1
|
Zhang J, Hou X, Zhang K, Xiao Q, Gardea-Torresdey JL, Zhou X, Yan B. Photochemistry of microplastics-derived dissolved organic matter: Reactive species generation and organic pollutant degradation. WATER RESEARCH 2025; 269:122802. [PMID: 39579559 DOI: 10.1016/j.watres.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Dissolved organic matter (DOM) originating from microplastics (MPs-DOM) is increasingly recognized as a substantial component of aquatic DOM. The photochemistry of MPs-DOM, essential for understanding its environmental fate and impacts, remains largely unexplored. This study investigates the photochemical behaviors of MPs-DOM derived from two common plastics: polystyrene (PS) and polyvinyl chloride (PVC), which represent aromatic and aliphatic plastics, respectively. Spectral and high-resolution mass spectrometry analyses demonstrated that photoreactions preferentially targeted poly-aromatic compounds within the MPs-DOM, leading to degradation products that predominantly form N-aliphatic/lipid-like substances. This transformation is characterized by decreased aromaticity and unsaturation. Additionally, irradiation of MPs-DOM generated reactive species (RS), including triplet intermediates (3DOM*) and singlet oxygen (1O2), with apparent quantum yields of 0.06-0.16 % and 0.16-0.35 %, respectively-values considerably lower than those for conventional DOM (1.19-1.56 % for 3DOM* and 1.34-1.90 % for 1O2). Despite this, the RS generated from MPs-DOM significantly enhance the degradation of coexisting organic pollutants, such as antibiotic resistance genes (ARGs). The findings shed light on the photoinduced transformation of MPs-DOM and suggest that MPs-DOM functions as a natural photocatalyst, mediating redox reactions of pollutants in sunlit aquatic settings. This highlights its previously underestimated role in natural attenuation and aquatic photochemistry.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Xianfeng Hou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Kena Zhang
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Quanzhi Xiao
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Jorge L Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Xiaoxia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China.
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
2
|
Ding X, Yu Q, Xue H, Zhang W, Ren H, Geng J. Photochemical behavior of extracellular polymeric substances in intimately coupled TiO 2 photocatalysis and biodegradation system. BIORESOURCE TECHNOLOGY 2025; 416:131752. [PMID: 39515430 DOI: 10.1016/j.biortech.2024.131752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Photosensitization of extracellular polymeric substances (EPS) in aqueous environments is significant for pollutants degradation, but the synergistic effects in intimately coupled photocatalysis and biodegradation (ICPB) remain unknown. In this study, the pivotal role of EPS photosensitization in the degradation of 17β-estradiol 3-sulfate (E2-3S) was investigated in ICPB. Protein and polysaccharide contents in loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) increased by 16.6, 9.15 and 9.2, 2.2 times compared with R1 (biofilm with light without photocatalyst) and R2 (biofilm with photocatalyst without light), respectively. During irradiation tests, more reactive species were generated in LB-EPS, and achieving 99.8 % degradation efficiency of E2-3S; tryptophan-like protein in EPS firstly to be converted, while the tyrosine-like protein underwent greater conversion; furthermore, hydrophilic molecules with O/C < 0.45 in EPS decreased and unsaturated molecules with H/C = 0.7-1.5 and O/C = 0-0.1 increased. This study reveals the photosensitization reaction of EPS in ICPB, which provides new insights for pollutants degradation.
Collapse
Affiliation(s)
- Xiangwei Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Hongpu Xue
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Wei Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
3
|
Guo Z, Cao J, Xu R, Zhang H, He L, Gao H, Zhu L, Jia M, Yang Z, Xiong W. Novel Photoelectron-Assisted Microbial Reduction of Arsenate Driven by Photosensitive Dissolved Organic Matter in Mine Stream Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22170-22182. [PMID: 39526867 DOI: 10.1021/acs.est.4c09647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The microbial reduction of arsenate (As(V)) significantly contributes to arsenic migration in mine stream sediment, primarily driven by heterotrophic microorganisms using dissolved organic matter (DOM) as a carbon source. This study reveals a novel reduction pathway in sediments that photosensitive DOM generates photoelectrons to stimulate diverse nonphototrophic microorganisms to reduce As(V). This microbial photoelectrophic As(V) reduction (PEAsR) was investigated using microcosm incubation, which showed the transfer of photoelectrons from DOM to indigenous sediment microorganisms, thereby leading to a 50% higher microbial reduction rate of As(V). The abundance of two marker genes for As(V) reduction, arrA and arsC, increased substantially, confirming the microbial nature of PEAsR rather than a photoelectrochemical process. Photoelectron ion is unlikely to stimulate photolithoautotrophic growth. Instead, diverse nonphototrophic genera, e.g., Cupriavidus, Sphingopyxis, Mycobacterium, and Bradyrhizobium, spanning 13 orders became enriched by 10-50 folds. Metagenomic binning revealed their genetic potential to mediate the photoelectron-assisted reduction of As(V). These microorganisms contain essential genes involved in respiratory As(V) reduction, detoxification As(V) reduction, dimethyl sulfoxide reductase family, c-type cytochromes, and multiple heavy-metal resistance but lack a complete photosynthesis system. The novel microbial PEAsR pathway offers new insights into the interaction between photoelectron utilization and nonphototrophic As(V)-reducing microorganisms, which may have profound implications for arsenic pollution transportation in mine stream sediment.
Collapse
Affiliation(s)
- Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Jie Cao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Honglin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Lele He
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Linao Zhu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Meiying Jia
- Yuelushan Laboratory, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| |
Collapse
|
4
|
Liao Z, He H, Liu F, Cui J, Guo Z, Cui D, Huang B, Sun H, Pan X. Reductive Dissolution Mechanisms of Manganese Oxide Mediated by Algal Extracellular Organic Matter and the Effects on 17α-Ethinylestradiol Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39689977 DOI: 10.1021/acs.est.4c08918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Reductive dissolution of manganese oxide (MnOx) is a major process that improves the availability of manganese in natural aquatic environments. The extracellular organic matter (EOM) secreted by algae omnipresent in eutrophic waters may affect MnOx dissolution thus the fate of organic micropollutants. This study investigates the mechanisms of MnOx reductive dissolution mediated by EOM and examines the effects of this process on 17α-ethinylestradiol degradation. The influences of EOM concentration (1.0-20.0 mgC/L) and pH (6.0-9.0) in both dark and irradiated conditions were assessed. In the dark, EOM was found to facilitate MnOx reductive dissolution via the ligand-to-metal charge transfer (LMCT). The dissolution was further enhanced under irradiation, with the participation of superoxide ions (O2•-). Higher EOM concentrations increased the contents of available reducing substances and O2•-, accelerating the reductive dissolution. Higher pH slowed the photoreductive dissolution rates, while O2•--mediated reduction became more important. Polyphenols and highly unsaturated carbon and phenolic formulas in EOM were found to drive the reductive dissolution. Soluble reactive Mn(III) formed through reductive dissolution of MnOx effectively removed 17α-ethinylestradiol in solution. Overall, the findings regarding the mechanisms behind reductive dissolution of MnOx have broad implications for Mn geochemical cycles and organic micropollutant fate.
Collapse
Affiliation(s)
- Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Southwest United Graduate School, Kunming 650092, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Feiyuan Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jingye Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Danni Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Southwest United Graduate School, Kunming 650092, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
5
|
Wang K, Xu S, Wang J, Gao B, Huang Y, Song J, Ma S, Jia H, Zhan S. Insights into the photosensitivity and photobleaching of dissolved organic matter from microplastics: Structure-activity relationship and transformation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135931. [PMID: 39307013 DOI: 10.1016/j.jhazmat.2024.135931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/29/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Revealing the structure-activity relationship between physicochemical properties and photoactivities of microplastic dissolved organic matter (MPDOM) is significant for understanding the environmental fate of MPs. Here, we systematically analyzed the physicochemical properties and molecular composition of DOM derived from MPs including polystyrene (PS), polyethylene glycol terephthalate (PET), polyadipate/butylene terephthalate (PBAT), polylactic acid (PLA), polypropylene (PP), and compared their photosensitivity and photobleaching behaviors. Results indicated that PSDOM and PETDOM had more similar properties and compositions, and showed stronger photosensitivity and photobleaching effects than PBATDOM, PLADOM and PPDOM. The [3DOM∗]SS and [1O2]SS varied in the range of 0.31-13.03 × 10-14 and 1.71-5.49 × 10-13 M, respectively, which were within the reported range of DOM from other sources. The SUVA254, HIX, AImodwa, Xcwa and lignin/CRAM-like component showed positive correlation with the [3DOM∗]SS, [1O2]SS and Φ3DOM*. The negative correlation between E2/E3 and [3DOM∗]SS was due to the higher proportion of low-molecular weight components in MPDOM. The lignin/CRAM-like component was identified to be the crucial photobleaching-component. The lignin/CRAM-like in PSDOM showed a deepened oxidation degree, while its change trend in PETDOM was from unsaturated to saturated. These findings provide new insights into the relevant photochemical fate of MPDOM.
Collapse
Affiliation(s)
- Kai Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Jingzhen Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Boqiang Gao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yan Huang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jia Song
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Shuanglong Ma
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest, A&F University, Yangling 712100, PR China
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
6
|
Guo S, Liu L, Wang L, Tang J. Phototransformation and photoreactivity of MPs-DOM in aqueous environment: Key role of MPs structure decoded by optical and molecular signatures. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136331. [PMID: 39486325 DOI: 10.1016/j.jhazmat.2024.136331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/10/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
The dissolved organic matter (DOM) derived from microplastics (MPs-DOM) can be one of the photoactive components in DOM. However, information on the properties and photoreactivity of MPs-DOM during phototransformation is limited. Here, we investigated the properties and photoreactivity of MPs-DOM from polyolefins (MPs-DOM-POs), MPs-DOM derived from benzene-containing polymers (MPs-DOM-BCPs), and Suwannee River natural organic matter (SR-NOM), during a 168-hour phototransformation. After phototransformation, all examined types of DOM exhibit a decrease in concentration and molecular weight. Notably, MPs-DOM-POs display increased aromaticity and saturation, while MPs-DOM-BCPs and SR-NOM show reduced aromaticity and saturation. MPs-DOM-POs present higher steady-state concentrations of •OH but much lower steady-state concentrations of 1O2 than those of MPs-DOM-BCPs. In comparison, MPs-DOM produce more •OH but less 1O2 than SR-NOM. This study proposes that the diversification of aliphatic C─H bonds (arylation and carbonylation) by reactive intermediates (especially •OH) is the main pathway for MPs-DOM-POs phototransformation for the first time. On the other hand, the cleavage on the aromatic carboxylic acids by reactive intermediates (especially 1O2) is the main mechanism for MPs-DOM-BCPs and SR-NOM phototransformation. Our findings provide new insights into the phototransformation and photoreactivity of MPs-DOM and help to understand the potential risks of MPs in aqueous environment.
