1
|
Baygildiev T, Meijer J, Cenijn P, Riegel M, Arp HPH, Lamoree M, Hamers T. Identification of polar bioactive substances in the Upper Rhine using effect-directed analysis. WATER RESEARCH 2024; 268:122607. [PMID: 39454269 DOI: 10.1016/j.watres.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Effect-Directed Analysis (EDA) was used to identify bioactive compounds in surface and well water from the Upper Rhine, and to evaluate their properties against the criteria set for Persistent, Mobile and Toxic (PMT) and very persistent and very mobile (vPvM) substances. A multi-layered solid-phase extraction was implemented to enrich a broad range of polar substances from the collected samples. The extracts were fractionated into 108 fractions and tested in the transthyretin (TTR)-binding assay measuring displacement of fluorescently labeled thyroxine (FITC-T4 TTR-binding assay) and the Aliivibrio fischeri bioluminescence (AFB) bioassay. Bioactive fractions guided the identification strategy using high-resolution mass spectrometry. Chemical features were systematically annotated using library databases and suspect lists, incorporating an automated assessment of the quality of each annotation. Based on this assessment, each chemical feature was assigned a specific identification confidence level. Identification of bioactive compounds was facilitated by using bioassay specific suspect lists that were extracted from an in-house developed database of positive and negative TTR-binding compounds and from a recently published database of active inhibitors of AFB. This resulted in the identification and confirmation of ten bioactive substances, including four evaluated as PMT and vPvM substances (diclofenac, trifloxystrobin acid, 6:2 FTSA and PFOA), and one as a potential PMT substance (4-aminoazobenzene). This study demonstrates the effectiveness of EDA in the identification of PMT/vPvM substances in the aquatic environment, facilitating their prioritization for comprehensive environmental risk assessment and possible regulation.
Collapse
Affiliation(s)
- Timur Baygildiev
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Jeroen Meijer
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Peter Cenijn
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Marcel Riegel
- DVGW-Technologiezentrum Wasser, Karlsruher Strasse 84, 76139, Karlsruhe, Germany
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, NO-0806, Oslo, Norway; Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Marja Lamoree
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Timo Hamers
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Carneiro RB, Gil-Solsona R, Subirats J, Restrepo-Montes E, Zaiat M, Santos-Neto ÁJ, Gago-Ferrero P. Biotransformation pathways of pharmaceuticals and personal care products (PPCPs) during acidogenesis and methanogenesis of anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135444. [PMID: 39153297 DOI: 10.1016/j.jhazmat.2024.135444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) exhibit varying biodegradability during the acidogenic and methanogenic phases of anaerobic digestion. However, there is limited information regarding the end products generated during these processes. This work investigates the biotransformation products (BTPs) generated in a two-phase (TP) acidogenic-methanogenic (Ac-Mt) bioreactor using advanced suspect and nontarget strategies. Fourteen BTPs were confidently identified from ten parent PPCPs including carbamazepine (CBZ), naproxen (NPX), diclofenac (DCF), ibuprofen (IBU), acetaminophen (ACT), metoprolol (MTP), sulfamethoxazole (SMX), ciprofloxacin (CIP), methylparaben (MPB) and propylparaben (PPB). These BTPs were linked with oxidation reactions such as hydroxylation, demethylation and epoxidation. Their generation was related to organic acid production, since all metabolites were detected during acidogenesis, with some being subsequently consumed during methanogenesis, e.g., aminothiophenol and kynurenic acid. Another group of BTPs showed increased concentrations under methanogenic conditions, e.g., hydroxy-diclofenac and epoxy-carbamazepine. The most PPCPs showed high removal efficiencies (> 90 %) - SMX, CIP, NPX, MTP, ACT, MPB, PPB, while DCF, CBZ and IBU demonstrated higher persistence - DCF (42 %); CBZ (40 %), IBU (47 %). The phase separation of anaerobic digestion provided a deeper understanding of the biotransformation pathways of PPCPs, in addition to enhancing the biodegradability of the most persistent compounds, i.e., DCF, CBZ and IBU.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo 13566-590, Brazil.
| | - Rubén Gil-Solsona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Jessica Subirats
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Esteban Restrepo-Montes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Marcelo Zaiat
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120 São Carlos, São Paulo, Brazil.
| | - Álvaro J Santos-Neto
- Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo 13566-590, Brazil.
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
3
|
Alam R, Naznin M, Ardiati FC, Solihat NN, Anita SH, Purnomo D, Yanto DHY, Kim S. Targeted and non-targeted identification of dye and chemical contaminants in Loji River, Indonesia using FT-ICR-MS. CHEMOSPHERE 2024; 365:143324. [PMID: 39278327 DOI: 10.1016/j.chemosphere.2024.143324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
This study utilized liquid chromatography (LC) alongside Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to explore the dyes and chemical contaminants in Loji River, Indonesia. We tentatively identified a total of 655 contaminants at various confidence level, subsequently classifying them into 22 distinct categories. Of the 54 dyes we detected, 12 corresponded with entries in our specialized in-house database. These 12 dyes were further confirmed by reference standards, matching both retention time (RT) and MS/MS spectra. LC-FT-ICR MS data showed that dyes from printing batik and textile industries are key contributors to river pollution. Particularly noteworthy were two sample locations that displayed substantial contamination, predominantly from azoic and reactive dyes. Additionally, pharmaceuticals were identified as one of the most frequently occurring contaminants, underscoring the inadequacies in the area's sewage management. To corroborate these findings, we conducted physicochemical, phytotoxicity, and acute toxicity tests, all of which verified the harmful effects of the Loji River's water on both the local flora and human populations. Notably, water samples that tested positive for dye contamination exhibited elevated toxicity levels. To the best of our knowledge, this study is pioneering in its molecular-level investigation of dye contamination in Southeast Asian rivers. Our results accentuate the pressing need for both targeted and non-targeted screening methods to identify contaminants in the surface waters of developing nations.
