1
|
Zhang L, Yuan W, Zhao W, Yang B, Jiao X, Zhou L, Long S, Xu J, Huang W, Liu C, Zheng G, Shen H, Ye J, Zhu L, Fu TM, Yang X, Wang C. Formation of Nitrosamines from the Heterogeneous Reaction of Nitrous Acid and Organic Amines in Indoor Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18881-18891. [PMID: 39388381 DOI: 10.1021/acs.est.4c05636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Carcinogenic nitrosamines have been widely studied due to their risk to human health. However, the universality and evolutionary processes of their generation, particularly concerning their secondary sources, remain unclear at present. We demonstrated through laboratory flow tube experiments that corresponding nitrosamines were generated from heterogeneous reactions of nitrous acid (HONO) with five structurally diverse amines commonly found indoors, including diphenylamine (DPhA), dibenzylamine (DBzA), dioctylamine (DOtA), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), and N-phenyl-1-naphthylamine (PANA). The heterogeneous reaction rate constants of DBzA and DOtA with HONO (∼70 ppb) were 1.21 × 10-3 and 2.13 × 10-3 min-1 at 30% relative humidity (RH), resulting in a lifetime of 13.8 and 7.8 h. As compared to higher RH (∼80%), more nitrosamines were produced from the reaction of HONO with surface-sorbed DBzA, DOtA, 6PPD, and PANA at lower RH (30%), with product yields ranging from <0.1% to 0.5%. Furthermore, we observed the formation of nitroso-6PPDs and nitro-6PPDs during room air exposure of 6PPD in a genuine indoor environment, in addition to various other transformation products indicative of reactions of 6PPD with HONO, NOx, and ozone indoors. This study confirmed the universality of the heterogeneous reaction of surface-sorbed amine with HONO as a source of nitrosamines indoors.
Collapse
Affiliation(s)
- Lifang Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenting Yuan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wangchao Zhao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoqiao Jiao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li Zhou
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shiqian Long
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiwen Xu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weilin Huang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenglin Liu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guomao Zheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Matt GE, Greiner L, Record RA, Wipfli H, Long J, Dodder NG, Hoh E, Lopez Galvez N, Novotny TE, Quintana PJE, Destaillats H, Tang X, Snijders AM, Mao JH, Hang B, Schick S, Jacob P, Talbot P, Mahabee-Gittens EM, Merianos AL, Northrup TF, Gundel L, Benowitz NL. Policy-relevant differences between secondhand and thirdhand smoke: strengthening protections from involuntary exposure to tobacco smoke pollutants. Tob Control 2024; 33:798-806. [PMID: 37263783 PMCID: PMC11503167 DOI: 10.1136/tc-2023-057971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Starting in the 1970s, individuals, businesses and the public have increasingly benefited from policies prohibiting smoking indoors, saving thousands of lives and billions of dollars in healthcare expenditures. Smokefree policies to protect against secondhand smoke exposure, however, do not fully protect the public from the persistent and toxic chemical residues from tobacco smoke (also known as thirdhand smoke) that linger in indoor environments for years after smoking stops. Nor do these policies address the economic costs that individuals, businesses and the public bear in their attempts to remediate this toxic residue. We discuss policy-relevant differences between secondhand smoke and thirdhand smoke exposure: persistent pollutant reservoirs, pollutant transport, routes of exposure, the time gap between initial cause and effect, and remediation and disposal. We examine four policy considerations to better protect the public from involuntary exposure to tobacco smoke pollutants from all sources. We call for (a) redefining smokefree as free of tobacco smoke pollutants from secondhand and thirdhand smoke; (b) eliminating exemptions to comprehensive smoking bans; (c) identifying indoor environments with significant thirdhand smoke reservoirs; and (d) remediating thirdhand smoke. We use the case of California as an example of how secondhand smoke-protective laws may be strengthened to encompass thirdhand smoke protections. The health risks and economic costs of thirdhand smoke require that smokefree policies, environmental protections, real estate and rental disclosure policies, tenant protections, and consumer protection laws be strengthened to ensure that the public is fully protected from and informed about the risks of thirdhand smoke exposure.