Collapse
Affiliation(s)
- Saisai Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Le Liu, Zhang S, Li C, Ma S, Liang J, Xu Z. Photo-assisted conversion of tetracycline in regulated persulfate system: Multiple roles of natural dissolved organic matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135850. [PMID: 39298945 DOI: 10.1016/j.jhazmat.2024.135850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Advanced oxidation processes (AOPs) using persulfate system can effectively remove organic pollutants. However, dissolved organic matter (DOM) has multiple effects on AOPs efficiency, and the influence of DOMs from natural sources on AOPs is still unclear. In this study, we explored the effects of soil DOM (SDOM) and fertilizer DOM (FDOM) on tetracycline (TC) removal by persulfate systems. DOMs introduction decreased light transmittance, slightly increased the pH of the systems, and destroyed original adsorption-desorption equilibrium. SDOM promoted most reactive species generation in the initial stage, thus improving the initial TC degradation rate. However, introduction of SDOM and FDOM increased the final TC residual rate. FDOM produced more obvious inhibitory effects on TC degradation. The final TC residual rates in systems containing 7.5 and 15 mg L-1 FDOM (F7.5-TC-PS and F15-TC-PS, respectively) were 25.85 % and 25.52 %, respectively. The inhibitory effects of FDOM on TC degradation were related to the combination between TC and FDOM, with humic acid-like component in FDOM being the main contributor. Besides, the main components in DOMs underwent transformation in the persulfate systems. This study sought to provide insights into the regulatory effects of DOM on TC photo-assisted conversion by AOPs.
Collapse
Affiliation(s)
- Le Liu
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Shihan Zhang
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Cheng Li
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Songyao Ma
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiayi Liang
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zihan Xu
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
You T, Zhou M, Ding Y, Yan Z, Xi Y, Yao S, Zeng X, Wang S, Jia Y. Unveiling the effects of dissolved organic matter (DOM) extracted from coastal algae and river on the photooxidation of arsenite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176499. [PMID: 39332743 DOI: 10.1016/j.scitotenv.2024.176499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The coastal environment is an important ecosystem connecting land and sea, and arsenite (As(III)) in coastal seawater can seriously affect human health through the food chain. However, the effects of dissolved organic matter (DOM) extracted from coastal algae and rivers on As(III) photooxidation remain unclear. Results show that coastal algal DOM (CA-DOM) is significantly more effective than Suwannee River natural organic matter (SRNOM) in photooxidation of As(III), with a rate 8.3 times higher after correcting for light screening effects. CA-DOM accelerates As(III) photooxidation mainly through the 3DOM⁎ pathway, contributing 78.7 % to the process, whereas 3NOM⁎ contributes only 37.2 % for SRNOM. CA-DOM consists primarily of low-excited tyrosine and tryptophan-like protein substances, whereas SRNOM consists of humic and fulvic acid-like substances. Thus, CA-DOM exhibits a higher steady-state concentration of 3DOM⁎, and the 3DOM⁎ reacts much faster with As(III) than the 3NOM⁎. The increase in CA-DOM concentration can significantly accelerate the photooxidation of As(III), whereas the effect of SRNOM concentration is negligible. Increased salinity can accelerate As(III) photooxidation for all types of DOM. Our results provide new insights into the role of DOM from different sources in the photooxidation of As(III) in the natural environment or engineering applications.
Collapse
Affiliation(s)
- Tingting You
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mengchao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yu Ding
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zelong Yan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yimei Xi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuhua Yao
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
9
|
Li W, Jin W, Wu D, Wang C, Xu H, Song N. The substantial generation of photochemically produced reactive intermediates (PPRIs) in algae-type zones from one large shallow lake promoted the removal of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176821. [PMID: 39395495 DOI: 10.1016/j.scitotenv.2024.176821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Photochemically produced reactive intermediates (PPRIs) are ubiquitously present in aquatic systems and hold significant importance in biogeochemical cycles. The photochemical reaction of dissolved organic matter (DOM), known as photosensitizers upon irradiation, is the main pathway for PPRIs generation. However, the PPRIs produced by algal-derived organic matter (ADOM) and their environmental effects remains elusive. This study confirmed that substantial PPRIs were generated by ADOM in the algal-derived areas. UV absorption spectra, fluorescence spectra and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were then indicated a significant correlation between the molecular weight of DOM and the quantum yield of PPRIs, with lower molecular weight of DOM exhibiting a higher potential for PPRIs generation. Orthogonal partial least squares (OPLS) were used to build novel multivariate predictive models for indicating the PPRIs production in algae-type zone. Also, the higher concentrations of PPRIs could significantly removal different kinds of organic pollutants, such as bisphenol A (BPA), sulfadiazine (SDZ) and 17α-ethinylestradiol (EE2). Quenching experiments further elucidated that 3DOM⁎ was the key specie for pollutants degradation, serving as the precursor to generate a series of PPRIs. This study highlighted the importance of PPRIs generated from ADOM in the natural attenuation of pollutants and provided a new insight for understanding the self-purification in aquatic system.
Collapse
Affiliation(s)
- Wenkang Li
- Key Laboratory of Lake and Watershed Science for Water Security, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weidong Jin
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dinggui Wu
- Organic Geochemistry Unit, Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Chunliu Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huacheng Xu
- Key Laboratory of Lake and Watershed Science for Water Security, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Na Song
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
10
|
Qin B, Yang G, Chen X, Wu X, Fang Y, Quan X, Zhuang L. Specific interaction of resorufin to outer-membrane cytochrome OmcE of Geobacter sulfurreducens: A new insight on artificial electron mediators in promoting extracellular electron transfer. WATER RESEARCH 2024; 266:122403. [PMID: 39278116 DOI: 10.1016/j.watres.2024.122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Bioelectrochemical system (BES) is a unique biotechnology for wastewater treatment and energy recovery, and extracellular electron transfer (EET) between microbe and electrode is the key to optimize the performance of BESs. Resazurin is an effective artificial compound that can promote EET in BESs, but the way how it transports electrons is not fully understood. In this study differential pulse voltammetry revealed that the redox potential of resorufin (RR) (intermediate of resazurin reduction, actual electron mediator) within Geobacter sulfurreducens biofilm was positively shifted by 100 mV than that of free RR, and this shift was attenuated by the mutation of outer-membrane cytochrome gene omcE but not by omcS and omcZ mutation, indicating that RR specifically interacted with OmcE. By using heterologously expressed OmcE monomers in Escherichia coli, it was found that RR bonded with OmcE monomers with a moderate intensity (dissociation constant of 720 nM), and their interaction obviously increased the content of α helix in OmcE monomers. Biomolecular analysis indicated that heme II of OmcE monomer might be the binding site for RR (binding energy of -7.01 kJ/mol), which were favorable for electron transfer within OmcE-RR complex. Comparative transcriptomics showed that RZ addition significantly upregulated the expression of omcE, periplasmic cytochrome gene ppcB, and outer-membrane genes omaB, ombB and omcB, thus, it was hypothesized that OmcE-bound RR might serve as potential electron acceptor of OmbB-OmaB-OmcB porin complex which passes electrons across outer membrane. Our work demonstrated a new pathway of artificial electron mediators in facilitating EET in Geobacter species, which may guide the application of electron mediator in improving the performance of BESs.
Collapse
Affiliation(s)
- Baoli Qin
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Guiqin Yang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Xiaochun Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xian Wu
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yanlun Fang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Quan
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Li Zhuang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Li T, Li CY, Wang YF, Zhang JN, Li H, Wu HF, Yang XL, Song HL. Insights to the cooperation of double-working potential electroactive biofilm for performance of sulfamethoxazole removal: ARG fate and microorganism communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135357. [PMID: 39079293 DOI: 10.1016/j.jhazmat.2024.135357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/06/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Bioelectrochemical systems (BESs) have shown great potential in enhancing sulfamethoxazole (SMX) removal. However, electroactive biofilms (EBs) constructed with single potentials struggle due to limited biocatalytic activity, hindering deep SMX degradation. Here, we constructed a double-working potential BES (BES-D) to investigate its ability to eliminate SMX and reduce the levels of corresponding antibiotic resistance genes (ARGs). The preferable electrochemical activity of EB in BES-D was confirmed by electrochemical characterization, EPS analysis, physical structure, viability of the biofilm, and cytochrome content. BES-D exhibited a notably greater SMX removal efficiency (94.2 %) than did the single-working potential BES (BES-S) and the open-circuit group (OC). Degradation pathway analysis revealed that the cooperative EB could accelerate the in-depth removal of SMX. Moreover, EB interaction in BES-D decreased the relative abundance of ARGs in biofilms compared to that in BES-S, although the absolute number of ARG copies increased in BES-D effluents. Compared to those in BES-S and OC, more complex cross-niche microbial associations in the EB of BES-D were observed by network analysis of the bacterial community and ARG hosts, enhancing the degradation efficiency of SMX. In conclusion, BES-D has significant potential for SMX removal and the enhancement of EB activity. Nonetheless, the risk of ARG dissemination in effluent remains a concern.
Collapse
Affiliation(s)
- Tao Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Chen-Ying Li
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China.
| | - Yan-Fei Wang
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Jing-Nan Zhang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Hua Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China; Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hui-Fang Wu
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| |
Collapse
|
12
|
Fan X, Kong L, Wang J, Tan Y, Xu X, Li M, Zhu L. Surface-programmed microbiome assembly in phycosphere to microplastics contamination. WATER RESEARCH 2024; 262:122064. [PMID: 39029396 DOI: 10.1016/j.watres.2024.122064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
Recalcitrance in microplastics accounts for ubiquitous white pollution. Of special interest are the capabilities of microorganisms to accelerate their degradation sustainably. Compared to the well-studied pure cultures in degrading natural polymers, the algal-bacterial symbiotic system is considered as a promising candidate for microplastics removal, cascading bottom-up impacts on ecosystem-scale processes. This study selected and enriched the algae-associated microbial communities hosted by the indigenous isolation Desmodesmus sp. in wastewater treatment plants with micro-polyvinyl chloride, polyethylene terephthalate, polyethylene, and polystyrene contamination. Results elaborated that multiple settled and specific affiliates were recruited by the uniform algae protagonist from the biosphere under manifold microplastic stress. Alteration of distinct chemical functionalities and deformation of polymers provide direct evidence of degradation in phycosphere under illumination. Microplastic-induced phycosphere-derived DOM created spatial gradients of aromatic protein, fulvic and humic acid-like and tryptophan components to expanded niche-width. Surface thermodynamic analysis was conducted to simulate the reciprocal and reversible interaction on algal-bacterial and phycosphere-microplastic interface, revealing the enhancement of transition to stable and irreversible aggregation for functional microbiota colonization and microplastics capture. Furthermore, pangenomic analysis disclosed the genes related to the chemotaxis and the proposed microplastics biodegradation pathway in enriched algal-bacterial microbiome, orchestrating the evidence for common synthetic polymer particles and ultimately to confirm the effectiveness and potential. The present study emphasizes the necessity for future endeavors aimed at fully leveraging the potential of algal-bacterial mutualistic systems within sustainable bioremediation strategies targeting the eradication of microplastic waste.