Collapse
Affiliation(s)
- Rafiqul Alam
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Fenny Clara Ardiati
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Sita Heris Anita
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Deni Purnomo
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia; Research Collaboration Center for Marine Biomaterials, Jatinangor, 45360, Indonesia.
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea; Mass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea.
| |
Collapse
|
4
|
Sahoo AK, Chivukula N, Madgaonkar SR, Ramesh K, Marigoudar SR, Sharma KV, Samal A. Leveraging integrative toxicogenomic approach towards development of stressor-centric adverse outcome pathway networks for plastic additives. Arch Toxicol 2024; 98:3299-3321. [PMID: 39097536 PMCID: PMC11402864 DOI: 10.1007/s00204-024-03825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Plastics are widespread pollutants found in atmospheric, terrestrial and aquatic ecosystems due to their extensive usage and environmental persistence. Plastic additives, that are intentionally added to achieve specific functionality in plastics, leach into the environment upon plastic degradation and pose considerable risk to ecological and human health. Limited knowledge concerning the presence of plastic additives throughout plastic life cycle has hindered their effective regulation, thereby posing risks to product safety. In this study, we leveraged the adverse outcome pathway (AOP) framework to understand the mechanisms underlying plastic additives-induced toxicities. We first identified an exhaustive list of 6470 plastic additives from chemicals documented in plastics. Next, we leveraged heterogenous toxicogenomics and biological endpoints data from five exposome-relevant resources, and identified associations between 1287 plastic additives and 322 complete and high quality AOPs within AOP-Wiki. Based on these plastic additive-AOP associations, we constructed a stressor-centric AOP network, wherein the stressors are categorized into ten priority use sectors and AOPs are linked to 27 disease categories. We visualized the plastic additives-AOP network for each of the 1287 plastic additives and made them available in a dedicated website: https://cb.imsc.res.in/saopadditives/ . Finally, we showed the utility of the constructed plastic additives-AOP network by identifying highly relevant AOPs associated with benzo[a]pyrene (B[a]P), bisphenol A (BPA), and bis(2-ethylhexyl) phthalate (DEHP) and thereafter, explored the associated toxicity pathways in humans and aquatic species. Overall, the constructed plastic additives-AOP network will assist regulatory risk assessment of plastic additives, thereby contributing towards a toxic-free circular economy for plastics.
Collapse
Affiliation(s)
- Ajaya Kumar Sahoo
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Nikhil Chivukula
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Shreyes Rajan Madgaonkar
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Kundhanathan Ramesh
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
| | | | - Krishna Venkatarama Sharma
- Ministry of Earth Sciences, National Centre for Coastal Research, Government of India, Pallikaranai, Chennai, 600100, India
| | - Areejit Samal
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India.
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
5
|
Mitra S, Saran RK, Srivastava S, Rensing C. Pesticides in the environment: Degradation routes, pesticide transformation products and ecotoxicological considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173026. [PMID: 38750741 DOI: 10.1016/j.scitotenv.2024.173026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Among rising environmental concerns, emerging contaminants constitute a variety of different chemicals and biological agents. The composition, residence time in environmental media, chemical interactions, and toxicity of emerging contaminants are not fully known, and hence, their regulation becomes problematic. Some of the important groups of emerging contaminants are pesticides and pesticide transformation products (PTPs), which present a considerable obstacle to maintaining and preserving ecosystem health. This review article aims to thoroughly comprehend the occurrence, fate, and ecotoxicological importance of pesticide transformation products (PTPs). The paper provides an overview of pesticides and PTPs as contaminants of emerging concern and discusses the modes of degradation of pesticides, their properties and associated risks. The degradation of pesticides, however, does not lead to complete destruction but can instead lead to the generation of PTPs. The review discusses the properties and toxicity of PTPs and presents the methods available for their detection. Moreover, the present study examines the existing regulatory framework and suggests the need for the development of new technologies for easy, routine detection of PTPs to regulate them effectively in the environment.
Collapse
Affiliation(s)
- Suchitra Mitra
- Indian Institute of Science Education and Research, Kolkata 741245, WB, India
| | - R K Saran
- Department of Microbiology, Maharaja Ganga Singh University, Bikaner, Rajasthan, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
6
|
Akay C, Ulrich N, Rocha U, Ding C, Adrian L. Sequential Anaerobic-Aerobic Treatment Enhances Sulfamethoxazole Removal: From Batch Cultures to Observations in a Large-Scale Wastewater Treatment Plant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12609-12620. [PMID: 38973247 PMCID: PMC11256761 DOI: 10.1021/acs.est.4c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Sulfamethoxazole (SMX) passes through conventional wastewater treatment plants (WWTPs) mainly unaltered. Under anoxic conditions sulfate-reducing bacteria can transform SMX but the fate of the transformation products (TPs) and their prevalence in WWTPs remain unknown. Here, we report the anaerobic formation and aerobic degradation of SMX TPs. SMX biotransformation was observed in nitrate- and sulfate-reducing enrichment cultures. We identified 10 SMX TPs predominantly showing alterations in the heterocyclic and N4-arylamine moieties. Abiotic oxic incubation of sulfate-reducing culture filtrates led to further degradation of the major anaerobic SMX TPs. Upon reinoculation under oxic conditions, all anaerobically formed TPs, including the secondary TPs, were degraded. In samples collected at different stages of a full-scale municipal WWTP, anaerobically formed SMX TPs were detected at high concentrations in the primary clarifier and digested sludge units, where anoxic conditions were prevalent. Contrarily, their concentrations were lower in oxic zones like the biological treatment and final effluent. Our results suggest that anaerobically formed TPs were eliminated in the aerobic treatment stages, consistent with our observations in batch biotransformation experiments. More generally, our findings highlight the significance of varying redox states determining the fate of SMX and its TPs in engineered environments.
