying Ti
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Yu‐Xuan Zhou
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Bo Gao
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics and Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Ji‐Long Liu
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Xiaosong Chen
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Hui Li
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| |
Collapse
|
18
|
Kim MJ, Haizan I, Ahn MJ, Park DH, Choi JH. Recent Advances in Lateral Flow Assays for Viral Protein Detection with Nanomaterial-Based Optical Sensors. BIOSENSORS 2024; 14:197. [PMID: 38667190 PMCID: PMC11048458 DOI: 10.3390/bios14040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Controlling the progression of contagious diseases is crucial for public health management, emphasizing the importance of early viral infection diagnosis. In response, lateral flow assays (LFAs) have been successfully utilized in point-of-care (POC) testing, emerging as a viable alternative to more traditional diagnostic methods. Recent advancements in virus detection have primarily leveraged methods such as reverse transcription-polymerase chain reaction (RT-PCR), reverse transcription-loop-mediated isothermal amplification (RT-LAMP), and the enzyme-linked immunosorbent assay (ELISA). Despite their proven effectiveness, these conventional techniques are often expensive, require specialized expertise, and consume a significant amount of time. In contrast, LFAs utilize nanomaterial-based optical sensing technologies, including colorimetric, fluorescence, and surface-enhanced Raman scattering (SERS), offering quick, straightforward analyses with minimal training and infrastructure requirements for detecting viral proteins in biological samples. This review describes the composition and mechanism of and recent advancements in LFAs for viral protein detection, categorizing them into colorimetric, fluorescent, and SERS-based techniques. Despite significant progress, developing a simple, stable, highly sensitive, and selective LFA system remains a formidable challenge. Nevertheless, an advanced LFA system promises not only to enhance clinical diagnostics but also to extend its utility to environmental monitoring and beyond, demonstrating its potential to revolutionize both healthcare and environmental safety.
Collapse
Affiliation(s)
- Min Jung Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (M.J.K.); (D.-H.P.)
| | - Izzati Haizan
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Min Ju Ahn
- Department of Biotechnology, Jeonbuk National University, 79 Gobongro, Iksan-si 54596, Jeollabuk-do, Republic of Korea;
| | - Dong-Hyeok Park
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (M.J.K.); (D.-H.P.)
| | - Jin-Ha Choi
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (M.J.K.); (D.-H.P.)
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| |
Collapse
|
19
|
Zhang L, Xu H, Zhang X, Chen X, Lv Y, Zhang R, Wang L, Wu R, Shen H, Li LS. Highly Sensitive, Stable InP Quantum Dot Fluorescent Probes for Quantitative Immunoassay Through Nanostructure Tailoring and Biotin-Streptavidin Coupling. Inorg Chem 2024; 63:4604-4613. [PMID: 38395777 DOI: 10.1021/acs.inorgchem.3c04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Nontoxic, highly sensitive InP quantum dot (QD) fluorescent immunoassay probes are promising biomedical detection modalities due to their unique properties. However, InP-based QDs are prone to surface oxidation, and the stability of InP QD-based probes in biocompatible environments remains a crucial challenge. Although the thick shell can provide some protection during the phase transfer process of hydrophobic QDs, the photoluminescence quantum yield (PLQY) is generally decreased because of the contradiction between lattice stress relaxation and thick shell growth. Herein, we developed thick-shell InP-based core/shell QDs by inserting a ZnSeS alloy layer. The ternary ZnSeS intermediate shell could effectively facilitate lattice stress relaxation and passivate the defect states. The synthesized InP/ZnSe/ZnSeS/ZnS core/alloy shell/shell QDs (CAS-InP QDs) with nanostructure tailoring revealed a larger size, high PLQY (90%), and high optical stability. After amphiphilic polymer encapsulation, the aqueous CAS-InP QDs presented almost constant fluorescence attenuation and stable PL intensity under different temperatures, UV radiation, and pH solutions. The CAS-InP QDs were excellent labels of the fluorescence-linked immunosorbent assay (FLISA) for detecting C-reactive protein (CRP). The biotin-streptavidin (Bio-SA) system was first introduced in the FLISA to further improve the sensitivity, and the CAS-InP QDs-based SA-Bio sandwich FLISA realized the detection of CRP with an impressive limit of detection (LOD) of 0.83 ng/mL. It is believed that the stable and sensitive InP QD fluorescent probes will drive the rapid development of future eco-friendly, cost-effective, and sensitive in vitro diagnostic kits.
Collapse
Affiliation(s)
- Lifang Zhang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Han Xu
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Xuhui Zhang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Xinxin Chen
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Yanbing Lv
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Ruixue Zhang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Lei Wang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Ruili Wu
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Huaibin Shen
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Lin Song Li
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| |
Collapse
|
20
|
Yu Y, Fu W, Xie Y, Jiang X, Wang H, Yang X. A review on recent advances in assays for DNMT1: a promising diagnostic biomarker for multiple human cancers. Analyst 2024; 149:1002-1021. [PMID: 38204433 DOI: 10.1039/d3an01915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The abnormal expression of human DNA methyltransferases (DNMTs) is closely related with the occurrence and development of a wide range of human cancers. DNA (cytosine-5)-methyltransferase-1 (DNMT1) is the most abundant human DNA methyltransferase and is mainly responsible for genomic DNA methylation patterns. Abnormal expression of DNMT1 has been found in many kinds of tumors, and DNMT1 has become a valuable target for the diagnosis and drug therapy of diseases. Nowadays, DNMT1 has been found to be involved in multiple cancers such as pancreatic cancer, breast cancer, bladder cancer, lung cancer, gastric cancer and other cancers. In order to achieve early diagnosis and for scientific research, various analytical methods have been developed for qualitative or quantitative detection of low-abundance DNMT1 in biological samples and human tumor cells. Herein, we provide a brief explication of the research progress of DNMT1 involved in various cancer types. In addition, this review focuses on the types, principles, and applications of DNMT1 detection methods, and discusses the challenges and potential future directions of DNMT1 detection.