Collapse
Affiliation(s)
- Xuan Fan
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lingyu Kong
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jingyi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yixiao Tan
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Liang Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
13
|
Han NN, Yang JH, Fan NS, Jin RC. Mechanistic insight into microbial interaction and metabolic pattern of anammox consortia on surface-modified biofilm carrier with extracellular polymeric substances. BIORESOURCE TECHNOLOGY 2024; 407:131092. [PMID: 38986879 DOI: 10.1016/j.biortech.2024.131092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The extremely slow growth rate of anaerobic ammonia oxidation (anammox) bacteria limits full-scale application of anammox process worldwide. In this study, extracellular polymeric substances (EPS)-coated polypropylene (PP) carriers were prepared for biofilm formation. The biomass adhesion rate of EPS-PP carrier was 12 times that of PP carrier, and EPS-PP achieved significant enrichment of E. coli BY63. The 120-day continuous flow experiment showed that the EPS-PP carrier accelerated the formation of anammox biofilm, and the nitrogen removal efficiency increased by 10.5 %. In addition, the abundance of Candidatus Kuenenia in EPS-PP biofilm was 27.1%. Simultaneously, amino acids with high synthesis cost and the metabolites of glycerophospholipids related to biofilm formation on EPS-PP biofilm were significantly up-regulated. Therefore, EPS-PP carriers facilitated the rapid formation of anammox biofilm and promoted the metabolic activity of functional bacteria, which further contributed to the environmental and economic sustainability of anammox process.
Collapse
Affiliation(s)
- Na-Na Han
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jia-Hui Yang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
14
|
Wei Y, Niu S, Xu Y, Wei Z, Wang JJ. Removal of dibutyl phthalate (DBP) by bacterial extracellular polymeric substances (EPS) via enzyme catalysis and electron transmission. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122161. [PMID: 39126842 DOI: 10.1016/j.jenvman.2024.122161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Phthalic acid esters (PAEs) showed high environmental risk due to the widely existence and toxicity. Microbial-excreted extracellular polymeric substances (EPS) showed potential of degrading organic compounds. In this study, the degradation ability and the mechanisms of EPS from two bacteria (PAEs degrader Gordonia sihwensis; electrochemically active strain Shewanella oneidensis MR-1) were investigated. Results showed that EPS of the two bacteria had different composition of C-type cytochromes, flavins, catalase, and α-glucosidase. The removal of dibutyl phthalate (DBP) by total EPS were 68% of G. sihwensis and 72% for S. oneidensis. For both bacteria, the degradation rates k of EPS were as TB-EPS > LB-EPS > S-EPS. The degradation mechanisms of EPS from the two bacteria showed difference with electrochemical active components mediated electron transmission for S. oneidensis MR-1 and enzymes catalysis for G. sihwensis. Results of this study illustrated the variation of the contribution of active components of EPS to degradation.
Collapse
Affiliation(s)
- Yi Wei
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shuai Niu
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yaxi Xu
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhuo Wei
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jim J Wang
- School of Plant, Environment and Soil Sciences, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA
| |
Collapse
|
15
|
Wu K, Ouyang S, Tao Z, Hu X, Zhou Q. Algal extracellular polymeric substance compositions drive the binding characteristics, affinity, and phytotoxicity of graphene oxide in water. WATER RESEARCH 2024; 260:121908. [PMID: 38878307 DOI: 10.1016/j.watres.2024.121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
Graphene oxide (GO, a popular 2D nanomaterial) poses great potential in water treatment arousing considerable attention regarding its fate and risk in aquatic environments. Extracellular polymeric substances (EPS) exist widely in water and play critical roles in biogeochemical processes. However, the influences of complex EPS fractions on the fate and risk of GO remain unknown in water. This study integrates fluorescence excitation-emission matrix-parallel factor, two-dimensional correlation spectroscopy, and biolayer interferometry studies on the binding characteristics and affinity between EPS fractions and GO. The results revealed the preferential binding of fluorescent aromatic protein-like component, fulvic-like component, and non-fluorescent polysaccharide in soluble EPS (S-EPS) and bound EPS (B-EPS) on GO via π-π stacking and electrostatic interaction that contributed to a higher adsorption capacity of S-EPS on GO and weaker affinity than of B-EPS. Moreover, the EPS fractions drive the morphological and structural alterations, and the attenuated colloid stability of GO in water. Notably, GO-EPS induced stronger phytotoxicity (e.g., photosynthetic damage, and membrane lipid remodeling) compared to pristine GO. Metabolic and functional lipid analysis further elucidated the regulation of amino acid, carbohydrate, and lipid metabolism contributed to the persistent phytotoxicity. This work provides insights into the roles and mechanisms of EPS fractions composition in regulating the environmental fate and risk of GO in natural water.
Collapse
Affiliation(s)
- Kangying Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
16
|
Huang S, Zhang Z, Lin C, Cheng H. Solar Photodegradation of a Novel des-F(6)-Fluoroquinolone, Garenoxacin, and Ecotoxicity of Its Phototransformation Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13918-13928. [PMID: 39038112 DOI: 10.1021/acs.est.4c03206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Garenoxacin (GRNX) is a novel des-F(6)-fluoroquinolone on the horizon; thus, its fate and risk in the aquatic environment deserve attention. This study systematically investigated, for the first time, the phototransformation of GRNX under simulated and natural sunlight and assessed the ecotoxicity of its photodegradation products. Phototransformation of GRNX was observed to depend strongly on its ionization state, with direct photolysis and self-sensitized photolysis having comparable contributions for the cationic and zwitterionic species, while the latter dominated for the anionic species. Singlet oxygen generated via the self-sensitized photolysis of GRNX was the major reactive oxygen species in its photodegradation. Phototransformation of GRNX in different ionization states followed distinct pathways, with defluorination of the difluoromethyl group occurring only for the zwitterionic and anionic species. GRNX photodegradation in natural water could be described by a simple kinetic model based on the measured steady-state concentrations of 1O2 and ·OH. Toxicity tests with Vibrio fischeri and Chlorella vulgaris consistently indicate that the generation of hydroxylation and decarboxylation products during photodegradation of GRNX increased the acute toxicity. These findings not only provide insights into the fate of GRNX in sunlit surface water but also reveal the potentially significant risk of its photodegradation products to the aquatic ecosystem.
Collapse
Affiliation(s)
- Shengnan Huang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhaobin Zhang
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Liu H, Tu YN, Lei Y, Zhou D, Zhao Q, Li Y, Pan W. Photochemistry of plateau lake-derived dissolved organic matter: Reactive species generation and effects on 17β-estradiol photodegradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134615. [PMID: 38761768 DOI: 10.1016/j.jhazmat.2024.134615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Naturally strong ultraviolet irradiation at high altitudes causes photobleaching of plateau lake DOM (P-DOM) and affects its photochemical activity. However, the photoreactivity of P-DOM has remained unclear under natural photobleaching condition. Here, six P-DOM samples isolated from plateau lakes in Yunnan Province, China as well as two reference DOM as comparisons were used to explore the photogeneration of reactive species (RS) and their effects on 17β-estradiol photodegradation. Compared with SRHA/SRFA, P-DOM has lower aromaticity, average molecular weight, and electron-donating capacity. The quantum yields of triplet state P-DOM (3P-DOM*), 1O2, and ∙OH produced in P-DOM solutions were greatly higher than those of reference DOM. The RS quantum yields had positive linear correlations with E2/E3 and SR, whereas were negatively linear correlated with SUVA25. Radical quenching experiments showed that 3P-DOM* was the prominent RS for 17β-estradiol photodegradation, and its contribution exceeded 70% for each of P-DOM. 3P-DOM*-mediated photodegradation was mainly attributed to the electron-transfer reactions with an average second-order rate constant of 4.62 × 109 M-1s-1, indicating the strong photoreactivity towards 17β-estradiol. These findings demonstrate that P-DOM is an efficient photosensitizer for RS production, among which 3P-DOM* may play an important role in enhanced photodegradation for organic micropollutants in plateau lake enriched with DOM.
Collapse
Affiliation(s)
- Huaying Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yi-Na Tu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yajie Lei
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Die Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qilin Zhao
- Yunnan Environmental Monitoring Center, Kunming, Yunnan 650034, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Wenjiao Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
18
|
Wang Q, Li X, Zhou K, Li Y, Wang Y, Zhang G, Guo H, Zhou J, Wang T. Mechanisms of conjugative transfer of antibiotic resistance genes induced by extracellular polymeric substances: Insights into molecular diversities and electron transfer properties. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135181. [PMID: 39003806 DOI: 10.1016/j.jhazmat.2024.135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Dissemination of antibiotic resistance genes (ARGs) has become a critical threat to public health. Activated sludge, rich in extracellular polymeric substances (EPS), is an important pool of ARGs. In this study, mechanisms of conjugation transfer of ARGs induced by EPS, including tightly bound EPS (TBEPS), soluble EPS (SEPS), and loosely bound EPS (LBEPS), were explored in terms of molecular diversities and electron transfer properties of EPS. Conjugation transfer frequency was increased by 9.98-folds (SEPS), 4.21-folds (LBEPS), and 15.75-folds (TBEPS) versus the control, respectively. Conjugation-related core genes involving SOS responses (9 genes), membrane permeability (18 genes), intercellular contact (17 genes), and energy metabolism pathways (13 genes) were all upregulated, especially in the presence of TBEPS. Carbohydrates and aliphatic substances in SEPS and LBEPS were contributors to ARG transfer, via influencing reactive oxygen species (ROS) formation (SEPS) and ROS and adenosine triphosphate (ATP) production (LBEPS). TBEPS had the highest redox potential and greatest lability and facilitated electron transfer and alternated respiration between cells, thus promoting ARG transfer by producing ATP. Generally, the chemical molecular characteristics and redox properties of EPS facilitated ARG transfer mainly by influencing lipid peroxidation and ATP, respectively.
Collapse
Affiliation(s)
- Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Xiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Keying Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
19
|
Kiki C, Yan X, Elimian EA, Jiang B, Sun Q. Deciphering the Role of Microbial Extracellular and Intracellular Organic Matter in Antibiotic Photodissipation: Molecular and Fluorescent Profiling under Natural Radiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11661-11674. [PMID: 38874829 DOI: 10.1021/acs.est.4c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This study addresses existing gaps in understanding the specific involvement of dissolved organic matter (DOM) fractions in antibiotic photolysis, particularly under natural conditions and during DOM photobleaching. Employing fluorescent, chemical, and molecular analysis techniques, it explores the impact of extracellular and intracellular organic matter (EOM and IOM) on the photodissipation of multiclass antibiotics, coupled with DOM photobleaching under natural solar radiation. Key findings underscore the selective photobleaching of DOM fractions, propelled by distinct chemical profiles, influencing DOM-mediated antibiotic photolysis. Notably, lipid-like substances dominate in the IOM, while lignin-like substances prevail in the EOM, each uniquely responding to sunlight and exhibiting selective photobleaching. Sunlight primarily targets fulvic acid-like lignin components in EOM, contrasting the initial changes observed in tryptophan-like lipid substances in IOM. The lower photolability of EOM, attributed to its rich unsaturated compounds, contributes to an enhanced rate of indirect antibiotic photolysis (0.339-1.402 h-1) through reactive intermediates. Conversely, the abundance of aliphatic compounds in IOM, despite it being highly photolabile, exhibits a lower mediation of antibiotic photolysis (0.067-1.111 h-1). The triplet state excited 3DOM* plays a pivotal role in the phototransformation and toxicity decrease of antibiotics, highlighting microbial EOM's essential role as a natural aquatic photosensitizer for water self-purification. These findings enhance our understanding of DOM dynamics in aquatic systems, particularly in mitigating antibiotic risks, and introduce innovative strategies in environmental management and water treatment technologies.
