1
|
Ma N, Kosasang S, Theissen J, Gys N, Hauffman T, Otake KI, Horike S, Ameloot R. Systematic design and functionalisation of amorphous zirconium metal-organic frameworks. Chem Sci 2024; 15:d4sc05053c. [PMID: 39386911 PMCID: PMC11457265 DOI: 10.1039/d4sc05053c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Controlling the structure and functionality of crystalline metal-organic frameworks (MOFs) using molecular building units and post-synthetic functionalisation presents challenges when extending this approach to their amorphous counterparts (aMOFs). Here, we present a new bottom-up approach for synthesising a series of Zr-based aMOFs, which involves linking metal-organic clusters with specific ligands to regulate local connectivity. In addition, we overcome the limitations of post-synthetic modifications in amorphous systems, demonstrating that homogeneous functionalisation is achievable even without regular internal voids. By altering the acidity of the side group, length, and degree of connectivity of the linker, we could control the porosity, proton conductivity, and mechanical properties of the resulting aMOFs.
Collapse
Affiliation(s)
- Nattapol Ma
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- International Center for Young Scientists (ICYS), National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Soracha Kosasang
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| | - Jennifer Theissen
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Nick Gys
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Sustainable Materials Engineering (SUME) Research Group of Electrochemical and Surface Engineering (SURF), Depart-ment of Materials and Chemistry, Vrije Universiteit Brussel Pleinlaan 2 Brussels 1050 Belgium
| | - Tom Hauffman
- Sustainable Materials Engineering (SUME) Research Group of Electrochemical and Surface Engineering (SURF), Depart-ment of Materials and Chemistry, Vrije Universiteit Brussel Pleinlaan 2 Brussels 1050 Belgium
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
2
|
Map Schuh C, Ezquer F, Mamani S, Campodónico PR, Cárcamo C, Martinez-Gómez F, Aburto I, Ezquer M, Morales B, Olivares B. A Natural deep eutectic solvent as an effective material for dual debridement and antibiofilm effects in chronic wound treatment. Int J Pharm 2024; 663:124553. [PMID: 39103063 DOI: 10.1016/j.ijpharm.2024.124553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
In chronic wound treatment, the debridement of devitalized tissue and the eradication of the biofilm must balance aggressiveness with care to protect regenerating tissues. In this study, urea, a potent chaotropic molecule, was modulated through the formation of a Natural Deep Eutectic Solvent (NADES) with betaine to develop a new debriding material (BU) suitable for application into injured dermal tissues. To evaluate BU's debriding capacity, along with its antibiofilm effect and biocompatibility, pre-clinical to clinical methods were employed. In vitro determinations using artificial and clinical slough samples indicate that BU has a high debriding capacity. Additionally, BU's de-structuring effects lead to a strong antibiofilm capability, demonstrated by a reduced bacterial load compared to the antiseptic PHMB-Betaine or medical honey, evaluated in artificial slough and ex vivo human skin. Furthermore, BU's efficacy was evaluated in a murine model of diabetic wound, demonstrating significant effects on debriding and antibiofilm capacity, similar to those observed in PHMB-Betaine and medical honey-treated animals. Finally, BU was clinically evaluated in leg ulcers, showing superiority in reduction of bacterial load and wound area compared to honey, with no adverse effects. Thus, BU represents a simple and non-biocidal option that could contributes to chronic wound care.
Collapse
Affiliation(s)
- Christina Map Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Sigde Mamani
- Centro de Química Medica, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Paola R Campodónico
- Centro de Química Medica, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Constanza Cárcamo
- Centro de Química Medica, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Fabián Martinez-Gómez
- Laboratorio de Resonancia Magnética Nuclear, Universidad de Santiago de Chile, Santiago, Chile
| | - Isabel Aburto
- Fundación Instituto Nacional de Heridas, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | | | - Belén Olivares
- Centro de Química Medica, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.
| |
Collapse
|
3
|
Zheng W, Wang Z, Chen W, Zhang M, Li H, Yang G, Xu Q, Qiao X, Tan D, Zhang J, Qiu J, Qian G, Fan X. Unlocking high photosensitivity direct laser writing and observing atomic clustering in glass. Nat Commun 2024; 15:8366. [PMID: 39333548 PMCID: PMC11437194 DOI: 10.1038/s41467-024-52628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
The direct laser writing (DLW) of photoluminescent metal clusters is inspiring intensive research in functional glasses. However, understanding the influence of the host structure on cluster formation and visualizing DLW-induced clusters at the atomic scale remains challenging. In this work, we develop a highly photosensitive fluorophosphate glass through fluorine incorporation. The addition of fluorine establishes a conducive environment for Ag+ ions before DLW and enhances the availability of reducing agents and diffusion pathways during DLW. These advantages facilitate the formation of Ag clusters under low-energy single-pulsed DLW. Increasing laser energy results in a combination of Ag clusters and glasses defect, forming a dot + ring photoluminescent pattern. Atom probe tomography (APT), a technique capable of mapping the elemental spatial distribution and identifying clustering, is employed to gain more information on laser-induced clusters. Comparison of APT results between samples without and with DLW reveals the formation of Ag clusters after laser writing. The design concept and characterization enrich the understanding of Ag cluster behavior in glasses. This knowledge opens the possibility of rational design of clusters confined in glasses and inspires their synthesis for various applications.
Collapse
Affiliation(s)
- Wenyan Zheng
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhuo Wang
- State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Weilin Chen
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Mengchao Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Hui Li
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Guang Yang
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Qiang Xu
- Ocean Academy, Zhejiang University, Zhoushan, China
| | - Xvsheng Qiao
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
| | - Dezhi Tan
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
- Zhejiang Lab, Hangzhou, China.
| | - Junjie Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Jianrong Qiu
- State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xianping Fan
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Kim M, Lee Y, Moon HR. Carboxylate-Based Metal-Organic Framework and Coordination Polymer Glasses: Progress and Perspectives. Acc Chem Res 2024; 57:2347-2357. [PMID: 39120104 DOI: 10.1021/acs.accounts.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
ConspectusCoordination polymers (CPs) and metal-organic frameworks (MOFs) represent versatile materials with diverse structural and functional properties, making them appealing for various applications. However, their conventional forms, which are typically synthesized as powders or crystals, pose challenges due to limited processability and mechanical fragility. Recently, CP/MOF glasses have emerged as promising alternatives, offering enhanced processability while retaining some of the unique characteristics shown in the mother crystalline materials. Despite the prevalence of carboxylate ligands in CP/MOF synthesis, the development of carboxylate-based CP/MOF glasses has been limited compared to that of zeolitic-imidazole framework (ZIF)-based glasses. This is attributed to the strong metal-ligand bonds and low thermal stability of carboxylic acids, which hinder their melting in CP/MOF structures. Nonetheless, recent advancements have led to a surge in methods for synthesizing carboxylate-based CP/MOF glasses. So far, desolvation and melt-quenching have been introduced for achieving glass structures from CP/MOF precursors.The first melt-quenched MOF glass was reported in 2015 with ZIFs. However, we informally observed the melting of the MOF during thermal decomposition research of aliphatic carboxylate-based MOFs as a sacrificial template dating back to 2013. In that study, aliphatic ligands, instead of aromatic carboxylate, were employed due to their high lability, lower thermal stability, and high degree of freedom, which facilitated pyrolysis. The results were published with a focus on synthesizing hierarchically porous MgO via the pyrolysis of an aliphatic ligand-based Mg-MOF in an inert environment. A decade later, it was revisited and studied as the first melt-quenched carboxylate-based MOF glass, converted from a crystalline MOF through the liquid phase before decomposition during the heating process.This Account aims to introduce six studies, including the aforementioned example, on the synthesis of CP/MOF glasses from carboxylate-based CPs/MOFs that have been published so far. To overcome the challenges with aromatic carboxylates in CP/MOF glass formation, the metal coordination sphere should be altered and the degree of freedom in the ligands should be increased. Based on these approaches, the strategies for vitrification of carboxylate-based CPs/MOFs can be divided into two categories: desolvation and melt-quenching. Desolvation can be preceded by vapor perturbation such as hydration. Carboxylate-based CP/MOF glasses possess the potential to expand into a broader range of applications beyond those of existing CP/MOF glasses. Alongside the diversity offered by carboxylic acid ligands, these materials mirror the extensive range of applications previously explored in the existing carboxylate-based CP/MOF crystals. Moreover, their high processability, inherent to glass materials, enables their applications in various industrial fields. This versatility may extend to previously unexplored areas of utilization such as a novel class of bioactive glass.
Collapse
Affiliation(s)
- Minhyuk Kim
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yelim Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hoi Ri Moon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
5
|
Moch K, Gainaru C, Böhmer R. Nonlinear susceptibilities and higher-order responses related to physical aging: Wiener-Volterra approach and extended Tool-Narayanaswamy-Moynihan models. J Chem Phys 2024; 161:014502. [PMID: 38949281 DOI: 10.1063/5.0207122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Large-amplitude thermal excursions imposed on deeply supercooled liquids modulate the nonlinear time evolution of their structural rearrangements. The consequent aftereffects are treated within a Wiener-Volterra expansion in laboratory time that allows one to calculate the associated physical-aging and thermal response functions. These responses and the corresponding higher-harmonic susceptibilities are illustrated using calculations based on the Tool-Narayanaswamy-Moynihan (TNM) model. The conversion from laboratory to material time is thoroughly discussed. Similarities and differences to field-induced higher-harmonic susceptibilities are illustrated using Lissajous and Cole-Cole plots and discussed in terms of aging nonlinearity parameters. For the Lissajous plots, banana-type shapes emerge, while the Cole-Cole plots display cardioidic and other visually appealing patterns. For application beyond the regime in which conventional single-parameter aging concepts work, the Wiener-Volterra material-time-series is introduced as the central tool. Calculations and analyses within this general framework in conjunction with suitable choices of higher-order memory kernels and employing correspondingly extended TNM models yield at least qualitative agreement with recent large-perturbation physical aging experiments. Implications for differential scanning calorimetry and related methods are discussed. The introduced concepts and analyses provide a solid foundation for a generalized description of nonlinear thermal out-of-equilibrium dynamics of glass forming materials, differing from the nonlinear responses known from rheology and dielectric spectroscopy.