Collapse
Affiliation(s)
- Yang Yu
- Department of Laboratory Medicine, QianWei People's Hospital, Leshan 614400, China
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Wen Fu
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yaxing Xie
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xue Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Wang
- Department of Laboratory Medicine, QianWei People's Hospital, Leshan 614400, China
| | - Xiaolan Yang
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
21
|
Dai Q, Du Z, Jing L, Zhang R, Tang W. Enzyme-Responsive Modular Peptides Enhance Tumor Penetration of Quantum Dots via Charge Reversal Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6208-6220. [PMID: 38279946 DOI: 10.1021/acsami.3c11500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Quantum dots (QDs) are colloidal semiconductor nanoparticles acting as fluorescent probes for detection, disease diagnosis, and photothermal and photodynamic therapy. However, their performance in cancer treatment is limited by inadequate tumor accumulation and penetration due to the larger size of nanoparticles compared to small molecules. To address this challenge, charge reversal nanoparticles offer an effective strategy to prolong blood circulation time and achieve enhanced endocytosis and tumor penetration. In this study, we leveraged the overexpressed γ-glutamyl transpeptidase (GGT) in many human tumors and developed a library of modular peptides to serve as water-soluble surface ligands of QDs. We successfully transferred the QDs from the organic phase to the aqueous phase within 5 min. And through systematic tuning of the peptide sequence, we optimized the fluorescent stability of QDs and their charge reversal behavior in response to GGT. The resulting optimal peptide stabilized QDs in aqueous solution with a high fluorescent retention rate of 93% after three months and realized the surface charge reversal of QDs triggered by GGT in vitro. The binding between the peptide and QD surface was investigated by using saturation transfer differential nuclear magnetic resonance (STD NMR). Thanks to its charge reversal ability, the GGT-responsive QDs exhibited enhanced cellular uptake in GGT-expressing cancer cells and deeper penetration in the 3D multicellular spheroids. This enzyme-responsive modular peptide can lead to specific tumor targeting and deeper tumor penetration, holding great promise to enhance the treatment efficacy of QD-based theranostics.
Collapse
Affiliation(s)
- Qiuju Dai
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhen Du
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
22
|
Saha S, Tripathy S, Patra CR. Neuritogenic activity of metal nanoparticles. Nanomedicine (Lond) 2024; 19:363-366. [PMID: 38214170 DOI: 10.2217/nnm-2023-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Affiliation(s)
- Sudipta Saha
- Department of Applied Biology, CSIR - Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sanchita Tripathy
- Department of Applied Biology, CSIR - Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR - Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
23
|
Hu J, Zhang YT, Han Y, Ma F, Li CZ, Cui L, Zhang CY. Methylation-Powered Assembly of a Single Quantum Dot-Based FRET Nanosensor for Antibody-Free and Enzyme-Free Monitoring of Locus-Specific N6-Methyladenosine in Clinical Tissues. Anal Chem 2023; 95:17945-17953. [PMID: 38000786 DOI: 10.1021/acs.analchem.3c04571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
N6-Methyladenosine (m6A) is the most pervasive and evolutionarily conserved epitranscriptomic modification in long noncoding RNA (lncRNA), and its dysregulation may induce aberrant transcription and translation programs. Herein, we demonstrate the methylation-powered assembly of a single quantum dot (QD)-based fluorescence resonance energy transfer (FRET) nanosensor for antibody- and enzyme-free monitoring of locus-specific m6A in clinical tissues. The m6A-sensitive DNAzyme VMC10 is employed to identify a specific m6A site in lncRNA, and it catalyzes the hydrolytic cleavage of unmethylated lncRNA. The cleaved lncRNA fails to trigger the subsequent catalytic hairpin assembly (CHA) reaction due to the energy barrier. In contrast, when m6A-lncRNA is present, the methyl group in m6A protects lncRNA from VMC10-mediated cleavage. With the aid of an assistant probe, the retained intact m6A-lncRNA is released from the VMC10/lncRNA complex and subsequently triggers the CHA reaction, generating abundant AF647/biotin dual-labeled duplexes. The assembly of AF647/biotin dual-labeled duplexes onto 605QD results in efficient FRET between 605QD and AF647. The FRET signal can be simply quantified by single-molecule detection. Notably, this assay can be implemented in an antibody-free and enzyme-free manner. This nanosensor can sensitively quantify target m6A with a detection limit of 0.47 fM, and it can discriminate as low as a 0.001% m6A level from excess coexisting counterparts. Importantly, this nanosensor can monitor the cellular m6A level with single-cell sensitivity and profile target m6A expression in breast cancer and healthy para-cancerous tissues, providing a powerful tool for studying the physiological and pathological functions of m6A.
Collapse
Affiliation(s)
- Jinping Hu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ya-Ting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chen-Zhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
24
|
Ma N, Lu Y, Wang J, Liang X, Dong S, Zhao L. Role of CdTe quantum dots on peripheral Immunocytes and selenoprotein P: immunotoxicity at the molecular and cellular levels. Toxicol Res (Camb) 2023; 12:1041-1050. [PMID: 38145088 PMCID: PMC10734625 DOI: 10.1093/toxres/tfad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/12/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023] Open
Abstract
The extensive product and application of cadmium-quantum dots (Cd-QDs), one kind of semiconductor nanomaterials, lead to prolonged exposure to the environment. Cd-QDs have shown good properties in biomedical and imaging-related fields; the safety of Cd-QDs limits the application of these materials and technologies, however. The systematic distribution of CdTe QDs in organisms has been ascertained in previous studies. Nevertheless, it is relatively less reported about the toxicity of CdTe QDs to immune macromolecules and organs. Based on this, immunocytes (including lymphocyte subsets-CD4+ T and CD8+ T cells, splenocytes) and selenoprotein P (SelP) were chosen as targets for CdTe QDs immunotoxicity studies. Results indicate that CdTe QDs induced cytotoxicity to CD4+ T cells, CD8+ T cells and splenocytes by reducing cell viability and causing apoptosis as CdTe QDs and Cd2+ enter cells. At the molecular level, the direct interaction between CdTe QDs and SelP is proved by multispectral measurements, which demonstrated the alteration of protein structure. The combined results show that CdTe QDs induced adverse effects on the immune system at the cellular and molecular levels. This research contributes to a better understanding of CdTe QDs cause harmful damage to the immune system and provides new strategies for the inhibition and treatment of health damages caused by CdTe QDs.
Collapse
Affiliation(s)
- Nana Ma
- College of Life Science, Institute of Life Science and Green Development, Hebei University, 180# Wusi East Road, Baoding, Hebei 071002, P.R. China
| | - Yudie Lu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, 180# Wusi East Road, Baoding, Hebei 071002, P.R. China
| | - Jing Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, Shandong 264005, P.R. China
| | - Xueyou Liang
- Biochemical Department, Baoding University, 180# Wusi East Road, Baoding, Hebei 071000, P.R. China
| | - Sijun Dong
- College of Life Science, Institute of Life Science and Green Development, Hebei University, 180# Wusi East Road, Baoding, Hebei 071002, P.R. China
| | - Lining Zhao
- College of Life Science, Institute of Life Science and Green Development, Hebei University, 180# Wusi East Road, Baoding, Hebei 071002, P.R. China
| |
Collapse
|
25
|
Xu D, Li J, Liu L, Tang H. Boosting the Optical Trapping of a Single Virus by Quantum Dots Tagging Increases Virus Polarizability and Trap Stiffness. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55174-55182. [PMID: 37966372 DOI: 10.1021/acsami.3c14725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Optical tweezers use the momentum of photons to capture and manipulate particles in a noncontact way. Although related techniques have been widely used in biology and materials, research on viruses is still relatively limited. It is hard to optically trap viruses because trap stiffness is rather low and the size of viruses is too small. Here, we used an optical tweezers system coupled with a laser confocal fluorescence imaging system, which allows individual viruses to be imaged and trapped in real time and analyzed using multiple parameters in the culture medium. We show that a single virus tagged by quantum dots (QDs) can increase the real part of polarizability, further increasing gradient force and trap stiffness. With this method, we not only can trap and manipulate viruses in real time but also can analyze their interactions with other targets.