Collapse
Affiliation(s)
- Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100043, China
- National Institute of Water, University of Abomey-Calavi, 01 BP: 526 Cotonou, Benin
| | - Xiaopeng Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100043, China
| | - Ehiaghe A Elimian
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H, Canada
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
20
|
Chen H, Shan X, Qiu X, Ding L, Liang X, Guo X. High-Resolution Mass Spectrometry Combined with Reactive Oxygen Species Reveals Differences in Photoreactivity of Dissolved Organic Matter from Microplastic Sources in Aqueous Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10334-10346. [PMID: 38805726 DOI: 10.1021/acs.est.4c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Microplastics (MPs)-derived dissolved organic matter (MPs-DOM) is becoming a non-negligible source of DOM pools in aquatic systems, but there is limited understanding about the photoreactivity of different MPs-DOM. Herein, MPs-DOM from polystyrene (PS), polyethylene terephthalate (PET), poly(butylene adipate-co-terephthalate) (PBAT), PE, and polypropylene (PP), representing aromatic, biodegradable, and aliphatic plastics, were prepared to examine their photoreactivity. Spectral and high-resolution mass spectrometry analyses revealed that PS/PET/PBAT-DOM contained more unsaturated aromatic components, whereas PE/PP-DOM was richer in saturated aliphatic components. Photodegradation experiments observed that unsaturated aromatic molecules were prone to be degraded compared to saturated aliphatic molecules, leading to a higher degradation of PS/PET/PBAT-DOM than PE/PP-DOM. PS/PET/PBAT-DOM was mainly degraded by hydroxyl (•OH) via attacking unsaturated aromatic structures, whereas PE/PP-DOM by singlet oxygen (1O2) through oxidizing aliphatic side chains. The [•OH]ss was 1.21-1.60 × 10-4 M in PS/PET/PBAT-DOM and 0.97-1.14 × 10-4 M in PE/PP-DOM, while the [1O2]ss was 0.90-1.35 × 10-12 and 0.33-0.44 × 10-12 M, respectively. This contributes to the stronger photoreactivity of PS/PET/PBAT-DOM with a higher unsaturated aromatic degree than PE/PP-DOM. The photodegradation of MPs-DOM reflected a decreasing tendency from aromatic-unsaturated molecules to aliphatic-saturated molecules. Special attention should be paid to the photoreactivity and environmental impacts associated with MPs-DOM containing highly unsaturated aromatic compounds.
Collapse
Affiliation(s)
- Hao Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoling Shan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
21
|
Ossola R, Farmer D. The Chemical Landscape of Leaf Surfaces and Its Interaction with the Atmosphere. Chem Rev 2024; 124:5764-5794. [PMID: 38652704 PMCID: PMC11082906 DOI: 10.1021/acs.chemrev.3c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Atmospheric chemists have historically treated leaves as inert surfaces that merely emit volatile hydrocarbons. However, a growing body of evidence suggests that leaves are ubiquitous substrates for multiphase reactions-implying the presence of chemicals on their surfaces. This Review provides an overview of the chemistry and reactivity of the leaf surface's "chemical landscape", the dynamic ensemble of compounds covering plant leaves. We classified chemicals as endogenous (originating from the plant and its biome) or exogenous (delivered from the environment), highlighting the biological, geographical, and meteorological factors driving their contributions. Based on available data, we predicted ≫2 μg cm-2 of organics on a typical leaf, leading to a global estimate of ≫3 Tg for multiphase reactions. Our work also highlighted three major knowledge gaps: (i) the overlooked role of ambient water in enabling the leaching of endogenous substances and mediating aqueous chemistry; (ii) the importance of phyllosphere biofilms in shaping leaf surface chemistry and reactivity; (iii) the paucity of studies on the multiphase reactivity of atmospheric oxidants with leaf-adsorbed chemicals. Although biased toward available data, we hope this Review will spark a renewed interest in the leaf surface's chemical landscape and encourage multidisciplinary collaborations to move the field forward.
Collapse
Affiliation(s)
- Rachele Ossola
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| | - Delphine Farmer
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| |
Collapse
|
22
|
Wasswa J, Perkins M, Matthews DA, Zeng T. Characterizing the Impact of Cyanobacterial Blooms on the Photoreactivity of Surface Waters from New York Lakes: A Combined Statewide Survey and Laboratory Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8020-8031. [PMID: 38629457 PMCID: PMC11080073 DOI: 10.1021/acs.est.3c09448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024]
Abstract
Cyanobacterial blooms introduce autochthonous dissolved organic matter (DOM) into aquatic environments, but their impact on surface water photoreactivity has not been investigated through collaborative field sampling with comparative laboratory assessments. In this work, we quantified the apparent quantum yields (Φapp,RI) of reactive intermediates (RIs), including excited triplet states of dissolved organic matter (3DOM*), singlet oxygen (1O2), and hydroxyl radicals (•OH), for whole water samples collected by citizen volunteers from more than 100 New York lakes. Multiple comparisons tests and orthogonal partial least-squares analysis identified the level of cyanobacterial chlorophyll a as a key factor in explaining the enhanced photoreactivity of whole water samples sourced from bloom-impacted lakes. Laboratory recultivation of bloom samples in bloom-free lake water demonstrated that apparent increases in Φapp,RI during cyanobacterial growth were likely driven by the production of photoreactive moieties through the heterotrophic transformation of freshly produced labile bloom exudates. Cyanobacterial proliferation also altered the energy distribution of 3DOM* and contributed to the accelerated transformation of protriptyline, a model organic micropollutant susceptible to photosensitized reactions, under simulated sunlight conditions. Overall, our study provides insights into the relationship between the photoreactivity of surface waters and the limnological characteristics and trophic state of lakes and highlights the relevance of cyanobacterial abundance in predicting the photoreactivity of bloom-impacted surface waters.
Collapse
Affiliation(s)
- Joseph Wasswa
- Department
of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - MaryGail Perkins
- Upstate
Freshwater Institute, Syracuse, New York 13206, United States
| | - David A. Matthews
- Upstate
Freshwater Institute, Syracuse, New York 13206, United States
| | - Teng Zeng
- Department
of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
23
|
Xie H, Li Q, Wang M, Feng Y, Wang B. Unraveling the photochemical behavior of dissolved organic matter derived from hydrothermal carbonization process water: Insights from molecular transformation and photoactive species. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133946. [PMID: 38442603 DOI: 10.1016/j.jhazmat.2024.133946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Hydrothermal carbonization process water (HTPW) has been utilized as a substitute for chemical fertilizers in agricultural applications. However, the input of HTPW into paddy water, particularly the significant proportion of dissolved organic matter (DOM) in HTPW (DOM-HTPW), directly engages in photochemical transformations, a phenomenon often overlooked. This study observed a consistent decrease in humification (SUVA280, 7.7-53.9%) and aromaticity (SUVA254, 6.1-40.0%) of DOM-HTPW after irradiation. The primary active photobleaching components of DOM-HTPW varied depending on the feedstock, such as protein for chicken manure DOM-HTPW and lignin for rice straw DOM-HTPW. The photochemical activity of DOM-HTPW was augmented by its lower molecular weight and higher hydrophilic composition, particularly evident in chicken manure DOM-HTPW, which exhibited higher generation rates for 1O2 (35.1-37.1%), 3DOM* (32.8-43.9%), and O2•- (28.6-48.8%) as measured by molecular probes. DOM-HTPW effectively facilitated the phototransformation of tetracycline, with the contribution of O2•- being more significant than 3DOM* and 1O2. These findings shed new light on the understanding the photochemical processes of DOM-HTPW as exogenous DOM and the interconnected fate of contaminants in aquatic environments.
Collapse
Affiliation(s)
- Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qiaoqiao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minli Wang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
24
|
Li F, Bai X, Ji Y, Kang M. Understanding microplastic aging driven by photosensitization of algal extracellular polymeric substances. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133949. [PMID: 38452677 DOI: 10.1016/j.jhazmat.2024.133949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
The aging of microplastics (MPs) is extremely influenced by photochemically-produced reactive intermediates (PPRIs), which are mediated by natural photosensitive substances. Algal extracellular polymeric substances (EPS) can produce PPRIs when exposed to sunlight. Nonetheless, the specific role of EPS in the aging process of MPs remains unclear. This work systematically explored the aging process of polystyrene (PS) MPs in the EPS secreted by Chlorella vulgaris under simulated sunlight irradiation. The results revealed that the existence of EPS accelerated the degradation of PS MPs into particles with sizes less than 1 µm, while also facilitating the formation of hydroxy groups on the surface. The release rate of dissolved organic matter (DOM) from PS MPs was elevated from 0.120 mg·L-1·day-1 to 0.577 mg·L-1·day-1. The primary factor contributing to the elevated levels of DOM was humic acid-like compounds generated through the breakdown of PS. EPS accelerated the aging process of PS MPs by primarily mediating the formation of triplet excited states (3EPS*), singlet oxygen (1O2), and superoxide radicals (O2∙-), resulting in indirect degradation. 3EPS* was found to have the most substantial impact. This study makes a significant contribution to advance understanding of the environmental fate of MPs in aquatic environments impacted by algal blooms.
Collapse
Affiliation(s)
- Fengjie Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Yetong Ji
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
25
|
Zhong X, Sun J, Yuan Y, Zhang Y, Bai X, Lin Q, Dai K, Xu Z. Photochemical behaviors of sludge extracellular polymeric substances from bio-treated effluents towards antibiotic degradation: Distinguish the main photosensitive active component and its environmental implication. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133667. [PMID: 38325102 DOI: 10.1016/j.jhazmat.2024.133667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/26/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Activated sludge extracellular polymeric substances (ASEPSs) comprise most dissolved organic matters (DOMs) in the tail water. However, the understanding of the link between the photolysis of antibiotic and the photo-reactivity/photo-persistence of ASEPS components is limited. This study first investigated the photochemical behaviors of ASEPS's components (humic acids (HA), hydrophobic substances (HOS) and hydrophilic substances (HIS)) separated from municipal sludge's EPS (M-EPS) and nitrification sludge's EPS (N-EPS) in the photolysis of sulfadiazine (SDZ). The results showed that 60% of SDZ was removed by the M-EPS, but the effect in the separated components was weakened, and only 24% - 39% was degraded. However, 58% of SDZ was cleaned by HOS in N-EPS, which was 23% higher than full N-EPS. M-EPS components had lower steady-state concentrations of triplet intermediates (3EPS*), hydroxyl radicals (·OH) and singlet oxygen (1O2) than M-EPS, but N-EPS components had the highest concentrations (5.96 ×10-15, 8.44 ×10-18, 4.56 ×10-13 M, respectively). The changes of CO, C-O and O-CO groups in HA and HOS potentially correspond to reactive specie's generation. These groups change little in HIS, which may make it have radiation resistance. HCO-3 and NO-3 decreased the indirect photolysis of SDZ, and its by-product N-(2-Pyrimidinyl)1,4-benzenediamine presents high environmental risk.