Collapse
Affiliation(s)
- Caglar Akay
- Department
Molecular Environmental Biotechnology, Helmholtz
Centre for Environmental Research − UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Nadin Ulrich
- Department
Exposure Science, Helmholtz Centre for Environmental
Research − UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Ulisses Rocha
- Department
Applied Microbial Ecology, Helmholtz Centre
for Environmental Research − UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Chang Ding
- Department
Molecular Environmental Biotechnology, Helmholtz
Centre for Environmental Research − UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Lorenz Adrian
- Department
Molecular Environmental Biotechnology, Helmholtz
Centre for Environmental Research − UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Chair
of Geobiotechnology, Technische Universität
Berlin, Ackerstraße
76, Berlin 13355, Germany
| |
Collapse
|
7
|
Turnipseed SB. Analysis of chemical contaminants in fish using high resolution mass spectrometry - A review. TRENDS IN ENVIRONMENTAL ANALYTICAL CHEMISTRY 2024; 42:e00227. [PMID: 38957876 PMCID: PMC11215702 DOI: 10.1016/j.teac.2024.e00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High resolution mass spectrometry (HRMS) has become an important tool in environmental and food safety analysis. This review highlights how HRMS has been used to analyze chemical contaminants in fish. Measuring and documenting chemical contaminants in fish serves not only as an indicator of environmental conditions but can also monitor the health of these animals and help protect an important source of human food. The incidence and significance of contaminants including veterinary drugs, human drugs and personal care products, pesticides, persistent organic pollutants, per- and poly fluorinated substances, and marine toxins will be reviewed. The advantage of HRMS over traditional MS is its ability to expand the number of compounds that can be detected and identified. This is true whether HRMS is used for targeted analytes, or more broadly for suspect screening and nontargeted analyses. The classes of compounds, types of fish or seafood, options for data acquisition and analysis, and reports of unexpected findings from recent HMRS methods for chemical contaminants in fish are summarized.
Collapse
Affiliation(s)
- Sherri B Turnipseed
- US Food and Drug Administration, Animal Drugs Research Center, Denver, CO, USA
| |
Collapse
|
8
|
Fernández-García A, Martínez-Piernas AB, Moreno-González D, Gilbert-López B, Molina-Díaz A, García-Reyes JF. Occurrence and risk assessment of pesticides and their transformation products related to olive groves in surface waters of the Guadalquivir river basin. CHEMOSPHERE 2024; 357:142075. [PMID: 38648985 DOI: 10.1016/j.chemosphere.2024.142075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Pesticides are considered one of the main sources of contamination of surface waters, especially in rural areas highly influenced by traditional agricultural practices. The objective of this work was to evaluate the impact caused by pesticides and their transformation products (TPs) related to olive groves in surface waters with strong agricultural pressure. 11 streams were monitored during four sampling campaigns over 2 years. A solid-phase extraction, followed by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) analysis was used in the quantitative target approach, with more than 70 validated compounds. Target method was combined with a suspect screening strategy involving more than 500 pesticides and TPs, using ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) to identify additional pesticides and TPs out of the scope of analysis. A total of 43 different compounds were detected with the target method. The herbicide MCPA was present in all samples and at the highest concentration (1260 ng L-1), followed by the fungicide carbendazim (1110 ng L-1), and the herbicide chlorotoluron (706 ng L-1). The suspect screening strategy revealed the presence of 7 compounds out of the target analysis (1 pesticide and 6 TPs). 6 analytes were confirmed with the analytical standards. Semi-quantification results revealed that TPs exhibited higher concentrations than their corresponding parent compounds, indicating higher persistency. Some small streams showed a comparable number of pesticides and concentrations to the most polluted large river. The determined pesticide and TPs concentrations represented an estimated environmental hazard in almost all sampling sites under study. This work underscores the importance of including pesticide TPs and small streams impacted by extensive agricultural activities in water quality monitoring programs.
Collapse
Affiliation(s)
- Alfonso Fernández-García
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain
| | - Ana B Martínez-Piernas
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain.
| | - David Moreno-González
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain
| | - Juan F García-Reyes
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain
| |
Collapse
|
9
|
Pesce S, Sanchez W, Leenhardt S, Mamy L. Recommendations to reduce the streetlight effect and gray areas limiting the knowledge of the effects of plant protection products on biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-31310-0. [PMID: 38051484 DOI: 10.1007/s11356-023-31310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Preserving biodiversity against the adverse effects of plant protection products (PPPs) is a major environmental and societal issue. However, despite intensive investigation into the ecotoxicological effects of PPPs, the knowledge produced remains fragmented given the sheer diversity of PPPs. This is due, at least in part, to a strong streetlight effect in the field of ecotoxicology. Indeed, while some PPPs have been investigated in numerous ecotoxicological studies, there are many for which the scientific literature still has little or no information on their ecotoxicological risks and effects. The PPPs under the streetlight include a large variety of legacy substances and a more limited number of more recent or currently-in-use substances, such as the herbicide glyphosate and the neonicotinoid insecticides. Furthermore, many of the most recent PPPs (including those used in biocontrol) and PPP transformation products (TPs) resulting from abiotic and/or biotic degradation are rarely addressed in the international literature in the field of ecotoxicology. Here, based on a recent collective scientific assessment of the effects of PPPs on biodiversity and ecosystem services in the French and European contexts, this article sets out to illustrate the limitations and biases caused by the streetlight effect and numbers of gray areas, and issue recommendations on how to overcome them.