Collapse
Affiliation(s)
- Dadi Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jiangtao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Liu Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hongwu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
26
|
Liu Y, Li J, Xiahou J, Liu Z. Recent Advances in NIR or X-ray Excited Persistent Luminescent Materials for Deep Bioimaging. J Fluoresc 2023:10.1007/s10895-023-03513-8. [PMID: 38008861 DOI: 10.1007/s10895-023-03513-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
Due to their persistent luminescence, persistent luminescent (PersL) materials have attracted great interest. In the biomedical field, the use of persistent luminescent nanoparticles (PLNPs) eliminates the need for continuous in situ excitation, thereby avoiding interference from tissue autofluorescence and significantly improving the signal-to-noise ratio (SNR). Although persistent luminescence materials can emit light continuously, the luminescence intensity of small-sized nanoparticles in vivo decays quickly. Early persistent luminescent nanoparticles were mostly excited by ultraviolet (UV) or visible light and were administered for imaging purposes through ex vivo charging followed by injection into the body. Limited by the low in vivo penetration depth, UV light cannot secondary charge PLNPs that have decayed in vivo, and visible light does not penetrate deep enough to reach deep tissues, which greatly limits the imaging time of persistent luminescent materials. In order to address this issue, the development of PLNPs that can be activated by light sources with superior tissue penetration capabilities is essential. Near-infrared (NIR) light and X-rays are widely recognized as ideal excitation sources, making persistent luminescent materials stimulated by these two sources a prominent area of research in recent years. This review describes NIR and X-ray excitable persistent luminescence materials and their recent advances in bioimaging.
Collapse
Affiliation(s)
- Yuanqi Liu
- School of Material Science and Engineering, University of Jinan, Jinan, China
| | - Jinkai Li
- School of Material Science and Engineering, University of Jinan, Jinan, China.
- Infovision Optoelectronics (Kunshan)Co, Ltd, Kunshan, 215300, China.
| | - Junqing Xiahou
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| | - Zongming Liu
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| |
Collapse
|
27
|
Saha A, Yadav R, Aldakov D, Reiss P. Gallium Sulfide Quantum Dots with Zinc Sulfide and Alumina Shells Showing Efficient Deep Blue Emission. Angew Chem Int Ed Engl 2023; 62:e202311317. [PMID: 37735098 DOI: 10.1002/anie.202311317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
Solution-processed quantum dot (QD) based blue emitters are of paramount importance in the field of optoelectronics. Despite large research efforts, examples of efficient deep blue/near UV-emitting QDs remain rare due to lack of luminescent wide band gap materials and high defect densities in the existing ones. Here, we introduce a novel type of QDs based on heavy metal free gallium sulfide (Ga2 S3 ) and their core/shell heterostructures Ga2 S3 /ZnS as well as Ga2 S3 /ZnS/Al2 O3 . The photoluminescence (PL) properties of core Ga2 S3 QDs exhibit various decay pathways due to intrinsic defects, resulting in a broad overall PL spectrum. We show that the overgrowth of the Ga2 S3 core QDs with a ZnS shell results in the suppression of the intrinsic defect-mediated states leading to efficient deep-blue emission at 400 nm. Passivation of the core/shell structure with amorphous alumina yields a further enhancement of the PL quantum yield approaching 50 % and leads to an excellent optical and colloidal stability. Finally, we develop a strategy for the aqueous phase transfer of the obtained QDs retaining 80 % of the initial fluorescence intensity.
Collapse
Affiliation(s)
- Avijit Saha
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| | - Ranjana Yadav
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| | - Dmitry Aldakov
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| | - Peter Reiss
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| |
Collapse
|
28
|
Chen LG, Sun L, Wu NN, Tao BB, Wang HB. Cascade signal amplification strategy by coupling chemical redox-cycling and Fenton-like reaction: Toward an ultrasensitive split-type fluorescent immunoassay. Anal Chim Acta 2023; 1279:341843. [PMID: 37827655 DOI: 10.1016/j.aca.2023.341843] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
An ultrasensitive split-type fluorescent immunobiosensor has been reported based on a cascade signal amplification strategy by coupling chemical redox-cycling and Fenton-like reaction. In this strategy, Cu2+ could oxidize chemically o-phenylenediamine (OPD) to generate photosensitive 2, 3-diaminophenazine (DAP) and Cu+/Cu0. On one hand, the generated Cu0 in turn catalyzed the oxidation of OPD. On the other hand, the introduced H2O2 reacted with Cu + ion to produce hydroxyl radicals (·OH) and Cu2+ ion through a Cu + -mediated Fenton-like reaction. The produced ·OH and recycled Cu2+ ion could take turns oxidizing OPD to generate more photoactive DAP, which triggering a self-sustaining chemical redox-cycling reaction and leading to a remarkable fluorescent improvement. It was worth mentioning that the cascade reaction did not stop until OPD molecules were completely consumed. Based on the H2O2-triggered cascade signal amplification, the strategy was exploited for the construction of split-type fluorescent immunoassay by taking interleukin-6 (IL-6) as the model target. It was realized for the ultrasensitive determination of IL-6 in a linear ranging from 20 fg/mL to 10 pg/mL with a limit of detection of 5 fg/mL. The study validated the practicability of the cascade signal amplification on the fluorescent bioanalysis and the superior performance in fluorescent immunoassay. It is expected that the strategy would offer new opportunities to develop ultrasensitive fluorescent methods for biosensor and bioanalysis.
Collapse
Affiliation(s)
- Lin-Ge Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Lu Sun
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Ning-Ning Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Bei-Bei Tao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China.
| |
Collapse
|
29
|
Gaash D, Dewan S, Leshem AB, Jaiswal KS, Jelinek R, Lampel A. Modulating the optical properties of carbon dots by peptide condensates. Chem Commun (Camb) 2023; 59:12298-12301. [PMID: 37752864 DOI: 10.1039/d3cc03945e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Here, we utilized designed condensates formed by liquid-liquid phase separation (LLPS) of cationic and aromatic peptide to sequester tyrosine-based carbon dots (C-dots). The C-dots fluorescence is quenched and retrieved upon partitioning and release from condensates, allowing a spatial regulation of C-dots fluorescence which can be utilized for biosensing applications.