Collapse
Affiliation(s)
- Kevin Moch
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Catalin Gainaru
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
6
|
Ye C, Lampronti GI, McHugh LN, Castillo-Blas C, Kono A, Chen C, Robertson GP, Nagle-Cocco LAV, Xu W, Stranks SD, Martinez V, Brekalo I, Karadeniz B, Užarević K, Xue W, Kolodzeiski P, Das C, Chater P, Keen DA, Dutton SE, Bennett TD. Mechanochemically-induced glass formation from two-dimensional hybrid organic-inorganic perovskites. Chem Sci 2024; 15:7198-7205. [PMID: 38756817 PMCID: PMC11095504 DOI: 10.1039/d4sc00905c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
Hybrid organic-inorganic perovskites (HOIPs) occupy a prominent position in the field of materials chemistry due to their attractive optoelectronic properties. While extensive work has been done on the crystalline materials over the past decades, the newly reported glasses formed from HOIPs open up a new avenue for perovskite research with their unique structures and functionalities. Melt-quenching is the predominant route to glass formation; however, the absence of a stable liquid state prior to thermal decomposition precludes this method for most HOIPs. In this work, we describe the first mechanochemically-induced crystal-glass transformation of HOIPs as a rapid, green and efficient approach for producing glasses. The amorphous phase was formed from the crystalline phase within 10 minutes of ball-milling, and exhibited glass transition behaviour as evidenced by thermal analysis techniques. Time-resolved in situ ball-milling with synchrotron powder diffraction was employed to study the microstructural evolution of amorphisation, which showed that the crystallite size reaches a comminution limit before the amorphisation process is complete, indicating that energy may be further accumulated as crystal defects. Total scattering experiments revealed the limited short-range order of amorphous HOIPs, and their optical properties were studied by ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy.
Collapse
Affiliation(s)
- Chumei Ye
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge Cambridgeshire CB3 0FS UK
- Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge Cambridgeshire CB3 0HE UK
| | - Giulio I Lampronti
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge Cambridgeshire CB3 0FS UK
| | - Lauren N McHugh
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge Cambridgeshire CB3 0FS UK
| | - Ayano Kono
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge Cambridgeshire CB3 0FS UK
| | - Celia Chen
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge Cambridgeshire CB3 0FS UK
- Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge Cambridgeshire CB3 0HE UK
| | - Georgina P Robertson
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge Cambridgeshire CB3 0FS UK
| | - Liam A V Nagle-Cocco
- Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge Cambridgeshire CB3 0HE UK
| | - Weidong Xu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge Cambridgeshire CB3 0AS UK
| | - Samuel D Stranks
- Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge Cambridgeshire CB3 0HE UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge Cambridgeshire CB3 0AS UK
| | | | - Ivana Brekalo
- Division of Physical Chemistry, Ruđer Bošković Institute Zagreb Croatia
| | - Bahar Karadeniz
- Division of Physical Chemistry, Ruđer Bošković Institute Zagreb Croatia
| | | | - Wenlong Xue
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Pascal Kolodzeiski
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Chinmoy Das
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Germany
- Department of Chemistry, SRM University-AP Andhra Pradesh-522240 India
| | - Philip Chater
- Diamond Light Source Ltd. Diamond House, Harwell Campus Didcot Oxfordshire OX11 0QX UK
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory Harwell Campus Didcot Oxfordshire OX11 0QX UK
| | - Siân E Dutton
- Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge Cambridgeshire CB3 0HE UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge Cambridgeshire CB3 0FS UK
| |
Collapse
|
7
|
Huang B, Zheng Q, Cai M, Qiao A, Tao H. Impacts of substituting magnesium with zinc on crystallization behaviors in an aluminosilicate glass. Phys Chem Chem Phys 2024; 26:13987-13994. [PMID: 38683035 DOI: 10.1039/d4cp00668b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A series of zinc-magnesium mixed aluminosilicate glasses with the molar composition (1-r)MgO·rZnO·Al2O3·2.5SiO2, where r = 0.00, 0.25, 0.50, 0.65, 0.75, and 1.00, were fabricated to probe the effects of substitution of magnesium with zinc on crystallization behaviors. Based on the evolution of phase compositions as revealed by calorimetric behaviors and X-ray diffraction patterns, a series of transparent surface crystallized glasses ranging from high transparency for the pure Zn-end member to heavy translucency for the pure Mg-end member were fabricated through heat treatment at the first crystallization peak temperature for 20 min. With the substitution of Mg with Zn, the evolution of morphology unveiled by optical microscopy is ascribed to the alteration of crystal phases formed from the sole metastable Zn-β quartz solid solution to the coexistence of polycrystal phases containing Zn-β quartz solid solution, μ-cordierite, or α-cordierite. These findings are very helpful for optimizing the performance of crystallized aluminosilicate glasses.
Collapse
Affiliation(s)
- Biwei Huang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Qingshuang Zheng
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Muzhi Cai
- Jiangsu Eastern Advanced Optical Material Co., Ltd, Xuzhou 221400, China
| | - Ang Qiao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Haizheng Tao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
8
|
Martinelli A, Baglioni J, Sun P, Dallari F, Pineda E, Duan Y, Spitzbart-Silberer T, Westermeier F, Sprung M, Monaco G. A new experimental setup for combined fast differential scanning calorimetry and X-ray photon correlation spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:557-565. [PMID: 38656773 DOI: 10.1107/s1600577524002510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/16/2024] [Indexed: 04/26/2024]
Abstract
Synchrotron-radiation-based techniques are a powerful tool for the investigation of materials. In particular, the availability of highly brilliant sources has opened the possibility to develop techniques sensitive to dynamics at the atomic scale such as X-ray photon correlation spectroscopy (XPCS). XPCS is particularly relevant in the study of glasses, which have been often investigated at the macroscopic scale by, for example, differential scanning calorimetry. Here, we show how to adapt a Flash calorimeter to combine XPCS and calorimetric scans. This setup paves the way to novel experiments requiring dynamical and thermodynamic information, ranging from the study of the crystallization kinetics to the study of the glass transition in systems that can be vitrified thanks to the high cooling rates reachable with an ultrafast calorimeter.
Collapse
Affiliation(s)
- Alessandro Martinelli
- University of Padova, Department of Physics and Astronomy `Galileo Galilei', Via F. Marzolo 8, 35131 Padova, Italy
| | - Jacopo Baglioni
- University of Padova, Department of Physics and Astronomy `Galileo Galilei', Via F. Marzolo 8, 35131 Padova, Italy
| | - Peihao Sun
- University of Padova, Department of Physics and Astronomy `Galileo Galilei', Via F. Marzolo 8, 35131 Padova, Italy
| | - Francesco Dallari
- University of Padova, Department of Physics and Astronomy `Galileo Galilei', Via F. Marzolo 8, 35131 Padova, Italy
| | - Eloi Pineda
- Department of Physics, Institute of Energy Technologies, Universitat Politècnica de Catalunya - BarcelonaTech, 08019 Barcelona, Spain
| | - Yajuan Duan
- Department of Physics, Institute of Energy Technologies, Universitat Politècnica de Catalunya - BarcelonaTech, 08019 Barcelona, Spain
| | | | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Giulio Monaco
- University of Padova, Department of Physics and Astronomy `Galileo Galilei', Via F. Marzolo 8, 35131 Padova, Italy
| |
Collapse
|
9
|
Li Z, Wang Y, Zhang J, Cheng S, Sun Y. A Short Review of Advances in MOF Glass Membranes for Gas Adsorption and Separation. MEMBRANES 2024; 14:99. [PMID: 38786934 PMCID: PMC11123022 DOI: 10.3390/membranes14050099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The phenomenon of melting in metal-organic frameworks (MOFs) has recently garnered attention. Crystalline MOF materials can be transformed into an amorphous glassy state through melt-quenching treatment. The resulting MOF glass structure eliminates grain boundaries and retains short-range order while exhibiting long-range disorder. Based on these properties, it emerges as a promising candidate for high-performance separation membranes. MOF glass membranes exhibit permanent and accessible porosity, allowing for selective adsorption of different gas species. This review summarizes the melting mechanism of MOFs and explores the impact of ligands and metal ions on glassy MOFs. Additionally, it presents an analysis of the diverse classes of MOF glass composites, outlining their structures and properties, which are conducive to gas adsorption and separation. The absence of inter-crystalline defects in the structures, coupled with their distinctive mechanical properties, renders them highly promising for industrial gas separation applications. Furthermore, this review provides a summary of recent research on MOF glass composite membranes for gas adsorption and separation. It also addresses the challenges associated with membrane production and suggests future research directions.
Collapse
Affiliation(s)
- Zichen Li
- State Key Laboratory of Separation Membrane and Membrane Process, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China; (Z.L.); (Y.W.); (Y.S.)
| | - Yumei Wang
- State Key Laboratory of Separation Membrane and Membrane Process, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China; (Z.L.); (Y.W.); (Y.S.)
| | - Jianxin Zhang
- State Key Laboratory of Separation Membrane and Membrane Process, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China; (Z.L.); (Y.W.); (Y.S.)
| | - Shiqi Cheng
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China; (Z.L.); (Y.W.); (Y.S.)
| |
Collapse
|
10
|
Chen J, Huang X, Yang D, Li Y, Wu J, Yu H, Liu X, Qiu J, Yang Z, Dong G. Boosted Second Harmonic Generation and Cascaded Sum Frequency Generation from a Surface Crystallized Glass Ceramic Microcavity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313219. [PMID: 38597361 DOI: 10.1002/adma.202313219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Indexed: 04/11/2024]
Abstract
The development of novel materials and structures for efficient second-order nonlinear micro/nano devices remains a significant challenge. In this study, the remarkable enhancement of second-harmonic generation (SHG) and cascaded sum frequency generation in whispering gallery mode microspheres made of surface-crystallized glass with a 6-µm Ba2TiSi2O8 crystal layer are demonstrated. Attributed to the core-shell design, the Ba2TiSi2O8 located on the surface can be efficiently coupled with whispering gallery modes, resulting in a highly efficient micron-scale cavity-enhanced second-order optical nonlinearity. Greatly enhanced SHG of the microcavity is observed, which is up to 80 times stronger than that of a non-resonant sample. Furthermore, owing to the wavelength non-selectivity of random quasi-phase matching, ultra-wideband SHG with a strong response ranging from 860 to 1600 nm and high-contrast polarization characteristics is demonstrated. The glass-ceramic-based microsphere cavity also boosts the cascading optical nonlinearity, manifested by a two-magnitude enhancement of cascaded sum frequency generation. This work delineates an efficient strategy for boosting nonlinear optical response in glass ceramics, which will open up new opportunities for applications in photonics and optical communications.