Collapse
Affiliation(s)
- Xuexian Zhong
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyan Bai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qintie Lin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Kang Dai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
26
|
Liao Z, He H, Wang Y, Liu F, Cui D, Cui J, Guo Z, Lai C, Huang B, Sun H, Pan X. Algal Extracellular Organic Matter Induced Photochemical Oxidation of Mn(II) to Solid Mn Oxide: Role of Mn(III)-EOM Complex and Its Ability to Remove 17α-Ethinylestradiol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5832-5843. [PMID: 38511412 DOI: 10.1021/acs.est.3c07970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Photosensitizer-mediated abiotic oxidation of Mn(II) can yield soluble reactive Mn(III) and solid Mn oxides. In eutrophic water systems, the ubiquitous algal extracellular organic matter (EOM) is a potential photosensitizer and may have a substantial impact on the oxidation of Mn(II). Herein, we focused on investigating the photochemical oxidation process from Mn(II) to solid Mn oxide driven by EOM. The results of irradiation experiments demonstrated that the generation of Mn(III) intermediate was crucial for the successful photo oxidization of Mn(II) to solid Mn oxide mediated by EOM. EOM can serve as both a photosensitizer and a ligand, facilitating the formation of the Mn(III)-EOM complex. The complex exhibited excellent efficiency in removing 17α-ethinylestradiol. Furthermore, the complex underwent decomposition as a result of reactions with reactive intermediates, forming a solid Mn oxide. The presence of nitrate can enhance the photochemical oxidation process, facilitating the conversion of Mn(II) to Mn(III) and then to solid Mn oxide. This study deepens our grasp of Mn(II) geochemical processes in eutrophic water and its impact on organic micropollutant fate.
Collapse
Affiliation(s)
- Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Southwest United Graduate School, Kunming 650092, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yiying Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Feiyuan Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Danni Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jingye Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Southwest United Graduate School, Kunming 650092, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
27
|
Guo Y, Peng B, Liao J, Cao W, Liu Y, Nie X, Li Z, Ouyang R. Recent advances in the role of dissolved organic matter during antibiotics photodegradation in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170101. [PMID: 38242474 DOI: 10.1016/j.scitotenv.2024.170101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The presence of residual antibiotics in the environment is a prominent issue. Photodegradation behavior is an important way of antibiotics reduction, which is closely related to dissolved organic matter (DOM) in water. The review provides an overview of the latest advancements in the field. Classification, characterization of DOM, and the dominant mechanisms for antibiotic photodegradation were discussed. Furthermore, it summarized and compared the effects of DOM on different antibiotics photodegradation. Moreover, the review comprehensively considered the factors influencing the photodegradation of antibiotics in the aquatic environment, including the characteristics of light, temperature, dosage of DOM, concentration of antibiotics, solution pH, and the presence of coexisting ions. Finally, potential directions were proposed for the development of predictive models for the photodegradation of antibiotics. Based on the review of existing literature, this paper also considered several pathways for the future study of antibiotic photodegradation. This study allows for a better understanding of the DOM's environmental role and provides important new insights into the photochemical fate of antibiotics in the aquatic environment.
Collapse
Affiliation(s)
- Yinghui Guo
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Bo Peng
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China.
| | - Jinggan Liao
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Weicheng Cao
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Yaojun Liu
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Xiaodong Nie
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Zhongwu Li
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Rui Ouyang
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
28
|
Wei Z, Niu S, Wei Y, Liu Y, Xu Y, Yang Y, Zhang P, Zhou Q, Wang JJ. The role of extracellular polymeric substances (EPS) in chemical-degradation of persistent organic pollutants in soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168877. [PMID: 38013104 DOI: 10.1016/j.scitotenv.2023.168877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Persistent organic pollutants (POPs) in soil show high environmental risk due to their high toxicity and low biodegradability. Studies have demonstrated the degradation function of microbial extracellular polymeric substances (EPS) on POPs in various matrices. However, the degradation mechanisms and the factors that influence the process in soil have not been clearly illustrated. In this review, the characteristics of EPS were introduced and the possible mechanisms of EPS on degradation of organic pollutants (e.g., external electron transfer, photodegradation, and enzyme catalysis) were comprehensively discussed. In addition, the environmental conditions (e.g., UV, nutrients, and redox potential) that could influence the production and degradation-related active components of EPS were addressed. Moreover, the current approaches on the application of EPS in biotechnology were summarized. Further, the future perspectives of enhancement on degradation of POPs by regulating EPS were discussed. Overall, this review could provide a new thought on remediation of POPs by widely-existing EPS in soil with low-cost and minimized eco-disturbance.
Collapse
Affiliation(s)
- Zhuo Wei
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China
| | - Shuai Niu
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China
| | - Yi Wei
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China
| | - Yang Liu
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China.
| | - Yaxi Xu
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China
| | - Yaheng Yang
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China
| | - Peng Zhang
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China
| | - Qingqiu Zhou
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China
| | - Jim J Wang
- School of Plant, Environment and Soil Sciences, Louisiana State University AgCenter, Baton Rouge, LA 70803, USA
| |
Collapse
|
29
|
Zeng Y, Wang H, Hu J, Zhang J, Wang F, Wang T, Zhou Q, Dahlgren RA, Gao M, Gao H, Chen Z. Illuminated fulvic acid stimulates denitrification and As(III) immobilization in flooded paddy soils via an enhanced biophotoelectrochemical pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169670. [PMID: 38160830 DOI: 10.1016/j.scitotenv.2023.169670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Fulvic acid (FA) is a representative photosensitive dissolved organic matter (DOM) compound that occurs naturally in paddy soils. In this study, the effect of a FA + nitrate treatment (0, 4 and 8 mg/L FA + 20 mmol/L nitrate) on denitrification and As(III) immobilization in flooded paddy soils was assessed under dark and intermittently illuminated conditions (12 h light+12 h dark). The FA input stimulated denitrification in illuminated soils (~100 % of nitrate removal within 6 days) compared to dark conditions (~92 % nitrate removal after 6 days). Meanwhile, As(III) (initial concentration of 0.1 mmol/L) was nearly completely immobilized (~100 %) under illuminated conditions after 4 days for the FA + nitrate treatment compared to 90- 93 % retention in the dark. Denitrification and As immobilization were positively related to the FA dosage in the illuminated assays. The stronger denitrification in illuminated soils was ascribed to denitrifiers harvesting photoelectrons from photosensitive substrates/semiconducting minerals. FA addition also increased the activities of denitrifying enzymes (e.g., NAR, NIR and NOR) and the denitrification electron transport system by nearly 0.6-0.7 and 1.5-1.8 times that of the nitrate-alone treatment under illuminated and dark conditions, thereby fostering stronger denitrification. Upon irradiation, As(III) immobilization was not only stimulated by the interactions with the denitrification pathway whereby As(III) acts as an electron donor for denitrifiers, but was also modulated by Fe(III)/oxidative reactive species-derived photooxidation of As(III). Moreover, the FA + nitrate treatment promoted the enrichment of metal-oxidizing bacteria (e.g., Stenotrophomonas and Acidovorax) that are responsible for nitrate-dependent As(III)/Fe(II) oxidation. The results of this study enhance our understanding of interactions among the biogeochemical cycles of As, Fe, N and C, which are intricately linked by a biophotoelectrochemical pathway in flooded paddy soils.
Collapse
Affiliation(s)
- Yanqiong Zeng
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Honghui Wang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Jiehua Hu
- Department of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, PR China
| | - Jing Zhang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Feng Wang
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Tongyu Wang
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China; The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Qiqi Zhou
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China; The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Randy A Dahlgren
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China; Department of Land, Air & Water Resources, University of California, Davis, CA 95616, USA
| | - Meiling Gao
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou 325027, PR China.
| | - Hui Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China.
| | - Zheng Chen
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China; School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China.
| |
Collapse
|
30
|
Mao H, Yang H, Xu Z, Peng Q, Yang S, Zhu L, Yang Y, Li Z. Responses of submerged macrophytes to different particle size microplastics and tetracycline co-pollutants at the community and population level. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132994. [PMID: 37988943 DOI: 10.1016/j.jhazmat.2023.132994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Microplastics (MPs) and antibiotics are ubiquitous in aquatic ecosystems, and their accumulation and combined effects are considered emerging threats that may affect biodiversity and ecosystem function. The particle size of microplastics plays an important role in their combined effects with antibiotics. Submerged macrophytes are crucial in maintaining the health and stability of freshwater ecosystems. However, little is known about the combined effects of different particle size of MPs and antibiotics on freshwater plants, particularly their effects on submerged macrophyte communities. Thus, there is an urgent need to study their effects on the macrophyte communities to provide essential information for freshwater ecosystem management. In the present study, a mesocosm experiment was conducted to explore the effects of three particle sizes (5 µm, 50 µm, and 500 µm) of polystyrene-microplastics (PSMPs) (75 mg/L), tetracycline (TC) (50 mg/L), and their co-pollutants on interactions between Hydrilla verticillata and Elodea nuttallii. Our results showed that the effects of MPs are size-dependent on macrophytes at the community level rather than at the population level, and that small and medium sized MPs can promote the growth of the two test macrophytes at the community level. In addition, macrophytes at the community level have a stronger resistance to pollutant stress than those at the population level. Combined exposure to MPs and TC co-pollutants induces species-specific responses and antagonistic toxic effects on the physio-biochemical traits of submerged macrophytes. Our study provides evidence that MPs and co-pollutants not only affect the morphology and physiology at the population level but also the interactions between macrophytes. Thus, there are promising indications on the potential consequences of MPs and co-pollutants on macrophyte community structure, which suggests that future studies should focus on the effects of microplastics and their co-pollutants on aquatic macrophytes at the community level rather than only at the population level. This will improve our understanding of the profound effects of co-pollutants in aquatic environments on the structure and behavior of aquatic communities and ecosystems.
Collapse
Affiliation(s)
- Hongzhi Mao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Hui Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Zhiyan Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Shiwen Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Lin Zhu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Yujing Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| |
Collapse
|
31
|
He H, Sun N, Li L, Zhou H, Hu A, Yang X, Ai J, Jiao R, Yang X, Wang D, Zhang W. Photochemical Transformation of Dissolved Organic Matter in Surface Water Augmented the Formation of Disinfection Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38329881 DOI: 10.1021/acs.est.3c08155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Sunlight may lead to changes in disinfection byproducts (DBPs) formation potentials of source water via transforming dissolved organic matter (DOM); however, the underlying mechanisms behind these changes remain unclear. This work systematically investigated the effect of photochemical transformation of DOM from reservoir water (DOMRe) and micropolluted river water (DOMRi) after 36 h of simulated sunlight irradiation (equivalent to one month under natural sunlight) on DBPs formation. Upon irradiation, high molecular weight (MW) and aromatic molecules tended to be mineralized or converted into low-MW and highly oxidized (O/C > 0.5) ones which might react with chlorine to generate high levels of DBPs, resulting in an elevation in the yields (μg DBP/mg C) of almost all the measured DBPs and the quantities of unknown DBPs in both DOM samples after chlorination. Additionally, DOMRi contained more aromatic molecules susceptible to photooxidation than DOMRe. Consequently, irradiated DOMRi exhibited a greater increase in the formation potentials of haloacetonitriles, halonitromethanes, and specific regulated DBPs, with nitrogenous DBPs being responsible for the overall rise in the calculated cytotoxicity following chlorination. This work emphasized the importance of a comprehensive removal of phototransformation products that may serve as DBPs precursors from source waters, especially from micropolluted source waters.