Collapse
Affiliation(s)
- Dor Gaash
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Simran Dewan
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Avigail Baruch Leshem
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Kumar Sagar Jaiswal
- Department of Chemistry, Ben Gurion University of the Negev, 84105 Beer Sheva, Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben Gurion University of the Negen, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, 84105 Beer Sheva, Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben Gurion University of the Negen, Israel
| | - Ayala Lampel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
30
|
Xu Z, Liu X, Zong C, Zhang Q, Gai H. Homogeneous immunoassay utilizing fluorescence resonance energy transfer from quantum dots to tyramide dyes deposited on full immunocomplexes. Analyst 2023; 148:4877-4884. [PMID: 37642356 DOI: 10.1039/d3an01174g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
There is an urgent need for homogeneous immunoassays that offer sufficient sensitivity for routine clinical practice. In this study, we have developed a highly sensitive, fluorescence resonance energy transfer (FRET)-based homogeneous immunoassay. Unlike previous FRET-based homogeneous immunoassays, where acceptors were attached to antibody molecules located far from the donor, we employed acceptors to label the entire sandwich-structured immunocomplex, including two antibodies and one antigen. As a result, the FRET signal was amplified by a factor of 10, owing to the reduced distance between the donor and acceptors. We validated our method by quantifying carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) in PBS buffer and blank plasma. The limits of detection (LOD) for CEA and AFP in both PBS buffer and blank plasma were comparable, reaching sub-femtomolar levels. Furthermore, we successfully quantified CEA and AFP in three human plasma samples, thereby confirming the reliability of our method for clinical applications.
Collapse
Affiliation(s)
- Zihan Xu
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Chenghua Zong
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Qingquan Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| |
Collapse
|
31
|
Zhang Q, Zhao S, Su C, Han Q, Han Y, Tian X, Li Y, Zhang CY. Construction of a Quantum-Dot-Based FRET Nanosensor through Direct Encoding of Streptavidin-Binding RNA Aptamers for N6-Methyladenosine Demethylase Detection. Anal Chem 2023; 95:13201-13210. [PMID: 37603851 DOI: 10.1021/acs.analchem.3c02149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
N6-Methyladenosine (m6A) demethylases can catalyze the removal of the methyl modification on m6A, and it is closely associated with the occurrence, proliferation, differentiation, and metastasis of malignancies. The m6A demethylases (e.g., fat mass and obesity-associated protein (FTO)) may act as a cancer biomarker and are crucial for anticancer drug screening and early clinical diagnosis. Herein, we demonstrate the construction of a quantum-dot-based Förster resonance energy-transfer (FRET) nanosensor through direct encoding of streptavidin-binding RNA aptamers (SA aptamers) for m6A demethylase detection. This nanosensor employs multiple Cy5-molecule-labeled SA aptamers as the building materials to construct the 605QD-RNA-Cy5 nanoassembly, and it exploits the hinder effect of m6A upon elongation and ligation reactions to distinguish m6A-containing RNA probes from demethylated RNA probes. When m6A demethylase is present, the m6A-containing RNA probes are demethylated to generate the demethylated RNA probes, initiating strand extension and ligation reactions to yield a complete transcription template for SA aptamers. Subsequently, a T7-assisted cascade transcription amplification reaction is activated to transcribe abundant SA aptamers with the incorporation of multiple Cy5 fluorophores. The Cy5-incorporated SA aptamers can self-assembly onto the streptavidin-coated 605QD surface to obtain the 605QD-SA aptamer-Cy5 nanoassemblies, resulting in the generation of distinct FRET signals. This nanosensor exhibits ultrahigh sensitivity and excellent specificity, and it can detect endogenous FTO at the single-cell level. Furthermore, this nanosensor can precisely measure enzyme kinetic parameters, screen m6A demethylase inhibitors, and differentiate the FTO expression between breast cancer patients and healthy individual tissues, offering a versatile platform for clinical diagnostic and drug discovery.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Shuangnan Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Cong Su
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaorui Tian
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yueying Li
- Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou 450052, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
32
|
Ornelas C, Astruc D. Ferrocene-Based Drugs, Delivery Nanomaterials and Fenton Mechanism: State of the Art, Recent Developments and Prospects. Pharmaceutics 2023; 15:2044. [PMID: 37631259 PMCID: PMC10458437 DOI: 10.3390/pharmaceutics15082044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Ferrocene has been the most used organometallic moiety introduced in organic and bioinorganic drugs to cure cancers and various other diseases. Following several pioneering studies, two real breakthroughs occurred in 1996 and 1997. In 1996, Jaouen et al. reported ferrocifens, ferrocene analogs of tamoxifen, the chemotherapeutic for hormone-dependent breast cancer. Several ferrocifens are now in preclinical evaluation. Independently, in 1997, ferroquine, an analog of the antimalarial drug chloroquine upon the introduction of a ferrocenyl substituent in the carbon chain, was reported by the Biot-Brocard group and found to be active against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Ferroquine, in combination with artefenomel, completed phase IIb clinical evaluation in 2019. More than 1000 studies have been published on ferrocenyl-containing pharmacophores against infectious diseases, including parasitic, bacterial, fungal, and viral infections, but the relationship between structure and biological activity has been scarcely demonstrated, unlike for ferrocifens and ferroquines. In a majority of ferrocene-containing drugs, however, the production of reactive oxygen species (ROS), in particular the OH. radical, produced by Fenton catalysis, plays a key role and is scrutinized in this mini-review, together with the supramolecular approach utilizing drug delivery nanosystems, such as micelles, metal-organic frameworks (MOFs), polymers, and dendrimers.
Collapse
Affiliation(s)
- Catia Ornelas
- ChemistryX, R&D Department, R&D and Consulting Company, 9000-160 Funchal, Portugal
| | - Didier Astruc
- University of Bordeaux, ISM, UMR CNRS, No. 5255, 351 Cours de la Libération, CEDEX, 33405 Talence, France
| |
Collapse
|
33
|
Moetasam Zorab M, Mohammadjani N, Ashengroph M, Alavi M. Biosynthesis of Quantum Dots and Their Therapeutic Applications in the Diagnosis and Treatment of Cancer and SARS-CoV-2. Adv Pharm Bull 2023; 13:411-422. [PMID: 37646053 PMCID: PMC10460808 DOI: 10.34172/apb.2023.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 09/01/2023] Open
Abstract
Quantum dots (QDs) are semiconductor materials that range from 2 nm to 10 nm. These nanomaterials (NMs) are smaller and have more unique properties compared to conventional nanoparticles (NPs). One of the unique properties of QDs is their special optoelectronic properties, making it possible to apply these NMs in bioimaging. Different size and shape QDs, which are used in various fields such as bioimaging, biosensing, cancer therapy, and drug delivery, have so far been produced by chemical methods. However, chemical synthesis provides expensive routes and causes serious environmental and health issues. Therefore, various biological systems such as bacteria, fungi, yeasts, algae, and plants are considered as potent eco-friendly green nanofactories for the biosynthesis of QDs, which are both economic and environmentally safe. The review aims to provide a descriptive overview of the various microbial agents for the synthesis of QDs and their biomedical applications for the diagnosis and treatment of cancer and SARS-CoV-2.