Collapse
Affiliation(s)
- Jianhao Chen
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiongjian Huang
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Dandan Yang
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yantong Li
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Jiachang Wu
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Huakang Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Xiaofeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianrong Qiu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongmin Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Guoping Dong
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
11
|
Castillo-Blas C, Chester AM, Keen DA, Bennett TD. Thermally activated structural phase transitions and processes in metal-organic frameworks. Chem Soc Rev 2024; 53:3606-3629. [PMID: 38426588 DOI: 10.1039/d3cs01105d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The structural knowledge of metal-organic frameworks is crucial to the understanding and development of new efficient materials for industrial implementation. This review classifies and discusses recent advanced literature reports on phase transitions that occur during thermal treatments on metal-organic frameworks and their characterisation. Thermally activated phase transitions and procceses are classified according to the temperaturatures at which they occur: high temperature (reversible and non-reversible) and low temperature. In addition, theoretical calculations and modelling approaches employed to better understand these structural phase transitions are also reviewed.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| | - Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, OX11 0DE, Didcot, Oxfordshire, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| |
Collapse
|
12
|
Sørensen SS, Christensen AKR, Bouros-Bandrabur EA, Andersen ES, Christiansen HF, Lang S, Cao F, Jalaludeen MFU, Christensen JS, Winters WMW, Andersen BP, Nielsen AB, Nielsen NC, Ravnsbæk D, Kristensen PK, Yue Y, Smedskjaer MM. Water Promotes Melting of a Metal-Organic Framework. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:2756-2766. [PMID: 38558915 PMCID: PMC10976635 DOI: 10.1021/acs.chemmater.3c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
Water is one of the most reactive and abundant molecules on Earth, and it is thus crucial to understand its reactivity with various material families. One of the big unknown questions is how water in liquid and vapor forms impact the fast-emerging class of metal-organic frameworks (MOFs). Here, we discover that high-pressure water vapor drastically modifies the structure and hence the dynamic, thermodynamic, and mechanical properties of MOF glasses. In detail, we find that an archetypical MOF (ZIF-62) is extremely sensitive to heat treatments performed at 460 °C and water vapor pressures up to ∼110 bar. Both the melting and glass transition temperatures decrease remarkably (by >100 °C), and simultaneously, hardness and Young's modulus increase by up to 100% under very mild treatment conditions (<20 bar of hydrothermal pressure). Structural analyses suggest water to partially coordinate to Zn in the form of a hydroxide ion by replacing a bridging imidazolate-based linker. The work provides insight into the role of hot-compressed water in influencing the structure and properties of MOF glasses and opens a new route for systematically changing the thermodynamics and kinetics of MOF liquids and thus altering the thermal and mechanical properties of the resulting MOF glasses.
Collapse
Affiliation(s)
- Søren S. Sørensen
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | | | | | - Emil S. Andersen
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Heidi F. Christiansen
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Sofie Lang
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Fengming Cao
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | | | | | - Wessel M. W. Winters
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | | | | | - Niels Chr. Nielsen
- Department
of Chemistry, Aarhus University, Aarhus DK-8000, Denmark
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Aarhus DK-8000, Denmark
| | | | - Peter K. Kristensen
- Department
of Materials and Production, Aalborg University, Aalborg DK-9220, Denmark
| | - Yuanzheng Yue
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Morten M. Smedskjaer
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| |
Collapse
|
13
|
Marijan S, Klaser T, Mirosavljević M, Mošner P, Koudelka L, Skoko Ž, Pisk J, Pavić L. Exploring the Effect of V 2O 5 and Nb 2O 5 Content on the Structural, Thermal, and Electrical Characteristics of Sodium Phosphate Glasses and Glass-Ceramics. Int J Mol Sci 2024; 25:3005. [PMID: 38474252 DOI: 10.3390/ijms25053005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Na-V-P-Nb-based materials have gained substantial recognition as cathode materials in high-rate sodium-ion batteries due to their unique properties and compositions, comprising both alkali and transition metal ions, which allow them to exhibit a mixed ionic-polaronic conduction mechanism. In this study, the impact of introducing two transition metal oxides, V2O5 and Nb2O5, on the thermal, (micro)structural, and electrical properties of the 35Na2O-25V2O5-(40 - x)P2O5 - xNb2O5 system is examined. The starting glass shows the highest values of DC conductivity, σDC, reaching 1.45 × 10-8 Ω-1 cm-1 at 303 K, along with a glass transition temperature, Tg, of 371 °C. The incorporation of Nb2O5 influences both σDC and Tg, resulting in non-linear trends, with the lowest values observed for the glass with x = 20 mol%. Electron paramagnetic resonance measurements and vibrational spectroscopy results suggest that the observed non-monotonic trend in σDC arises from a diminishing contribution of polaronic conductivity due to the decrease in the relative number of V4+ ions and the introduction of Nb2O5, which disrupts the predominantly mixed vanadate-phosphate network within the starting glasses, consequently impeding polaronic transport. The mechanism of electrical transport is investigated using the model-free Summerfield scaling procedure, revealing the presence of mixed ionic-polaronic conductivity in glasses where x < 10 mol%, whereas for x ≥ 10 mol%, the ionic conductivity mechanism becomes prominent. To assess the impact of the V2O5 content on the electrical transport mechanism, a comparative analysis of two analogue series with varying V2O5 content (10 and 25 mol%) is conducted to evaluate the extent of its polaronic contribution.
Collapse
Affiliation(s)
- Sara Marijan
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Teodoro Klaser
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Marija Mirosavljević
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Petr Mošner
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
| | - Ladislav Koudelka
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
| | - Željko Skoko
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička 32, 10000 Zagreb, Croatia
| | - Jana Pisk
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Luka Pavić
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Mizrahi Rodriguez K, Lin S, Wu AX, Storme KR, Joo T, Grosz AF, Roy N, Syar D, Benedetti FM, Smith ZP. Penetrant-induced plasticization in microporous polymer membranes. Chem Soc Rev 2024; 53:2435-2529. [PMID: 38294167 DOI: 10.1039/d3cs00235g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Penetrant-induced plasticization has prevented the industrial deployment of many polymers for membrane-based gas separations. With the advent of microporous polymers, new structural design features and unprecedented property sets are now accessible under controlled laboratory conditions, but property sets can often deteriorate due to plasticization. Therefore, a critical understanding of the origins of plasticization in microporous polymers and the development of strategies to mitigate this effect are needed to advance this area of research. Herein, an integrative discussion is provided on seminal plasticization theory and gas transport models, and these theories and models are compared to an exhaustive database of plasticization characteristics of microporous polymers. Correlations between specific polymer properties and plasticization behavior are presented, including analyses of plasticization pressures from pure-gas permeation tests and mixed-gas permeation tests for pure polymers and composite films. Finally, an evaluation of common and current state-of-the-art strategies to mitigate plasticization is provided along with suggestions for future directions of fundamental and applied research on the topic.
Collapse
Affiliation(s)
- Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sharon Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Albert X Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Kayla R Storme
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taigyu Joo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Aristotle F Grosz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Naksha Roy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Duha Syar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Francesco M Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Kim M, Lee HS, Seo DH, Cho SJ, Jeon EC, Moon HR. Melt-quenched carboxylate metal-organic framework glasses. Nat Commun 2024; 15:1174. [PMID: 38331892 PMCID: PMC10853212 DOI: 10.1038/s41467-024-45326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Although carboxylate-based frameworks are commonly used architectures in metal-organic frameworks (MOFs), liquid/glass MOFs have thus far mainly been obtained from azole- or weakly coordinating ligand-based frameworks. This is because strong coordination bonds of carboxylate ligands to metals block the thermal vitrification pathways of carboxylate-based MOFs. In this study, we present the example of carboxylate-based melt-quenched MOF glasses comprising Mg2+ or Mn2+ with an aliphatic carboxylate ligand, adipate. These MOFs have a low melting temperature (Tm) of 284 °C and 238 °C, respectively, compared to zeolitic-imidazolate framework (ZIF) glasses, and superior mechanical properties in terms of hardness and elastic modulus. The low Tm may be attributed to the flexibility and low symmetry of the aliphatic carboxylate ligand, which raises the entropy of fusion (ΔSfus), and the lack of crystal field stabilization energy on metal ions, reducing enthalpy of fusion (ΔHfus). This research will serve as a cornerstone for the integration of numerous carboxylate-based MOFs into MOF glasses.
Collapse
Affiliation(s)
- Minhyuk Kim
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hwa-Sub Lee
- School of Materials Science and Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, Republic of Korea
| | - Dong-Hyun Seo
- Major of Nano-Mechatronics, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Sung June Cho
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| | - Eun-Chae Jeon
- School of Materials Science and Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, Republic of Korea.
| | - Hoi Ri Moon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
16
|
Ding J, Ji D, Yue Y, Smedskjaer MM. Amorphous Materials for Lithium-Ion and Post-Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304270. [PMID: 37798625 DOI: 10.1002/smll.202304270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/16/2023] [Indexed: 10/07/2023]
Abstract
Lithium-ion and post-lithium-ion batteries are important components for building sustainable energy systems. They usually consist of a cathode, an anode, an electrolyte, and a separator. Recently, the use of solid-state materials as electrolytes has received extensive attention. The solid-state electrolyte materials (as well as the electrode materials) have traditionally been overwhelmingly crystalline materials, but amorphous (disordered) materials are gradually emerging as important alternatives because they can increase the number of ion storage sites and diffusion channels, enhance solid-state ion diffusion, tolerate more severe volume changes, and improve reaction activity. To develop superior amorphous battery materials, researchers have conducted a variety of experiments and theoretical simulations. This review highlights the recent advances in using amorphous materials (AMs) for fabricating lithium-ion and post-lithium-ion batteries, focusing on the correlation between material structure and properties (e.g., electrochemical, mechanical, chemical, and thermal ones). We review both the conventional and the emerging characterization methods for analyzing AMs and present the roles of disorder in influencing the performances of various batteries such as those based on lithium, sodium, potassium, and zinc. Finally, we describe the challenges and perspectives for commercializing rechargeable AMs-based batteries.
