1
|
Gao X, Wu Y, Zhang Y, Chen X, Song Z, Zhang T, Fang Q, Ji Q, Ju MG, Wang J. How the Spacer Influences the Stability of 2D Perovskites? SMALL METHODS 2024:e2401172. [PMID: 39460454 DOI: 10.1002/smtd.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Two-dimensional lead halide perovskites (2D HPs) represent as an emerging class of materials given their tunable optoelectronic properties and long-term stability in perovskite solar cells. However, the ever-growing field of optoelectronic devices using 2D HPs requires fundamental understanding of the influence of the spacer on the physiochemical properties and stability of perovskites as well as establish which cation properties are closely related to suppress the halogen ion mobility. This study focuses on investigating the influence of organic spacers with intrinsic properties (e.g., rigidity and flexibility, special groups) and variations of material dimensions on the stability of halogen ions and inorganic frameworks in 2D HPs. It is found that the perovskite structure composed of rigidity molecules owns better stability of halogen ion and inorganic framework than that of flexible molecules. The stability of ions exhibits a negative correlation with the dimensions of perovskite. More importantly, a simple descriptor for measuring the stability of halogen ions in 2D HPs is constructed. By causal discovery algorithms with more physical and chemical significance, the Kappa shape index, number of rotatable bonds, and aromatic carbocycles in organic spacers are identified as causal and important features for the stability of halogen ions in 2D HPs.
Collapse
Affiliation(s)
- Xinying Gao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Yilei Wu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Yehui Zhang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Xinyu Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Zhilong Song
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Tingbo Zhang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Qianglong Fang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Qun Ji
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Ming-Gang Ju
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
- Suzhou Laboratory, Suzhou, 215125, China
| |
Collapse
|
2
|
Mączka M, Zaręba JK, Gągor A, Fedoruk-Piskorska K, Stefańska D, Drozdowski D, Ptak M, Sieradzki A. Multi-Noncentrosymmetric Polar Order in 2D Hybrid Lead Chloride with Broadband Emission and High-Temperature Second-Harmonic Generation Switching. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39445508 DOI: 10.1021/acsami.4c14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Two-dimensional lead halide perovskites represent a fascinating class of hybrid semiconductors for solar cell, light-emitting, nonlinear optical (NLO), and ferroelectric applications. A notable subset within this category is luminescent ferroelectrics, which have garnered considerable attention for their potential in integrated photoelectronic devices. In this study, we employed an organic amine halogenation strategy (also referred to as halogen engineering), which is renowned for its efficacy in inducing polar order through crystal engineering. Consequently, we synthesized a layered Ruddlesden-Popper (RP) lead chloride comprising 3-chloropropylammonium cations (CPA+), with the chemical formula CPA2PbCl4. This compound features as many as four temperature-dependent crystal phases, with phase transitions observed at T1 = 353.1 K (343.9 K), T2 = 211.7 K (208.6 K), and T3 = 182.0 K (178.2 K) in the heating (cooling) cycles. Employing a multitechnique approach─including thermal analysis, X-ray diffraction, dielectric and pyroelectric current measurements, Raman spectroscopy, and second-harmonic generation (SHG) studies─we determined the mechanisms of the structural phase transitions. Our findings demonstrate polar order of phase II (space group Cmc21), phase III (space group Pna21), and phase IV (space group Pca21), while also confirming the centrosymmetric nature of phase I (space group Cmce). X-ray diffraction data revealed that the I to II PT is of a ferroelectric nature, devoid of ferroelastic strain, a conclusion further supported by pyroelectric measurements. CPA2PbCl4 features negative linear thermal expansion and broadband emission, which transitions to white light above 180 K. Remarkably, CPA2PbCl4 also demonstrates high-temperature SHG on-off switching with a high contrast ratio of 300:1 along with good switching stability, as evidenced by SHG cycling studies at heating/cooling rates ranging from 5 to 50 K/min. This SHG study also sets new standards for the field of SHG switching by providing a method to quantify the thermal responsiveness of SHG-switchable materials using the treq (time requirement) parameter. Overall, our findings show that the halogenation strategy has led to the discovery of a rare example of an RP perovskite exhibiting coexistence of white-light emission, SHG on-off thermal bistability, ferroelectricity, and negative linear thermal expansion.
Collapse
Affiliation(s)
- Mirosław Mączka
- W. Trzebiatowski Institute of Low Temperature and Structural Research of the Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Jan K Zaręba
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna Gągor
- W. Trzebiatowski Institute of Low Temperature and Structural Research of the Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Katarzyna Fedoruk-Piskorska
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dagmara Stefańska
- W. Trzebiatowski Institute of Low Temperature and Structural Research of the Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Dawid Drozdowski
- W. Trzebiatowski Institute of Low Temperature and Structural Research of the Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Maciej Ptak
- W. Trzebiatowski Institute of Low Temperature and Structural Research of the Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Adam Sieradzki
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
3
|
Lin J, Sun N, Yao R, Liu K, Guo Z, Zhao J, Liu Q, Yuan W. White Light Emission in Zero-Dimensional Indium Hybrid with Hydrogen Bond. Inorg Chem 2024; 63:19819-19826. [PMID: 39382971 DOI: 10.1021/acs.inorgchem.4c03131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Low-dimensional organic-inorganic metal halides (OIMHs) have been explored as single-component white light emitters for applications in solid-state lighting. Herein, we report a zero-dimensional (0D) In-based OIMH (TMPDA)[InCl5(H2O)] (TMPDA = N,N,N',N'-tetramethyl-1,4-phenylenediamine), which crystallizes in the noncentrosymmetric P212121 space group and contains hydrogen bonds between the adjacent [InCl5(H2O)]2- octahedra in structure. It exhibits a large optical band gap (4.10 eV) and dual-band emission under UV light. Spectroscopic analysis and theoretical calculation indicate that the high (404 nm)- and low (513 nm)-energy emissions are attributed to the bound excitons in organic ligands and self-trapped excitons in [InCl5(H2O)]2- units, respectively. It is found that Sb doping in this 0D hybrid provides additional orange (590 nm) emission assigned to the 3P1 → 1S0 triplet radiative recombination. By adjusting the doping level, the emission color can be turned from turquoise to orange, and interestingly, a single-component white-light emission is realized by balancing the high-energy emission from organic ligand, the turquoise emission from [InCl5(H2O)]2-, and the orange one from [SbCl5(H2O)]2-. This work not only provides a new OIMH showing the single-component white light emission but also demonstrates the potential of In-based hybrids with hydrogen bonds for solid-state luminescence.
Collapse
Affiliation(s)
- Jiawei Lin
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Niu Sun
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ruonan Yao
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxia Yuan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
4
|
Tian D, Lin J, Mesbah A, Zhou J, Yang M, Gautier R, Chen X. A core-shell model of polymetallic hybrid metal halides. Chem Commun (Camb) 2024. [PMID: 39421877 DOI: 10.1039/d4cc04454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Most polymetallic hybrid metal halides are assumed to show a homogenous distribution of the metal ions in the bulk. Herein, we demonstrate a core-shell model for the hybrid lead halide [(C6H18N3)2·Pb2Br10] (C6H18N3 = 2-(piperazin-1-yl)ethan-1-aminium) coated with a manganese bromide layer. This model can explain the different photoemission of this composite material, and provides new insights on the investigation of polymetallic low-dimensional organic metal halides.
Collapse
Affiliation(s)
- Dongjie Tian
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
- College of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jie Lin
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Adel Mesbah
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - Jiajing Zhou
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Mianji Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Romain Gautier
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes F-44000, France.
| | - Xi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
5
|
Wang B, Liu D, Wu Y, Vasenko AS, Prezhdo OV. Identifying Rare Events in Quantum Molecular Dynamics of Nanomaterials with Outlier Detection Indices. J Phys Chem Lett 2024; 15:10384-10391. [PMID: 39374342 PMCID: PMC11492377 DOI: 10.1021/acs.jpclett.4c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Nanoscale and condensed matter systems evolve on multiple length- and time-scales, and rare events such as local phase transformation, ion segregation, defect migration, interface reconstruction, and grain boundary sliding can have a profound influence on material properties. We demonstrate how outlier detection indices can be used to identify rare events in machine-learning based, high-dimensional molecular dynamics (MD) simulations. Designed to order data-points from typical to untypical, the indices enable one to capture atomic events that are hard to detect otherwise. We demonstrate the approach with a nanosecond MD simulation of a grain boundary in a metal halide perovskite that is extensively studied for solar energy and optoelectronic applications. The method captures the initial grain boundary sliding and a spontaneous fluctuation half a nanosecond later, both events giving rise to persistent deep electronic trap states that impact charge carrier lifetime and transport and material performance. The approach offers a generalizable and simple method for identifying outlier events in complex condensed matter, molecular, and nanoscale systems.
Collapse
Affiliation(s)
- Bipeng Wang
- Department
of Chemical Engineering, University of Southern
California, Los Angeles, California 90089, United States
| | | | - Yifan Wu
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Andrey S. Vasenko
- HSE
University, 101000 Moscow, Russia
- Donostia
International Physics Center (DIPC), San Sebastián-Donostia, Euskadi 20018, Spain
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
6
|
Dalton CW, Gannon PM, Kaminsky W, Reed DA. Leveraging ordered voids in microporous perovskites for intercalation and post-synthetic modification. Chem Sci 2024:d4sc04378b. [PMID: 39464608 PMCID: PMC11497115 DOI: 10.1039/d4sc04378b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
We report the use of porous organic layers in two-dimensional hybrid organic-inorganic perovskites (HOIPs) to facilitate permanent small molecule intercalation and new post-synthetic modifications. While HOIPs are well-studied for a variety of optoelectronic applications, the ability to manipulate their structure after synthesis is another handle for control of physical properties and could even enable use in future applications. If designed properly, a porous interlayer could facilitate these post-synthetic transformations. We show that for a series of copper-halide perovskites, a crystalline arrangement of designer ammonium groups allows for permanently porous interlayer space to be accessed at room temperature. Intercalation of the electroactive molecules ferrocene and tetracyanoethylene into this void space can be performed with tunable loadings, and these intercalated perovskites are stable for months. The porosity also enables reactivity at the copper-halide layer, allowing for facile halide replacement. Through this, we access previously unobserved reactivity with halogens to perform halide substitution, and even replace halides with pseudohalides. In the latter case, the porous structure allows for stabilization of new phases, specifically a novel copper-thiocyanate perovskite phase, only accessible through post-synthetic modification. We envision that this broad design strategy can be expanded to other industrially relevant HOIPs to create a new class of highly adjustable perovskites.
Collapse
Affiliation(s)
- Connor W Dalton
- Department of Chemistry, University of Washington Seattle WA 98195 USA
| | - Paige M Gannon
- Department of Chemistry, University of Washington Seattle WA 98195 USA
| | - Werner Kaminsky
- Department of Chemistry, University of Washington Seattle WA 98195 USA
| | - Douglas A Reed
- Department of Chemistry, University of Washington Seattle WA 98195 USA
| |
Collapse
|
7
|
Wang W, Liu CD, Fan CC, Zhang W. A three-dimensional lead iodide perovskite analog featuring hydrogen-bonded dual monovalent cations. Chem Sci 2024:d4sc05585c. [PMID: 39430931 PMCID: PMC11485049 DOI: 10.1039/d4sc05585c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
Three-dimensional (3D) halide perovskites have attracted considerable research interest, yet the selection of A-site cations is restricted by the Goldschmidt tolerance factor. To accommodate cations beyond this acceptable range, novel 3D perovskite analog structures with edge- and face-sharing motifs have been developed. Until now, these structures have been limited to divalent cations due to significant electrostatic repulsion when incorporating two monovalent cations. Herein, we employ a supramolecular synthon mechanism to address the issue and an effective hydrogen-bonding pattern is achieved in a novel 3D lead iodide hybrid perovskite, (ammonium)(morpholinium)Pb2I6 (1). The inorganic framework of 1 consists of two edge-shared [PbI6] octahedra connected via corner-sharing, thus forming a continuous 3D network. Structural analysis indicates that the spatial separation of N atoms and the existence of N-H⋯O hydrogen bonds effectively eliminate electrostatic repulsion. This work has demonstrated the potential to mitigate constraints of cation selection on 3D frameworks and could spur the development of novel 3D perovskite materials and related fields.