Collapse
Affiliation(s)
| | | | | | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| |
Collapse
|
10
|
Zhang Q, Yang Y, Shang N, Xiao Y, Xiao Y, Liu Y, Jiang X, Sanganyado E, Liu S, Xia X. Identification and Coexposure of Neonicotinoid Insecticides and Their Transformation Products in Retail Cowpea ( Vigna unguiculata). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20182-20193. [PMID: 37931075 DOI: 10.1021/acs.est.3c05269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
There is growing evidence that the transformation products of emerging contaminants in foodstuffs may pose a health risk to humans. However, the exact identities, levels, and estimated dietary intake (EDI) of neonicotinoid transformation products in crops remain poorly understood. We established an extended suspect screening strategy to investigate neonicotinoid insecticides and their transformation products in retail cowpea from 11 cities in Hainan Province, China. Forty-nine transformation products were identified in retail cowpea, of which 22-36 were found in 98.6% of the samples. Notably, 31 new transformation products were derived from new processes or a combination of different transformation processes. The mean concentrations of neonicotinoids and nine of the transformation products (with authentic standards) were in the ranges of 0.0824-5.34 and 0.0636-1.50 ng/g, respectively. The cumulative EDIs of the quantified transformation products were lower than those of parent neonicotinoids with the exception of clothianidin desmethyl, which had a ratio of 1157%. However, the coexistence of the other 40 transformation products (without authentic standards) in cowpea suggested that the exposure risk from all of the transformation products might be higher. This study demonstrated that pesticide transformation products should be considered in food chain risk assessments and included in future regulatory management.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yingying Yang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Nanxiu Shang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yilin Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoman Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Shaoda Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Hu J, Lyu Y, Chen H, Li S, Sun W. Suspect and Nontarget Screening Reveal the Underestimated Risks of Antibiotic Transformation Products in Wastewater Treatment Plant Effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17439-17451. [PMID: 37930269 DOI: 10.1021/acs.est.3c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Antibiotics are anthropogenic contaminants with a global presence and of deep concern in aquatic environments, while less is known about the occurrence and risks of their transformation products (TPs). Herein, we developed a comprehensive suspect and nontarget screening workflow based on high-resolution mass spectrometry to identify unknown antibiotic TPs in wastewater treatment plant effluents. We identified 211 compounds (35 parent antibiotics and 176 TPs) at confidence levels of ≥3 and 107 TPs originated from macrolides. TPs were quantified by 17 TPs standards and semiquantified by the predicted response factors and accounted for 55.6-95.1% (76.7% on average) of the total concentrations of parents and TPs. 22.2%, 63.1%, and 18.8% of the identified TPs were estimated to be more persistent, mobile, and toxic than their parent antibiotics, respectively. Further ecological risk assessment based on concentrations and toxicity to aquatic organisms revealed that the cumulative risks of TPs were generally higher than those of parents. Despite the newly formed N-oxide TPs, the tertiary treatment process (mainly ozonation) could decrease the averaged 20.3% of concentrations and 36.2% of the risks of antibiotic-related compounds. This study highlights the necessity to include antibiotic TPs in environmental scrutiny and risk assessment of antibiotics in different aquatic environments.
Collapse
Affiliation(s)
- Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
12
|
Egede Frøkjær E, Rüsz Hansen H, Hansen M. Non-targeted and suspect screening analysis using ion exchange chromatography-Orbitrap tandem mass spectrometry reveals polar and very mobile xenobiotics in Danish drinking water. CHEMOSPHERE 2023; 339:139745. [PMID: 37558003 DOI: 10.1016/j.chemosphere.2023.139745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Non-targeted and suspect screening analysis is gaining approval across the scientific and regulatory community to monitor the chemical status in the environment and thus environmental quality. These holistic screening analyses provides the means to perform suspect screening and go beyond to discover previously undescribed chemical pollutants in environmental samples. In a case study, we developed and optimized a high-resolution tandem mass spectrometry platform hyphenated with anion exchange chromatography to screen drinking water samples in Denmark. The optimized non-targeted screening method was able to detect anionic and polar compounds and was successfully applied to drinking water from two drinking water facilities. Following a data analysis pipeline optimization, anionic pesticide residues and other environmental contaminants were detected at confidence identification level 1 such as dimethachlor ESA, mecoprop, and dichlorprop in drinking water. In addition to these three substances, it was possible to detect another 1662 compounds, of which 97 were annotated at confidence identification level 2. More research is urgently needed to health risk prioritize the detected substances and to determine their concentrations.