Collapse
Affiliation(s)
- Junwei Ding
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| | - Dongfang Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yuanzheng Yue
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| | - Morten M Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| |
Collapse
|
17
|
Qader IB, Ganjo AR, Ahmad HO, Qader HA, Hamadameen HA. Antibacterial and Antioxidant Study of New Pharmaceutical Formulation of Didecyldimethylammonium Bromide Via Pharmaceutical Deep Eutectic Solvents (PDESs) Principle. AAPS PharmSciTech 2024; 25:25. [PMID: 38267795 DOI: 10.1208/s12249-024-02739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Combination therapies have been studied by many researchers using different techniques and methods to solve some solid drug problems and improve more effective treatments for humans and animals. One of the more significant findings to emerge from this study is that the combination of pharmaceutical agents by using pharmaceutical deep eutectic solvents (PDESs) in order to produce dual action drugs and reduce the drug resistance. The major objective of this study was to investigate the dual functionality of drugs (antioxidant and antibacterial activity) via the principle of PDESs. The produced PDESs were characterized via different techniques, namely differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and UV-Vis spectrophotometry. We herein tested a panel of novel liquid formulations of didecyldimethylammonium bromide (DDMAB) against a selection of pathogenic bacteria, classifying their spectrum of activity against Gram-positive and Gram-negative bacteria. The current study found that the PDESs can be used to produce drugs with dual functionalities. The produced PDES from (ascorbic acid: DDMAB) exhibits stronger antibacterial activity against Gram-positive Staphyloccocus aureus and Staphyloccocus epidermidis than gram negatives. One of the most interesting PDESs studied in this research was that of DDMAB and ascorbic acid. This forms a eutectic which is far from the solid drugs issues and shows dual functionality like antibacterial and antioxidant activity. This study has found that there is a correlation between the molecular docking study and the biological activities of the combined drugs.
Collapse
Affiliation(s)
- Idrees B Qader
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.
- Department of Pharmacy, College of Medicine, University of Kurdistan-Hawler, Erbil, Kurdistan region, Iraq.
| | - Aryan R Ganjo
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Hiwa O Ahmad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Department of Pharmacy, College of Medicine, University of Kurdistan-Hawler, Erbil, Kurdistan region, Iraq
| | - Hemn A Qader
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Hewa A Hamadameen
- Department of Pharmaceutics, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
18
|
Kharal SP, Louf JF. Unidirectional Freezing of Polymer Solution Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:118-124. [PMID: 38154147 DOI: 10.1021/acs.langmuir.3c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Ice templating provides a means of generating textures with a well-defined topography. Recent applications involve the freezing of water droplets, with or without colloids, on flat or textured surfaces. An interesting feature of water droplets freezing on a substrate is the formation of a pointy tip at a constant angle, regardless of the substrate temperature, surface energy, or droplet volume. Here, by adding the polymer to water, we demonstrate how to manipulate and even prevent the formation of such an icy tip. We find that the sharpness of the tip decreases with increasing polymer concentration until completely disappearing above the overlap concentration, while the total freezing time increases concomitantly. Building on these observations, we combined simple geometrical arguments with heat flux measurements to model and connect the spatial and temporal evolution of polymer droplets under unidirectional freezing. Together our results provide new ways to control the shape of frozen droplets for ice templating or microstructure fabrication, with applications in tissue engineering, separation membranes, and soft robotics.
Collapse
Affiliation(s)
- Shankar Prasad Kharal
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Jean-François Louf
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
19
|
Wang M, Gong J, Rades T, Martins ICB. Amorphization of different furosemide polymorphic forms during ball milling: Tracking solid-to-solid phase transformations. Int J Pharm 2023; 648:123573. [PMID: 37931725 DOI: 10.1016/j.ijpharm.2023.123573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Ball milling is used, not only to reduce the particle size of pharmaceutical powders, but also to induce changes in the physical properties of drugs. In this work we prepared three crystal forms of furosemide (forms Ⅰ, Ⅱ, and Ⅲ) and studied their solid phase transformations during ball milling. Powder X-ray diffraction and modulated differential scanning calorimetry were used to characterize the samples after each milling time on their path to amorphization. Our results show that forms Ⅰ and III directly converted into an amorphous phase, while form Ⅱ first undergoes a polymorphic transition to form Ⅰ, and then gradually loses its crystallinity, finally reaching full amorphousness. During ball milling of forms Ⅰ and Ⅱ, the glass transition temperature (Tg) of the amorphous fraction of the milled material remains almost unchanged at 75 °C and 74 °C, respectively (whilst the amorphous content increases). In contrast, the Tg values of the amorphous fraction of milled form III increase with increasing milling times, from 63 °C to 71 °C, indicating an unexpected phenomenon of amorphous-to-amorphous transformation. The amorphous fraction of milled forms I and II samples presented a longer structural relaxation (i.e., lower molecular mobility) than the amorphous fraction of milled form III samples. Moreover, the structural relaxation time remained the same for the increasing amorphous fraction during milling of forms I and II. In contrast, the structural relaxation times were always shorter for the amorphous fraction of form III, but increased with increasing amorphous content during milling, confirming amorphous-to-amorphous transformation.
Collapse
Affiliation(s)
- Mengwei Wang
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| | - Inês C B Martins
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Russell BA, González-Jiménez M, Tukachev NV, Hayes LA, Chowdhury T, Javornik U, Mali G, Tassieri M, Farnaby JH, Senn HM, Wynne K. A Second Glass Transition Observed in Single-Component Homogeneous Liquids Due to Intramolecular Vitrification. J Am Chem Soc 2023; 145:26061-26067. [PMID: 37978954 DOI: 10.1021/jacs.3c07110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
On supercooling a liquid, the viscosity rises rapidly until at the glass transition it vitrifies into an amorphous solid accompanied by a steep drop in the heat capacity. Therefore, a pure homogeneous liquid is not expected to display more than one glass transition. Here we show that a family of single-component homogeneous molecular liquids, titanium tetraalkoxides, exhibit two calorimetric glass transitions of comparable magnitude, one of which is the conventional glass transition associated with dynamic arrest of the bulk liquid properties, while the other is associated with the freezing out of intramolecular degrees of freedom. Such intramolecular vitrification is likely to be found in molecules in which low-frequency terahertz intramolecular motion is coupled to the surrounding liquid. These results imply that intramolecular barrier-crossing processes, typically associated with chemical reactivity, do not necessarily follow the Arrhenius law but may freeze out at a finite temperature.
Collapse
Affiliation(s)
- Ben A Russell
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | | | | | - Laure-Anne Hayes
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | | | - Uroš Javornik
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, SI-1001 Ljubljana, Slovenia
| | - Manlio Tassieri
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Joy H Farnaby
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Hans M Senn
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Klaas Wynne
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
21
|
Liu Q, Ran P, Chen W, Shi N, Zhang W, Qiao X, Jiang T, Yang Y(M, Ren J, Wang Z, Qian G, Fan X. Bright Transparent Scintillators with High Fraction BaCl 2 : Eu 2+ Nanocrystals Precipitation: An Ionic-Covalent Hybrid Network Strategy toward Superior X-Ray Imaging Glass-Ceramics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304889. [PMID: 37852944 PMCID: PMC10700177 DOI: 10.1002/advs.202304889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Indexed: 10/20/2023]
Abstract
Metal halide crystals are bright but hygroscopic scintillator materials that are widely used in X-ray imaging and detectors. Precipitating them in situ in glass to form glass ceramics (GCs) scintillator offers an efficient avenue for large-scale preparation, high spatial resolution, and excellent stability. However, precipitating a high fraction of metal halide nanocrystals in glass to maintain high light yield remains a challenge. Herein, an ionic-covalent hybrid network strategy for constructing GCs scintillator with high crystallinity (up to ≈37%) of BaCl2 : Eu2+ nanocrystals is presented. Experimental data and simulations of glass structure reveal that the Ba2+ -Cl- clustering promotes the high crystallization of BaCl2 nanocrystals. The ultralow phonon energy (≈200 cm-1 ) of BaCl2 nanocrystals and good Eu reduction effect enable high photoluminescence inter quantum efficiency (≈80.41%) in GC. GCs with varied crystallinity of BaCl2 : Eu2+ nanocrystals demonstrate efficient radioluminescence and tunable scintillator performance. They either outperform Bi4 Ge3 O14 single crystal by over 132% steady-state light yield or provide impressive X-ray imaging resolutions of 20 lp mm-1 . These findings provide a new design strategy for developing bright transparent GCs scintillators with a high fraction of metal halide nanocrystals for X-ray high-resolution imaging applications.
Collapse
Affiliation(s)
- Qunhuo Liu
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Peng Ran
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Weilin Chen
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Nian Shi
- Key Laboratory of Materials for High Power LaserShanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghai201800China
| | - Wei Zhang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xvsheng Qiao
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Tingming Jiang
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
- School of Energy and Power EngineeringChongqing UniversityChongqing400044China
| | - Yang (Michael) Yang
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Jinjun Ren
- Key Laboratory of Materials for High Power LaserShanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghai201800China
| | - Zhiyu Wang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Guodong Qian
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xianping Fan
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| |
Collapse
|
22
|
Li X, Huang W, Krajnc A, Yang Y, Shukla A, Lee J, Ghasemi M, Martens I, Chan B, Appadoo D, Chen P, Wen X, Steele JA, Hackbarth HG, Sun Q, Mali G, Lin R, Bedford NM, Chen V, Cheetham AK, Tizei LHG, Collins SM, Wang L, Hou J. Interfacial alloying between lead halide perovskite crystals and hybrid glasses. Nat Commun 2023; 14:7612. [PMID: 37993424 PMCID: PMC10665442 DOI: 10.1038/s41467-023-43247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
The stellar optoelectronic properties of metal halide perovskites provide enormous promise for next-generation optical devices with excellent conversion efficiencies and lower manufacturing costs. However, there is a long-standing ambiguity as to whether the perovskite surface/interface (e.g. structure, charge transfer or source of off-target recombination) or bulk properties are the more determining factor in device performance. Here we fabricate an array of CsPbI3 crystal and hybrid glass composites by sintering and globally visualise the property-performance landscape. Our findings reveal that the interface is the primary determinant of the crystal phases, optoelectronic quality, and stability of CsPbI3. In particular, the presence of a diffusion "alloying" layer is discovered to be critical for passivating surface traps, and beneficially altering the energy landscape of crystal phases. However, high-temperature sintering results in the promotion of a non-stoichiometric perovskite and excess traps at the interface, despite the short-range structure of halide is retained within the alloying layer. By shedding light on functional hetero-interfaces, our research offers the key factors for engineering high-performance perovskite devices.