Collapse
Affiliation(s)
- Georg E Matt
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Lydia Greiner
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Rachael A Record
- School of Communication, San Diego State University, San Diego, CA, USA
| | - Heather Wipfli
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jamie Long
- Public Health Law Center, Mitchell Hamline School of Law, University of Minnesota, St Paul, MN, USA
| | - Nathan G Dodder
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, CA, USA
| | | | - Thomas E Novotny
- School of Public Health, San Diego State University, San Diego, CA, USA
| | | | - Hugo Destaillats
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xiaochen Tang
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Suzaynn Schick
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Peyton Jacob
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Prue Talbot
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - E Melinda Mahabee-Gittens
- Department of Pediatrics, Division of Emergency Medicine Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ashley L Merianos
- School of Human Services, University of Cincinnati, Cincinnati, OH, USA
| | - Thomas F Northrup
- Department of Family & Community Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Lara Gundel
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Neal L Benowitz
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Chao L, Liang W, Zhao X, Liang Z, Wu W, Song J, Ren W. Maternal tobacco exposure during pregnancy and atopic dermatitis in offspring: A systematic review and meta-analysis. J Eur Acad Dermatol Venereol 2024; 38:1947-1953. [PMID: 38483217 DOI: 10.1111/jdv.19958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/25/2024] [Indexed: 09/26/2024]
Abstract
The main purpose of this review was to examine the evidence of the relationship between active smoking or passive smoking during pregnancy and atopic dermatitis in offspring. The protocol was written following the PRISMA Checklist and was registered in the PROSPERO database (registration number CRD42022381136). We implemented a comprehensive search in PubMed, Embase and Web of Science databases to identify all potentially related articles from inception through 1 December 2022. We assessed cohort studies and case-control studies using the Newcastle-Ottawa Scale (NOS), and the Joanna Briggs Institute (JBI) critical appraisal tool to assess the quality of cross-sectional studies. Heterogeneity was investigated by using Cochrane Q tests and I2 statistics. In addition, according to the research design, population source and population size, the reasons for the heterogeneity were analysed. A total of 15 observational studies were included in this analysis. Our meta-analysis suggests that atopic dermatitis in offspring is not associated with active smoking during pregnancy (pooled OR, 0.96 [95% CI 0.86-1.07]); however, it is related to passive smoking (OR, 1.52 [95% CI 1.36-1.70]). Passive smoking during pregnancy is associated with an increased risk of eczema development in offspring. More research is needed to explore the risk of active smoking and eczema development in offspring, especially the association between measurements of pregnancy cotinine levels in maternal body fluids and AD in offspring.
Collapse
Affiliation(s)
- Ling Chao
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Wenjuan Liang
- International School of Public Health and One Health, Hainan Medical University, Haikou, China
| | - Xiangmei Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Zhenzhen Liang
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Wenjie Ren
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
4
|
Manchuri KM, Shaik MA, Gopireddy VSR, Naziya Sultana, Gogineni S. Analytical Methodologies to Detect N-Nitrosamine Impurities in Active Pharmaceutical Ingredients, Drug Products and Other Matrices. Chem Res Toxicol 2024; 37:1456-1483. [PMID: 39158368 DOI: 10.1021/acs.chemrestox.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Since 2018, N-nitrosamine impurities have become a widespread concern in the global regulatory landscape of pharmaceutical products. This concern arises due to their potential for contamination, toxicity, carcinogenicity, and mutagenicity and their presence in many active pharmaceutical ingredients, drug products, and other matrices. N-Nitrosamine impurities in humans can lead to severe chemical toxicity effects. These include carcinogenic effects, metabolic disruptions, reproductive harm, liver diseases, obesity, DNA damage, cell death, chromosomal alterations, birth defects, and pregnancy loss. They are particularly known to cause cancer (tumors) in various organs and tissues such as the liver, lungs, nasal cavity, esophagus, pancreas, stomach, urinary bladder, colon, kidneys, and central nervous system. Additionally, N-nitrosamine impurities may contribute to the development of Alzheimer's and Parkinson's diseases and type-2 diabetes. Therefore, it is very important to control or avoid them by enhancing effective analytical methodologies using cutting-edge analytical techniques such as LC-MS, GC-MS, CE-MS, SFC, etc. Moreover, these analytical methods need to be sensitive and selective with suitable precision and accuracy, so that the actual amounts of N-nitrosamine impurities can be detected and quantified appropriately in drugs. Regulatory agencies such as the US FDA, EMA, ICH, WHO, etc. need to focus more on the hazards of N-nitrosamine impurities by providing guidance and regular updates to drug manufacturers and applicants. Similarly, drug manufacturers should be more vigilant to avoid nitrosating agents and secondary amines during the manufacturing processes. Numerous review articles have been published recently by various researchers, focusing on N-nitrosamine impurities found in previously notified products, including sartans, metformin, and ranitidine. These impurities have also been detected in a wide range of other products. Consequently, this review aims to concentrate on products recently reported to contain N-nitrosamine impurities. These products include rifampicin, champix, famotidine, nizatidine, atorvastatin, bumetanide, itraconazole, diovan, enalapril, propranolol, lisinopril, duloxetine, rivaroxaban, pioglitazones, glifizones, cilostazol, and sunitinib.