Collapse
Affiliation(s)
- Hang He
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Niannian Sun
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
| | - Hao Zhou
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
| | - Aibin Hu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
| | - Xiaoyin Yang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
| | - Jing Ai
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruyuan Jiao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaofang Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
32
|
Lin Y, He Y, Sun Q, Ping Q, Huang M, Wang L, Li Y. Underlying the mechanisms of pathogen inactivation and regrowth in wastewater using peracetic acid-based disinfection processes: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132868. [PMID: 37944231 DOI: 10.1016/j.jhazmat.2023.132868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Peracetic acid (PAA) disinfection is an emerging wastewater disinfection process. Its advantages include excellent pathogen inactivation performance and little generation of toxic and harmful disinfection byproducts. The objective of this review is to comprehensively analyze the experimental data and scientific information related to PAA-based disinfection processes. Kinetic models and modeling frameworks are discussed to provide effective tools to assess pathogen inactivation efficacy. Then, the efficacy of PAA-based disinfection processes for pathogen inactivation is summarized, and the inactivation mechanisms involved in disinfection and the interactions of PAA with conventional disinfection processes are elaborated. Subsequently, the risk of pathogen regrowth after PAA-based disinfection process is clearly discussed. Finally, to address ecological risks related to PAA-based disinfection, its impact on the spread of antibiotic-resistant bacteria and the transfer of antibiotic resistance genes (ARGs) is also assessed. Among advanced PAA-based disinfection processes, ultraviolet/PAA is promising not only because it has practical application value but also because pathogen regrowth can be inhibited and ARGs transfer risk can be significantly reduced via this process. This review presents valuable and comprehensive information to provide an in-depth understanding of PAA as an alternative wastewater disinfection technology.
Collapse
Affiliation(s)
- Yuqian Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Yunpeng He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qiya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Manhong Huang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China; Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
33
|
Ge Z, Ma Z, Hong W, Liu K, Yan S, Song W, Zhang J. Temporal variations in reactive oxygen species in biofilms of submerged macrophytes: The key role of microbial metabolism mediated by oxygen fluctuations. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132542. [PMID: 37734308 DOI: 10.1016/j.jhazmat.2023.132542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in the biogeochemistry of aquatic environments, yet their occurrence and accumulation in the biofilm of submerged macrophytes have been poorly documented. Herein, we first investigated the light-dark cycling fluctuations of biofilm microenvironment and the temporal variations of a representative ROS (O2•-) during biofilm succession on the macrophyte leaves and subsequently quantified the photochemical processes in biofilms. The sustained production of O2•- exhibited a distinct rhythmic fluctuation from 32.49 ± 0.56 μmol/kg to 72.56 ± 0.92 μmol/kg FW, which simultaneously fluctuated with the dissolved oxygen, redox potential, and pH, all driven by the alternating oxic-anoxic conditions of biofilms. The intensities of O2•- and ROS firstly increased and then decreased throughout biofilm succession. The O2•- concentrations in biofilms from different waters followed the order of rural river water > landscape lake water > aquaculture pond water, and the leaf photosynthesis and microbial community played a key role. ROS production was significantly associated with Actinobacteria, Proteobacteria and Bacteroidetes, with contributions of 44.6%, 32.8%, and 15.2%, respectively. Partial least squares path modeling structural equation analysis showed that ROS production in leaf biofilms was mainly related to the microenvironment and microbial metabolism. These findings will facilitate the development of ecological restoration strategies in aquatic environments.
Collapse
Affiliation(s)
- Zuhan Ge
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zihang Ma
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Wenjie Hong
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Kexuan Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Shuwen Yan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Weihua Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China.
| |
Collapse
|
34
|
Chen R, Xiao T, Dai X, Dong B. Roles of extracellular polymeric substances in the adsorption and removal of norfloxacin during hydrothermal treatment of sewage sludge. WATER RESEARCH 2024; 248:120899. [PMID: 38000225 DOI: 10.1016/j.watres.2023.120899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Hydrothermal treatment (HT) is promising to remove antimicrobials from sewage sludge (SS); however, the mechanism of antimicrobial degradation during the HT of SS is not fully understood. In this study, the roles of extracellular polymeric substances (EPS) in the removal and transformation of norfloxacin (NOR) during the HT of SS at temperatures of 100 and 160 °C were investigated. The results indicated that the degradation of NOR increased with increasing HT temperature, with maximum NOR removal (52%) achieved at 160 °C. Furthermore, the NOR in sludge showed higher degradation efficiencies than the control as HT temperature was higher than 120 °C. Evident promotion effects of bound-EPS (B-EPS) in sludge were observed on the NOR degradation as HT temperature was higher than 120 °C, leading to the mineralization and deamination of protein-like components in EPS during HT. Beside, the adsorption capacity of NOR during the HT of SS decreased at temperatures higher than 120 °C. The evolution of the spatial structure of B-EPS was predominantly responsible for the adsorption of antimicrobials, a spontaneous process driven mainly by hydrophilic interactions. With the hydrothermal conversion of B-EPS, the electron transfer, and reactive species (3EPS* and ·OH) derived from B-EPS could facilitate the degradation of NOR. In particular, hydrogen bonds between B-EPS and NOR increased the apparent yield of ·OH and accelerated the decarboxylation of NOR during HT at temperatures higher than 120 °C. A toxicity evaluation suggested that HT for NOR degradation could attenuate toxicity, whereas deep oxidation or mineralization would be needed to promote ecosystem safety. These findings provide new insights into the hydrothermal activation of EPS and the interrelated hydrothermal fate of antimicrobials and other toxic pollutants in sludge.
Collapse
Affiliation(s)
- Renjie Chen
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Tingting Xiao
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bin Dong
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China.
| |
Collapse
|
35
|
Wei S, Zeng F, Zhou Y, Zhao J, Wang H, Gao R, Liang W. Phototransformation of extracellular polymeric substances in activated sludge and their interaction with microplastics. RSC Adv 2023; 13:26574-26580. [PMID: 37674486 PMCID: PMC10478482 DOI: 10.1039/d3ra04027e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Substantial amounts of extracellular polymeric substances (EPS) are present in sludge from wastewater treatment plants (WWTP), and EPS can significantly affect the fate, bioavailability, and toxicity of microplastics (MPs) that coexist in the effluent, however, the mechanism of action between EPS and microplastics remains unclear. In addition, ultraviolet (UV) disinfection is indispensable in the wastewater treatment process in WWTP, which can significantly affect the characteristics of EPS. Therefore, it is of great significance to study the photochemical characteristics of EPS and the effect on binding MPs. In this study, using multispectral technology and two-dimensional correlation spectroscopy analysis, indicates that the molecular weight and aromaticity of EPS after phototransformation were reduced. The results showed that the adsorption of EPS on PSMPs was in the order of TB-EPS > LB-EPS > S-EPS, which was positively correlated with the SUVA254, but negatively correlated with O/C of EPS. This indicates that the main adsorption mechanisms of PSMPs on EPS were π-π and hydrophobicity. The adsorption capacity of S-EPS, LB-EPS and TB-EPS to PSMPs decreased with the increasing of illumination time. After phototransformation, the adsorption sensitivity and reaction sequence of EPS and PSMPs did not change much. This research provides a theoretical basis for understanding the photochemical transformation of extracellular polymers and the morphology and migration of microplastics in sewage treatment, and evaluating the impact of microplastics on ecosystems.
Collapse
Affiliation(s)
- Shuyin Wei
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +8620-84114133
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +8620-84114133
| | - Yingyue Zhou
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +8620-84114133
| | - Jiawei Zhao
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +8620-84114133
| | - Hao Wang
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +8620-84114133
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +8620-84114133
| | - Weiqian Liang
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +8620-84114133
| |
Collapse
|
36
|
Zhang S, Li C, Ke C, Liu S, Yao Q, Huang W, Dang Z, Guo C. Extracellular polymeric substances sustain photoreduction of Cr(VI) by Shewanella oneidensis-CdS biohybrid system. WATER RESEARCH 2023; 243:120339. [PMID: 37482009 DOI: 10.1016/j.watres.2023.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Photosensitized biohybrid system (PBS) enables bacteria to exploit light energy harvested by semiconductors for rapid pollutants transformation, possessing a promising future for water reclamation. Maintaining a biocompatible environment under photocatalytic conditions is the key to developing PBS-based treatment technologies. Natural microbial cells are surrounded by extracellular polymeric substances (EPS) that either be tightly bound to the cell wall (i.e., tightly bound EPS, tbEPS) or loosely associated with cell surface (i.e., loosely bound EPS, lbEPS), which provide protection from unfavorable environment. We hypothesized that providing EPS fractions can enhance bacterial viability under adverse environment created by photocatalytic reactions. We constructed a model PBS consisting of Shewanella oneidensis and CdS using Cr(VI) as the target pollutant. Results showed complete removal of 25 mg/L Cr(VI) within 90 min without an electron donor, which may mainly rely on the synergistic effect of CdS and bacteria on photoelectron transfer. Long-term cycling experiment of pristine PBS and PBS with extra EPS fractions (including lbEPS and tbEPS) for Cr(VI) treatment showed that PBS with extra lbEPS achieved efficient Cr(VI) removal within five consecutive batch treatment cycles, compared to the three cycles both in pristine PBS and PBS with tbEPS. After addition of lbEPS, the accumulation of reactive oxygen species (ROS) was greatly reduced via the EPS-capping effect and quenching effect, and the toxic metal internalization potential was lowered by complexation with Cd and Cr, resulting in enhanced bacterial viability during photocatalysis. This facile and efficient cytoprotective method helps the rational design of PBS for environmental remediation.
Collapse
Affiliation(s)
- Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Changhao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Changdong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Sijia Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Qian Yao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Lab of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
37
|
Ta M, Wei J, Ye S, Zhang J, Song T, Li M. Investigation of dissolved organic matter's influence on the toxicity of cadmium to the cyanobacterium Microcystis aeruginosa by biochemical and molecular assays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94790-94802. [PMID: 37540421 DOI: 10.1007/s11356-023-29000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
Rapid economic development has increased the accumulation of dissolved organic matter (DOM) and heavy metals in aquatic environments. In addition, Microcystis aeruginosa can cause the outbreak of cyanobacteria bloom and can produce microcystin, which poses a threat to human water safety. Therefore, this study analyzed the biochemical and molecular assays of DOM (0, 1, 3, 5, 8, 10 mg C L-1) extracted from four different sources on the toxicity of cadmium (Cd) to M. aeruginosa. The results showed that the addition of different concentrations of DOM from sediment, biochar, and humic acid alleviated the toxicity of Cd to M. aeruginosa. But the addition of rice hulls DOM at high concentrations (8 and 10 mg L-1) significantly reduced the normal growth and metabolic activities of M. aeruginosa. DOM from four different sources promoted the expression level of microcystin-related gene mcyA and the production of microcystin-leucine-arginine (MC-LR), and mcyA was positively correlated with MC-LR. DOM from biochar, sediment, and humic acid were able to bind Cd through complexation. The results will help to understand the toxic effects of heavy metals on toxic-producing cyanobacteria in the presence of DOM, and provide certain reference for the evaluation of water environmental health.