Collapse
Affiliation(s)
- Xuemei Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Wengang Huang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Andraž Krajnc
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, 1001, Ljubljana, Slovenia
| | - Yuwei Yang
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Atul Shukla
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jaeho Lee
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mehri Ghasemi
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Isaac Martens
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Dominique Appadoo
- Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC, 3168, Australia
| | - Peng Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiaoming Wen
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Julian A Steele
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Haira G Hackbarth
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, 1001, Ljubljana, Slovenia
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nicholas M Bedford
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Vicki Chen
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
- University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Anthony K Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Luiz H G Tizei
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Sean M Collins
- School of Chemical and Process Engineering and School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Lianzhou Wang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
23
|
Castillo-Blas C, Chester AM, Cosquer RP, Sapnik AF, Corti L, Sajzew R, Poletto-Rodrigues B, Robertson GP, Irving DJ, McHugh LN, Wondraczek L, Blanc F, Keen DA, Bennett TD. Interfacial Bonding between a Crystalline Metal-Organic Framework and an Inorganic Glass. J Am Chem Soc 2023; 145:22913-22924. [PMID: 37819708 PMCID: PMC10603780 DOI: 10.1021/jacs.3c04248] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 10/13/2023]
Abstract
The interface within a composite is critically important for the chemical and physical properties of these materials. However, experimental structural studies of the interfacial regions within metal-organic framework (MOF) composites are extremely challenging. Here, we provide the first example of a new MOF composite family, i.e., using an inorganic glass matrix host in place of the commonly used organic polymers. Crucially, we also decipher atom-atom interactions at the interface. In particular, we dispersed a zeolitic imidazolate framework (ZIF-8) within a phosphate glass matrix and identified interactions at the interface using several different analysis methods of pair distribution function and multinuclear multidimensional magic angle spinning nuclear magnetic resonance spectroscopy. These demonstrated glass-ZIF atom-atom correlations. Additionally, carbon dioxide uptake and stability tests were also performed to check the increment of the surface area and the stability and durability of the material in different media. This opens up possibilities for creating new composites that include the intrinsic chemical properties of the constituent MOFs and inorganic glasses.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Ashleigh M. Chester
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Ronan P. Cosquer
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Adam F. Sapnik
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Lucia Corti
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
- Leverhulme
Research Centre for Functional Materials Design, Materials Innovation
Factory, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Roman Sajzew
- Otto
Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Bruno Poletto-Rodrigues
- Otto
Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Georgina P. Robertson
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
- Diamond
Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Daniel J.M. Irving
- Diamond
Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Lauren N. McHugh
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Lothar Wondraczek
- Otto
Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Frédéric Blanc
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
- Leverhulme
Research Centre for Functional Materials Design, Materials Innovation
Factory, University of Liverpool, Liverpool L7 3NY, U.K.
- Stephenson
Institute for Renewable Energy, University of Liverpool, Crown Street, Liverpool L69 7ZF, U.K.
| | - David A. Keen
- ISIS
Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Thomas D. Bennett
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| |
Collapse
|
24
|
Du Z, Qiao A, Zhou H, Li Z, Winters WMW, Zhu J, He G, Parkin IP, Tao H, Yue Y. The glass transition in the high-density amorphous Zn/Co-ZIF-4. Chem Commun (Camb) 2023; 59:11871-11874. [PMID: 37723944 DOI: 10.1039/d3cc02492j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The high-density amorphous phases (HDAs) of bimetallic zeolitic imidazolate frameworks (Zn/Co-ZIF-4) were prepared. The temperature dependence of the isobaric heat capacity (Cp) of ZIF-4 HDAs was measured to determine the glass transition temperature (Tg) of HDAs. The Tg non-linearly decreases with the molar ratio R, where R is Co/(Co + Zn), indicating the presence of a mixed-metal node effect. This effect arises from the non-linear increase of the degree of configurational freedom in the HDA as R increases. The degree of configurational freedom is inversely correlated with the network connectivity, which is, in turn, affected by variations in the MN4 (M: Zn or Co; N: nitrogen) tetrahedral symmetry in the ZIF-4 HDA. Overall, this work offers valuable insights into the glass transition of metal-organic frameworks.
Collapse
Affiliation(s)
- Zijuan Du
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), Wuhan 430070, China
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
- Electrochemical Innovation Lab (EIL), Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Ang Qiao
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), Wuhan 430070, China
| | - Hemin Zhou
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), Wuhan 430070, China
| | - Zhencai Li
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark
| | - Wessel M W Winters
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark
| | - Jiexin Zhu
- Electrochemical Innovation Lab (EIL), Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Guanjie He
- Electrochemical Innovation Lab (EIL), Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Ivan P Parkin
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Haizheng Tao
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), Wuhan 430070, China
| | - Yuanzheng Yue
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark
| |
Collapse
|
25
|
Zhou H, Matoba F, Matsuno R, Wakayama Y, Yamada T. Direct Conversion of Phase-Transition Entropy into Electrochemical Thermopower and the Peltier Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303341. [PMID: 37315308 DOI: 10.1002/adma.202303341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/05/2023] [Indexed: 06/16/2023]
Abstract
A thermocell generates thermopower from a temperature difference (ΔT) between two electrodes. The converse process of thermocells is an electrochemical Peltier effect, which creates a ΔT on the electrodes by applying an external current. The Seebeck coefficient (Se ) of the electrochemical system is proportional to the entropy change of the redox reaction; therefore, a redox system having a significant entropy change is expected to increase the Se . In this study, a thermoresponsive polymer having a redox-active moiety, poly(N-isopropyl acrylamide-co-N-(2-acrylamide ethyl)-N'-n-propylviologen) (PNV), is used as the redox species of a thermocell. PNV2+ dication undergoes the coil-globule phase transition upon the reduction to PNV+ cation radical, and a large entropy change is introduced because water molecules are freed from the polymer chains. The Se of PNV thermocell drastically increased to +2.1 mV K-1 at the lower critical solution temperature (LCST) of PNV. The entropy change calculated from the increment of Se agrees with the value evaluated by differential scanning calorimetry. Moreover, the electrochemical Peltier effect is observed when the device temperature is increased above the LCST. This study shows that the large entropy change associated with the coil-globule phase transition can be used in electrochemical thermal management and refrigeration technologies.
Collapse
Affiliation(s)
- Hongyao Zhou
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fumitoshi Matoba
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryohei Matsuno
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Wakayama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Teppei Yamada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
26
|
Nitta KH, Ito K, Ito A. A Phenomenological Model for Enthalpy Recovery in Polystyrene Using Dynamic Mechanical Spectra. Polymers (Basel) 2023; 15:3590. [PMID: 37688216 PMCID: PMC10490033 DOI: 10.3390/polym15173590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
This paper studies the effects of annealing time on the specific heat enthalpy of polystyrene above the glass transition temperature. We extend the Tool-Narayanaswamy-Moynihan (TNM) model to describe the endothermic overshoot peaks through the dynamic mechanical spectra. In this work, we accept the viewpoint that the enthalpy recovery behavior of glassy polystyrene (PS) has a common structural relaxation mode with linear viscoelastic behavior. As a consequence, the retardation spectrum evaluated from the dynamic mechanical spectra around the primary Tg peak is used as the recovery function of the endothermic overshoot of specific heat. In addition, the sub-Tg shoulder peak around the Tg peak is found to be related to the structural relaxation estimated from light scattering measurements. The enthalpy recovery of annealed PS is quantitatively described using retardation spectra of the primary Tg, as well as the kinetic process of the sub-Tg relaxation process.
Collapse
Affiliation(s)
- Koh-hei Nitta
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma Campus, Kanazawa 920-1192, Japan (A.I.)
| | | | | |
Collapse
|
27
|
Abstract
The melting phenomenon in metal-organic frameworks (MOFs) has been recognised as one of the fourth generation MOF paradigm behaviours. Molten MOFs have high processibility for producing mechanically robust glassy MOF macrostructures, and they also offer highly tunable interfacial characteristics when combined with other types of functional materials, such as crystalline MOFs, inorganic glass and metal halide perovskites. As a result, MOF glass composites have emerged as a family of functional materials with dynamic properties and hierarchical structural control. These nanocomposites allow for sophisticated materials science studies as well as the fabrication of next-generation separation, catalysis, optical, and biomedical devices. Here, we review the approaches for designing, fabricating, and characterising MOF glass composites. We determine the key application opportunities enabled by these composites and explore the remaining hurdles, such as improving thermal and chemical compatibility, regulating interfacial properties, and scalability.
Collapse
Affiliation(s)
- Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
| | - Vicki Chen
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
- University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, Cambridge University, CB3 0FS, Cambridge, UK
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
28
|
Tosif MM, Bains A, Sadh PK, Sarangi PK, Kaushik R, Burla SVS, Chawla P, Sridhar K. Loquat seed starch - Emerging source of non-conventional starch: Structure, properties, and novel applications. Int J Biol Macromol 2023:125230. [PMID: 37301342 DOI: 10.1016/j.ijbiomac.2023.125230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Recently, non-conventional sources of starch have attracted attention due to their potential to provide cost-effective alternatives to traditional starch. Among non-conventional starches, loquat (Eriobotrya japonica) seed starch is an emerging source of starch consisting of the amount of starch (nearly 20 %). Due to its unique structure, functional properties, and novel applications, it could be utilized as a potential ingredient. Interestingly, this starch has similar properties as commercial starches including high amylose content, small granule size, and high viscosity and heat stability, making it an attractive option for various food applications. Therefore, this review mainly covers the fundamental understanding of the valorization of loquat seeds by extracting the starch using different isolation methods, with preferable structural, morphological, and functional properties. Different isolation and modification methods (wet milling, acid, neutral and alkaline) are effectively used to obtain higher amounts of starch are revealed. Moreover, insight into various analytical techniques including scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction used to characterize the molecular structure of the starch are discussed. In addition, the effect of shear rate and temperature on rheological attributes with solubility index, swelling power, and color is revealed. Besides, this starch contains bioactive compounds that have shown a positive impact on the enhancement of the shelf-life of the fruits. Overall, loquat seed starches have the potential to provide sustainable and cost-effective alternatives to traditional starch sources and can lead to novel applications in the food industry. Further research is needed to optimize processing techniques and develop value-added products that can be produced at a large scale. However, there is relatively limited published scientific evidence on the structural and morphological characteristics of loquat seed starch. Thus, in this review, we focused on different isolation techniques of loquat seed starch, its structural and functional characteristics, along with potential applications.