Collapse
Affiliation(s)
| | - Navid Mohammadjani
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| |
Collapse
|
34
|
Boopathy LK, Gopal T, Roy A, Kalari Kandy RR, Arumugam MK. Recent trends in macromolecule-conjugated hybrid quantum dots for cancer theranostic applications. RSC Adv 2023; 13:18760-18774. [PMID: 37346950 PMCID: PMC10281231 DOI: 10.1039/d3ra02673f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Quantum dots (QDs) are small nanoparticles with semiconductor properties ranging from 2 to 10 nanometers comprising 10-50 atoms. The single wavelength excitation character of QDs makes it more significant, as it can excite multiple particles in a confined surface simultaneously by narrow emission. QDs are more photostable than traditional organic dyes; however, when injected into tissues, whole animals, or ionic solutions, there is a significant loss of fluorescence. HQD-based probes conjugated with cancer-specific ligands, antibodies, or peptides are used in clinical diagnosis. It is more precise and reliable than standard immunohistochemistry (IHC) at minimal protein expression levels. Advanced clinical studies use photodynamic therapy (PDT) with fluorescence imaging to effectively identify and treat cancer. Recent studies revealed that a combination of unique characteristics of QDs, including their fluorescence capacity and abnormal expression of miRNA in cancer cells, were used for the detection and monitoring progression of cancer. In this review, we have highlighted the unique properties of QDs and the theranostic behavior of various macromolecule-conjugated HQDs leading to cancer treatment.
Collapse
Affiliation(s)
- Lokesh Kumar Boopathy
- Molecular Research Laboratory, Meenakshi Medical College Hospital and Research Institute, MAHER Kanchipuram 631552 Tamil Nadu India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai-600077 Tamil Nadu India
| | - Rakhee Rathnam Kalari Kandy
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland Baltimore-21201 MD USA
| | - Madan Kumar Arumugam
- Cancer Biology Laboratory, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India +91-9942110146
| |
Collapse
|
35
|
Ali MK, Javaid S, Afzal H, Zafar I, Fayyaz K, Ain Q, Rather MA, Hossain MJ, Rashid S, Khan KA, Sharma R. Exploring the multifunctional roles of quantum dots for unlocking the future of biology and medicine. ENVIRONMENTAL RESEARCH 2023; 232:116290. [PMID: 37295589 DOI: 10.1016/j.envres.2023.116290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
With recent advancements in nanomedicines and their associated research with biological fields, their translation into clinically-applicable products is still below promises. Quantum dots (QDs) have received immense research attention and investment in the four decades since their discovery. We explored the extensive biomedical applications of QDs, viz. Bio-imaging, drug research, drug delivery, immune assays, biosensors, gene therapy, diagnostics, their toxic effects, and bio-compatibility. We unravelled the possibility of using emerging data-driven methodologies (bigdata, artificial intelligence, machine learning, high-throughput experimentation, computational automation) as excellent sources for time, space, and complexity optimization. We also discussed ongoing clinical trials, related challenges, and the technical aspects that should be considered to improve the clinical fate of QDs and promising future research directions.
Collapse
Affiliation(s)
- Muhammad Kashif Ali
- Deparment of Physiology, Rashid Latif Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Saher Javaid
- KAM School of Life Sciences, Forman Christian College (a Chartered University) Lahore, Punjab, Pakistan.
| | - Haseeb Afzal
- Department of ENT, Ameer Ud Din Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, 54700, Pakistan.
| | - Kompal Fayyaz
- Department of National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Quratul Ain
- Department of Chemistry, Government College Women University Faisalabad (GCWUF), Punjab, 54700, Pakistan.
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil- Gandarbal (SKAUST-K), India.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
36
|
Wang XM, Pan S, Chen L, Wang L, Dai YT, Luo T, Li WW. Biogenic Copper Selenide Nanoparticles for Near-Infrared Photothermal Therapy Application. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37262434 DOI: 10.1021/acsami.3c03611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Near-infrared (NIR) photothermal therapy (PTT) is attractive for cancer treatment but is currently restricted by limited availability and insufficient NIR-II photoactivity of photothermal agents, for which artificial nanomaterials are usually used. Here, we report the first use of biogenic nanomaterials for PTT application. A fine-controlled extracellular biosynthesis of copper selenide nanoparticles (bio-Cu2-xSe) by Shewanella oneidensis MR-1 was realized. The resulting bio-Cu2-xSe, with fine sizes (∼35.5 nm) and high product purity, exhibited 76.9% photothermal conversion efficiency under 1064 nm laser irradiation, outperforming almost all the existing counterparts. The protein capping also imparted good biocompatibility to bio-Cu2-xSe to favor a safe PTT application. The in vivo PTT with injected bio-Cu2-xSe in mice (without extraction nor further modification) showed 87% tumor ablation without impairing the normal organisms. Our work not only opens a green route to synthesize the NIR-II photothermal nanomaterial but may also lay a basis for the development of bacteria-nanomaterial hybrid therapy technologies.
Collapse
Affiliation(s)
- Xue-Meng Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shaoshan Pan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Lin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Li Wang
- School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Tao Dai
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
37
|
Almahri A, Al-bonayan AM, Attar RMS, Karkashan A, Abbas B, Al-Qahtani SD, El-Metwaly NM. Multifunctional Lipophobic Polymer Dots from Cyclodextrin: Antimicrobial/Anticancer Laborers and Silver Ions Chemo-Sensor. ACS OMEGA 2023; 8:16956-16965. [PMID: 37214711 PMCID: PMC10193544 DOI: 10.1021/acsomega.3c00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
β-Cyclodextrin (CD) is currently exploited for the implantation of lipophobic polymer dots (PDs) for antimicrobial and anticancer laborers. Moreover, the PDs were investigated to act as a chemo-sensor for metal detection. The data revealed that under basic conditions, photoluminescent PDs (5.1 nm) were successively clustered with a controllable size at 190 °C, whereas under acidic conditions, smaller-sized non-photoluminescent carbon nanoparticles (2.9 nm) were obtained. The fluorescence intensity of synthesized PDs under basic conditions was affected by pH, and such an intensity was significantly higher compared to that prepared under acidic conditions. The PDs were exploited as florescent detectors in estimation of Ag+ ions in aquatic streams. Treatment of Ag+ ion colloids with PDs resulted in fluorescence quenching attributing to the production of AgNPs that approved by spectral studies. The cell viability percent was estimated for Escherichia coli, Staphylococcus aureus, and Candida albicans after incubation with PDs implanted under basic conditions for 24 h. The cell mortality percent was estimated for breast cancer (MCF-7) after incubation with different concentrations of PDs that were implanted under acidic versus basic conditions to show that treatment of the tested cells with 1000 μg/mL PDs prepared under basic (IC50 232.5 μg/mL) and acidic (IC50 88.6 μg/mL) conditions resulted in cell mortality percentages of 70 and 90%, respectively.