Collapse
Affiliation(s)
- Krishna Moorthy Manchuri
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Mahammad Ali Shaik
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Venkata Subba Reddy Gopireddy
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Naziya Sultana
- Analytical Research and Development, IPDO, Dr. Reddy's Laboratories Limited, Hyderabad 500090, India
| | - Sreenivasarao Gogineni
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh 522510, India
| |
Collapse
|
5
|
Jiang C, Chen L, Ye C, Schick SF, Jacob P, Zhuang Y, Inman JL, Chen C, Gundel LA, Chang H, Snijders AM, Zou X, Mao JH, Hang B, Wang P. Thirdhand smoke exposure promotes gastric tumor development in mouse and human. ENVIRONMENT INTERNATIONAL 2024; 191:108986. [PMID: 39255676 DOI: 10.1016/j.envint.2024.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/22/2024] [Accepted: 08/24/2024] [Indexed: 09/12/2024]
Abstract
The pollution of indoor environments and the consequent health risks associated with thirdhand smoke (THS) are increasingly recognized in recent years. However, the carcinogenic potential of THS and its underlying mechanisms have yet to be thoroughly explored. In this study, we examined the effects of short-term THS exposure on the development of gastric cancer (GC) in vitro and in vivo. In a mouse model of spontaneous GC, CC036, we observed a significant increase in gastric tumor incidence and a decrease in tumor-free survival upon THS exposure as compared to control. RNA sequencing of primary gastric epithelial cells derived from CC036 mice showed that THS exposure increased expression of genes related to the extracellular matrix and cytoskeletal protein structure. We then identified a THS exposure-induced 91-gene expression signature in CC036 and a homologous 84-gene signature in human GC patients that predicted the prognosis, with secreted phosphoprotein 1 (SPP1) and tribbles pseudokinase 3 (TRIB3) emerging as potential targets through which THS may promote gastric carcinogenesis. We also treated human GC cell lines in vitro with media containing various concentrations of THS, which, in some exposure dose range, significantly increased their proliferation, invasion, and migration. We showed that THS exposure could activate the epithelial-mesenchymal transition (EMT) pathway at the transcript and protein level. We conclude that short-term exposure to THS is associated with an increased risk of GC and that activation of the EMT program could be one potential mechanism. Increased understanding of the cancer risk associated with THS exposure will help identify new preventive and therapeutic strategies for tobacco-related disease as well as provide scientific evidence and rationale for policy decisions related to THS pollution control to protect vulnerable subpopulations such as children.