Collapse
Affiliation(s)
- Mansuri M Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, Manipur, India
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
29
|
Kang L, Wang Q, Zhang L, Zou H, Gao J, Niu K, Jiang N. Recent Experimental Advances in Characterizing the Self-Assembly and Phase Behavior of Polypeptoids. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114175. [PMID: 37297308 DOI: 10.3390/ma16114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Polypeptoids are a family of synthetic peptidomimetic polymers featuring N-substituted polyglycine backbones with large chemical and structural diversity. Their synthetic accessibility, tunable property/functionality, and biological relevance make polypeptoids a promising platform for molecular biomimicry and various biotechnological applications. To gain insight into the relationship between the chemical structure, self-assembly behavior, and physicochemical properties of polypeptoids, many efforts have been made using thermal analysis, microscopy, scattering, and spectroscopic techniques. In this review, we summarize recent experimental investigations that have focused on the hierarchical self-assembly and phase behavior of polypeptoids in bulk, thin film, and solution states, highlighting the use of advanced characterization tools such as in situ microscopy and scattering techniques. These methods enable researchers to unravel multiscale structural features and assembly processes of polypeptoids over a wide range of length and time scales, thereby providing new insights into the structure-property relationship of these protein-mimetic materials.
Collapse
Affiliation(s)
- Liying Kang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hang Zou
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Gao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kangmin Niu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
30
|
Wang Z, Xu R. A Kinetic Study on Crystallization in TiO 2-SiO 2-CaO-Al 2O 3 Glass under Nucleation Saturation Conditions for the High Value-Added Utilization of CaO-SiO 2-Based Solid Wastes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114165. [PMID: 37297302 DOI: 10.3390/ma16114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
A kinetic study of the non-isothermal crystallization of CaO-SiO2-Al2O3-TiO2 glass was carried out using the Matusita-Sakka equation and differential thermal analysis. As starting materials, fine-particle glass samples (<58 µm), case defined as ''nucleation saturation'' (i.e., containing such a large number of nuclei that the nucleus number is invariable during the DTA process), became dense bulk glass-ceramics through heat treatment, demonstrating the strong heterogeneous nucleation phenomenon at the juncture of particle boundaries under "nucleation saturation" conditions. Three types of crystal phase are formed during the heat treatment process: CaSiO3, Ca3TiSi2(AlSiTi)3O14, and CaTiO3. As the TiO2 content increases, the main crystal shifts from CaSiO3 to Ca3TiSi2(AlSiTi)3O14. The EG values (activation energy of crystal growth) are in the 286-789 kJ/mol range. With increasing TiO2, EG initially decreases (the minimum appears at 14% TiO2), and then, increases. When added within 14%, TiO2 is shown to be an efficient nucleating agent that promotes the growth of wollastonite in a two-dimensional mechanism. As TiO2 further increases to exceed 18%, it is no longer just a nucleating agent but becomes one of the major components in the studied glass, so, in turn, it undermines the crystallization of wollastonite by forming Ti-bearing compounds, resulting in a tendency toward surface crystallization and higher activation energy of crystal growth. For glass samples with fine particles, it is important to note the "nucleation saturation" case for a better understanding of the crystallization process.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renze Xu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
31
|
Nyamba I, Jennotte O, Sombie CB, Lechanteur A, Sacre PY, Djande A, Semde R, Evrard B. Preformulation study for the selection of a suitable polymer for the development of ellagic acid-based solid dispersion using hot-melt extrusion. Int J Pharm 2023:123088. [PMID: 37257795 DOI: 10.1016/j.ijpharm.2023.123088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Ellagic acid is one of the most studied polyphenolic compounds due to its numerous promising therapeutic properties. However, this therapeutic potential remains difficult to exploit owing to its low solubility and low permeability, resulting in low oral bioavailability. In order to allow an effective therapeutic application of EA, it is therefore necessary to develop strategies that sufficiently enhance its solubility, dissolution rate and bioavailability. For this purpose, solid dispersions based on pre-selected polymers such as Eudragit® EPO, Soluplus® and Kollidon® VA 64, with 5% w/w ellagic acid loading were prepared by hot extrusion and characterized by X-ray diffraction, FTIR spectroscopy and in vitro dissolution tests in order to select the most suitable polymer for future investigations. The results showed that Eudragit® EPO was the most promising polymer for ellagic acid solid dispersions development because its extrudates allowed to obtain a solution supersaturated in ellagic acid that was stable for at least 90 min. Moreover, the resulting apparent solubility was 20 times higher than the actual solubility of ellagic acid. The extrudates also showed a high dissolution rate of ellagic acid (96.25% in 15 min), compared to the corresponding physical mixture (6.52% in 15 min) or the pure drug (1.56% in 15 min). Furthermore, increasing the loading rate of ellagic acid up to 12% in extrudates based on this polymer did not negatively influence its release profile through dissolution tests.
Collapse
Affiliation(s)
- Isaïe Nyamba
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium); Laboratory of Drug Development, Center of training, research and expertise in pharmaceutical sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso).
| | - Olivier Jennotte
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium)
| | - Charles B Sombie
- Laboratory of Drug Development, Center of training, research and expertise in pharmaceutical sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso)
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium)
| | - Pierre-Yves Sacre
- Laboratory of Pharmaceutical Analytical Chemistry, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium
| | - Abdoulaye Djande
- Department of Chemistry, Laboratory of Molecular Chemistry and Materials, Research Team: Organic Chemistry and Phytochemistry, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso)
| | - Rasmané Semde
- Laboratory of Drug Development, Center of training, research and expertise in pharmaceutical sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso)
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium)
| |
Collapse
|
32
|
Cassetta M, Giannetta B, Enrichi F, Zaccone C, Mariotto G, Giarola M, Nodari L, Zanatta M, Daldosso N. Effect of the alkali vs iron ratio on glass transition temperature and vibrational properties of synthetic basalt-like glasses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122430. [PMID: 36780741 DOI: 10.1016/j.saa.2023.122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/12/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Volcanic eruptions generate huge amounts of material with a wide range of compositions and therefore different physicochemical properties. We present a combined Raman and calorimetric study carried out on four synthetic basaltic glasses with different alkali vs iron ratio which spans the typical compositions of basalts on Earth. Differential scanning calorimetry shows that changes of this ratio modify the glass transition interval whereas Raman spectra allow to gain insight about the structure of the glass in the microscopic and macroscopic range. Indeed, our Raman analysis is extended from the high frequency region, characterized by the molecular peaks, to the very low frequency region where glasses exhibit the boson peak. Spectra show a variation of the non-bridging oxygens number that affects the medium range order of the glass and the network interconnections. In the considered substitution interval, the boson peak shape is conserved while its position shift upwards. This means that increasing the alkali vs iron content, the elastic medium hardens but it does not change nature. This study emphasizes the importance of considering the full-range spectra when analysing multicomponent or natural systems with small chemical variations.
Collapse
Affiliation(s)
- Michele Cassetta
- Department of Computer Sciences, University of Verona, I-37134 Verona, Italy.
| | - Beatrice Giannetta
- Department of Biotechnology, University of Verona, I-37134 Verona, Italy
| | - Francesco Enrichi
- Department of Computer Sciences, University of Verona, I-37134 Verona, Italy
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, I-37134 Verona, Italy; National Institute of Geophysics and Volcanology, I-00143 Roma, Italy
| | - Gino Mariotto
- Department of Computer Sciences, University of Verona, I-37134 Verona, Italy
| | - Marco Giarola
- Centre for Technological Platform (CPT), University of Verona, I-37134 Verona, Italy
| | - Luca Nodari
- Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council (ICMATE-CNR), I-35127 Padova, Italy
| | - Marco Zanatta
- Department of Physics, University of Trento, I-38123 Trento, Italy
| | - Nicola Daldosso
- Department of Computer Sciences, University of Verona, I-37134 Verona, Italy
| |
Collapse
|
33
|
Jiménez JA, Sendova M. Eu 3+ Concentration Effects in Phosphate Glasses: An Experimental Study Linking Structural, Thermal, and Optical Properties. J Phys Chem B 2023; 127:2818-2828. [PMID: 36939164 DOI: 10.1021/acs.jpcb.2c08400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Phosphate glasses incorporating large concentrations of Eu3+ ions are of interest for optical applications as their distinct red-emitting character resists deterioration with increasing Eu3+ content. Still, the low propensity for concentration quenching in these is not well understood, and thus evaluations linking structural, thermal, and optical properties with Eu3+ content are desired. In this work, 50P2O5-(50 - x)BaO-xEu2O3 (x = 0, 1, 2, 4, 6 mol %) glasses pertinent to photonics were prepared by melt-quenching and further scrutinized with regards to the composition-structure-property relationship. A comprehensive experimental investigation was carried out encompassing density and basic physical properties, X-ray diffraction (XRD), Raman scattering, dilatometry, differential scanning calorimetry (DSC), optical absorption, and photoluminescence (PL) spectroscopy with emission decay analysis. The data from six techniques are in strong agreement with the existence of a critical Eu2O3 concentration which divides the studied concentration range into two sections: (1) lower concentrations, up to about 2.5 (±0.1) mol %, with predominantly long-range (LR) effects of the modifier electrostatic field and (2) higher dopant concentrations, with predominantly short-range (SR) effects of the modifier field. The authors propose that LR interactions lead to shortening of the P-tetrahedral chains, while the SR interactions are expressed in increasing the covalent character of the bonds between the nonbridging oxygens and Eu3+ ions. Concentration correlations between diverse macroscopic data sets, such as densitometry, dilatometry, Raman scattering, calorimetry, and PL, concur synergistically, elucidating the microscopic physical LR-SR interplay between glass network former and the cationic electrostatic field of the modifiers.