Collapse
Affiliation(s)
- Emil Egede Frøkjær
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Helle Rüsz Hansen
- Danish Environmental Protection Agency, Tolderlundsvej 5, 5000, Odense C, Denmark
| | - Martin Hansen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| |
Collapse
|
13
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate Separating and Sensing for Precision Agriculture and Environmental Protection in the Era of Smart Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37384557 DOI: 10.1021/acs.est.3c01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The present article critically and comprehensively reviews the most recent reports on smart sensors for determining glyphosate (GLP), an active agent of GLP-based herbicides (GBHs) traditionally used in agriculture over the past decades. Commercialized in 1974, GBHs have now reached 350 million hectares of crops in over 140 countries with an annual turnover of 11 billion USD worldwide. However, rolling exploitation of GLP and GBHs in the last decades has led to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide of farm and companies' workers. Intoxication with these herbicides dysregulates the microbiome-gut-brain axis, cholinergic neurotransmission, and endocrine system, causing paralytic ileus, hyperkalemia, oliguria, pulmonary edema, and cardiogenic shock. Precision agriculture, i.e., an (information technology)-enhanced approach to crop management, including a site-specific determination of agrochemicals, derives from the benefits of smart materials (SMs), data science, and nanosensors. Those typically feature fluorescent molecularly imprinted polymers or immunochemical aptamer artificial receptors integrated with electrochemical transducers. Fabricated as portable or wearable lab-on-chips, smartphones, and soft robotics and connected with SM-based devices that provide machine learning algorithms and online databases, they integrate, process, analyze, and interpret massive amounts of spatiotemporal data in a user-friendly and decision-making manner. Exploited for the ultrasensitive determination of toxins, including GLP, they will become practical tools in farmlands and point-of-care testing. Expectedly, smart sensors can be used for personalized diagnostics, real-time water, food, soil, and air quality monitoring, site-specific herbicide management, and crop control.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- ENSEMBLE3 sp. z o. o., 01-919 Warsaw, Poland
- Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Włodzimierz Kutner
- Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
- Modified Electrodes for Potential Application in Sensors and Cells Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
14
|
Jiang X, Xiao L, Chen Y, Huang C, Wang J, Tang X, Wan K, Xu H. Degradation of the Novel Heterocyclic Insecticide Pyraquinil in Water: Kinetics, Degradation Pathways, Transformation Products Identification, and Toxicity Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37378629 DOI: 10.1021/acs.jafc.3c01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
As new pesticides are continuously introduced into agricultural systems, it is essential to investigate their environmental behavior and toxicity effects to better evaluate their potential risks. In this study, the degradation kinetics, pathways, and aquatic toxicity of the new fused heterocyclic insecticide pyraquinil in water under different conditions were investigated for the first time. Pyraquinil was classified as an easily degradable pesticide in natural water, and hydrolyzes faster in alkaline conditions and at higher temperatures. The formation trends of the main transformation products (TPs) of pyraquinil were also quantified. Fifteen TPs were identified in water using ultrahigh-performance liquid chromatography coupled to quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Orbitrap-HRMS) and Compound Discoverer software, which adopted suspect and nontarget screening strategies. Among them, twelve TPs were reported for the first time and 11 TPs were confirmed by synthesis of their standards. The proposed degradation pathways have demonstrated that the 4,5-dihydropyrazolo[1,5-a]quinazoline skeleton of pyraquinil is stable enough to retain in its TPs. ECOSAR prediction and laboratory tests showed that pyraquinil was "very toxic" or "toxic" to aquatic organisms, while the toxicities of all of the TPs are substantially lower than that of pyraquinil except for TP484, which was predicted to pose a higher toxicity. The results are important for elucidating the fate and assessing the environmental risks of pyraquinil, and provide guidance for scientific and reasonable use.
Collapse
Affiliation(s)
- Xunyuan Jiang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Lu Xiao
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Yan Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Congling Huang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Jiale Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Xuemei Tang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Kai Wan
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
15
|
Sunyer-Caldú A, Golovko O, Kaczmarek M, Asp H, Bergstrand KJ, Gil-Solsona R, Gago-Ferrero P, Diaz-Cruz MS, Ahrens L, Hultberg M. Occurrence and fate of contaminants of emerging concern and their transformation products after uptake by pak choi (Brassica rapa subsp. chinensis). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120958. [PMID: 36603758 DOI: 10.1016/j.envpol.2022.120958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Recovery and reuse of nutrients is a major challenge in agriculture. A new process contributing to a circular economy is the anaerobic digestion of food waste, which is a sustainable way of recycling nutrients as the digestate can be used as fertiliser in agriculture and horticulture. However, the digestate may be polluted with contaminants of emerging concern (CECs) that can be circulated back into the food chain, posing a risk to the environment and human health. In this work, the nutrient solution was spiked with 18 selected CECs frequently detected in food waste biogas facilities, and subsequent uptake and fate of these CECs were evaluated in pak choi grown in two different nutrient solutions (mineral and organic). All spiked compounds except two (propylparaben, fenbendazole) were taken up by pak choi plants, with perfluorobutanoic acid (PFBA) and sertraline displaying the highest concentrations (270 and 190 μg/kg fresh weight, respectively). There were no statistically significant differences in uptake between mineral and organic nutrient solutions. Uptake of per- and polyfluoroalkyl substances (PFAS) was negatively correlated with perfluorocarbon chain length and dependent on the functional group (r = -0.73). Sixteen transformation products (TPs) were tentatively identified using suspect screening, most of which were Phase II or even Phase III metabolites. Six of these TPs were identified for the first time in plant metabolism and their metabolic pathways were considered.
Collapse
Affiliation(s)
- Adrià Sunyer-Caldú
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, Barcelona 08034, Spain; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden.
| | - Michał Kaczmarek
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Håkan Asp
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), SE-234 56 Alnarp, Sweden
| | - Karl-Johan Bergstrand
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), SE-234 56 Alnarp, Sweden
| | - Rubén Gil-Solsona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | - M Silvia Diaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Malin Hultberg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), SE-234 56 Alnarp, Sweden
| |
Collapse
|
16
|
Wu Y, Zhou L, Kang L, Cheng H, Wei X, Pan C. Suspect screening strategy for pesticide application history based on characteristics of trace metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120557. [PMID: 36328280 DOI: 10.1016/j.envpol.2022.120557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Pesticides are widely used to protect crops but can also threaten public health as they can remain in the environment for a long time. Additionally, some transformation products (TPs) of unknown toxicity, stability, or bioaccumulation properties can further be formed from the hydrolysis, photolysis and biodegradation of pesticides. The identification and quantification of those TPs can be challenging for environmental regulation and risk assessment due to a limited understanding about them. In this study, a suspect screening strategy for pesticide application history was developed and then used to organic products (tea). Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) was used to screen and identify the TPs in crops and their toxicity was subsequently predicted with the open-source software (ECOSAR and admetSAR). Finally, the SIRIUS software was applied and 142 TPs from 20 pesticides were identified in tea plants based on the fragmentation-degradation relationship. Of these, standards (level 1) and 53 were considered as tentatively identified (levels 2a and 2b). Some TPs were also found to be present in tea plants and soil after 65 days, thus indicating higher persistency or stability than parent pesticides. While others from diafenthiuron and neonicotinoids had higher predicted toxicity of daphnid, and demonstrated positive for honeybee toxicity. Suspect screening is a powerful tool to screen pesticide TPs on the complex matrix of crops. Such screening can provide potential evidence of pesticide application, especially in cases of illegal practices in organic farming.