Collapse
Affiliation(s)
- Wei Wang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Cheng-Dong Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Chang-Chun Fan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| |
Collapse
|
8
|
Ding K, Zhuang B, Deng BW, Li ZL, Lu HF, Zhang ZX, Fu DW. Stereo-Active Lone Pairs Induced Second Harmonic Generation Responses and Electrocatalytic Activity in Hybrid Material. Chemistry 2024; 30:e202402119. [PMID: 39007706 DOI: 10.1002/chem.202402119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
The lone pair electrons in the electronic structure of molecules have been a prominent research focus in chemistry for more than a century. Stable s2 lone pair electrons significantly influence material properties, including thermoelectric properties, nonlinear optical properties, ferroelectricity, and electro(photo)catalysis. While major advances have been achieved in understanding the influence of lone pair electrons on material characteristics, research on this effect in organic-inorganic hybrid materials is in its initial stage. In this work, we successfully obtained a novel organic-inorganic hybrid multifunctional material incorporating Ge with 4s2 lone pair electrons, (MeHDabco)2[GeBr3]4-H2O (MeHDabco=N-methyl-1,4-diazabicyclo[2.2.2]octane) (1). Driven by the stereochemically active lone pair electrons on the Ge2+, 1 crystallizes in the noncentrosymmetric space group P21 at room temperature and exhibits good second harmonic generation (SHG) responses. Interestingly, 1 also shows electrocatalytic activity for the hydrogen evolution reaction (HER) due to the existence of lone pair electrons on Ge2+ cations. The electrochemical experiment combined with the density functional theory (DFT) calculations revealed that the lone pair electrons act as both an active site for proton adsorption and facilitate the ionization of water. This work not only emphasizes the important role of lone pair electrons in material properties and functions but also provides new insight for designing novel Ge-based multifunctional hybrid materials.
Collapse
Affiliation(s)
- Kun Ding
- Ordered Matter Science Research Center College of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
| | - Bo Zhuang
- Ordered Matter Science Research Center College of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
| | - Bo-Wen Deng
- Ordered Matter Science Research Center College of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
| | - Zhi-Long Li
- Ordered Matter Science Research Center College of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321019, Jinhua, P. R. China
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321019, Jinhua, P. R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center College of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321019, Jinhua, P. R. China
| |
Collapse
|
9
|
Zhang ZX, Ni HF, Tang JS, Huang PZ, Luo JQ, Zhang FW, Lin JH, Jia QQ, Teri G, Wang CF, Fu DW, Zhang Y. Metal-Free Perovskite Ferroelectrics with the Most Equivalent Polarization Axes. J Am Chem Soc 2024; 146:27443-27450. [PMID: 39141483 DOI: 10.1021/jacs.4c07268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Ferroelectricity in metal-free perovskites (MFPs) has emerged as an academic hotspot for their lightweight, eco-friendly processability, flexibility, and degradability, with considerable progress including large spontaneous polarization, high Curie temperature, large piezoelectric response, and tailoring coercive field. However, their equivalent polarization axes as a key indicator are far from enough, although multiaxial ferroelectrics are highly preferred for performance output and application flexibility that profit from as many equivalent polarization directions as possible with easier reorientation. Here, by implementing the synergistic overlap of regulating anionic geometries (from spherical I- to octahedral [PF6]- and to tetrahedral [ClO4]- or [BF4]-) and cationic asymmetric modification, we successfully designed multiaxial MFP ferroelectrics CMDABCO-NH4-X3 (CMDABCO = N-chloromethyl-N'-diazabicyclo[2.2.2]octonium; X = [ClO4]- or [BF4]-) with the lowest P1 symmetry. More impressively, systemic characterizations indicate that they possess 24 equivalent polarization axes (Aizu notations of 432F1 and m3̅mF1, respectively)─the maximum number achievable for ferroelectrics. Benefiting from the multiaxial feature, CMDABCO-NH4-[ClO4]3 has been demonstrated to have excellent piezoelectric sensing performance in its polycrystalline sample and prepared composite device. Our study provides a feasible strategy for designing multiaxial MFP ferroelectrics and highlights their great promise for use in microelectromechanical, sensing, and body-compatible devices.
Collapse
Affiliation(s)
- Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jing-Song Tang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jia-Qi Luo
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Feng-Wen Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jia-He Lin
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
10
|
Zhang S, Ma K, Yuan B, Yang J, Lu Y, Sun D, Park JY, Wei Z, Mannodi-Kanakkithodi A, Yu Y, Huang L, Pennycook TJ, Dou L. Deterministic Synthesis of a Two-Dimensional MAPbI 3 Nanosheet and Twisted Structure with Moiré Superlattice. J Am Chem Soc 2024; 146:27861-27870. [PMID: 39327910 DOI: 10.1021/jacs.4c10298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The synthesis of extremely thin 2D halide perovskites and the exploration of their interlayer interactions have garnered significant attention in current research. A recent advancement we have made involves the development of a successful technique for generating ultrathin MAPbI3 nanosheets with controlled thickness and an exposed intrinsic surface. This innovative method relies on utilizing the Ruddlesden-Popper (RP) phase perovskite (BA2MAn-1PbnI3n+1) as a template. However, the precise reaction mechanism remains incompletely understood. In this work, we systematically examined the dynamic evolution of the phase conversion process, with a specific focus on the influence of inorganic slab (composed of [PbI6]4- octahedrons) numbers on regulating the thickness and quality of the resulting MAPbI3 nanosheets. Additionally, the atomic structure is directly visualized using the transmission electron microscopy (TEM) method, confirming its exceptional quality. To illustrate interfacial interactions in ultrathin structures, artificial moiré superlattices are constructed through a physical transfer approach, revealing multiple localized high-symmetry stacks within a distinctive square moiré pattern. These findings establish a novel framework for investigating the physics of interfacial interactions in ionic semiconducting crystals.
Collapse
Affiliation(s)
- Shuchen Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biao Yuan
- Electron Microscopy for Materials Science, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaqi Yang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dewei Sun
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zitang Wei
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Timothy J Pennycook
- Electron Microscopy for Materials Science, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Yun X, Zhu Y, Wang Y, Fan Z, Zhou K, Hu H, Zhong H, Li H, Shi Y. Toward an Ideal Light Source for Indoor Photosynthesis: Broadband Red Emission in Zero-Dimensional Hafnium-Based Metal Halide (TPP) 2HfCl 6·4C 2H 3N:Sb 3. Inorg Chem 2024; 63:18304-18312. [PMID: 39292549 DOI: 10.1021/acs.inorgchem.4c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
With suitable electron-phonon coupling strength, a near-unity broadband photoluminescence quantum yield (PLQY) can be achieved in organic-inorganic hybrid metal halides (OIHMHs) via self-trapped exciton (STE) emission. However, it is still challenging to obtain high-quality red emission from OIHMHs with a desirable emission wavelength and high chemical stability, which hinders their practical application in high-performance displays, plant-growth lighting, and biomedical imaging. Herein, a series of hafnium-based zero-dimensional (TPP)2HfCl6·4C2H3N (TPP: tetraphenylphosphonium) single crystals with different Sb3+ doping levels are synthesized. The Sb3+-doped (TPP)2HfCl6·4C2H3N shows dual-band red emission with a full width at half-maximum of 178 nm and a high PLQY of 91.09%. This broad dual-band emission originates from dopant-induced extrinsic free excitons and STEs. Furthermore, (TPP)2HfCl6·4C2H3N:Sb3+ was employed as a luminescence converter in a light-emitting diode (LED) for plant growth regulation. A correlated color temperature of 4055 K and a color rendering index of 82.13 were achieved upon excitation of the LED at 365 nm. These results provide fundamental perspectives on the emission behavior of Sb3+-doped OIHMHs and illustrate their promise for use in plant-growth lighting.
Collapse
Affiliation(s)
- Xiangyan Yun
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Yanrong Zhu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yu Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zutao Fan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Kang Zhou
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518060, P. R. China
| | - Hanlin Hu
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518060, P. R. China
| | - Haizhe Zhong
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Henan Li
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yumeng Shi
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
12
|
Ning F, Wang X, Wang Y. Unraveling the Ultrasonic-Assisted Synthesis of Green-Emitting CsPbBr 3@Cs 4PbBr 6: Reaction Process, Luminescence Property, and Display Application. Inorg Chem 2024. [PMID: 39320114 DOI: 10.1021/acs.inorgchem.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The pursuit of stable and highly emissive perovskite materials has garnered increasing attention in optoelectronic applications. Green-emitting CsPbBr3@Cs4PbBr6, as a green-emissive material in the solid-state form, has great potential as a color conversion material for full-color displays. However, it is a challenge to achieve mass preparation under ambient conditions. Meanwhile, the formation mechanism is ambiguous. This study reports a ligand-free and rapid mass synthesis of nanomicrosized CsPbBr3@Cs4PbBr6 solid via an ultrasonic-assisted method. The synthesized CsPbBr3@Cs4PbBr6 solids exhibit uniform morphology, high stability, and solid-state quantum efficiency of approximately 55%. Moreover, the transformation mechanism from Pb-Br complexes in the synthesis process is fully investigated by monitoring the phase and spectral evolution. By employing it as a green emitter, the obtained white light-emitting diode (LED) device shows high performance with a correlation color temperature of 7635 K and a wide color gamut of 123% NTSC. This study offers a low-cost and simple operation mass production method for solid-state perovskite powders with excellent chemical stability. Additionally, it provides new insights into the formation mechanism of highly efficient perovskite materials and promotes their practical applications.
Collapse
Affiliation(s)
- Fuchun Ning
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
- National and Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xicheng Wang
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
- National and Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yuhua Wang
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
- National and Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Cheng Y, Wan H, Sargent EH, Ma D. Reduced-Dimensional Perovskites: Quantum Well Thickness Distribution and Optoelectronic Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410633. [PMID: 39295466 DOI: 10.1002/adma.202410633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Reduced-dimensional perovskites (RDPs), a large category of metal halide perovskites, have attracted considerable attention and shown high potential in the fields of solid-state displays and lighting. RDPs feature a quantum-well-based structure and energy funneling effects. The multiple quantum well (QW) structure endows RDPs with superior energy transfer and high luminescence efficiency. The effect of QW confinement directly depends on the number of inorganic octahedral layers (QW thickness, i.e., n value), so the distribution of n values determines the optoelectronic properties of RDPs. Here, it is focused on the QW thickness distribution of RDPs, detailing its effect on the structural characteristics, carrier recombination dynamics, optoelectronic properties, and applications in light-emitting diodes. The reported distribution control strategies is also summarized and discuss the current challenges and future trends of RDPs. This review aims to provide deep insight into RDPs, with the hope of advancing their further development and applications.
Collapse
Affiliation(s)
- Yuanzhuang Cheng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haoyue Wan
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Dongxin Ma
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
14
|
Singh A, Dayton D, Ladd DM, Reuveni G, Paluch P, Montagne L, Mars J, Yaffe O, Toney M, Manjunatha Reddy GN, Mitzi DB. Local Structure in Crystalline, Glass and Melt States of a Hybrid Metal Halide Perovskite. J Am Chem Soc 2024; 146:25656-25668. [PMID: 39230963 DOI: 10.1021/jacs.4c07411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The pursuit of structure-property relationships in crystalline metal halide perovskites (MHPs) has yielded an unprecedented combination of advantageous characteristics for wide-ranging optoelectronic applications. While crystalline MHP structures are readily accessible through diffraction-based structure refinements, providing a clear view of associated long-range ordering, the local structures in more recently discovered glassy MHP states remain unexplored. Herein, we utilize a combination of Raman spectroscopy, solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy, in situ X-ray diffraction (XRD) and pair distribution function (PDF) analysis to investigate the coordination environment in crystalline, glass and melt states of the 2D MHP [(S)-(-)-1-(1-naphthyl)ethylammonium]2PbBr4. While crystalline SNPB shows polarization-dependent Raman spectra, the glassy and melt states exhibit broad features and lack polarization dependence. Solid-state NMR reveals disordering at the organic-inorganic interface of the glass due to significant spatial disruption in the tethering ammonium groups and the corresponding dihedral bond angles connecting the naphthyl and ammonium groups, while still preserving substantial naphthyl group registry and remnants of the layering from the crystalline state (deduced from XRD analysis). Moreover, PDF analysis demonstrates the persistence of corner-sharing PbBr6 octahedra in the inorganic framework of the melt/glass phases, but with a loss of structural coherence over length scales exceeding approximately one octahedron due to disorder in the inter- and intraoctahedra bond angles/lengths. These findings deepen our understanding of diverse MHP structural motifs and how structural alterations within the MHP glass affect properties, offering potential for advancing next-generation phase change materials and devices.