Collapse
Affiliation(s)
- Albandary Almahri
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ameena M. Al-bonayan
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - Roba M. S. Attar
- Department
of Biology, College of Sciences, University
of Jeddah, Jeddah 21959, Saudi Arabia
| | - Alaa Karkashan
- Department
of Biology, College of Sciences, University
of Jeddah, Jeddah 21959, Saudi Arabia
| | - Basma Abbas
- Department
of Biology, College of Sciences, University
of Jeddah, Jeddah 21959, Saudi Arabia
| | - Salhah D. Al-Qahtani
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21421, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, El-Gomhoria
Street Mansoura 35516, Egypt
| |
Collapse
|
38
|
Park E, Choi SY, Kim J, Hildebrandt N, Lee JS, Nam JM. Nanotechnologies for the Diagnosis and Treatment of SARS-CoV-2 and Its Variants. SMALL METHODS 2023:e2300034. [PMID: 37189215 DOI: 10.1002/smtd.202300034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the global coronavirus disease 2019 (COVID-19) pandemic, has caused well over 750 million infections and 6.8 million deaths. Rapid diagnosis and isolation of infected patients are the primary aims of the concerned authorities to minimize the casualties. The endeavor to mitigate the pandemic has been impeded by the emergence of newly identified genomic variants of SARS-CoV-2. Some of these variants are considered as serious threats because of their higher transmissibility and potential immune evasion, leading to reduced vaccine efficiency. Nanotechnology can play an important role in advancing both diagnosis and therapy of COVID-19. In this review, nanotechnology-based diagnostic and therapeutic strategies against SARS-CoV-2 and its variants are introduced. The biological features and functions of the virus, the mechanism of infection, and currently used approaches for diagnosis, vaccination, and therapy are discussed. Then, nanomaterial-based nucleic acid- and antigen-targeting diagnostic methods and viral activity suppression approaches that have a strong potential to advance both diagnostics and therapeutics toward control and containment of the COVID-19 pandemic are focused upon.
Collapse
Affiliation(s)
- Eunhye Park
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - So Young Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jieun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jin Seok Lee
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
39
|
Kausaite-Minkstimiene A, Popov A, Kalvaityte U, Bernotiene E, Mobasheri A, Ramanaviciene A. An ultra-sensitive SPR immunosensor for quantitative determination of human cartilage oligomeric matrix protein biomarker. Biosens Bioelectron 2023; 234:115370. [PMID: 37163879 DOI: 10.1016/j.bios.2023.115370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/18/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
This paper reports the development of a novel surface plasmon resonance (SPR) immunosensor for ultra-sensitive quantitative determination of human articular cartilage oligomeric matrix protein (COMP), a major component of the extracellular matrix and an exploratory biomarker. Capture antibodies against human COMP (anti-COMP16F12) were covalently immobilized on an 11-mercaptoundecanoic acid (11-MUA) self-assembled monolayer (SAM)-coated SPR sensor disk and a dual sandwich-type signal amplification strategy using biotinylated detection antibodies against COMP (anti-COMP17C10-biot) and streptavidin-conjugated quantum dots (SAv‒QDs) were used for the development of an immunosensor. The binding of high-mass SAv‒QDs via biotin-streptavidin interaction to the surface of the immunosensor resulted in a drastic increase in the sensitivity. The developed immunosensor was able to detect concentrations of COMP in a range from 2.80 to 680.54 fM with a limit of detection (LOD) and a limit of quantification (LOQ) of 0.15 and 0.50 fM, respectively. The immunosensor exhibited good repeatability (relative standard deviation (RSD) 8.05%) and reproducibility (RSD 9.88%) as well as excellent operational stability (2.14 % decrease in SPR signal after 13 days). In addition, the analysis of secretomes of human knee articular cartilage explants from patients with osteoarthritis revealed that the immunosensor has good accuracy (analytical error less than 5 %). These results indicate that the immunosensor developed may be suitable for quantitative determination of COMP derived from articular cartilage and other synovial joint tissues in clinical studies.
Collapse
Affiliation(s)
- Asta Kausaite-Minkstimiene
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania; NanoTechnas ‒ Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225, Vilnius, Lithuania.
| | - Anton Popov
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania; NanoTechnas ‒ Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225, Vilnius, Lithuania
| | - Ursule Kalvaityte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania; Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, FI-90014, Oulu, Finland; Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing, University of Liège, 4000, Liege, Belgium
| | - Almira Ramanaviciene
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania; NanoTechnas ‒ Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225, Vilnius, Lithuania
| |
Collapse
|
40
|
Yang L, Yuan M, Ma P, Chen X, Cheng Z, Lin J. Assembling AgAuSe Quantum Dots with Peptidoglycan and Neutrophils to Realize Enhanced Tumor Targeting, NIR (II) Imaging, and Sonodynamic Therapy. SMALL METHODS 2023:e2201706. [PMID: 37093226 DOI: 10.1002/smtd.202201706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Significant progress is made in drug delivery systems, but they still face problems such as poor stability in vivo, off-target drugs, and difficulty in crossing biological barriers. It is urgent to realize efficient targeted delivery and precisely controlled sustained release of drugs by using the integrated nanoplatform. Theranostic nanoplatform is a new biomedical technology that combines diagnosis or monitoring of diseases with treatment. Here, an integrated strategy of diagnosis and treatment is reported for delivering NIR-II imaged and therapeutic AgAuSe quantum dots (QDs) carried by peptidoglycan multilayer networks of bacteria to hitchhike circulating neutrophils for targeting the tumor. The assembled nanomaterials have good stability, which can not only initiate endogenous cells for drug delivery and achieve efficient targeting, but also guide drug imaging with excellent fluorescence property. Meanwhile, the elimination of established solid tumor is achieved with the administration of sonodynamic therapy without recurrence. This drug system expands the application of endogenous cell to participate in drug delivery system. Thus, the assembly strategy demonstrates the potential of endogenous neutrophils in functioning as natural drug vehicles and the application of NIR-II fluorescent QDs in biomedical engineering.