Collapse
Affiliation(s)
- Mingxiang Ta
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- Wuxi Environment Monitoring Center, Wuxi, 214121, Jiangsu, People's Republic of China
| | - Jianan Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Sisi Ye
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Junyi Zhang
- Wuxi Environment Monitoring Center, Wuxi, 214121, Jiangsu, People's Republic of China
| | - Ting Song
- Wuxi Environment Monitoring Center, Wuxi, 214121, Jiangsu, People's Republic of China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
38
|
Li Z, Wu Z, Shao B, Tanentzap AJ, Chi J, He W, Liu Y, Wang X, Zhao Y, Tong Y. Biodegradability of algal-derived dissolved organic matter and its influence on methylmercury uptake by phytoplankton. WATER RESEARCH 2023; 242:120175. [PMID: 37301000 DOI: 10.1016/j.watres.2023.120175] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Methylmercury (MeHg) uptake by phytoplankton represents a key step in determining the exposure risks of aquatic organisms and human beings to this potent neurotoxin. Phytoplankton uptake is believed to be negatively related to dissolved organic matter (DOM) concentration in water. However, microorganisms can rapidly change DOM concentration and composition and subsequent impact on MeHg uptake by phytoplankton has rarely been tested. Here, we explored the influences of microbial degradation on the concentrations and molecular compositions of DOM derived from three common algal sources and tested their subsequent impacts on MeHg uptake by the widespread phytoplankton species Microcystis elabens. Our results indicated that dissolved organic carbon was degraded by 64.3‒74.1% within 28 days of incubating water with microbial consortia from a natural meso‑eutrophic river. Protein-like components in DOM were more readily degraded, while the numbers of molecular formula for peptides-like compounds had increased after 28 days' incubation, probably due to the production and release of bacterial metabolites. Microbial degradation made DOM more humic-like which was consistent with the positive correlations between changes in proportions of Peaks A and C and bacterial abundance in bacterial community structures as illustrated by 16S rRNA gene sequencing. Despite rapid losses of the bulk DOM during the incubation, we found that DOM degraded after 28 days still reduced the MeHg uptake by Microcystis elabens by 32.7‒52.7% relative to a control without microbial decomposers. Our findings emphasize that microbial degradation of DOM would not necessarily enhance the MeHg uptakes by phytoplankton and may become more powerful in inhibiting MeHg uptakes by phytoplankton. The potential roles of microbes in degrading DOM and changing the uptakes of MeHg at the base of food webs should now be incorporated into future risk assessments of aquatic Hg cycling.
Collapse
Affiliation(s)
- Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bo Shao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wei He
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; College of Ecology and Environment, Tibet University, Lhasa 850000, China.
| |
Collapse
|
39
|
Du R, Zhang Q, Wang B, Huang J, Deng S, Yu G. Quantitative structure-activity relationship models for the reaction rate coefficients between dissolved organic matter and PPCPs. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131845. [PMID: 37354719 DOI: 10.1016/j.jhazmat.2023.131845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
To predict PPCPs' photolysis rate in natural aquatic environment, it is essential to grasp the reaction rates between DOM and PPCPs, yet there are few measured data and no prediction models for this important photochemical parameter. To address this, a reaction rate coefficient (αDOM) was defined to describe the apparent rate of DOM-involved photoreaction for PPCPs. The measured αDOM values for 40 PPCPs in 9 DOM samples varied dramatically, ranging from (-2.1 ± 0.1)× 1010 to (2.2 ± 0.1)× 1011 M-1 s-1. Then the quantitative structure-activity relationship (QSAR) models were developed using chemical and water quality descriptors via the random forest method. We initially separated positive and negative values by a classifier with an AUC value of 0.965, followed by the construction of regression models for positive and negative values, respectively, using a regressor. Positive models achieved satisfactory goodness-of-fit and predictive ability (R2adj=0.92 and Q2ext=0.86), while negative models demonstrated acceptable performance (R2adj=0.71 and Q2ext=0.70). Finally, a comprehensive photolysis model that incorporates the QSAR models for αDOM was established and the significance of water quality parameters was emphasized through sensitive analysis. This model enables more elaborate predictions of PPCPs' photolysis rates in various water samples, providing valuable assistance for forecasting PPCPs' environmental fate.
Collapse
Affiliation(s)
- Roujia Du
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qianxin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Advanced Interdisciplinary Institute of Environmental and Ecology, Beijing Normal University, Zhuhai 519000, China.
| |
Collapse
|
40
|
Wen X, Yang X, Wang T, Li Z, Ma C, Chen W, He Y, Zhang C. Photoreduction of Hg(II) by typical dissolved organic matter in paddy environments. CHEMOSPHERE 2023; 327:138437. [PMID: 36963580 DOI: 10.1016/j.chemosphere.2023.138437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The photochemical behavior of dissolved organic matter (DOM) in surface water and its effect on Hg(II) photoreduction has been extensively studied, but the contribution of DOM in paddy water to Hg(II) photoreduction is largely unknown. Herein, the effect of DOM from biochar (BCDOM), rice straw (RSDOM), and chicken manure (CMDOM) on Hg(II) photoreduction were examined. The comparable reduction efficiency of Hg(II) suggested that DOM-like fraction (62.3-63.7%) contributes more than suspended particulate matter-like fraction (17.7-23.4%) and bacteria-like fraction (13.0-20.0%) in paddy water. Under irradiation, the typical DOM significantly promoted Hg(II) photoreduction, and the reduction efficiency of BCDOM (65.5 ± 2.1%) was higher than that of CMDOM (48.3 ± 2.6%) and RSDOM (32.8 ± 2.4%) in 6 h. The quenching and kinetics experiments showed that superoxide anion (O2•-) was the main reactive species for Hg(II) photoreduction. Fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry revealed that DOM with a higher degree of lignin/carboxy-rich acyclic molecules, condensed aromatics structures, and phenolic compounds could promote the formation of O2•-. These findings highlight the importance of DOM in Hg(II) photoreduction and provide new ideas for regulating Hg cycling and bioavailability in paddy environments.
Collapse
Affiliation(s)
- Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| |
Collapse
|
41
|
Chen D, Wang G, Chen C, Feng Z, Jiang Y, Yu H, Li M, Chao Y, Tang Y, Wang S, Qiu R. The interplay between microalgae and toxic metal(loid)s: mechanisms and implications in AMD phycoremediation coupled with Fe/Mn mineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131498. [PMID: 37146335 DOI: 10.1016/j.jhazmat.2023.131498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Acid mine drainage (AMD) is low-pH with high concentration of sulfates and toxic metal(loid)s (e.g. As, Cd, Pb, Cu, Zn), thereby posing a global environmental problem. For decades, microalgae have been used to remediate metal(loid)s in AMD, as they have various adaptive mechanisms for tolerating extreme environmental stress. Their main phycoremediation mechanisms are biosorption, bioaccumulation, coupling with sulfate-reducing bacteria, alkalization, biotransformation, and Fe/Mn mineral formation. This review summarizes how microalgae cope with metal(loid) stress and their specific mechanisms of phycoremediation in AMD. Based on the universal physiological characteristics of microalgae and the properties of their secretions, several Fe/Mn mineralization mechanisms induced by photosynthesis, free radicals, microalgal-bacterial reciprocity, and algal organic matter are proposed. Notably, microalgae can also reduce Fe(III) and inhibit mineralization, which is environmentally unfavorable. Therefore, the comprehensive environmental effects of microalgal co-occurring and cyclical opposing processes must be carefully considered. Using chemical and biological perspectives, this review innovatively proposes several specific processes and mechanisms of Fe/Mn mineralization that are mediated by microalgae, providing a theoretical basis for the geochemistry of metal(loid)s and natural attenuation of pollutants in AMD.
Collapse
Affiliation(s)
- Daijie Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guobao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chiyu Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zekai Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Jiang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengyao Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
42
|
Zhou S, An W, Zhao K, Lin L, Yang S, Zhang Y, Xu M. Protection of electroactive biofilms against hypersaline shock by quorum sensing. WATER RESEARCH 2023; 233:119823. [PMID: 36871386 DOI: 10.1016/j.watres.2023.119823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/22/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Quorum sensing (QS) is an ideal strategy for boosting the operating performance of electroactive biofilms (EABs), but its potential effects on the protection of electroactive biofilms against environmental shocks (e.g., hypersaline shock) have been rarely revealed. In this study, a QS signaling molecule, the N-(3-oxo-dodecanoyl)-L-homoserine lactone, was employed to promote the anti-shock property of the EABs against extreme saline shock. The maximum current density of the QS-regulated biofilm recovered to 0.17 mA/cm2 after 10% salinity exposure, which was much higher than those of its counterparts. The laser scanning confocal microscope confirmed a thicker and more compact biofilm with the presence of the QS signaling molecule. The extracellular polymeric substances (EPS) might play a crucial role in the anti-shocking behaviors, as the polysaccharides in EPS of QS-biofilm had doubled compared to the groups with acylase (the QS quencher). The microbial community analysis indicated that the QS molecule enriched the relative abundance of key species including Pseudomonas sp. and Geobacter sp., which were both beneficial to the stability and electroactivity of the biofilms. The functional genes related to the bacterial community were also up-regulated with the presence of the QS molecule. These results highlight the importance of QS effects in protecting electroactive biofilm under extreme environmental shock, which provides effective and feasible strategies for the future development of microbial electrochemical technologies.
Collapse
Affiliation(s)
- Shaofeng Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenwen An
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Kexin Zhao
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lizhou Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
43
|
Chu N, Jiang Y, Liang Q, Liu P, Wang D, Chen X, Li D, Liang P, Zeng RJ, Zhang Y. Electricity-Driven Microbial Metabolism of Carbon and Nitrogen: A Waste-to-Resource Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4379-4395. [PMID: 36877891 DOI: 10.1021/acs.est.2c07588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electricity-driven microbial metabolism relies on the extracellular electron transfer (EET) process between microbes and electrodes and provides promise for resource recovery from wastewater and industrial discharges. Over the past decades, tremendous efforts have been dedicated to designing electrocatalysts and microbes, as well as hybrid systems to push this approach toward industrial adoption. This paper summarizes these advances in order to facilitate a better understanding of electricity-driven microbial metabolism as a sustainable waste-to-resource solution. Quantitative comparisons of microbial electrosynthesis and abiotic electrosynthesis are made, and the strategy of electrocatalyst-assisted microbial electrosynthesis is critically discussed. Nitrogen recovery processes including microbial electrochemical N2 fixation, electrocatalytic N2 reduction, dissimilatory nitrate reduction to ammonium (DNRA), and abiotic electrochemical nitrate reduction to ammonia (Abio-NRA) are systematically reviewed. Furthermore, the synchronous metabolism of carbon and nitrogen using hybrid inorganic-biological systems is discussed, including advanced physicochemical, microbial, and electrochemical characterizations involved in this field. Finally, perspectives for future trends are presented. The paper provides valuable insights on the potential contribution of electricity-driven microbial valorization of waste carbon and nitrogen toward a green and sustainable society.