Collapse
Affiliation(s)
- José A Jiménez
- Department of Chemistry & Biochemistry, Georgia Southern University, Statesboro, Georgia 30460, United States
| | - Mariana Sendova
- Optical Spectroscopy & Nano-Materials Lab, New College of Florida, Sarasota, Florida 34243, United States
| |
Collapse
|
34
|
Zhang Q, Li W, Qiao K, Han Y. Surface premelting and melting of colloidal glasses. SCIENCE ADVANCES 2023; 9:eadf1101. [PMID: 36930717 PMCID: PMC10022898 DOI: 10.1126/sciadv.adf1101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The nature of liquid-to-glass transition is a major puzzle in science. A similar challenge exists in glass-to-liquid transition, i.e., glass melting, especially for the poorly investigated surface effects. Here, we assemble colloidal glasses by vapor deposition and melt them by tuning particle attractions. The structural and dynamic parameters saturate at different depths, which define a surface liquid layer and an intermediate glassy layer. The power-law growth of both layers and melting front behaviors at different heating rates are similar to crystal premelting and melting, suggesting that premelting and melting can be generalized to amorphous solids. The measured single-particle kinetics reveal various features and confirm theoretical predictions for glass surface layer.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wei Li
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Kaiyao Qiao
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yilong Han
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
35
|
Du G, Wen S, Zhao J, Ran P, Wang D, Wei L, Qiao X, Yang Y, Qiu J, Zhou S. Hybridization Engineering of Oxyfluoride Aluminosilicate Glass for Construction of Dual-Phase Optical Ceramics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205578. [PMID: 36576865 DOI: 10.1002/adma.202205578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The construction of transparent ceramics under mild conditionsand standard atmospheric pressure has great scientific and technological potential; however, it remains difficult to achieve when conventional ceramic sintering techniques are used. Herein, a mild strategy for constructing dual-phase optical ceramics with high crystallinity (>90%) based on the stepped dual-phase crystallization of hybridized aluminosilicate glass is presented. Theoretical and experimental studies reveal that the hybridization of the glass system enables a new balance between the glass-forming ability and crystallization and can overcome the uncontrolled devitrification phenomenon during the dense crystallization of glass. Transparent hybridized oxide-fluoride ceramics with fiber geometry and dual-phase microstructures are also successfully fabricated. The generality of the strategy is confirmed, and transparent ceramics with various chemical compositions and phase combinations are prepared. Additionally, the cross-section of the ceramic fibers can be easily tuned into a circle, square, trapezoid, or even a triangle. Furthermore, the practical applications of optical ceramics for lighting and X-ray imaging are demonstrated. The findings described here suggest a major step toward expanding the scope of optical ceramics.
Collapse
Affiliation(s)
- Guanxin Du
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China
| | - Shaofei Wen
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China
| | - Junjie Zhao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Peng Ran
- College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027, China
- International Research Center for Advanced Photonics, Hangzhou, Zhejiang, 310027, China
| | - Dazhao Wang
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xvsheng Qiao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Yang
- College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027, China
- International Research Center for Advanced Photonics, Hangzhou, Zhejiang, 310027, China
| | - Jianrong Qiu
- College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027, China
| | - Shifeng Zhou
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou, 510640, China
| |
Collapse
|
36
|
Yu M, Shi Y, Jia Q, Wang Q, Luo ZH, Yan F, Zhou YN. Ring Repeating Unit: An Upgraded Structure Representation of Linear Condensation Polymers for Property Prediction. J Chem Inf Model 2023; 63:1177-1187. [PMID: 36651860 DOI: 10.1021/acs.jcim.2c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Unique structure representation of polymers plays a crucial role in developing models for polymer property prediction and polymer design by data-centric approaches. Currently, monomer and repeating unit (RU) approximations are widely used to represent polymer structures for generating feature descriptors in the modeling of quantitative structure-property relationships (QSPR). However, such conventional structure representations may not uniquely approximate heterochain polymers due to the diversity of monomer combinations and the potential multi-RUs. In this study, the so-called ring repeating unit (RRU) method that can uniquely represent polymers with a broad range of structure diversity is proposed for the first time. As a proof of concept, an RRU-based QSPR model was developed to predict the associated glass transition temperature (Tg) of polyimides (PIs) with deterministic values. Comprehensive model validations including external, internal, and Y-random validations were performed. Also, an RU-based QSPR model developed based on the same large database of 1321 PIs provides nonunique prediction results, which further prove the necessity of RRU-based structure representation. Promising results obtained by the application of the RRU-based model confirm that the as-developed RRU method provides an effective representation that accurately captures the sequence of repeat units and thus realizes reliable polymer property prediction by data-driven approaches.
Collapse
Affiliation(s)
- Mengxian Yu
- School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin300457, P. R. China
| | - Yajuan Shi
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Qingzhu Jia
- School of Marine and Environmental Science, Tianjin University of Science and Technology, Tianjin300457, P. R. China
| | - Qiang Wang
- School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin300457, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Fangyou Yan
- School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin300457, P. R. China
| | - Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| |
Collapse
|
37
|
Fateminia Z, Chiniforoshan H. Optimization and Synthesis of a La-TMA MOF with Some Improvements in Its Properties. ACS OMEGA 2023; 8:262-270. [PMID: 36643429 PMCID: PMC9835621 DOI: 10.1021/acsomega.2c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
A La-TMA metal-organic framework (MOF) made up of benzene-1,3,5-tricarboxylate and La(III) was synthesized by a different methodology compared to those in previous reports. By using various approaches, the structural characteristics and physical properties of the La-TMA MOF were analyzed. Eventually, the results showed micro-hexagonal hollow tubes with a high crystallinity grade and thermal stability (up to 400 °C) and a higher surface area compared with those from earlier reports. The BET surface area of a similar previous MOF was about 14.8 m2/g; however, in the current project, the BET surface area increased to about 34.49 m2/g and the Langmuir surface area to 42.3 m2/g.
Collapse
|
38
|
Yin Z, Zhao Y, Zeng M. Challenge, Advance and Emerging Opportunities for Metal-Organic Framework Glasses: from Dynamic Chemistry to Material Science and Noncrystalline Physics. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
39
|
Liu M, Slavney AH, Tao S, McGillicuddy RD, Lee CC, Wenny MB, Billinge SJL, Mason JA. Designing Glass and Crystalline Phases of Metal-Bis(acetamide) Networks to Promote High Optical Contrast. J Am Chem Soc 2022; 144:22262-22271. [PMID: 36441167 DOI: 10.1021/jacs.2c10449] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Owing to their high tunability and predictable structures, metal-organic materials offer a powerful platform to study glass formation and crystallization processes and to design glasses with unique properties. Here, we report a novel series of glass-forming metal-ethylenebis(acetamide) networks that undergo reversible glass and crystallization transitions below 200 °C. The glass-transition temperatures, crystallization kinetics, and glass stability of these materials are readily tunable, either by synthetic modification or by liquid-phase blending, to form binary glasses. Pair distribution function (PDF) analysis reveals extended structural correlations in both single and binary metal-bis(acetamide) glasses and highlights the important role of metal-metal correlations during structural evolution across glass-crystal transitions. Notably, the glass and crystalline phases of a Co-ethylenebis(acetamide) binary network feature a large reflectivity contrast ratio of 4.8 that results from changes in the local coordination environment around Co centers. These results provide new insights into glass-crystal transitions in metal-organic materials and have exciting implications for optical switching, rewritable data storage, and functional glass ceramics.
Collapse
Affiliation(s)
- Mengtan Liu
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Adam H Slavney
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Songsheng Tao
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York10027, United States
| | - Ryan D McGillicuddy
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Cassia C Lee
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Malia B Wenny
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Simon J L Billinge
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York10027, United States.,Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York11973, United States
| | - Jarad A Mason
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| |
Collapse
|
40
|
Han X, Gu Y, Yao Y, Kong L, Li L, Yan F. Processing induced nanoscale heterogeneity impact on the mechanical and electrical behavior of Cu-Zr thin film metallic glasses. RESULTS IN SURFACES AND INTERFACES 2022. [DOI: 10.1016/j.rsurfi.2022.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Bouzidi L, Narine SS. Effectiveness of Low-Field NMR to Assess the Molecular Dynamics of Fatty Esters around the Glass Transition. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laziz Bouzidi
- Trent Centre for Biomaterials Research Departments of Physics and Astronomy and Chemistry, Trent University1600 West Bank Drive, Peterborough, OntarioK9J 7B8, Canada
| | - Suresh S. Narine
- Trent Centre for Biomaterials Research Departments of Physics and Astronomy and Chemistry, Trent University1600 West Bank Drive, Peterborough, OntarioK9J 7B8, Canada
| |
Collapse
|
42
|
Zhao W, Ma W, Xu S, Wang X, Jia H, Xu J, Zhang M, Qu Y, Liu J. Soluble Imide-Bridged Polypentamethyltrisiloxane (IBPPMS) with Rationally Designed Ladder-like Structure for O 2/N 2 Permselectivity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenwen Zhao
- College of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric Composite materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Wenqiang Ma
- College of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric Composite materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Shuangping Xu
- College of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric Composite materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Xintian Wang
- College of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric Composite materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Hongge Jia
- College of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric Composite materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Jingyu Xu
- College of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric Composite materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Mingyu Zhang
- College of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric Composite materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Yanqing Qu
- College of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric Composite materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Jiao Liu
- College of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric Composite materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| |
Collapse
|
43
|
Ma N, Horike N, Lombardo L, Kosasang S, Kageyama K, Thanaphatkosol C, Kongpatpanich K, Otake KI, Horike S. Eutectic CsHSO 4-Coordination Polymer Glasses with Superprotonic Conductivity. J Am Chem Soc 2022; 144:18619-18628. [PMID: 36190375 DOI: 10.1021/jacs.2c08624] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Superprotonic phase transition in CsHSO4 allows fast protonic conduction, but only at temperatures above the transition temperature of 141 °C (Tc). Here, we preserve the superprotonic conductivity of CsHSO4 by forming a binary CsHSO4-coordination polymer glass system, showing eutectic melting. Their anhydrous proton conductivities below Tc are at least 3 orders of magnitude higher than CsHSO4 without compromising conductivity at higher temperatures or the need for humidification, reaching 6.3 mS cm-1 at 180 °C. The glass also introduces processability to the conductor, as its viscosity below 103 Pa·s can be achieved at 65 °C. Solid-state NMR and X-ray pair distribution functions reveal the oxyanion exchanges and the origin of the preserved conductivity. Finally, we demonstrate the preparation of a micrometer-scale thin-film proton conductor showing low resistivity with high transparency (transmittance >85% between 380-800 nm).