Collapse
Affiliation(s)
- Ling Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaorui Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, 523808, Dongguan, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
41
|
Yu YQ, Chen WQ, Li XH, Liu M, He XH, Liu Y, Jiang FL. Quantum Dots Meet Enzymes: Hydrophobicity of Surface Ligands and Size Do Matter. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3967-3978. [PMID: 36877959 DOI: 10.1021/acs.langmuir.2c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Colloidal quantum dots (QDs) are a class of representative fluorescent nanomaterials with tunable, bright, and sharp fluorescent emission, with promising biomedical applications. However, their effects on biological systems are not fully elucidated. In this work, we investigated the interactions between QDs with different surface ligands and different particle sizes and α-chymotrypsin (ChT) from the thermodynamic and kinetic perspectives. Enzymatic activity experiments demonstrated that the catalytic activity of ChT was strongly inhibited by QDs coated with dihydrolipoic acid (DHLA-QDs) with noncompetitive inhibitions, whereas the QDs coated with glutathione (GSH-QDs) had weak effects. Furthermore, kinetics studies showed that different particle sizes of DHLA-QDs all had high suppressive effects on the catalytic activity of ChT. It was found that DHLA-QDs with larger particle sizes had stronger inhibition effects because more ChT molecules were bound onto the surface of QDs. This work highlights the importance of hydrophobic ligands and particle sizes of QDs, which should be considered as the primary influencing factors in the assessment of biosafety. Meanwhile, the results herein can also inspire the design of nano inhibitors.
Collapse
Affiliation(s)
- Ying-Qi Yu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Wen-Qi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiao-Han Li
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Meng Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiao-Hang He
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
42
|
C G S, Balakrishna RG. Phase transferred and non-coated, water soluble perovskite quantum dots for biocompatibility and sensing. J Mater Chem B 2023; 11:2184-2190. [PMID: 36779786 DOI: 10.1039/d2tb02198f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Despite the excellent optoelectronic properties exhibited by CsPbBr3 QDs (PQDs) for sensing applications, their poor resistance to water does not allow their utilization as probes to detect analytes in aqueous media. The present work provides water soluble PQDs (dispersed in water) prepared by an appropriate phase engineering of the ligand. The dicarboxylate functional ligands at a particular pH allow the protonated state to form solvated carboxyl dimers, which interconnects PQDs, thus avoiding Ostwald ripening and enhancing the photoluminescence quantum yield (PLQY). As a proof of concept, this probe was applied to detect bioamines in water, namely histamine, hexamethylenediamine, phenethylamine, dopamine and thiamine. The probe is highly selective to histamine at concentrations below 500 nM and this selectivity of histamine over dopamine is very interesting and rarely reported. More importantly, this work offers a standard protocol for transferring PQDs from the organic to aqueous phase, for the detection of such biomolecules in water.
Collapse
Affiliation(s)
- Sanjayan C G
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Bangalore 562112, Karnataka, India.
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Bangalore 562112, Karnataka, India.
| |
Collapse
|
43
|
Haque M, Konthoujam I, Lyndem S, Koley S, Aguan K, Singha Roy A. Formation of ZnS quantum dots using green tea extract: applications to protein binding, bio-sensing, anti-bacterial and cell cytotoxicity studies. J Mater Chem B 2023; 11:1998-2015. [PMID: 36752685 DOI: 10.1039/d2tb02265f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Biocompatible quantum dots (QDs) have attracted a lot of attention due to their potential biological applications (drug delivery, sensing and diagnosis). Here, we have synthesized 2-4 nm sized biocompatible zinc sulphide (ZnS) QDs using a plant leaf extract as an immobilizing and stabilizing agent via a green route. We have investigated the biological effects of ZnS QDs in a variety of applications, including (1) anti-bacterial activity, (2) cell cytotoxicity, (3) bio-sensing and (4) protein binding. Studies on the anti-bacterial activity of the as-synthesized ZnS QDs against E. coli and E. faecalis inhibited bacterial growth effectively and showed a cytotoxic effect on the HeLa cell line. The biosynthesized ZnS QDs act as a fluorescence probe to detect bilirubin and rifampicin (RFP) with a wide linear range, high sensitivity, good selectivity, and a low limit of detection (LOD), with LOD values of 22.12 ± 0.25 ng mL-1 and 122.37 ± 0.42 ng mL-1, respectively. In a biological matrix, the QDs can form a complex with biomacromolecules; therefore, we studied the interaction between a carrier protein (HSA) and the as-synthesized ZnS QDs. The surface functionalized and nano-sized ZnS-GT QDs were observed to form complexes with the human serum albumin (HSA) protein and quenched the intrinsic fluorescence of HSA through static and dynamic quenching modes. The binding affinity was observed to be of the order of 105 M-1 for the HSA-ZnS-GT QD interactions, which can be considered as a reversible mode of binding. The effect of the ZnS QDs on other ligands and protein interactions was also studied. Enhanced binding affinities for HSA-quercetin ((5.994 ± 0.139) × 105 M-1) and HSA-luteolin ((3.068 ± 0.127) × 105 M-1) interactions were also observed in the presence of ZnS-GT QDs.
Collapse
Affiliation(s)
- Mahabul Haque
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Ibemhanbi Konthoujam
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Sona Lyndem
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Sudipta Koley
- Department of Physics, Amity University, Kolkata 700135, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India.
| |
Collapse
|
44
|
Liu R, Ko CC. Molecularly Imprinted Polymer-Based Luminescent Chemosensors. BIOSENSORS 2023; 13:295. [PMID: 36832061 PMCID: PMC9953969 DOI: 10.3390/bios13020295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Molecularly imprinted polymer (MIP)-based luminescent chemosensors combine the advantages of the highly specific molecular recognition of the imprinting sites and the high sensitivity with the luminescence detection. These advantages have drawn great attention during the past two decades. Luminescent molecularly imprinted polymers (luminescent MIPs) towards different targeted analytes are constructed with different strategies, such as the incorporation of luminescent functional monomers, physical entrapment, covalent attachment of luminescent signaling elements on the MIPs, and surface-imprinting polymerization on the luminescent nanomaterials. In this review, we will discuss the design strategies and sensing approaches of luminescent MIP-based chemosensors, as well as their selected applications in biosensing, bioimaging, food safety, and clinical diagnosis. The limitations and prospects for the future development of MIP-based luminescent chemosensors will also be discussed.