Collapse
Affiliation(s)
- Akash Singh
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- University Program in Materials Science and Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Damara Dayton
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
| | - Dylan M Ladd
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
| | - Guy Reuveni
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., Lodz 90-363, Poland
- University of Lille, CNRS, Centrale Lille Institut, Université d' Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Lionel Montagne
- University of Lille, CNRS, Centrale Lille Institut, Université d' Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Julian Mars
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
| | - Omer Yaffe
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Toney
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado─Boulder, Boulder, Colorado 80309, United States
- Department of Chemical and Biological Engineering, University of Colorado─Boulder, Boulder, Colorado 80309, United States
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Université d' Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - David B Mitzi
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
15
|
Ma X, Fan S, Yang W, Wei J, Wang X, Ni J, Cheng W, Zhang Q. Preparation and Properties Study of CsPbX 3@PMMA Luminescent Resin. MICROMACHINES 2024; 15:1150. [PMID: 39337810 PMCID: PMC11434466 DOI: 10.3390/mi15091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Perovskite as an emerging semiconductor luminescent material has attracted widespread attention due to its simple preparation, high luminescence quantum yield, high color purity, tunable spectrum, and ability to cover the entire visible light band. However, due to the influence of water or other highly polar solvents, oxygen, temperature, and radiation, perovskite nanocrystals will aggregate or collapse in the lattice, eventually leading to luminescence quenching. This study starts from the postprocessing of perovskite, uses methyl methacrylate as the monomer and TPO as the photoinitiator, and encapsulates the perovskite powder prepared by the hot injection method through ultraviolet light initiation. A method is proposed to improve the luminescence and crystal structure stability of perovskite. By eliminating the influence of environmental factors on perovskite nanocrystals through the dense structure formed by organic polymers, the resistance of perovskite to strong polar solvents such as water will be greatly improved, and it has great potential in the protection of perovskite. Finally, by changing the proportion of halogen elements in the perovskite resin to change the color of the luminescent resin, a fluorescent coating emitting light in all visible light bands is prepared. Fluorescent coatings are widely used in life and industry fields such as plastics, sol, and paper.
Collapse
Affiliation(s)
- Xinqiang Ma
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, 17923 Jingshi Rd., Jinan 250061, China
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250104, China
- Shandong Qiangyuan Laser of SDIIT Ltd., Liaocheng 252000, China
| | - Shengying Fan
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250104, China
| | - Wenwen Yang
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250104, China
| | - Jiajie Wei
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250104, China
| | - Xiaolei Wang
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250104, China
| | - Jincheng Ni
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Wei Cheng
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250104, China
| | - Qinhe Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, 17923 Jingshi Rd., Jinan 250061, China
| |
Collapse
|
16
|
Wei CH, Dong S, Xu Z, Li M, Zhang T, Xu Z, Lan S, Wang S, Mao L. Controllable Multi-Exciton Zero-Dimensional Antimony-Based Metal Halides for White-light Emission and β-Ray Detection. Angew Chem Int Ed Engl 2024:e202412253. [PMID: 39259427 DOI: 10.1002/anie.202412253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
Self-trapped exciton (STE) emission, typified by antimony (Sb), with broadband characteristics, represents the next generation of materials for solid-state lighting and radiation detection. However, little is known about the multiexciton behavior of the Sb emission center. Here, we proposed a general approach for designing antimony-centered multi-exciton emitting materials through self-assembly. Benefitting from controllable multiexciton behavior, dual-band white light emission spanning the entire visible spectrum was achieved. Relying on the reduction of an effective atomic number brought by self-assembly, excellent scintillation response to β-rays was attained. This study offers unprecedented insight into hybrid single/triple STE emission and unveils new avenues for single-emitter white-light emission, as well as radiographic testing using low-risk β-rays as sources.
Collapse
Affiliation(s)
- Chang-Hong Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, 210093, Nanjing, China
| | - Shipeng Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, 210093, Nanjing, China
| | - Zhiheng Xu
- Department of Nuclear Science and Technology, School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 211106, Nanjing, China
| | - Muzi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, 210093, Nanjing, China
| | - Tao Zhang
- Department of Radiopharmaceuticals, Nuclear Medicine Clinical Translation Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Zhibin Xu
- Department of Nuclear Science and Technology, School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 211106, Nanjing, China
| | - Si Lan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 215006, Suzhou, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, 210093, Nanjing, China
| |
Collapse
|
17
|
Liu S, Cai Y, Zhao W, Li W, Li L, Xu L, Miao Z, Chen R, Lv W. Efficient Room-Temperature Phosphorescence in 2D Perovskite via Mixed Organic Cation Incorporation. J Phys Chem Lett 2024; 15:9016-9023. [PMID: 39189129 DOI: 10.1021/acs.jpclett.4c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The achievement of RTP in hybrid organic-inorganic perovskites (HIOPs) via molecular engineering remains relatively uncommon. Here, a series of novel 2D HIOPs composed of mixed organic cations such as naphthalene methylamine (NMA) and 2-(4-methylphenyl) ethanamine (4MPEA) are reported. Efficient RTP and tunable emissions ranging from green to yellow to orange, depending on the doping ratio, are activated in the organic cation-mixed 2D HIOPs system. It has been certified that the triplet excitons of NMA primarily stem from the Wannier excitons of the inorganic layer through an energy transfer process. By gradually altering the halide composition from Br to Cl, the NMA substituted chlorine-based 2D HIOPs show an outstandingly long lifetime of 176 ms. Moreover, potential applications in multiple information encryption and displays have been demonstrated. Our study confirms the effectiveness of strategically hybridizing organic cations with inorganic matrices at the molecular level to achieve high performance RTP.
Collapse
Affiliation(s)
- Siyu Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, China
| | - Yebo Cai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, China
| | - Wei Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, China
| | - Wenjing Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ligang Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, China
| | - Zhenzhen Miao
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering & Material, Handan University, Handan, 056005 Hebei Province, PR China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, China
| | - Wenzhen Lv
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, China
| |
Collapse
|
18
|
Liu YQ, Huang S, Leng JD, Lin WQ. 1D Lead Bromide Hybrids Directed by Complex Cations: Syntheses, Structures, Optical and Photocatalytic Properties. Molecules 2024; 29:4217. [PMID: 39275065 PMCID: PMC11397344 DOI: 10.3390/molecules29174217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 09/16/2024] Open
Abstract
This study presents the synthesis, structural characterization, and evaluation of the photocatalytic performance of two novel one-dimensional (1D) lead(II) bromide hybrids, [Co(2,2'-bpy)3][Pb2Br6CH3OH] (1) and [Fe(2,2'-bpy)3][Pb2Br6] (2), synthesized via solvothermal reactions. These compounds incorporate transition metal complex cations as structural directors, contributing to the unique photophysical and photocatalytic properties of the resulting materials. Single-crystal X-ray diffraction analysis reveals that both compounds crystallize in monoclinic space groups with distinct 1D lead bromide chain configurations influenced by the nature of the complex cations. Optical property assessments show band gaps of 3.04 eV and 2.02 eV for compounds 1 and 2, respectively, indicating their potential for visible light absorption. Photocurrent measurements indicate a significantly higher electron-hole separation efficiency in compound 2, correlated with its narrower band gap. Additionally, photocatalytic evaluations demonstrate that while both compounds degrade organic dyes effectively, compound 2 also exhibits notable hydrogen evolution activity under visible light, a property not observed in 1. These findings highlight the role of metal complex cations in tuning the electronic and structural properties of lead(II) bromide hybrids, enhancing their applicability in photocatalytic and optoelectronic devices.
Collapse
Affiliation(s)
- Ya-Qi Liu
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Sen Huang
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Ji-Dong Leng
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Wei-Quan Lin
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, China
| |
Collapse
|
19
|
Song X, Liu X, Zhang D, Liao J, Zhu S, Zheng W. High-Contrast Thermochromism in Room-Temperature Transparent Layered Perovskite PEA 2PbBr 4 with a High Temperature-Induced Bandgap Change Rate of 0.8 meV/K. J Am Chem Soc 2024; 146:24670-24680. [PMID: 39164896 DOI: 10.1021/jacs.4c09090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Two-dimensional organic-inorganic hybrid layered perovskites have emerged as a new generation of optoelectronic materials. However, the thermochromism in organic-inorganic hybrid layered perovskites has been rarely explored in depth. A further understanding of the mechanism is necessary and favorable for the application. Here, transparent centimeter-sized single crystals of the organic-inorganic hybrid layered perovskite (C6H5C2H4NH3)2PbBr4 (PEA2PbBr4) were synthesized using an improved evaporation method. As a typical organic-inorganic hybrid layered perovskite, the PEA2PbBr4 single crystal shows high-contrast and progressive thermochromism exhibiting a change from colorlessness and transparency to lemon yellow in a wide temperature range of 200-450 K. Based on the calculation through the Varshni equation, the temperature-induced bandgap change rate directly associated with the high-contrast thermochromism of PEA2PbBr4 reaching 0.8 meV/K. This value is higher than that of many three-dimensional perovskites and traditional IV-III semiconductors. Furthermore, the temperature-dependent 193 nm photoluminescence spectra suggest that this high temperature-induced bandgap change rate of PEA2PbBr4 is a result of the competitive interaction between lattice thermal expansion and electron-phonon coupling (Fröhlich coupling coefficient ΓLO = 2.215). Based on the characteristics introduced above, PEA2PbBr4 as an organic-inorganic hybrid layered perovskite has a better performance in achieving the balance between high-contrast and high room-temperature transmittance. Therefore, PEA2PbBr4 is a material with great potential in applications like temperature-indicating labels. This work provides valuable insights into the thermochromism of layered perovskites, offering a new material system and approach for developing thermochromic materials with higher sensitivity and efficiency.
Collapse
Affiliation(s)
- Xiaoyu Song
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xinsheng Liu
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Danwen Zhang
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jingyan Liao
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Siqi Zhu
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Wei Zheng
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
20
|
Bhatt M, Nayak PK, Ghosh D. Data-Driven Design of Electroactive Spacer Molecules to Tune Charge Carrier Dynamics in Layered Halide Perovskite Heterostructures. ACS NANO 2024; 18:24484-24494. [PMID: 39172126 DOI: 10.1021/acsnano.4c08208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Crafting rational heterojunctions with nanostructured materials is instrumental in fostering effective interfacial charge separation and transport for optoelectronics. Layered halide perovskites (LHPs) that form heterojunctions between organic spacer molecules and inorganic metal halide layers exhibit tunable photophysics owing to their customizable band alignment. However, controlling photogenerated carrier dynamics by strategically designing layered perovskite heterojunctions remains largely unexplored. We combine a data-driven approach with time-domain density functional theory (TD-DFT) and non-adiabatic molecular dynamics (NAMD) to screen and select electronically active spacer dications (A') that introduce a type-II heterojunction in the lead iodide-based Dion-Jacobson phase LHPs. The composition-structure-electronic property correlations reveal that the number of nitrogens in aromatic heterocycles is the key factor in designing electron-accepting spacers in these perovskites. The detailed atomistic simulations validate the design strategy further by modeling (A')PbI4 perovskites, which incorporate three different screened electroactive A' spacers. The computed excited charge carrier dynamics illustrate the phonon-mediated ultrafast interfacial electron transfer from the inorganic conduction band edge to the lower-lying unoccupied orbitals of spacers, exhibiting photoluminescence quenching in these (A')PbI4 perovskites. The spatially separated electrons and holes at the type-II heterojunction interface prolong the excited charge carrier lifetime, boosting the carrier transport and exciton dynamics. Our work illustrates a robust in silico approach for designing LHPs with exciting optoelectronic properties originating from their fine-tuned heterojunctions.