Collapse
Affiliation(s)
- Nattapol Ma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Nao Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Loris Lombardo
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Soracha Kosasang
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kotoha Kageyama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Chonwarin Thanaphatkosol
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Kanokwan Kongpatpanich
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satoshi Horike
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
44
|
Yu Z, Tang L, Ma N, Horike S, Chen W. Recent progress of amorphous and glassy coordination polymers. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Wang H, Zhang L, Peh KWE, Yu Q, Lu Y, Hua W, Men Y. Effect of Phase Separation and Crystallization on Enthalpy Relaxation in Thermoplastic Polyurethane. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongru Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Li Zhang
- BASF Polyurethane Specialties (China) Co. Ltd., 300 Jiang Xin Sha Road, Pudong
District, Shanghai 200137, P. R. China
| | - Kar Wee Eddie Peh
- BASF Polyurethane Specialties (China) Co. Ltd., 300 Jiang Xin Sha Road, Pudong
District, Shanghai 200137, P. R. China
| | - Qianli Yu
- BASF Polyurethane Specialties (China) Co. Ltd., 300 Jiang Xin Sha Road, Pudong
District, Shanghai 200137, P. R. China
| | - Ying Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, P. R. China
| | - Wenqiang Hua
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Yongfeng Men
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
46
|
Xu J, Zhu L, Nie Y, Li Y, Wei S, Chen X, Zhao W, Yan S. Advances and Challenges of Self-Healing Elastomers: A Mini Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5993. [PMID: 36079373 PMCID: PMC9457332 DOI: 10.3390/ma15175993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
In the last few decades, self-healing polymeric materials have been widely investigated because they can heal the damages spontaneously and thereby prolong their service lifetime. Many ingenious synthetic procedures have been developed for fabricating self-healing polymers with high performance. This mini review provides an impressive summary of the self-healing polymers with fast self-healing speed, which exhibits an irreplaceable role in many intriguing applications, such as flexible electronics. After a brief introduction to the development of self-healing polymers, we divide the development of self-healing polymers into five stages through the perspective of their research priorities at different periods. Subsequently, we elaborated the underlying healing mechanism of polymers, including the self-healing origins, the influencing factors, and direct evidence of healing at nanoscopic level. Following this, recent advance in realizing the fast self-healing speed of polymers through physical and chemical approaches is extensively overviewed. In particular, the methodology for balancing the mechanical strength and healing ability in fast self-healing elastomers is summarized. We hope that it could afford useful information for research people in promoting the further technical development of new strategies and technologies to prepare the high performance self-healing elastomers for advanced applications.
Collapse
Affiliation(s)
- Jun Xu
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lei Zhu
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yongjia Nie
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yuan Li
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Shicheng Wei
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xu Chen
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wenpeng Zhao
- Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
47
|
Flynn JJ, Marsh ZM, Krein DM, Wolf SM, Haley JE, Vasquez ES, Cooper TM, Godman NP, Grusenmeyer TA. Identification of Lithocholic Acid as a Molecular Glass Host for Room‐Temperature Phosphorescent Materials. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- John J. Flynn
- Air Force Research Laboratory Materials & Manufacturing Directorate Photonic Materials Branch UNITED STATES
| | - Zachary M. Marsh
- Air Force Research Laboratory Materials & Manufacturing Directorate Photonic Materials Branch UNITED STATES
| | - Douglas M. Krein
- Air Force Research Laboratory Materials & Manufacturing Directorate Photonic Materials Branch UNITED STATES
| | - Steven M. Wolf
- Air Force Research Laboratory Materials & Manufacturing Directorate Photonic Materials Branch UNITED STATES
| | - Joy E. Haley
- Air Force Research Laboratory Materials & Manufacturing Directorate Photonic Materials Branch UNITED STATES
| | - Erick S. Vasquez
- University of Dayton Department of Chemical and Materials Engineering UNITED STATES
| | - Thomas M. Cooper
- Air Force Research Laboratory Materials & Manufacturing Directorate Photonic Materials Branch UNITED STATES
| | - Nicholas P. Godman
- Air Force Research Laboratory Materials & Manufacturing Directorate Photonic Materials Branch UNITED STATES
| | - Tod A. Grusenmeyer
- Air Force Research Laboratory Materials & Manufacturing Directorate Photonic Materials Branch 2179 12th Street Bldg 652 45433 Wright-Patterson AFB UNITED STATES
| |
Collapse
|
48
|
Peng SX, Yin Z, Zhang T, Yang Q, Yu H, ZENG M. Vibration assisted glass-formation in zeolitic imidazolate framework. J Chem Phys 2022; 157:104501. [DOI: 10.1063/5.0109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
New glass forming method is essential for broadening the scope of liquid and glassy metal-organic frameworks (MOFs) due to limitations of the conventional melt-quenching method. Herein we show that in-situ mechanical vibration can facilitate the framework melting at lower temperature and produce glassy MOFs with unique properties. Using ZIF-62 as a concept-proofing material, in-situ mechanical vibration enables low-temperature melting at 653 K, far below its melting point (713 K). The resulted vibrated ZIF-62 glass exhibited a lower glass transition temperature of 545 K, improved gas accessible porosity and pronounced short-to-medium range structures compared to the corresponding melt-quenched glass. We propose that vibration facilitated surface reconstruction facilitates pre-melting, which could be the cause of the lowered melting temperature. The vibration assisted method represents a new general method to produce MOF glasses without thermal decomposition.
Collapse
Affiliation(s)
| | - Zheng Yin
- Shaanxi University of Science and Technology, China
| | - Tao Zhang
- Huazhong University of Science and Technology, China
| | - Qun Yang
- Huazhong University of Science and Technology, China
| | - HaiBin Yu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, China
| | | |
Collapse
|
49
|
Lindemann N, Schawe JEK, Lacayo-Pineda J. Kinetics of the Glass Transition of Silica-Filled Styrene-Butadiene Rubber: The Effect of Resins. Polymers (Basel) 2022; 14:polym14132626. [PMID: 35808677 PMCID: PMC9269213 DOI: 10.3390/polym14132626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Resins are important for enhancing both the processability and performance of rubber. Their efficient utilization requires knowledge about their influence on the dynamic glass transition and their miscibility behavior in the specific rubber compound. The resins investigated, poly-(α-methylstyrene) (AMS) and indene-coumarone (IC), differ in molecular rigidity but have a similar aromaticity degree and glass transition temperature. Transmission electron microscopy (TEM) investigations show an accumulation of IC around the silanized silica in styrene–butadiene rubber (SBR) at high contents, while AMS does not show this effect. This higher affinity between IC and the silica surface leads to an increased compactness of the filler network, as determined by dynamic mechanical analysis (DMA). The influence of the resin content on the glass transition of the rubber compounds is evaluated in the sense of the Gordon–Taylor equation and suggests a rigid amorphous fraction for the accumulated IC. Broadband dielectric spectroscopy (BDS) and fast differential scanning calorimetry (FDSC) are applied for the characterization of the dielectric and thermal relaxations as well as for the corresponding vitrification kinetics. The cooling rate dependence of the vitrification process is combined with the thermal and dielectric relaxation time by one single Vogel–Fulcher–Tammann–Hesse equation, showing an increased fragility of the rubber containing AMS.
Collapse
Affiliation(s)
- Niclas Lindemann
- Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hanover, Germany
- Continental Reifen Deutschland GmbH, Jädekamp 30, 30419 Hanover, Germany;
- Correspondence:
| | | | - Jorge Lacayo-Pineda
- Continental Reifen Deutschland GmbH, Jädekamp 30, 30419 Hanover, Germany;
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstraße 9, 30167 Hanover, Germany
| |
Collapse
|
50
|
Patra P, Kumar R, Jayanthi K, Fábián M, Gupta G, Khan S, Chakraborty S, Das S, Allu AR, Annapurna K. Ln 2Te 6O 15 (Ln = La, Gd, and Eu) "Anti-Glass" Phase-Assisted Lanthanum-Tellurite Transparent Glass-Ceramics: Eu 3+ Emission and Local Site Symmetry Analysis. Inorg Chem 2022; 61:10342-10358. [PMID: 35759456 DOI: 10.1021/acs.inorgchem.2c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presence of lanthanide-tellurite "anti-glass" nanocrystalline phases not only affects the transparency in glass-ceramics (GCs) but also influences the emission of a dopant ion. Therefore, a methodical understanding of the crystal growth mechanism and local site symmetry of doped luminescent ions when embedded into the precipitated "anti-glass" phase is crucial, which unfolds the practical applications of GCs. Here, we examined the Ln2Te6O15 "anti-glass" nanocrystalline phase growth mechanism and local site symmetry of Eu3+ ions in transparent GCs produced from 80TeO2-10TiO2-(5 - x)La2O3-5Gd2O3-xEu2O3 glasses, where x = 0, 1, 2. A crystallization kinetics study identifies a unique crystal growth mechanism via a constrained nucleation rate. The extent of "anti-glass" phase precipitation and its growth in GCs with respect to heat-treatment duration is demonstrated using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis. Qualitative analysis of XRD confirms the precipitation of both La2Te6O15 and Gd2Te6O15 nanocrystalline phases. Rietveld refinement of powder X-ray diffraction patterns reveals that Eu3+ ions occupy "Gd" sites in Gd2Te6O15 over "La" sites in La2Te6O15. Raman spectroscopy reveals the conversion of TeO3 units to TeO4 units with Eu2O3 addition. This confirms the polymerizing role of Eu2O3 and consequently high crystallization tenacity with increasing Eu2O3 concentration. The measured Eu3+ ion photoluminescence spectra revealed its local site symmetry. Moreover, the present GCs showed adequate thermal cycling stability (∼50% at 423 K) with the highest activation energy of around 0.3 eV and further suggested that the present transparent GCs would be a potential candidate for the fabrication of red-light-emitting diodes (LEDs) or red component phosphor in W-LEDs.
Collapse
Affiliation(s)
- Pritha Patra
- Specialty Glass Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700 032, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ranjith Kumar
- Department of Metallurgical and Materials Engineering, IIT-Ropar, Rupnagar 140001, Punjab, India
| | - K Jayanthi
- School of Molecular Science and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Margit Fábián
- Centre for Energy Research, 1121 Budapest Konkoly-Thege street, 29-33 Budapest, Hungary
| | - Gaurav Gupta
- Materials and Engineering Research Institute (MERI), Sheffield S1 1WB, United Kingdom
| | - Sultan Khan
- Specialty Glass Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700 032, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Saswata Chakraborty
- Specialty Glass Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700 032, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Subrata Das
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India.,Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Amarnath R Allu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India.,Energy Materials and Devices Division, CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata 700032, India
| | - Kalyandurg Annapurna
- Specialty Glass Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700 032, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|