Collapse
Affiliation(s)
- Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
44
|
Yin Y, Zhang Q, Peng H. Retrospect and prospect of aerobic biodegradation of aniline: Overcome existing bottlenecks and follow future trends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117133. [PMID: 36584469 DOI: 10.1016/j.jenvman.2022.117133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Aniline is a highly bio-toxic industrial product, even at low concentrations, whose related wastewater has been flowing out worldwide on a large scale along with human production. As a green technology, aerobic biological treatment has been widely applied in industrial wastewater and exhibited various characteristics in the field of aniline wastewater. Meanwhile, this technology has shown its potential of synchronous nitrogen removal, but it still consumes energy badly. In the face of resource scarcity, this review comprehensively discusses the existing research in aerobic biodegradation of aniline wastewater to find out the developmental dawn of aerobic biological treatment. Primarily, it put forward the evolution history details of aniline biodegradation from pure culture to mixed culture and then to simultaneous nitrogen removal. On this basis, it presented the existing challenges to further expand the application of aerobic biotechnology, including the confusions of aniline metabolic mechanism, the development of co-degradation of multiple pollutants and the lack of practical experience of bioreactor operation for aniline and nitrogen removal. Additionally, the prospects of the technological shift to meet the needs of an energy-conserving society was described according to existing experiences and feasibility. Including but not limiting to the development of multifunctional bacteria, the reduction of greenhouse gases and the combination of green technologies.
Collapse
Affiliation(s)
- Yixin Yin
- School of Resources & Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Haojin Peng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
45
|
Xu S, Zhu Y, Zhu P, Wang C, Zhang D, Pan X. Effects of PFOS at ng/L levels on photostability of extracellular polymeric substances under solar irradiation by fluorescence and infrared spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160119. [PMID: 36370784 DOI: 10.1016/j.scitotenv.2022.160119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The ubiquitous EPS (extracellular polymeric substances), as a type of dissolved organic carbon, plays a key role in carbon cycling in water environment. When EPS meet the omnipresent PFOS (perfluorooctane sulfonate), they must interact with each other and exert profound effect on behavior and fate of both, which is still not well known. We hypothesized that the highly persistent PFOS at real environmental levels may significantly influence behavior of EPS under solar irradiation which may retard carbon turnover. In this study, 3D-EEM fluorescence spectroscopy and FTIR spectroscopy were used to probe responses of composition and structure of EPS under solar irradiation in the absence and presence of PFOS (5-500 ng/L). The experimental results showed that PFOS at ng/L levels significantly affected responses of EPS to sunlight irradiation and the effects were dependent on the components in EPS. Photostability of humic-like substances was significantly increased in the presence of PFOS; Degradation and unfolding of proteins induced by solar light were reduced by PFOS. In addition, degradation of both hydrophilic and hydrophobic functional groups by sunlight was inhibited by PFOS. The novel findings provide new insights for assessing the environmental behavior of EPS and PFOS and understanding the effect of PFOS on carbon cycling in water environments.
Collapse
Affiliation(s)
- Shuyan Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yitian Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Pengfeng Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Caiqin Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
46
|
Zheng X, Wu B, Zhou C, Liu T, Wang Y, Zhao G, Chen B, Chu C. Sunlight-Driven Production of Reactive Oxygen Species from Natural Iron Minerals: Quantum Yield and Wavelength Dependence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1177-1185. [PMID: 36538289 DOI: 10.1021/acs.est.2c06942] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photochemically generated reactive oxygen species (ROS) play numerous key roles in earth's surface biogeochemical processes and pollutant dynamics. ROS production has historically been linked to the photosensitization of natural organic matter. Here, we report the photochemical ROS production from three naturally abundant iron minerals. All investigated iron minerals are photoactive toward sunlight irradiation, with photogenerated currents linearly correlated with incident light intensity. Hydroxyl radicals (•OH) and hydrogen peroxide (H2O2) are identified as the major ROS species, with apparent quantum yields ranging from 1.4 × 10-8 to 3.9 × 10-8 and 5.8 × 10-8 to 2.5 × 10-6, respectively. Photochemical ROS production exhibits high wavelength dependence, for instance, the •OH quantum yield decreases with the increase of light wavelength from 375 to 425 nm, and above 425 nm it sharply decreases to zero. The temperature shows a positive impact on •OH production, with apparent activation energies ranging from 8.0 to 17.8 kJ/mol. Interestingly, natural iron minerals with impurities exhibit higher ROS production than their pure crystal counterparts. Compared with organic photosensitizers, iron minerals exhibit higher wavelength dependence, higher selectivity, lower efficiency, and long-term stability in photochemical ROS production. Our study highlights natural inorganic iron mineral photochemistry as a ubiquitous yet previously overlooked source of ROS.
Collapse
Affiliation(s)
- Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Chong Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Tian Liu
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Yanling Wang
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Guoqiang Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
47
|
Zhao W, You J, Yin S, Yang H, He S, Feng L, Li J, Zhao Q, Wei L. Extracellular polymeric substances-antibiotics interaction in activated sludge: A review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100212. [PMID: 36425126 PMCID: PMC9678949 DOI: 10.1016/j.ese.2022.100212] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 05/09/2023]
Abstract
Antibiotics, the most frequently prescribed drugs, have been widely applied to prevent or cure human and veterinary diseases and have undoubtedly led to massive releases into sewer networks and wastewater treatment systems, a hotspot where the occurrence and transformation of antibiotic resistance take place. Extracellular polymeric substances (EPS), biopolymers secreted via microbial activity, play an important role in cell adhesion, nutrient retention, and toxicity resistance. However, the potential roles of sludge EPS related to the resistance and removal of antibiotics are still unclear. This work summarizes the composition and physicochemical characteristics of state-of-the-art microbial EPS, highlights the critical role of EPS in antibiotics removal, evaluates their defense performances under different antibiotics exposures, and analyzes the typical factors that could affect the sorption and biotransformation behavior of antibiotics. Next, interactions between microbial EPS and antibiotic resistance genes are analyzed. Future perspectives, especially the engineering application of microbial EPS for antibiotics toxicity detection and defense, are also emphatically stressed.
Collapse
|
48
|
Huang X, Zhou S, Li J, Wang X, Huang S, Sun G, Yang S, Xing J, Xu M. Complexing agents-free bioelectrochemical trickling systems for highly-efficient mesothermal NO removal: The role of extracellular polymer substances. BIORESOURCE TECHNOLOGY 2023; 368:128286. [PMID: 36368487 DOI: 10.1016/j.biortech.2022.128286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The biological treatments are promising for nitric oxide (NO) reduction, however, the biotechnology has long suffered from high demands of NO-complexing agents (i.e., Fe(II)EDTA), leading to extra operation costs. In this study, novel complexing agents-free bioelectrochemical systems have been developed for direct NO reduction. The electricity-driven bioelectrochemical trickling system (ED-BTS, a denitrifying biocathode driven by the external electricity and an acetate-consuming bioanode) achieved approximately 68% NO removal without any NO-complexing agents, superior to the bioanode-driven BTS and open-circuit BTS. The extracellular polymeric substances from the biofilms of ED-BTS contained more polysaccharides, humic substrates, and hydrophobic tryptophan that were beneficial for NO reduction. Additionally, the external electricity altered the microbial community toward more denitrifying bacteria and a higher abundance of NO reduction genes (nosZ and cnorB). This study provides a comprehensive understanding of microbial behaviors on the adsorption and reduction of NO and proposes a promising strategy for mesothermal NO biotreatment.
Collapse
Affiliation(s)
- Xingzhu Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shaofeng Zhou
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jianjun Li
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China
| | - Guoping Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jia Xing
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
49
|
Shi X, Chen Z, Liu X, Wei W, Ni BJ. The photochemical behaviors of microplastics through the lens of reactive oxygen species: Photolysis mechanisms and enhancing photo-transformation of pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157498. [PMID: 35870588 DOI: 10.1016/j.scitotenv.2022.157498] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The photoaging mechanisms of various polymers have been explored based on the basic autoxidation scheme (BAS) before 10 years ago, however current research verified some defects in the BAS in both thermodynamic and dynamics. These defects are troublesome because they are associated with the hydrogen abstraction which is central to continuously perform the photooxidation process of microplastics. These found indicated that we might wrongly inferred photo-oxidation process of some microplastics. In addition, the important role of reactive oxygen species (ROS) in the type-dependent photoaging process of various microplastics has been revealed recently. In this case, fully and accurately understanding the photoaging mechanisms of different microplastics in environment is a priority to further manage the ecological risk of microplastics. Herein, this review aims to revise and update the degradation process of microplastics based on the revised BAS and in the perspective of ROS. Specifically, the modification of BAS is firstly discussed. The photoaging mechanisms of representative microplastics (i.e., polyethylene, polystyrene and polyethylene terephthalate) are then updated based on the corrected BAS. Additionally, the role of ROS in their photolysis process and the possibility of microplastics as photosensitizers/mediators to regulate the fate of co-existent pollutants are also analyzed. Finally, several perspectives are then proposed to guide future research on the photoaging behaviors of microplastics. This review would pave the way for the understanding of microplastic photoaging and the management of plastic pollution in environments.
Collapse
Affiliation(s)
- Xingdong Shi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
50
|
Wang Y, Gong X, Huang D, Yan S, Zhang J. The binding effect and photooxidation on oxytetracycline with algal extracellular polymeric substances and natural organic matter. CHEMOSPHERE 2022; 307:135826. [PMID: 35948104 DOI: 10.1016/j.chemosphere.2022.135826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Surface water contains a large amount of dissolved organic matter (DOM). Interactions between DOM and micropollutants have a significant impact on micropollutant degradation. In this study, algal extracellular polymeric substances (EPS) and natural organic matter (NOM) were selected as two DOM sources and oxytetracycline (OTC) as a representative micropollutant. EPS was mainly composed of tryptophan and protein-like organics, while NOM was mainly composed of fulvic acid-like, humic acid-like, and hydrophobic acid components. In addition, OTC degradation significantly decreased when bound with EPS and the C=O and C-H bonds of CH2 or CH3 groups may be involved in binding EPS and OTC, respectively, while -COOH may be involved in the binding of NOM and OTC. Furthermore, triplet intermediates were found to play a major role in OTC photodegradation in both EPS and NOM, with the contribution calculated as 49.96% and 44.61%, respectively. Steady-state concentrations of 3EPS* in EPS and 3NOM* in NOM were 3.59 × 10-14 mol L-1 and 5.54 × 10-15 mol L-1, respectively. These results provide new insights into the degradation of antibiotic-containing wastewater in the natural environment or engineering applications.
Collapse
Affiliation(s)
- Yu Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Xinye Gong
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai, 200433, PR China
| | - Shuwen Yan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|