Collapse
Affiliation(s)
- Monal Bhatt
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Pabitra Kumar Nayak
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Dibyajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
21
|
Wang S, Zhang Y, Halasyamani PS, Mitzi DB. Chirality and Solvent Coassist the Structural Evolution of Hybrid Manganese Chlorides with Second-Harmonic-Generation Response. Inorg Chem 2024; 63:16121-16127. [PMID: 39155446 DOI: 10.1021/acs.inorgchem.4c02588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Chiral hybrid metal halides have shown great potential in optoelectronics, including for spin splitting, circularly polarized luminescence, and nonlinear-optical properties. However, despite their inherent inversion symmetry breaking, studies on second harmonic generation (SHG) of chiral hybrid manganese(II) halides remain relatively rare. Here, we report a series of structurally diverse hybrid manganese(II) chlorides: (Rac-MBA)2[MnCl4(H2O)2] (1), (S-MBA)2[MnCl4(H2O)2] (2), (S-MBA)2[Mn2Cl6(H2O)4] (3), and (S-MBA)[MnCl3(MeOH)] (4), where MBA = α-methylbenzylammonium, providing tunability of the coordination environment and structural dimensionality via fine control of the MBA cation chiral state and crystal preparation process, thereby enabling modulation of the SHG effects. Specifically, as the amount of methanol increases during the crystal preparation process, the structures of the chiral compounds vary from a 0D structure consisting of isolated octahedra to a 0D structure composed of octahedra dimers and to 1D chains of edge-sharing Mn-centered octahedra. In contrast, the structure of the racemic compound remains unchanged, independent of the crystal preparation pathway. The structural details, including the coordination environment, H-bonding, dimensionality, and lattice distortion, are described. The SHG response of the racemic compound derives only from the inorganic lattice, while the responses of the chiral compounds are attributed to the synergetic effect of the chiral cations and inorganic moieties.
Collapse
Affiliation(s)
- Sasa Wang
- Department of Mechanical Engineering and Materials Science and Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yujie Zhang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - P Shiv Halasyamani
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - David B Mitzi
- Department of Mechanical Engineering and Materials Science and Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
22
|
Wu G, Zhang R, Wang H, Ma K, Xia J, Lv W, Xing G, Chen R. Rational Strategies to Improve the Efficiency of 2D Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405470. [PMID: 39021268 DOI: 10.1002/adma.202405470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/08/2024] [Indexed: 07/20/2024]
Abstract
In the quest for durable photovoltaic devices, 2D halide perovskites have emerged as a focus of extensive research. However, the reduced dimension in structure is accompanied by inferior optical-electrical properties, such as widened band gap, enhanced exciton binding energy, and obstructed charge transport. As a result, the efficiency of 2D perovskite solar cells (PSCs) lags significantly behind their 3D counterparts. To overcome these constraints, extensive investigations into materials and processing techniques are pursued rigorously to augment the efficiency of 2D PSCs. Herein, The cutting-edge delve into developments in 2D PSCs, with a focus on chemical and material engineering, as well as their structure and photovoltaic properties. The review starts with an introduction of the crystal structure, followed by the key evaluation criteria of 2D PSCs. Then, the strategies around solution chemical engineering, processing technique, and interface optimization, to simultaneously boost efficiency and stability are systematically discussed. Finally, the challenges and perspectives associated with 2D perovskites to provide insights into potential improvements in photovoltaic performance will be outlined.
Collapse
Affiliation(s)
- Guangbao Wu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Adv. Mater. (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Runqi Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Adv. Mater. (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - He Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Adv. Mater. (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Kangjie Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Adv. Mater. (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Junmin Xia
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Adv. Mater. (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wenzhen Lv
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Adv. Mater. (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Adv. Mater. (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
23
|
Song X, Hao C, Li Y, Li Y, Dong H, Wei Q, Wei M, Li H, Zhao L. Chiral inorganic nanomaterials in the tumor microenvironment: A new chapter in cancer therapy. Pharmacol Res 2024; 208:107386. [PMID: 39216840 DOI: 10.1016/j.phrs.2024.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Chirality plays a crucial function in the regulation of normal physiological processes and is widespread in organisms. Chirality can be imparted to nanomaterials, whether they are natural or manmade, through the process of asymmetric assembly and/or grafting of molecular chiral groups or linkers. Chiral inorganic nanomaterials possess unique physical and chemical features that set them apart from regular nanomaterials. They also have the ability to interact with cells and tissues in a specific manner, making them useful in various biomedical applications, particularly in the treatment of tumors. Despite the growing amount of research on chiral inorganic nanomaterials in the tumor microenvironment (TME) and their promising potential applications, there is a lack of literature that comprehensively summarizes the intricate interactions between chiral inorganic nanomaterials and TME. In this review, we introduce the fundamental concept, classification, synthesis methods, and physicochemical features of chiral inorganic nanomaterials. Next, we briefly outline the components of TME, such as T cells, macrophages, dendritic cells, and weak acids, and then discuss the anti-tumor effects of several chiral inorganic nanoparticles targeting these components and their potential for possible application during cancer therapy. Finally, the present challenges faced by chiral inorganic nanomaterials in cancer treatment and their future areas of investigation are disclosed.
Collapse
Affiliation(s)
- Xueyi Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Chenjing Hao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Yao Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Hongzhi Dong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Heran Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
24
|
Cai Y, Zhang Y, Fang L, Ren Y, Zhang J, Yuan Y, Zhang J, Wang P. Conjugated polymers of an oxa[5]helicene-derived polycyclic heteroaromatic: tailoring energy levels and compatibility for high-performance perovskite solar cells. Chem Sci 2024:d4sc04244a. [PMID: 39246348 PMCID: PMC11378023 DOI: 10.1039/d4sc04244a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
In the quest to enhance the efficiency and durability of n-i-p perovskite solar cells (PSCs), engineering hole-transporting conjugated polymers with well-matched energy levels, exceptional film-forming properties, rapid hole transport, and superior moduli is paramount. Here, we present a novel approach involving the customization of a conjugated polymer, designated as p-DTPF4-EBEH, comprising alternating units of an oxa[5]helicene-based polycyclic heteroaromatic (DTPF4) and 5,5'-(2,5-di(hexyloxy)-1,4-phenylene)bis(3,4-ethylenedioxythiophene) (EBEH), synthesized through palladium-catalyzed direct arylation. Relative to homopolymers p-DTPF4 and p-EBEH, p-DTPF4-EBEH demonstrates a proper HOMO energy level, hole density, and hole mobility, alongside superior film-forming capabilities. Remarkably, compared to the commonly used hole transport material spiro-OMeTAD, p-DTPF4-EBEH not only exhibits superior film-forming property and hole mobility but also offers increased modulus and improved waterproofing. Incorporating p-DTPF4-EBEH as the hole transport material in PSCs results in an average power conversion efficiency of 25.8%, surpassing the 24.3% achieved with spiro-OMeTAD. Importantly, devices utilizing p-DTPF4-EBEH demonstrate enhanced thermal storage stability at 85 °C, along with operational robustness.
Collapse
Affiliation(s)
- Yaohang Cai
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| | - Yuyan Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| | - Lingyi Fang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| | - Yutong Ren
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Yi Yuan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| | - Jing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| | - Peng Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| |
Collapse
|
25
|
Li K, Li ZG, Chen YQ, Li W. B-site substitution effects on the mechanical properties of halide perovskites [C 4H 12N 2][BCl 3]·H 2O (B = NH 4+; K +). Dalton Trans 2024; 53:14451-14456. [PMID: 39145540 DOI: 10.1039/d4dt01795a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The mechanical properties of halide perovskites have been attracting ever-increasing interest for their significant importance in future industrial applications. However, studies focused on the effect of B-site substitution of molecular perovskites on their mechanical properties are rare, which makes it favorable to shed light on their fundamental structure-mechanical property relationships. Here, using isostructural halide perovskites, [C4H12N2][BCl3]·H2O (B = NH4+; K+), constructed by ionic bonds and hydrogen bonds, respectively, as the model systems, we investigate their mechanical properties through high-pressure synchrotron X-ray diffraction experiments and density functional theory calculations. Owing to the similar sizes of NH4+ and K+, the two compounds possess almost identical cell parameters and frameworks. Upon compression, the two perovskites exhibit analogous behavior except for slight differences in the shrinkage ratio of principal axes and the onset pressure of amorphization. The fitted bulk moduli of [C4H12N2][KCl3]·H2O and [C4H12N2][NH4Cl3]·H2O are 43.89 and 27.28 GPa, respectively. These results demonstrate that the simple replacement of K+ by NH4+ can significantly reduce the structural rigidity of the corresponding compounds, which is ascribed to the weaker strength of NH4⋯Cl hydrogen bonds than that of K-Cl bonds.
Collapse
Affiliation(s)
- Kai Li
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi 030619, China.
| | - Zhi-Gang Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China
| | - Yong-Qiang Chen
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi 030619, China.
| | - Wei Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China
| |
Collapse
|
26
|
Xu B, Li Y, Hong P, Zhang P, Han J, Xiao Z, Quan Z. Pressure-controlled free exciton and self-trapped exciton emission in quasi-one-dimensional hybrid lead bromides. Nat Commun 2024; 15:7403. [PMID: 39191775 DOI: 10.1038/s41467-024-51836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Hybrid metal halides represent a novel type of semiconductor light emitters with intriguing excitonic emission properties, including free exciton emission and self-trapped exciton emission. Achieving precise control over these two excitonic emissions in hybrid metal halides is highly desired yet remains challenging. Here, the complete transformation from intrinsically broadband self-trapped exciton emission to distinctively sharp free exciton emission in a quasi-one-dimensional hybrid metal halide (C2H10N2)8[Pb4Br18]·6Br with a ribbon width of n = 4, is successfully achieved based on high-pressure method. During compression, pressure-induced phonon hardening continuously reduces exciton-phonon coupling, therefore suppressing excitonic localization and quenching the original self-trapped exciton emission. Notably, further compression triggers excitonic delocalization to induce intense free exciton emission, accompanied with reduced carrier effective masses and improved charge distribution. Controlled high-pressure investigations indicate that the ribbon width of n > 2 is necessary to realize excitonic delocalization and generate free exciton emissions in similar quasi-one-dimensional hybrid metal halides. This work presents an important photophysical process of excitonic transitions from self-trapped exciton emission to free exciton emission in quasi-one-dimensional hybrid metal halides without chemical regulation, promoting the rational synthesis of hybrid metal halides with desired excitonic emissions.
Collapse
Affiliation(s)
- Bin Xu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Yawen Li
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Peibin Hong
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Peijie Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Jiang Han
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Zewen Xiao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zewei Quan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China.
| |
Collapse
|
27
|
Steeger P, Adnan M, Deilmann T, Li X, Müller S, Skrzyńska K, Hanfland M, Kolesnikov E, Kösters J, Block T, Schmidt R, Kupenko I, Sanchez-Valle C, Vijaya Prakash G, Michaelis de Vasconcellos S, Bratschitsch R. Hysteretic Piezochromism in a Lead Iodide-Based Two-Dimensional Inorganic-Organic Hybrid Perovskite. J Am Chem Soc 2024; 146:23205-23211. [PMID: 39120574 DOI: 10.1021/jacs.4c05557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Two-dimensional inorganic-organic hybrid perovskites are in the limelight due to their potential applications in photonics and optoelectronics. They are environmentally stable, and their various chemical compositions offer a wide range of bandgap energies. Alternatively, crystal deformation enables in situ control over their optical properties. Here, we investigate (C6H9C2H4NH3)2PbI4, a hybrid perovskite whose organic linkers are 2-(1-cyclohexenyl)ethylammonium. Pressure-dependent optical absorption and emission spectroscopy reveal a hysteretic piezochromism that was not reported for other lead iodide-based 2D perovskites. We combine our optical studies with high-pressure X-ray diffraction experiments and first-principles calculations to demonstrate that the deformation of the inorganic lead iodide layers is the main reason for the observed changes in the optical bandgap.