Collapse
Affiliation(s)
- Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Haiyan Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinlin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Mohammed Taha H, Aalizadeh R, Alygizakis N, Antignac JP, Arp HPH, Bade R, Baker N, Belova L, Bijlsma L, Bolton EE, Brack W, Celma A, Chen WL, Cheng T, Chirsir P, Čirka Ľ, D’Agostino LA, Djoumbou Feunang Y, Dulio V, Fischer S, Gago-Ferrero P, Galani A, Geueke B, Głowacka N, Glüge J, Groh K, Grosse S, Haglund P, Hakkinen PJ, Hale SE, Hernandez F, Janssen EML, Jonkers T, Kiefer K, Kirchner M, Koschorreck J, Krauss M, Krier J, Lamoree MH, Letzel M, Letzel T, Li Q, Little J, Liu Y, Lunderberg DM, Martin JW, McEachran AD, McLean JA, Meier C, Meijer J, Menger F, Merino C, Muncke J, Muschket M, Neumann M, Neveu V, Ng K, Oberacher H, O’Brien J, Oswald P, Oswaldova M, Picache JA, Postigo C, Ramirez N, Reemtsma T, Renaud J, Rostkowski P, Rüdel H, Salek RM, Samanipour S, Scheringer M, Schliebner I, Schulz W, Schulze T, Sengl M, Shoemaker BA, Sims K, Singer H, Singh RR, Sumarah M, Thiessen PA, Thomas KV, Torres S, Trier X, van Wezel AP, Vermeulen RCH, Vlaanderen JJ, von der Ohe PC, Wang Z, Williams AJ, Willighagen EL, Wishart DS, Zhang J, Thomaidis NS, Hollender J, Slobodnik J, Schymanski EL. The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry. ENVIRONMENTAL SCIENCES EUROPE 2022; 34:104. [PMID: 36284750 PMCID: PMC9587084 DOI: 10.1186/s12302-022-00680-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Background The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/). Supplementary Information The online version contains supplementary material available at 10.1186/s12302-022-00680-6.
Collapse
Affiliation(s)
- Hiba Mohammed Taha
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | | | - Hans Peter H. Arp
- Norwegian Geotechnical Institute (NGI), Ullevål Stadion, P.O. Box 3930, 0806 Oslo, Norway
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Richard Bade
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102 Australia
| | | | - Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Evan E. Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Werner Brack
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt Am Main, Germany
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Wen-Ling Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, 17 Xuzhou Rd., Zhongzheng Dist., Taipei, Taiwan
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Parviel Chirsir
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Ľuboš Čirka
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
- Faculty of Chemical and Food Technology, Institute of Information Engineering, Automation, and Mathematics, Slovak University of Technology in Bratislava (STU), Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Lisa A. D’Agostino
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| | | | - Valeria Dulio
- INERIS, National Institute for Environment and Industrial Risks, Verneuil en Halatte, France
| | - Stellan Fischer
- Swedish Chemicals Agency (KEMI), P.O. Box 2, 172 13 Sundbyberg, Sweden
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research-Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona, Spain
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Birgit Geueke
- Food Packaging Forum Foundation, Staffelstrasse 10, 8045 Zurich, Switzerland
| | - Natalia Głowacka
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Juliane Glüge
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Ksenia Groh
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Sylvia Grosse
- Thermo Fisher Scientific, Dornierstrasse 4, 82110 Germering, Germany
| | - Peter Haglund
- Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Linnaeus Väg 6, 901 87 Umeå, Sweden
| | - Pertti J. Hakkinen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Sarah E. Hale
- Norwegian Geotechnical Institute (NGI), Ullevål Stadion, P.O. Box 3930, 0806 Oslo, Norway
| | - Felix Hernandez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Elisabeth M.-L. Janssen
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Tim Jonkers
- Department Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Karin Kiefer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Michal Kirchner
- Water Research Institute (WRI), Nábr. Arm. Gen. L. Svobodu 5, 81249 Bratislava, Slovak Republic
| | - Jan Koschorreck
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Martin Krauss
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jessy Krier
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Marja H. Lamoree
- Department Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marion Letzel
- Bavarian Environment Agency, 86179 Augsburg, Germany
| | - Thomas Letzel
- Analytisches Forschungsinstitut Für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167 Augsburg, Germany
| | - Qingliang Li
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - James Little
- Mass Spec Interpretation Services, 3612 Hemlock Park Drive, Kingsport, TN 37663 USA
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (SKLECE, RCEES, CAS), No. 18 Shuangqing Road, Haidian District, Beijing, 100086 China
| | - David M. Lunderberg
- Hope College, Holland, MI 49422 USA
- University of California, Berkeley, CA USA
| | - Jonathan W. Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| | - Andrew D. McEachran
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd, Santa Clara, CA 95051 USA
| | - John A. McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235 USA
| | - Christiane Meier
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Jeroen Meijer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Frank Menger
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Carla Merino
- University Rovira i Virgili, Tarragona, Spain
- Biosfer Teslab, Reus, Spain
| | - Jane Muncke
- Food Packaging Forum Foundation, Staffelstrasse 10, 8045 Zurich, Switzerland
| | | | - Michael Neumann
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Vanessa Neveu
- Nutrition and Metabolism Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Kelsey Ng
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Muellerstrasse 44, Innsbruck, Austria
| | - Jake O’Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102 Australia
| | - Peter Oswald
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Martina Oswaldova
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Jaqueline A. Picache
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235 USA
| | - Cristina Postigo
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva S/N, 18071 Granada, Spain
| | - Noelia Ramirez
- University Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili, Tarragona, Spain
| | | | - Justin Renaud
- Agriculture and Agri-Food Canada/Agriculture et Agroalimentaire Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | | | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Schmallenberg, Germany
| | - Reza M. Salek
- Nutrition and Metabolism Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Saer Samanipour
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, Amsterdam, 1090 GD The Netherlands