Collapse
|
45
|
Park G, Park H, Park SC, Jang M, Yoon J, Ahn JH, Lee T. Recent Developments in DNA-Nanotechnology-Powered Biosensors for Zika/Dengue Virus Molecular Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:361. [PMID: 36678114 PMCID: PMC9864780 DOI: 10.3390/nano13020361] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are highly contagious and lethal mosquito-borne viruses. Global warming is steadily increasing the probability of ZIKV and DENV infection, and accurate diagnosis is required to control viral infections worldwide. Recently, research on biosensors for the accurate diagnosis of ZIKV and DENV has been actively conducted. Moreover, biosensor research using DNA nanotechnology is also increasing, and has many advantages compared to the existing diagnostic methods, such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). As a bioreceptor, DNA can easily introduce a functional group at the 5' or 3' end, and can also be used as a folded structure, such as a DNA aptamer and DNAzyme. Instead of using ZIKV and DENV antibodies, a bioreceptor that specifically binds to viral proteins or nucleic acids has been fabricated and introduced using DNA nanotechnology. Technologies for detecting ZIKV and DENV can be broadly divided into electrochemical, electrical, and optical. In this review, advances in DNA-nanotechnology-based ZIKV and DENV detection biosensors are discussed.
Collapse
Affiliation(s)
- Goeun Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hanbin Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Chan Park
- Department of Electronics Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Moonbong Jang
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| | - Jae-Hyuk Ahn
- Department of Electronics Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- TL Bioindustry, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
46
|
Durante‐Rodríguez G, Carmona M, Díaz E. Novel approaches to energize microbial biocatalysts. Environ Microbiol 2023; 25:161-166. [PMID: 36263658 PMCID: PMC10100456 DOI: 10.1111/1462-2920.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 01/21/2023]
Abstract
An efficient and cheap energization of microbial biocatalysts is essential in current biotechnological processes. A promising alternative to the use of common organic or inorganic electron donors is the semiconductor nanoparticles (SNs) that absorb light and transfer electrons (photoelectrons) behaving as artificial photosynthetic systems (biohybrid systems). Excited photoelectrons generated by illuminated SNs are highly reductive and readily accepted by membrane-bound proteins and electron shuttles to drive specific cell reduction processes and energy generation in microbes. However, the operational mechanisms of these hybrid systems are still poorly understood, especially at the material-microbe interface, and therefore the design and production of efficient biohybrids are challenging. Some major limitations/challenges and future prospects of SNs as microbial energization systems are discussed.
Collapse
Affiliation(s)
- Gonzalo Durante‐Rodríguez
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| | - Manuel Carmona
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| | - Eduardo Díaz
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| |
Collapse
|
47
|
Zhang X, Li W, Cui Z. Single-Particle Tracking of Virus Entry in Live Cells. Subcell Biochem 2023; 106:153-168. [PMID: 38159226 DOI: 10.1007/978-3-031-40086-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Novel imaging technologies such as single-particle tracking provide tools to study the intricate process of virus infection in host cells. In this chapter, we provide an overview of studies in which single-particle tracking technologies were applied for the analysis of the viral entry pathways in the context of the live host cell. Single-particle tracking techniques have been dependent on advances in the fluorescent labeling microscopy method and image analysis. The mechanistic and kinetic insights offered by this technique will provide a better understanding of virus entry and may lead to a rational design of antiviral interventions.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
48
|
Zhang Q, Yuan ZZ, Zhang X, Zhang Y, Zou X, Ma F, Zhang CY. Entropy-Driven Self-Assembly of Single Quantum Dot Sensor for Catalytic Imaging of Telomerase in Living Cells. Anal Chem 2022; 94:18092-18098. [PMID: 36519804 DOI: 10.1021/acs.analchem.2c04747] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Telomerase is a highly valuable cancer diagnosis biomarker and a promising cancer therapy target. So far, most telomerase assays are limited by the involvement of tedious procedures, multiple enzymes, and complicated reaction schemes. Sensitive monitoring of low-abundant telomerase in living cells remains a challenge. Herein, we demonstrate an entropy-driven catalytic assembly of quantum dot (QD) sensors for accurate detection and imaging of telomerase activity in living cells. In this sensor, target telomerase specifically catalyzes extension of telomerase primer, and the extended primer subsequently acts as a catalyst to continuously initiate entropy-driven catalytic reaction, generating a large number of fluorophore- and biotin-labeled DNAs that can be self-assembled on the QD surface to induce an efficient Föster resonance energy transfer signal. The proposed sensor requires a single step for both recognition and amplification of the telomerase signal, eliminating the use of either protein enzymes or laborious procedures. Taking advantage of the inherent superiority of single-molecule fluorescence detection and high amplification efficiency of the entropy-driven reaction, this sensor demonstrates single-cell sensitivity for the in vitro assay. Moreover, it is capable of screening the telomerase inhibitor, discriminating different tumor cells from normal ones, and even real-time imaging telomerase in living cells, providing a novel platform for telomerase-associated cancer diagnosis and drug screening.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Zhen-Zhen Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Xinyi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan528458, China
| | - Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| |
Collapse
|
49
|
Karmakar S, Das TK, Kalarikkal N, Saha A. A Simplified Approach for the Aqueous Synthesis of Luminescent CdSe/ZnS Core/Shell Quantum Dots and Their Applications in Ultrasensitive Determination of the Biomarker 3-Nitro-l-tyrosine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15995-16003. [PMID: 36512759 DOI: 10.1021/acs.langmuir.2c02459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In contrast to the hot-injection organometallic routes, synthesizing stable and highly luminescent core/shell nanocrystals with encapsulation of biocompatible groups through an aqueous route is a long-standing challenge. In recent years, relatively high quantum efficiency and unique properties of core/shell nanostructured materials (quantum dots) have contributed toward enhancement in sensing capability. The present work reports a facile aqueous synthesis process of core/shell CdSe/ZnS quantum dots (QDs) with encapsulation of glutathione (GSH). The optimal conditions for the synthesis of the most stable particles were ascertained, and the different experimental analyses suggest that the stable core/shell QDs in question have good crystallinity with a size around 4.7 nm with a shell thickness of 0.7 nm and a photoluminescence quantum yield of about 35%. Further, it is demonstrated that the as-synthesized material has great potential in detecting as low as 0.28 nM 3-nitro-l-tyrosine (3-NT), an important marker for oxidative stress, the level of which in our body signals several chronically diseased conditions. The enthalpy-driven interactions of CdSe/ZnS-GSH QDs with 3-NT were characterized through steady-state and time-resolved luminescence spectroscopy and isothermal microcalorimetry. The devised method of probing 3-NT was further validated with human serum samples. Thus, the proposed strategy may provide a protocol for selective determination of 3-NT under different pathological conditions.
Collapse
Affiliation(s)
- Sudip Karmakar
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata700106, India
| | - Tushar Kanti Das
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata700106, India
| | - Nandakumar Kalarikkal
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam686560, Kerala, India
| | - Abhijit Saha
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata700106, India
| |
Collapse
|
50
|
Fang B, Xiong Q, Duan H, Xiong Y, Lai W. Tailored quantum dots for enhancing sensing performance of lateral flow immunoassay. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|