Collapse
Affiliation(s)
- Paul Steeger
- Institute of Physics and Center for Nanotechnology, University of Münster, 48149 Münster, Germany
| | - Mohammad Adnan
- Institute of Physics and Center for Nanotechnology, University of Münster, 48149 Münster, Germany
| | - Thorsten Deilmann
- Institute of Solid State Theory, University of Münster, 48149 Münster, Germany
| | - Xiang Li
- Institute of Mineralogy, University of Münster, 48149 Münster, Germany
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Susanne Müller
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Katarzyna Skrzyńska
- Faculty of Natural Sciences, Institute of Earth Sciences, University of Silesia, Sosnowiec 41-200, Poland
| | | | - Efim Kolesnikov
- Institute of Mineralogy, University of Münster, 48149 Münster, Germany
| | - Jutta Kösters
- Insitut für Anorganische und Analytische Chemie, University of Münster, 48149 Münster, Germany
| | - Theresa Block
- Insitut für Anorganische und Analytische Chemie, University of Münster, 48149 Münster, Germany
| | - Robert Schmidt
- Institute of Physics and Center for Nanotechnology, University of Münster, 48149 Münster, Germany
| | - Ilya Kupenko
- Institute of Mineralogy, University of Münster, 48149 Münster, Germany
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | | | - G Vijaya Prakash
- Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | | - Rudolf Bratschitsch
- Institute of Physics and Center for Nanotechnology, University of Münster, 48149 Münster, Germany
| |
Collapse
|
28
|
Gan Z, Gloor CJ, Yan L, Zhong X, You W, Moran AM. Elucidating phonon dephasing mechanisms in layered perovskites with coherent Raman spectroscopies. J Chem Phys 2024; 161:074202. [PMID: 39158047 DOI: 10.1063/5.0216472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
Organic-inorganic hybrid perovskite quantum wells exhibit electronic structures with properties intermediate between those of inorganic semiconductors and molecular crystals. In these systems, periodic layers of organic spacer molecules occupy the interstitial spaces between perovskite sheets, thereby confining electronic excitations to two dimensions. Here, we investigate spectroscopic line broadening mechanisms for phonons coupled to excitons in lead-iodide layered perovskites with phenyl ethyl ammonium (PEA) and azobenzene ethyl ammonium (AzoEA) spacer cations. Using a modified Elliot line shape analysis for the absorbance and photoluminescence spectra, polaron binding energies of 11.2 and 17.5 meV are calculated for (PEA)2PbI4 and (AzoEA)2PbI4, respectively. To determine whether the polaron stabilization processes influence the dephasing mechanisms of coupled phonons, five-pulse coherent Raman spectroscopies are applied to the two systems under electronically resonant conditions. The prominence of inhomogeneous line broadening mechanisms detected in (AzoEA)2PbI4 suggests that thermal fluctuations involving the deformable organic phase broaden the distributions of phonon frequencies within the quantum wells. In addition, our data indicate that polaron stabilization primarily involves photoinduced reorganization of the organic phases for both systems, whereas the impulsively excited phonons represent less than 10% of the total polaron binding energy. The signal generation mechanisms associated with our fifth-order coherent Raman experiments are explored with a perturbative model in which cumulant expansions are used to account for time-coincident vibrational dephasing and polaron stabilization processes.
Collapse
Affiliation(s)
- Zijian Gan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Camryn J Gloor
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xiaowei Zhong
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
29
|
Xie Y, Koknat G, Weadock NJ, Wang X, Song R, Toney MF, Blum V, Mitzi DB. Hydrogen Bonding Analysis of Structural Transition-Induced Symmetry Breaking and Spin Splitting in a Hybrid Perovskite Employing a Synergistic Diffraction-DFT Approach. J Am Chem Soc 2024; 146:22509-22521. [PMID: 39083226 DOI: 10.1021/jacs.4c06287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) offer an outstanding opportunity for spin-related technologies owing in part to their tunable structural symmetry breaking and distortions driven by organic-inorganic hydrogen (H) bonds. However, understanding how H-bonds tailor inorganic symmetry and distortions and therefore enhance spin splitting for more effective spin manipulation remains imprecise due to challenges in measuring H atom positions using X-ray diffraction. Here, we report a thermally induced structural transition (at ∼209 K) for a 2D HOIP, (2-BrPEA)2PbI4 [2-BrPEA = 2-(2-bromophenyl)ethylammonium], which induces inversion asymmetry and a strong spin splitting (ΔE > 30 meV). While X-ray diffraction generally establishes heavy atom coordinates, we utilize neutron diffraction for accurate H atom position determination, demonstrating that the structural transition-induced rearrangement of H-bonds with distinct bond strengths asymmetrically shifts associated iodine atom positions. Consequences of this shift include an increased structural asymmetry, an enhanced difference between adjacent interoctahedra distortions (i.e., Pb-I-Pb bond angles), and therefore significant spin splitting. We further show that H-only density-functional theory (DFT) relaxation of the X-ray structure shifts H atoms to positions that are consistent with the neutron experimental data, validating a convenient pathway to more generally improve upon HOIP H-bonding analyses derived from quicker/less-expensive X-ray data.
Collapse
Affiliation(s)
- Yi Xie
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- University Program in Materials Science and Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Gabrielle Koknat
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas J Weadock
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, Colorado 80303, United States
- Materials Science Program, University of Colorado, Boulder, Boulder, Colorado 80303, United States
| | - Xiaoping Wang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ruyi Song
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael F Toney
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, Colorado 80303, United States
- Materials Science Program, University of Colorado, Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Boulder, Colorado 80303, United States
| | - Volker Blum
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David B Mitzi
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
30
|
Wang Z, Huang D, Liu Y, Lin H, Zhang Z, Ablez A, Zhuang T, Du K, Li J, Huang X. Vacancy Effect on the Luminescent and Water Responsive Properties of Vacancy-Ordered Double Perovskite Derivatives. Angew Chem Int Ed Engl 2024:e202412346. [PMID: 39136171 DOI: 10.1002/anie.202412346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 11/01/2024]
Abstract
Vacancy-ordered perovskites and derivatives represent an important subclass of hybrid metal halides with promise in applications including light emitting devices and photovoltaics. Understanding the vacancy-property relationship is crucial for designing related task-specific materials, yet research in this field remains sporadic. For the first time, we use the Connolly surface to quantitatively calculate the volume of vacancy (V□, □=vacancy) in vacancy-ordered double perovskite derivatives (VDPDs). A relationship between void fraction and the structure, photoluminescent properties and humidity stability was established based on zero-dimensional (0-D) [N(alkyl)4]2Sb□Cl5□'-type VDPDs. Compared with the more commonly studied A2M(IV)X6□-type double perovskite (A=cation, M=metal ion, X=halide), [N(alkyl)4]2Sb□Cl5□' features double vacancy sites. Our results demonstrate an inverse relationship between the photoluminescent quantum yield and V□ in 0-D VDPDs. Additionally, structural transformation from A2SbCl5 to A3Sb2Cl9 was first reported, during which the novel 'gate-opening' gas adsorption phenomenon was observed in VDPDs for the first time, as evidenced by 'S'-shaped sorption isotherms for water vapor, indicating a cation-controlled water-vapor response behavior. A mixed-cation strategy was developed to modulate the humidity stability of VDPDs. Characterized by controllable water-responsive behavior and unique 'on-off-on' luminescent switching, A2M(III)□X5□'-type materials show great promise for multi-level information anti-counterfeiting applications.
Collapse
Affiliation(s)
- Zeping Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Dandan Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Yi Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Haowei Lin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Zhizhuan Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Abdusalam Ablez
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Tinghui Zhuang
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Kezhao Du
- College of Chemistry and Materials Science Fujian Provincial Key Laboratory of Polymer Materials & Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
31
|
Zhang X, Hua XN, Huo P, Wang L, Shi X, Cai Z, Zhang Y, Zhang D, Yu SS. Second-Order Nonlinear Switching and Photoluminescence Properties of Cd-Based Hybrid Perovskite with High-Temperature Phase Transition. Inorg Chem 2024; 63:15154-15160. [PMID: 39080828 DOI: 10.1021/acs.inorgchem.4c02494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Recently, organic-inorganic hybrid perovskites exhibiting facile structural phase transitions have accumulated significant attention due to their switchable second-order nonlinear optical (NLO) properties, which hold significant promise for next-generation intelligent optoelectronic devices. In this study, we present a novel one-dimensional hexagonal hybrid perovskite, (4-methoxypiperidinium)CdCl3, which undergoes a reversible high-temperature structural phase transition at 389 K. Notably, (4-methoxypiperidinium)CdCl3 demonstrates switchable second-order NLO and dielectric properties, accompanied by symmetry breaking from the centrosymmetric Pnma to noncentrosymmetric Pna21 space group. Variable-temperature structure analyses reveal that this transition is mainly driven by the order-disorder transformation of the 4-methoxypiperidinium cations. Furthermore, it also features a promising photoluminescence performance with blue-light emission and a long lifetime of 25.34 ns. It is anticipated that this study will expand the family of hybrid perovskites exhibiting high-temperature phase transitions and offer valuable guidance for the design of new NLO switching materials with superior optoelectronic properties.
Collapse
Affiliation(s)
- Xiang Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Xiu-Ni Hua
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Pingxin Huo
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Li Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Xian Shi
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yinan Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Dunpu Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Shan-Shan Yu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| |
Collapse
|
32
|
Xu K, Zhou ZN, Han XB, Yang YW, Zhang W, Ye Q. Shape Shifting and Locking in Mechanically Responsive Organic-Inorganic Hybrid Materials for Thermoelastic Actuators. Angew Chem Int Ed Engl 2024; 63:e202408247. [PMID: 38837719 DOI: 10.1002/anie.202408247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
The construction of mechanically responsive materials with reversible shape-shifting, shape-locking, and stretchability holds promise for a wide range of applications in fields such as soft robotics and flexible electronics. Here, we report novel thermoelastic one-dimensional organic-inorganic hybrids (R/S-Hmpy)PbI3 (Hmpy=2-hydroxymethyl-pyrrolidinium) to show mechanical responses. The single crystals undergo two phase transitions at 310 K and 380 K. When heated to 380 K, they show shape-shifting and expansion along the b-axis by about 13.4 %, corresponding to a larger deformation than that of thermally activated shape memory alloys (8.5 %), and exhibit a strong actuation force. During the cooling process, the stretched crystal shape maintains and a shape-locking phenomenon occurs, which is lifted when the temperature decreases to 305 K. Meanwhile, due to the introduction of chiral ions, the thermal switching shows a 10-fold second-order nonlinear switching contrast (common values typically below 3-fold). This study presents a thermoelastic actuator based on shape-shifting and -locking of organic-inorganic hybrids for the first time. The dielectric and nonlinear optical switching properties of organic-inorganic hybrids broaden the range of applications of mechanically responsive crystals.
Collapse
Affiliation(s)
- Ke Xu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Zi-Ning Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Ya-Wen Yang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Qiong Ye
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
33
|
Naqvi SMKA, Zhu Y, Long H, Nazir Z, Vasiliev RB, Kulakovich O, Chang S. Computational approaches to enhance charge transfer and stability in TPBi-(PEA) 2PbI 4 perovskite interfaces through molecular orientation optimization. NANOSCALE ADVANCES 2024; 6:4149-4159. [PMID: 39114143 PMCID: PMC11302203 DOI: 10.1039/d4na00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024]
Abstract
The optimization of material interfaces is crucial for the performance and longevity of optoelectronic devices. This study focuses on 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi), a key component in perovskite devices known for its efficient charge transfer capabilities. We investigate the TPBi-(PEA)2PbI4 heterostructure interfaces to enhance device durability by optimizing interfacial properties. Our findings reveal that those specific TPBi orientations - at 15 and 30 degrees - ensure strong electronic coupling between TPBi and (PEA)2PbI4, which improves stability at these interfaces. Furthermore, orientations at 15 and 60 degrees markedly enhance charge transfer kinetics, indicating reduced recombination rates and potentially increased efficiency in optoelectronic devices. These results not only underscore the importance of molecular orientation in perovskite devices but also open new avenues for developing more stable and efficient hybrid materials in optoelectronic applications.