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Ivo Schliebner
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Wolfgang Schulz
- Laboratory for Operation Control and Research, Zweckverband Landeswasserversorgung, Am Spitzigen Berg 1, 89129 Langenau, Germany
| | - Tobias Schulze
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Manfred Sengl
- Bavarian Environment Agency, 86179 Augsburg, Germany
| | - Benjamin A. Shoemaker
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Kerry Sims
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH UK
| | - Heinz Singer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Randolph R. Singh
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
- Chemical Contamination of Marine Ecosystems (CCEM) Unit, Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Rue de l’Ile d’Yeu, BP 21105, 44311 Cedex 3, Nantes France
| | - Mark Sumarah
- Agriculture and Agri-Food Canada/Agriculture et Agroalimentaire Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Paul A. Thiessen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Kevin V. Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102 Australia
| | | | - Xenia Trier
- Section for Environmental Chemistry and Physics, Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Annemarie P. van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Roel C. H. Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Jelle J. Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | | | - Zhanyun Wang
- Technology and Society Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Antony J. Williams
- Computational Chemistry and Cheminformatics Branch (CCCB), Chemical Characterization and Exposure Division (CCED), Center for Computational Toxicology and Exposure (CCTE), United States Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - Egon L. Willighagen
- Department of Bioinformatics-BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | | | - Jian Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Juliane Hollender
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | | | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| |
Collapse
|
18
|
Tisler S, Tüchsen PL, Christensen JH. Non-target screening of micropollutants and transformation products for assessing AOP-BAC treatment in groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119758. [PMID: 35835278 DOI: 10.1016/j.envpol.2022.119758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Standard monitoring programs give limited insight into groundwater status, especially transformation products (TPs) formed by natural processes or advanced oxidation processes (AOP), are normally underrepresented. In this study, using suspect and non-target screening, we performed a comprehensive analysis of groundwater before and after AOP by UV/H2O2 and consecutively installed biological activated carbon filters (BAC). By non-target screening, up to 413 compounds were detected in the groundwater, with an average 70% removal by AOP. However, a similar number of compounds were formed during the process, shown in groundwater from three waterworks. The most polar compounds were typically the most stable during the AOP. A subsequent BAC filter showed removal of 95% of the TPs, but only 46% removal of the AOP remaining precursors. The BAC removal for polar compounds was highly dependent on the acidic and basic functional groups of the molecules. 49 compounds of a wide polarity range could be identified by supercritical fluid chromatography (SFC) and liquid chromatography (LC) with high resolution mass spectrometry (HRMS); of these, 29 compounds were already present in the groundwater. To the best of our knowledge, five compounds have never been reported before in groundwater (4-chlorobenzenesulfonic acid, dibutylamine, N-phenlybenzenesulfonamide, 2-(methylthio)benzothiazole and benzothiazole-2-sulfonate). A further five rarely reported compounds are reported for the first time in Danish groundwater (2,4,6-trichlorophenol, 2,5-dichlorobenzenesulfonic acid, trifluormethansulfonic acid, pyrimidinol and benzymethylamine). Twenty of the identified compounds were formed by AOP, of which 10 have never been reported before in groundwater. All detected compounds could be related to agricultural and industrial products as well as artificial sweeteners. Whereas dechlorination was a common AOP degradation pathway for chlorophenols, the (ultra-) short chain PFAs showed no removal in our study. We prioritized 11 compounds as of concern, however, the toxicity for many compounds remains unknown, especially for the TPs.
Collapse
Affiliation(s)
- Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | | | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| |
Collapse
|
19
|
Wan F, Yu T, Hu J, Yin S, Li Y, Kou L, Chi X, Wu J, Sun Y, Zhou Q, Zou W, Zhang Z, Wang T. The pyrethroids metabolite 3-phenoxybenzoic acid induces dopaminergic degeneration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156027. [PMID: 35605864 DOI: 10.1016/j.scitotenv.2022.156027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Exposure to pyrethroids, a significant class of the most widely used agricultural chemicals, has been associated with an increased risk of Parkinson's disease (PD). However, although many different pyrethroids induce roughly the same symptoms of Parkinsonism, the underlying mechanisms remain unknown. To find the shared key features among these mechanisms, we focused on 3-phenoxybenzoic acid (3-PBA), a common and prominent metabolite of most pyrethroids produced via hydrolysis by CEs in mammals. To determine the contribution of 3-PBA to the initiation and progression of PD, we performed in vivo and in vitro experiments, respectively, and found that 3-PBA not only accumulates in murine brain tissues over time but also further induces PD-like pathologies (increased α-syn and phospho-S129, decreased TH) to the same or even greater extent than the precursor pyrethroid. A before-after study of PET-DAT in the same mice revealed that low concentrations of 3-PBA (0.5 mg/kg) could paradoxically cause DAT to increase (22.46% higher than pre-drug test). The intervention of DAT inhibitors and activators respectively alleviated and enhanced the dopaminergic toxicity of 3-PBA, indicating that 3-PBA interacts with DAT. In particular, low concentrations of 3-PBA increase the DAT, which in turn induces 3-PBA to enter the dopaminergic neurons to exert toxic effects. Finally, we described a mechanism underlying this potential role of 3-PBA in the pathological aggregation of α-syn. Specifically, 3-PBA was found to dysregulate C/EBP β levels and further anomalously activate AEP in vivo and in vitro, accompanied by increased accumulation of pathologically cleaved α-syn (N103 fragments) and accelerated α-syn aggregation. All these results suggest that 3-PBA exposure could mimic the pathological and pathogenetic features of PD, showing that this metabolite is a key pathogenic compound in pyrethroid-related pathological effects and a possible dopamine neurotoxin. Additionally, our findings provide a crucial reference for the primary prevention of PD.