Collapse
Affiliation(s)
- Syed Muhammad Kazim Abbas Naqvi
- School of Materials Science & Engineering, Beijing Institute of Technology Beijing 100081 China
- Platform for Applied Nanophotonics, Faculty of Materials Science, Shenzhen MSU-BIT University Shenzhen 518115 China
| | - Yanan Zhu
- Platform for Applied Nanophotonics, Faculty of Materials Science, Shenzhen MSU-BIT University Shenzhen 518115 China
| | - Hui Long
- Platform for Applied Nanophotonics, Faculty of Materials Science, Shenzhen MSU-BIT University Shenzhen 518115 China
- Department of Materials Science, Department of Chemistry, Lomonosov Moscow State University Moscow 119991 Russia
| | - Zahid Nazir
- Platform for Applied Nanophotonics, Faculty of Materials Science, Shenzhen MSU-BIT University Shenzhen 518115 China
| | - Roman B Vasiliev
- Department of Materials Science, Department of Chemistry, Lomonosov Moscow State University Moscow 119991 Russia
| | - Olga Kulakovich
- Institute of Physics of the National Academy of Sciences of Belarus Minsk 220072 Belarus
| | - Shuai Chang
- Platform for Applied Nanophotonics, Faculty of Materials Science, Shenzhen MSU-BIT University Shenzhen 518115 China
| |
Collapse
|
34
|
Guo Z, Han D, Liu H, Hu Y, Zhang W, Chen R, Mao L. Controlling the Orientation-Dependent Second Harmonic Generation in Hybrid Germanium Perovskites. Angew Chem Int Ed Engl 2024; 63:e202407675. [PMID: 38770616 DOI: 10.1002/anie.202407675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Manipulating the crystal orientation plays a crucial role in the conversion efficiency during second harmonic generation (SHG). Here, we provide a new strategy in controlling the surface-dependent anisotropic SHG with the precise design of (101) and (21 ‾ ${\bar 1}$ 0) MAGeI3 facets. Based on the SHG measurement, the (101) MAGeI3 single crystal exhibits larger SHG (1.3×(21 ‾ ${\bar 1}$ 0) MAGeI3). Kelvin probe force microscopy imaging shows a smaller work function for the (101) MAGeI3 compared with the (21 ‾ ${\bar 1}$ 0), which indirectly demonstrates the stronger intrinsic polarization on the (101) surface. X-ray photoelectron spectroscopy confirms the band bending within the (101) facet. Temperature-dependent steady-state and time-resolved photoluminescence spectroscopy show shorter lifetime and wider emission band in the (101) MAGeI3 single crystal, revealing the higher defect states. Additionally, powder X-ray diffraction patterns show the (101) MAGeI3 possesses larger in-plane polar units [GeI3]- density, which could directly enhance the spontaneous polarization in the (101) facet. Density functional theory (DFT) calculation further demonstrates the higher intrinsic polarization in the (101) facet compared with the (21 ‾ ${\bar 1}$ 0) facet, and the larger built-in electric field in the (101) facet facilitates surface vacancy defect accumulation. Our work provides a new angle in tuning and optimizing hybrid perovskite-based nonlinear optical materials.
Collapse
Affiliation(s)
- Zhu Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Dingchong Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Huan Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yaoqiao Hu
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| | - Weixiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Rui Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
35
|
Luo W, Kim S, Lempesis N, Merten L, Kneschaurek E, Dankl M, Carnevali V, Agosta L, Slama V, VanOrman Z, Siczek M, Bury W, Gallant B, Kubicki DJ, Zalibera M, Piveteau L, Deconinck M, Guerrero‐León LA, Frei AT, Gaina PA, Carteau E, Zimmermann P, Hinderhofer A, Schreiber F, Moser J, Vaynzof Y, Feldmann S, Seo J, Rothlisberger U, Milić JV. From Chalcogen Bonding to S-π Interactions in Hybrid Perovskite Photovoltaics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405622. [PMID: 38961635 PMCID: PMC11347993 DOI: 10.1002/advs.202405622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Indexed: 07/05/2024]
Abstract
The stability of hybrid organic-inorganic halide perovskite semiconductors remains a significant obstacle to their application in photovoltaics. To this end, the use of low-dimensional (LD) perovskites, which incorporate hydrophobic organic moieties, provides an effective strategy to improve their stability, yet often at the expense of their performance. To address this limitation, supramolecular engineering of noncovalent interactions between organic and inorganic components has shown potential by relying on hydrogen bonding and conventional van der Waals interactions. Here, the capacity to access novel LD perovskite structures that uniquely assemble through unorthodox S-mediated interactions is explored by incorporating benzothiadiazole-based moieties. The formation of S-mediated LD structures is demonstrated, including one-dimensional (1D) and layered two-dimensional (2D) perovskite phases assembled via chalcogen bonding and S-π interactions. This involved a combination of techniques, such as single crystal and thin film X-ray diffraction, as well as solid-state NMR spectroscopy, complemented by molecular dynamics simulations, density functional theory calculations, and optoelectronic characterization, revealing superior conductivities of S-mediated LD perovskites. The resulting materials are applied in n-i-p and p-i-n perovskite solar cells, demonstrating enhancements in performance and operational stability that reveal a versatile supramolecular strategy in photovoltaics.
Collapse
Affiliation(s)
- Weifan Luo
- Adolphe Merkle InstituteUniversity of FribourgFribourg1700Switzerland
| | - SunJu Kim
- Department of Nanoenergy EngineeringPusan National UniversityBusan46241South Korea
| | - Nikolaos Lempesis
- Laboratory of Computational Chemistry and BiochemistryInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Lena Merten
- Institute of Applied PhysicsUniversity of Tübingen72076TübingenGermany
| | | | - Mathias Dankl
- Laboratory of Computational Chemistry and BiochemistryInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Virginia Carnevali
- Laboratory of Computational Chemistry and BiochemistryInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Lorenzo Agosta
- Laboratory of Computational Chemistry and BiochemistryInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Vladislav Slama
- Laboratory of Computational Chemistry and BiochemistryInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | | | - Miłosz Siczek
- Faculty of ChemistryUniversity of WrocławWrocław50–383Poland
| | - Wojciech Bury
- Faculty of ChemistryUniversity of WrocławWrocław50–383Poland
| | | | | | - Michal Zalibera
- Institute of Physical Chemistry and Chemical PhysicsSlovak University of TechnologyBratislava81237Slovakia
| | - Laura Piveteau
- Laboratory of Magnetic ResonanceEPFLLausanne1015Switzerland
| | - Marielle Deconinck
- Chair for Emerging Electronic TechnologiesTechnical University of Dresden02062DresdenGermany
- Leibniz Institute for Solid State and Materials Research DresdenDresden University of TechnologyHelmholtzstraße 2001069DresdenGermany
| | - L. Andrés Guerrero‐León
- Chair for Emerging Electronic TechnologiesTechnical University of Dresden02062DresdenGermany
- Leibniz Institute for Solid State and Materials Research DresdenDresden University of TechnologyHelmholtzstraße 2001069DresdenGermany
| | - Aaron T. Frei
- Photochemical Dynamic GroupInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Patricia A. Gaina
- Adolphe Merkle InstituteUniversity of FribourgFribourg1700Switzerland
| | - Eva Carteau
- Adolphe Merkle InstituteUniversity of FribourgFribourg1700Switzerland
| | - Paul Zimmermann
- Institute of Applied PhysicsUniversity of Tübingen72076TübingenGermany
| | | | - Frank Schreiber
- Institute of Applied PhysicsUniversity of Tübingen72076TübingenGermany
| | - Jacques‐E. Moser
- Photochemical Dynamic GroupInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Yana Vaynzof
- Chair for Emerging Electronic TechnologiesTechnical University of Dresden02062DresdenGermany
- Leibniz Institute for Solid State and Materials Research DresdenDresden University of TechnologyHelmholtzstraße 2001069DresdenGermany
| | | | - Ji‐Youn Seo
- Department of Nanoenergy EngineeringPusan National UniversityBusan46241South Korea
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and BiochemistryInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Jovana V. Milić
- Adolphe Merkle InstituteUniversity of FribourgFribourg1700Switzerland
| |
Collapse
|
36
|
Li JW, Niu M, Feng W, Dong W, Liu Y, Yang J, Wang C, Zhang H, Song WW. Synthesis, structure and red-light emission of a manganese halide directed by a methyldiphenylphosphine oxide complex. Acta Crystallogr C Struct Chem 2024; 80:412-418. [PMID: 38995666 DOI: 10.1107/s2053229624006405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Controlling the optical activity of halide perovskite materials through modulation of the coordination configurations of the metal ions is important. Herein, a novel manganese-based halide, specifically diaquatetrakis(methyldiphenylphosphine oxide)manganese(II) tetrachloridomanganate(II), [Mn(C13H13OP)4(H2O)2][MnCl4] or [Mn(MDPPO)4(H2O)2][MnCl4] (MDPPO is methyldiphenylphosphine oxide), was synthesized through the solvothermal reaction of MnCl2 with the neutral molecule MDPPO. In this compound, [Mn(MDPPO)4(H2O)2]2+ acts as the cation, while [MnCl4]2- serves as the anion, enabling the co-existence of tetrahedral and octahedral structures within the same system. Remarkably, the compound exhibits efficient red-light emission at 662 nm, distinct from the green-light emission typically observed in MnX4-based halides. Theoretical calculations show that the red emission comes from the charge transfer from the MDPPO to the Mn2+ of [MnCl4]2-. This work provides a new perspective for the design and synthesis of red-light-emitting manganese-based halides with unique structures.
Collapse
Affiliation(s)
- Jia Wei Li
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Mengyuan Niu
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Wei Feng
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Wenke Dong
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Yanjie Liu
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Jingjing Yang
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Chunjie Wang
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Hui Zhang
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Wei Wu Song
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| |
Collapse
|
37
|
Pradhan A, Rana R, Rajaraman G, Pradhan M, Samal SL. (C 3H 7NH 3) 4Bi 1-xSb xI 9: 0D hybrid halide perovskite-like compounds with isolated triiodide units. Dalton Trans 2024. [PMID: 39087758 DOI: 10.1039/d4dt01692k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Antimony/bismuth-based organic-inorganic hybrid halide perovskite-like compounds have generated enormous research interest due to their excellent optical properties. Exploration of new compounds and understanding of their structural stability and optoelectronic properties is of utmost importance for practical applications of these materials. We report two new 0D perovskite-like compounds and their solid solution, (C3H7NH3)4Bi1-xSbxI9, having propyl amine as the spacer cation and iodine as the halide ion. All compounds crystallized in the space group C2/m at room temperature and undergo a phase transition from C2/m to P21/c at low temperature (90 K) as observed from the single-crystal study. A low-temperature (250 K, 180 K, 150 K and 90 K) single-crystal study shows that the (PA)4BiI9 compound retains the monoclinic space group C2/m until 150 K and undergoes a phase transition to the P21/c space group at 90 K. Further, it is observed that ordering, rearrangement and relaxation of the long-chain propyl amine group are primarily responsible for the structural transition. The structure contains [(Bi/Sb)I6]3- polyhedra along with linear I3- units, giving rise to the formula of (PA)3(Bi/Sb)I6·(PA)I3. The I3- units interact poorly while the [MI6]3- (M = Bi, Sb) octahedral units interact significantly with spacer cations via the H-bond, resulting in more distortion in these octahedral units. Theoretical calculations revealed that iodide ions have dual roles and contribute largely to both the valence band maxima and conduction band minima in these compounds. From both experimental and theoretical calculations, it is observed that the pristine compounds are of the indirect band gap-type and Sb substitution in (PA)4Bi1-xSbxI9 led to a gradual decrease in the band gap.
Collapse
Affiliation(s)
- Abinash Pradhan
- Solid State and Materials Laboratory, Department of Chemistry, National Institute of Technology, Rourkela-769008, India.
| | - Rajanikanta Rana
- Department of Chemistry, Indian Institute of Technology, Bombay-400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology, Bombay-400076, India
| | - Monalisa Pradhan
- Department of Physics, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Saroj L Samal
- Solid State and Materials Laboratory, Department of Chemistry, National Institute of Technology, Rourkela-769008, India.
- Center for Nanomaterials, National Institute of Technology, Rourkela-769008, India
| |
Collapse
|
38
|
Abranches DO, Maginn EJ, Colón YJ. Stochastic machine learning via sigma profiles to build a digital chemical space. Proc Natl Acad Sci U S A 2024; 121:e2404676121. [PMID: 39042681 PMCID: PMC11295021 DOI: 10.1073/pnas.2404676121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/16/2024] [Indexed: 07/25/2024] Open
Abstract
This work establishes a different paradigm on digital molecular spaces and their efficient navigation by exploiting sigma profiles. To do so, the remarkable capability of Gaussian processes (GPs), a type of stochastic machine learning model, to correlate and predict physicochemical properties from sigma profiles is demonstrated, outperforming state-of-the-art neural networks previously published. The amount of chemical information encoded in sigma profiles eases the learning burden of machine learning models, permitting the training of GPs on small datasets which, due to their negligible computational cost and ease of implementation, are ideal models to be combined with optimization tools such as gradient search or Bayesian optimization (BO). Gradient search is used to efficiently navigate the sigma profile digital space, quickly converging to local extrema of target physicochemical properties. While this requires the availability of pretrained GP models on existing datasets, such limitations are eliminated with the implementation of BO, which can find global extrema with a limited number of iterations. A remarkable example of this is that of BO toward boiling temperature optimization. Holding no knowledge of chemistry except for the sigma profile and boiling temperature of carbon monoxide (the worst possible initial guess), BO finds the global maximum of the available boiling temperature dataset (over 1,000 molecules encompassing more than 40 families of organic and inorganic compounds) in just 15 iterations (i.e., 15 property measurements), cementing sigma profiles as a powerful digital chemical space for molecular optimization and discovery, particularly when little to no experimental data is initially available.
Collapse
Affiliation(s)
- Dinis O. Abranches
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Edward J. Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Yamil J. Colón
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
39
|
Zheng J, Ma J, Yu M, Xie H, Yan D, Dong Y, Liu Y, Wang X, Ye W. Efficient open-air synthesis of Mg 2+-doped CsPbI 3 nanocrystals for high-performance red LEDs. NANOSCALE 2024; 16:14108-14115. [PMID: 39007402 DOI: 10.1039/d4nr02005g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Inorganic CsPbI3 perovskite nanocrystals (NCs) exhibit remarkable optoelectronic properties for illumination. However, their poor stability has hindered the development of light-emitting diodes (LEDs) based on these materials. In this study, we propose a facile method to synthesize Mg2+-doped CsPbI3 NCs with enhanced stability and high photoluminescence (PL) intensity under ambient air conditions. Theoretical calculations confirm that doped NCs possess stronger formation energy compared to undoped NCs. The undoped CsPbI3 NCs emit red light at approximately 653 nm. We optimize the doping ratio to 1/30, which significantly enhances the photoluminescence of single-particle CsPbI3 NCs. Subsequently, we fabricate a red LED by combining the CsPbI3 NCs with a blue chip. The resulting LED, based on the doped CsPbI3 NCs, exhibits excellent performance with a high luminance of 4902.22 cd m-2 and stable color coordinates of (0.7, 0.27). This work not only presents a simple process for synthesizing perovskite NCs but also provides a design strategy for developing novel red LEDs for various applications.
Collapse
Affiliation(s)
- Jiaying Zheng
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Jiwei Ma
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Minghuai Yu
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Hao Xie
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Dongdong Yan
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Yihong Dong
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Yi Liu
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Xiaoyu Wang
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Weixiang Ye
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
- Center for Theoretical Physics, Hainan University, Haikou 570228, China
| |
Collapse
|
40
|
Parashar K, Zhang Z, Buturlim V, Jiang J, Roseborough A, Nyman M, Gofryk K, Pachter R, Saparov B. Structural and Physical Properties of Two Distinct 2D Lead Halides with Intercalated Cu(II). JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:9372-9384. [PMID: 39308752 PMCID: PMC11412573 DOI: 10.1039/d4tc01322k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Transition metal cation intercalation between the layers of two-dimensional (2D) metal halides is an underexplored research area. In this work we focus on the synthesis and physical property characterizations of two layered hybrid lead halides: a new compound [Cu(O2C-CH2-NH2)2]Pb2Br4 and the previously reported [Cu(O2C-(CH2)3-NH3)2]PbBr4. These compounds exhibit 2D layered crystal structures with incorporated Cu2+ between the metal halide layers, which is achieved by combining Cu(II) and lead bromide with suitable amino acid precursors. The resultant [Cu(O2C-(CH2)3-NH3)2]PbBr4 adopts a 2D layered perovskite structure, whereas the new compound [Cu(O2C-CH2-NH2)2]Pb2Br4 crystallizes with a new structure type based on edge-sharing dodecahedral PbBr5O3 building blocks. [Cu(O2C-CH2-NH2)2]Pb2Br4 is a semiconductor with a bandgap of 3.25 eV. It shows anisotropic charge transport properties with a semiconductor resistivity of 1.44×1010 Ω·cm (measured along the a-axis) and 2.17×1010 Ω·cm (along the bc-plane), respectively. The fabricated prototype detector based on this material showed response to soft low-energy X-rays at 8 keV with a detector sensitivity of 1462.7 μCGy-1cm-2, indicating its potential application for ionizing radiation detection. These encouraging results are discussed together with the results from density functional theory calculations, optical, magnetic, and thermal property characterization experiments.
Collapse
Affiliation(s)
- Kanika Parashar
- Department of Chemistry & Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Zheng Zhang
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Volodymyr Buturlim
- Glenn T. Seaborg Institute, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | - Jie Jiang
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA
| | | | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Krzysztof Gofryk
- Glenn T. Seaborg Institute, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | - Ruth Pachter
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA
| | - Bayram Saparov
- Department of Chemistry & Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019-5251, United States
| |
Collapse
|
41
|
Riisnaes KJ, Alshehri M, Leontis I, Mastria R, Lam HT, De Marco L, Coriolano A, Craciun MF, Russo S. 2D Hybrid Perovskite Sensors for Environmental and Healthcare Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31399-31406. [PMID: 38836799 PMCID: PMC11195008 DOI: 10.1021/acsami.4c02966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Layered perovskites, a novel class of two-dimensional (2D) layered materials, exhibit versatile photophysical properties of great interest in photovoltaics and optoelectronics. However, their instability to environmental factors, particularly water, has limited their utility. In this study, we introduce an innovative solution to the problem by leveraging the unique properties of natural beeswax as a protective coating of 2D-fluorinated phenylethylammonium lead iodide perovskite. These photodetectors show outstanding figures of merit, such as a responsivity of >2200 A/W and a detectivity of 2.4 × 1018 Jones. The hydrophobic nature of beeswax endows the 2D perovskite sensors with an unprecedented resilience to prolonged immersion in contaminated water, and it increases the lifespan of devices to a period longer than one year. At the same time, the biocompatibility of the beeswax and its self-cleaning properties make it possible to use the very same turbidity sensors for healthcare in photoplethysmography and monitor the human heartbeat with clear systolic and diastolic signatures. Beeswax-enabled multipurpose optoelectronics paves the way to sustainable electronics by ultimately reducing the need for multiple components.
Collapse
Affiliation(s)
- Karl Jonas Riisnaes
- Centre
for Graphene Science, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QL, U.K.
| | - Mohammed Alshehri
- Centre
for Graphene Science, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QL, U.K.
| | - Ioannis Leontis
- Centre
for Graphene Science, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QL, U.K.
| | - Rosanna Mastria
- Centre
for Graphene Science, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QL, U.K.
- Institute
of Nanotechnology, Via
Monteroni, Lecce 73100, Italy
| | - Hoi Tung Lam
- Centre
for Graphene Science, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QL, U.K.
| | - Luisa De Marco
- Institute
of Nanotechnology, Via
Monteroni, Lecce 73100, Italy
| | | | - Monica Felicia Craciun
- Centre
for Graphene Science, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QL, U.K.
| | - Saverio Russo
- Centre
for Graphene Science, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QL, U.K.
| |
Collapse
|
42
|
Haruta Y, Ye H, Huber P, Sandor N, Pavesic Junior A, Dayneko S, Qiu S, Yeddu V, Saidaminov MI. Reproducible high-quality perovskite single crystals by flux-regulated crystallization with a feedback loop. NATURE SYNTHESIS 2024; 3:1212-1220. [PMID: 39397876 PMCID: PMC11466857 DOI: 10.1038/s44160-024-00576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/22/2024] [Indexed: 10/15/2024]
Abstract
Controlling the linear growth rate, a critical factor that determines crystal quality, has been a challenge in solution-grown single crystals due to complex crystallization kinetics influenced by multiple parameters. Here we introduce a flux-regulated crystallization (FRC) method to directly monitor and feedback-control the linear growth rate, circumventing the need to control individual growth conditions. When applied to metal halide perovskites, the FRC maintains a stable linear growth rate for over 40 h in synthesizing CH3NH3PbBr3 and CsPbBr3 single crystals, achieving outstanding crystallinity (quantified by a full width at half-maximum of 15.3 arcsec in the X-ray rocking curve) in a centimetre-scale single crystal. The FRC is a reliable platform for synthesizing high-quality crystals essential for commercialization and systematically exploring crystallization conditions, maintaining a key parameter-the linear growth rate-constant, which enables a comprehensive understanding of the impact of other influencing factors.
Collapse
Affiliation(s)
- Yuki Haruta
- Department of Chemistry, University of Victoria, Victoria, British Columbia Canada
| | - Hanyang Ye
- Department of Chemistry, University of Victoria, Victoria, British Columbia Canada
| | - Paul Huber
- Department of Chemistry, University of Victoria, Victoria, British Columbia Canada
| | - Nicholas Sandor
- Department of Electrical & Computer Engineering, University of Victoria, Victoria, British Columbia Canada
| | | | - Sergey Dayneko
- Department of Chemistry, University of Victoria, Victoria, British Columbia Canada
| | - Shuang Qiu
- Department of Chemistry, University of Victoria, Victoria, British Columbia Canada
| | - Vishal Yeddu
- Department of Chemistry, University of Victoria, Victoria, British Columbia Canada
| | - Makhsud I. Saidaminov
- Department of Chemistry, University of Victoria, Victoria, British Columbia Canada
- Department of Electrical & Computer Engineering, University of Victoria, Victoria, British Columbia Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia Canada
| |
Collapse
|
43
|
Sharma SK, Tiwari A, Arjumand M, Yella A. Self-powered humidity sensors based on zero-dimensional perovskite-like structures with fast response and high stability. NANOSCALE 2024; 16:11028-11037. [PMID: 38804981 DOI: 10.1039/d4nr01065e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
With the rapid development of technology, the development of self-powered sensors has garnered significant attention. The importance of monitoring humidity has grown significantly in various technological contexts, from environmental monitoring to biomedical applications. In this work, we have fabricated a low-cost and self-powered humidity sensor using zero-dimensional perovskite-like structures. Switching tests at different relative humidity levels have shown that the zero-dimensional perovskites have visible coloration at high humidities and discoloration upon reducing the humidity. The humidity sensor was fabricated by spin coating the zero-dimensional perovskites on a patterned fluorine doped tin oxide (FTO) substrate and the sensor not only shows high response values of around 500 mV and few micro amperes of short circuit current densities, but also shows good cycling performance and stability. Also high selectivity to humidity is observed in comparison to different gases and volatile organic compounds. The high selectivity to humidity arises due to the fact that the exclusion of MAI from the MA4PbI6 strucuture does not happen with all the other analytes which has been confirmed from the XRD studies. In addition, due to the low temperature fabrication they can be deposited on flexible substrates and the sensor displayed excellent resistance to bending and durability. Furthermore, the study explored the humidity monitoring capabilities of this sensor, revealing an outstanding response performance to human respiration. This observation suggests that the sensor holds significant potential for practical applications in the monitoring of human health and environmental conditions. This work paves the way for developing organic-inorganic hybrid perovskite materials for self-powered sensing applications.
Collapse
Affiliation(s)
- Sumit Kumar Sharma
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, Mumbai, 400076-India.
| | - Abinash Tiwari
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, Mumbai, 400076-India.
| | - Mir Arjumand
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, Mumbai, 400076-India.
| | - Aswani Yella
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, Mumbai, 400076-India.
- Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai, 400076-India
| |
Collapse
|
44
|
Balvanz A, Safdari M, Zacharias M, Kim D, Welton C, Oriel EH, Kepenekian M, Katan C, Malliakas CD, Even J, Klepov V, Manjunatha Reddy GN, Schaller RD, Chen LX, Seshadri R, Kanatzidis MG. Structural Evolution and Photoluminescence Quenching across the FASnI 3-xBr x ( x = 0-3) Perovskites. J Am Chem Soc 2024; 146:16128-16147. [PMID: 38815003 DOI: 10.1021/jacs.4c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
One of the primary methods for band gap tuning in metal halide perovskites has been halide (I/Br) mixing. Despite widespread usage of this type of chemical substitution in perovskite photovoltaics, there is still little understanding of the structural impacts of halide alloying, with the assumption being the formation of ideal solid solutions. The FASnI3-xBrx (x = 0-3) family of compounds provides the first example where the assumption breaks down, as the composition space is broken into two unique regimes (x = 0-2.9; x = 2.9-3) based on their average structure with the former having a 3D and the latter having an extended 3D (pseudo 0D) structure. Pair distribution function (PDF) analyses further suggest a dynamic 5s2 lone pair expression resulting in increasing levels of off-centering of the central Sn as the Br concentration is increased. These antiferroelectric distortions indicate that even the x = 0-2.9 phase space behaves as a nonideal solid-solution on a more local scale. Solid-state NMR confirms the difference in local structure yielding greater insight into the chemical nature and local distributions of the FA+ cation. In contrast to the FAPbI3-xBrx series, a drastic photoluminescence (PL) quenching is observed with x ≥ 1.9 compounds having no observable PL. Our detailed studies attribute this quenching to structural transitions induced by the distortions of the [SnBr6] octahedra in response to stereochemically expressed lone pairs of electrons. This is confirmed through density functional theory, having a direct impact on the electronic structure.