Collapse
Affiliation(s)
- Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junjie Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunna Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
20
|
Liu Y, Li F, Li H, Tong Y, Li W, Xiong J, You J. Bioassay-based identification and removal of target and suspect toxicants in municipal wastewater: Impacts of chemical properties and transformation. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129426. [PMID: 35897175 DOI: 10.1016/j.jhazmat.2022.129426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Municipal wastewater contains numerous chemicals and transformation products with highly diverse physiochemical properties and intrinsic toxicity; thus, it is imperative but challenging to identify major toxicants. Herein, toxicity identification evaluation (TIE) was applied to identify major toxicants in a typical municipal wastewater treatment plant (WWTP). Impacts of chemical properties on the removal of contaminants and toxicity at individual treatment stages were also examined. The WWTP influent caused 100% death of Daphnia magna and zebrafish embryos, and toxicity characterization suggested that organics, metals, and volatiles all contributed to the toxicity. Toxicity identification based on 189 target and approximately one-thousand suspect chemicals showed that toxicity contributions of organic contaminants, metals, and ammonia to D. magna were 77%, 4%, and 19%, respectively. Galaxolide, pyrene, phenanthrene, benzo[a]anthracene, fluoranthene, octinoxate, silver, and ammonia were identified as potential toxicants. Comparatively, the detected transformation products elicited lower toxicity than their respective parent contaminants. In contrast, the analyzed contaminants showed negligible contributions to the toxicity of zebrafish embryos. Removal efficiencies of these toxicants in WWTP were highly related to their hydrophobicity. Diverse transformation and removal efficiencies of contaminants in WWTPs may influence the chemical compositions in effluent and ultimately the risk to aquatic organisms in the receiving waterways.
Collapse
Affiliation(s)
- Yuan Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Faxu Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China.
| | - Yujun Tong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Weizong Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Jingjing Xiong
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| |
Collapse
|
21
|
Aalizadeh R, Nikolopoulou V, Alygizakis N, Slobodnik J, Thomaidis NS. A novel workflow for semi-quantification of emerging contaminants in environmental samples analyzed by LC-HRMS. Anal Bioanal Chem 2022; 414:7435-7450. [PMID: 35471250 DOI: 10.1007/s00216-022-04084-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
There is an increasing need for developing a strategy to quantify the newly identified substances in environmental samples, where there are not always reference standards available. The semi-quantitative analysis can assist risk assessment of chemicals and their environmental fate. In this study, a rigorously tested and system-independent semi-quantification workflow is proposed based on ionization efficiency measurement of emerging contaminants analyzed in liquid chromatography-high-resolution mass spectrometry. The quantitative structure-property relationship (QSPR)-based model was built to predict the ionization efficiency of unknown compounds which can be later used for their semi-quantification. The proposed semi-quantification method was applied and tested in real environmental seawater samples. All semi-quantification-related calculations can be performed online and free of access at http://trams.chem.uoa.gr/semiquantification/ .
Collapse
Affiliation(s)
- Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece.
| | - Varvara Nikolopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
- Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | | | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece.
| |
Collapse
|
22
|
Rathore S, Varshney A, Mohan S, Dahiya P. An innovative approach of bioremediation in enzymatic degradation of xenobiotics. Biotechnol Genet Eng Rev 2022; 38:1-32. [PMID: 35081881 DOI: 10.1080/02648725.2022.2027628] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Worldwide, environmental pollution due to a complex mixture of xenobiotics has become a serious concern. Several xenobiotic compounds cause environmental contamination due to their severe toxicity, prolonged exposure, and limited biodegradability. From the past few decades, microbial-assisted degradation (bioremediation) of xenobiotic pollutants has evolved as the most effective, eco-friendly, and valuable approach. Microorganisms have unique metabolism, the capability of genetic modification, diversity of enzymes, and various degradation pathways necessary for the bioremediation process. Microbial xenobiotic degradation is effective but a slow process that limits its application in bioremediation. However, the study of microbial enzymes for bioremediation is gaining global importance. Microbial enzymes have a huge ability to transform contaminants into non-toxic forms and thereby reduce environmental pollution. Recently, various advanced techniques, including metagenomics, proteomics, transcriptomics, metabolomics are effectively utilized for the characterization, metabolic machinery, new proteins, metabolic genes of microorganisms involved in the degradation process. These advanced molecular techniques provide a thorough understanding of the structural and functional aspects of complex microorganisms. This review gives a brief note on xenobiotics and their impact on the environment. Particular attention will be devoted to the class of pollutants and the enzymes such as cytochrome P450, dehydrogenase, laccase, hydrolase, protease, lipase, etc. capable of converting these pollutants into innocuous products. This review attempts to deliver knowledge on the role of various enzymes in the biodegradation of xenobiotic pollutants, along with the use of advanced technologies like recombinant DNA technology and Omics approaches to make the process more robust and effective.
Collapse
Affiliation(s)
| | - Ayushi Varshney
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Sumedha Mohan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Praveen Dahiya
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| |
Collapse
|