Collapse
Affiliation(s)
- Adam Balvanz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Majid Safdari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Marios Zacharias
- Univ Rennes, INSA Rennes, CNRS, Institute FOTON - UMR 6082, Rennes F-35000, France
| | - Daehan Kim
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Claire Welton
- University of Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Evan H Oriel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mikaël Kepenekian
- Univ Rennes, INSA Rennes, CNRS, ISCR - UMR 6226, Rennes F-35000, France
| | - Claudine Katan
- Univ Rennes, INSA Rennes, CNRS, ISCR - UMR 6226, Rennes F-35000, France
| | - Christos D Malliakas
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institute FOTON - UMR 6082, Rennes F-35000, France
| | - Vladislav Klepov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ram Seshadri
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
45
|
Dučinskas A, Jung M, Wang YR, Milić JV, Moia D, Grätzel M, Maier J. Mixed ionic-electronic conduction in Ruddlesden-Popper and Dion-Jacobson layered hybrid perovskites with aromatic organic spacers. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:7909-7915. [PMID: 38855264 PMCID: PMC11154687 DOI: 10.1039/d4tc01010h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
The understanding of mixed ionic-electronic conductivity in hybrid perovskites has enabled major advances in the development of optoelectronic devices based on this class of materials. While recent investigations revealed the potential of using dimensionality effects for various applications, the implication of this strategy on mixed conductivity is yet to be established. Here, we present a systematic analysis of mixed conduction in layered (2D) hybrid halide perovskite films based on 1,4-phenylenedimethylammonium (PDMA) and benzylammonium (BzA) organic spacers in (PDMA)PbI4 and (BzA)2PbI4 compositions, forming representative Dion-Jacobson (DJ) and Ruddleson-Popper (RP) phases, respectively. Electrochemical measurements of charge transport parallel to the layered structure reveal mixed ionic-electronic conduction with electronic transport mediated by electron holes in both DJ and RP phases. In comparison to the 3D perovskites, larger activation energies for both ionic and electronic conductivities are observed which result in lower absolute values. While the layered perovskites still allow for a relatively efficient exchange of iodine with the gas phase, the lower change of conductivity on the variation of the iodine partial pressure compared with 3D perovskites is consistent with the exchange affecting only a fraction of the film, with implications for the encapsulating efficacy of these materials. We complement the analysis with a demonstration of the superior thermal stability of DJ structures compared to their RP counterparts. This can guide future explorations of dimensionality and composition to control the transport and stabilization properties of 2D perovskite films.
Collapse
Affiliation(s)
- Algirdas Dučinskas
- Laboratory of Photonics and Interfaces, École Polytechnique Fédéralé de Lausanne 1015 Lausanne Switzerland
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - Mina Jung
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - Ya-Ru Wang
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - Jovana V Milić
- Laboratory of Photonics and Interfaces, École Polytechnique Fédéralé de Lausanne 1015 Lausanne Switzerland
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
| | - Davide Moia
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, École Polytechnique Fédéralé de Lausanne 1015 Lausanne Switzerland
| | - Joachim Maier
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| |
Collapse
|
46
|
Shao W, Kim JH, Simon J, Nian Z, Baek SD, Lu Y, Fruhling CB, Yang H, Wang K, Park JY, Huang L, Yu Y, Boltasseva A, Savoie BM, Shalaev VM, Dou L. Molecular templating of layered halide perovskite nanowires. Science 2024; 384:1000-1006. [PMID: 38815024 DOI: 10.1126/science.adl0920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/18/2024] [Indexed: 06/01/2024]
Abstract
Layered metal-halide perovskites, or two-dimensional perovskites, can be synthesized in solution, and their optical and electronic properties can be tuned by changing their composition. We report a molecular templating method that restricted crystal growth along all crystallographic directions except for [110] and promoted one-dimensional growth. Our approach is widely applicable to synthesize a range of high-quality layered perovskite nanowires with large aspect ratios and tunable organic-inorganic chemical compositions. These nanowires form exceptionally well-defined and flexible cavities that exhibited a wide range of unusual optical properties beyond those of conventional perovskite nanowires. We observed anisotropic emission polarization, low-loss waveguiding (below 3 decibels per millimeter), and efficient low-threshold light amplification (below 20 microjoules per square centimeter).
Collapse
Affiliation(s)
- Wenhao Shao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jeong Hui Kim
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jeffrey Simon
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zhichen Nian
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sung-Doo Baek
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yuan Lu
- School of Physical Science and Technology and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Colton B Fruhling
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hanjun Yang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yi Yu
- School of Physical Science and Technology and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Alexandra Boltasseva
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Vladimir M Shalaev
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
47
|
Nyiekaa EA, Aika TA, Danladi E, Akhabue CE, Orukpe PE. Simulation and optimization of 30.17% high performance N-type TCO-free inverted perovskite solar cell using inorganic transport materials. Sci Rep 2024; 14:12024. [PMID: 38797811 PMCID: PMC11128456 DOI: 10.1038/s41598-024-62882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Perovskite solar cells (PSCs) have gained much attention in recent years because of their improved energy conversion efficiency, simple fabrication process, low processing temperature, flexibility, light weight, and low cost of constituent materials when compared with their counterpart silicon based solar cells. Besides, stability and toxicity of PSCs and low power conversion efficiency have been an obstacle towards commercialization of PSCs which has attracted intense research attention. In this research paper, a Glass/Cu2O/CH3NH3SnI3/ZnO/Al inverted device structure which is made of cheap inorganic materials, n-type transparent conducting oxide (TCO)-free, stable, photoexcited toxic-free perovskite have been carefully designed, simulated and optimized using a one-dimensional solar cell capacitance simulator (SCAPS-1D) software. The effects of layers' thickness, perovskite's doping concentration and back contact electrodes have been investigated, and the optimized structure produced an open circuit voltage (Voc) of 1.0867 V, short circuit current density (JSC) of 33.4942 mA/cm2, fill factor (FF) of 82.88% and power conversion efficiency (PCE) of 30.17%. This paper presents a model that is first of its kind where the highest PCE performance and eco-friendly n-type TCO-free inverted CH3NH3SnI3 based perovskite solar cell is achieved using all-inorganic transport materials.
Collapse
Affiliation(s)
- Emmanuel A Nyiekaa
- Department of Electrical and Electronics Engineering, University of Benin, Benin City, Nigeria.
- Department of Electrical and Electronics Engineering, Joseph Sarwuan Tarka University, Makurdi, Nigeria.
| | - Timothy A Aika
- Department of Electrical and Electronics Engineering, University of Benin, Benin City, Nigeria
| | - Eli Danladi
- Department of Physics, Federal University of Health Sciences, Otukpo, Nigeria
| | | | - Patience E Orukpe
- Department of Electrical and Electronics Engineering, University of Benin, Benin City, Nigeria
| |
Collapse
|
48
|
Xue H, Chen Z, Tao S, Brocks G. Defects in Halide Perovskites: Does It Help to Switch from 3D to 2D? ACS ENERGY LETTERS 2024; 9:2343-2350. [PMID: 38751970 PMCID: PMC11091873 DOI: 10.1021/acsenergylett.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Two-dimensional (2D) organic-inorganic hybrid iodide perovskites have been put forward in recent years as stable alternatives to their three-dimensional (3D) counterparts. Using first-principles calculations, we demonstrate that equilibrium concentrations of point defects in the 2D perovskites PEA2PbI4, BA2PbI4, and PEA2SnI4 (PEA, phenethylammonium; BA, butylammonium) are much lower than in comparable 3D perovskites. Bonding disruptions by defects are more destructive in 2D than in 3D networks, making defect formation energetically more costly. The stability of 2D Sn iodide perovskites can be further enhanced by alloying with Pb. Should, however, point defects emerge in sizable concentrations as a result of nonequilibrium growth conditions, for instance, then those defects likely hamper the optoelectronic performance of the 2D perovskites, as they introduce deep traps. We suggest that trap levels are responsible for the broad sub-bandgap emission in 2D perovskites observed in experiments.
Collapse
Affiliation(s)
- Haibo Xue
- Materials
Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Center
for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Zehua Chen
- Materials
Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Center
for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Shuxia Tao
- Materials
Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Center
for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Geert Brocks
- Materials
Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Center
for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Computational
Chemical Physics, Faculty of Science and Technology and MESA+ Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| |
Collapse
|
49
|
Tabeshfar M, Nelo M, Anandakrishnan SS, Siddiqui M, Peräntie J, Tofel P, Jantunen H, Juuti J, Bai Y. Oxide-Halide Perovskite Composites for Simultaneous Recycling of Lead Zirconate Titanate Piezoceramics and Methylammonium Lead Iodide Solar Cells. SMALL METHODS 2024; 8:e2300830. [PMID: 38072621 DOI: 10.1002/smtd.202300830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/02/2023] [Indexed: 05/18/2024]
Abstract
Global concerns over energy availability and the environment impose an urgent requirement for sustainable manufacturing, usage, and disposal of electronic components. Piezoelectric and photovoltaic components are being extensively used. They contain the hazardous element, Pb (e.g., in widely used and researched Pb(Zr,Ti)O3 and halide perovskites), but they are not being properly recycled or reused. This work demonstrates the fabrication of upside-down composite sensor materials using crushed ceramic particles recycled from broken piezoceramics, polycrystalline halide perovskite powder collected from waste dye-sensitized solar cells, and crystal particles of a Cd-based perovskite composition, C6H5N(CH3)3CdBr3 xCl3(1- x ). The piezoceramic and halide perovskite particles are used as filler and binder, respectively, to show a proof of concept for the chemical and microstructural compatibility between the oxide and halide perovskite compounds while being recycled simultaneously. Production of the recycled and reusable materials requires only a marginal energy budget while achieving a very high material densification of >92%, as well as a 40% higher piezoelectric voltage coefficient, i.e., better sensing capability, than the pristine piezoceramics. This work thus offers an energy- and environmentally friendly approach to the recycling of hazardous elements as well as giving a second life to waste piezoelectric and photovoltaic components.
Collapse
Affiliation(s)
- Mohadeseh Tabeshfar
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, FI-90570, Finland
- Infotech Institute, University of Oulu, Oulu, FI-90570, Finland
| | - Mikko Nelo
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, FI-90570, Finland
- Infotech Institute, University of Oulu, Oulu, FI-90570, Finland
| | - Sivagnana Sundaram Anandakrishnan
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, FI-90570, Finland
- Infotech Institute, University of Oulu, Oulu, FI-90570, Finland
| | - Maliha Siddiqui
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Jani Peräntie
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, FI-90570, Finland
| | - Pavel Tofel
- Deptartment of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, CZ-61600, Czech Republic
| | - Heli Jantunen
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, FI-90570, Finland
| | - Jari Juuti
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, FI-90570, Finland
| | - Yang Bai
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, FI-90570, Finland
| |
Collapse
|
50
|
Dong X, Li X, Wang X, Zhao Y, Song W, Wang F, Xu S, Miao Z, Wu Z. Improve the Charge Carrier Transporting in Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313056. [PMID: 38315828 DOI: 10.1002/adma.202313056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Conventional 3D organic-inorganic halide perovskite materials have shown substantial potential in the field of optoelectronics, enabling the power conversation efficiency of solar cells beyond 26%. A key challenge limiting the further commercial application of 3D perovskite solar cells is their inherent instability over outer oxygen, humidity, light, and heat. By contrast, 2D Ruddlesden-Popper (2DRP) perovskites with bulky organic cations can effectively stabilize the inorganic slabs, yielding excellent environmental stability. However, the efficiencies of 2DRP perovskite solar cells are much lower than those of the 3D counterparts due to poor charge carrier transporting property of insulating bulky organic cations. Their inner structural, dielectric, optical, and excitonic properties remain to be primarily studied. In this review, the main reasons for the low efficiency of 2DRP perovskite solar cells are first analyzed. Next, a detailed description of various strategies for improving the charge carrier transporting of 2DRP perovskites is provided, such as bandgap regulation, perovskite crystal phase orientation and distribution, energy level matching, interfacial modification, etc. Finally, a summary is given, and the possible future research directions and methods to achieve high-efficiency and stable 2DRP perovskite solar cells are rationalized.
Collapse
Affiliation(s)
- Xue Dong
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, China
| | - Xin Li
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaobo Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuzhen Zhao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, China
| | - Wenqi Song
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, China
| | - Fangmin Wang
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, China
| | - Shudong Xu
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, China
| | - Zongcheng Miao
- School of Artificial Intelligence Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|