Collapse
Affiliation(s)
- Chengfei Jiang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lingyan Chen
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chunping Ye
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Suzaynn F Schick
- Department of Medicine, Division of Occupational Environmental and Climate Medicine, University of California, San Francisco, CA 94143, USA
| | - Peyton Jacob
- Department of Medicine, Division of Cardiology, Clinical Pharmacology Program, University of California, San Francisco, CA 94143, USA
| | - Yingjia Zhuang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Jamie L Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Changbin Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, China
| | - Lara A Gundel
- Indoor Environment Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xiaoping Zou
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Pin Wang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Qadri S, Maia ACRG, Ali HEA, Alarabi AB, Alshbool FZ, Khasawneh FT. Sex-Dependent Occlusive Cardiovascular Disease Effects of Short-Term Thirdhand Smoke Exposure. Nicotine Tob Res 2024; 26:1225-1233. [PMID: 38520288 PMCID: PMC11339167 DOI: 10.1093/ntr/ntae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/06/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
INTRODUCTION Thirdhand smoke (THS) is associated with many public health and disease concerns, such as respiratory illness, cancer, lipidemia, and cardiovascular disease (CVD). We have previously shown that a moderate to long-term exposure to THS increases the risk of thrombosis. However, whether short-term exposure to THS would produce any effects remains to be discovered. Therefore, this study investigated the impact of 1-month THS exposure on platelet function, in vivo and in vitro, and on cytokine response, in a sex-dependent manner. AIMS AND METHODS Secondhand smoke or clean air (CA) exposed upholstery materials for 1 week were kept in cages housed with 5-6 mice, and the procedure was repeated for 4 weeks. These THS-exposed mice were evaluated for thrombogenesis and platelet function assays. In addition, cytokines expression was evaluated from pooled serum. RESULTS Compared to the CA group, THS exposure significantly shortened the tail bleeding time and carotid artery thrombus formation. Moreover, the female mice appeared more sensitive to THS exposure than males. Furthermore, platelet aggregation, dense granule secretion, and P-selectin activation markers were significantly elevated due to THS exposure. In addition, high-throughput screening showed at least 30 cytokines differentially modulated by THS in females relative to 26 in male mice. CONCLUSIONS Collectively, these results demonstrate that 1 month of THS exposure represents a high health risk, in part, by triggering a prothrombotic phenotype that appears to be more significant in females, who are at a much higher risk for occlusive CVD. Additionally, changes in cytokine levels mediate some of the THS-induced occlusive effects. IMPLICATIONS This study revealed that THS exposure for 1 month is detrimental to the cardiovascular health of both sexes; however, females could be more aggressively affected than males. In addition, interleukins and chemokines could be critical factors for initiating prothrombotic activity due to THS exposure.
Collapse
Affiliation(s)
- Shahnaz Qadri
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Ana Carolina R G Maia
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Hamdy E A Ali
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Ahmed B Alarabi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Fatima Z Alshbool
- Department of Pharmacy Practice, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| |
Collapse
|
7
|
Merianos AL, Matt GE, Stone TM, Jandarov RA, Hoh E, Dodder NG, Quintana PJE, Lopez-Galvez N, Stone L, Mahabee-Gittens EM. Contamination of surfaces in children's homes with nicotine and the potent carcinogenic tobacco-specific nitrosamine NNK. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:727-734. [PMID: 38104233 DOI: 10.1038/s41370-023-00629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Tobacco smoke exposure (TSE) through secondhand and thirdhand smoke is a modifiable risk factor that contributes to childhood morbidity. Limited research has assessed surface TSE pollution in children's environments as a potential source of thirdhand smoke exposure, and none have examined levels of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) on surfaces. OBJECTIVE This study measured surface NNK and nicotine in children's homes and associations with sociodemographics and parent-reported TSE behaviors. We assessed correlations of surface NNK and nicotine with dust NNK, dust nicotine, and child cotinine. METHODS Home surface wipe NNK and nicotine data from 84 children who lived with smokers were analyzed. Tobit and simple linear regression analyses were conducted to assess associations of surface NNK and nicotine with child characteristics. Spearman's (ρ) correlations assessed the strength of associations between environmental markers and child cotinine. RESULTS Nearly half (48.8%) of children's home surfaces had detectable NNK and 100% had detectable nicotine. The respective geometric means (GMs) of surface NNK and nicotine loadings were 14.0 ng/m2 and 16.4 µg/m2. Surface NNK positively correlated with surface nicotine (ρ = 0.54, p < 0.001) and dust NNK (ρ = 0.30, p = 0.020). Surface nicotine positively correlated with dust NNK (ρ = 0.42, p < 0.001) and dust nicotine (ρ = 0.24, p = 0.041). Children with household incomes ≤$15,000 had higher surface NNK levels (GM = 18.7 ng/m2, p = 0.017) compared to children with household incomes >$15,000 (GM = 7.1 ng/m2). Children with no home smoking bans had higher surface NNK (GM = 18.1 ng/m2, p = 0.020) and surface nicotine (GM = 17.7 µg/m2, p = 0.019) levels compared to children with smoking bans (GM = 7.5 ng/m2, 4.8 µg/m2, respectively). IMPACT Although nicotine on surfaces is an established marker of thirdhand smoke pollution, other thirdhand smoke contaminants have not been measured on surfaces in the homes of children living with smokers. We provide evidence that the potent carcinogenic tobacco-specific nitrosamine NNK was detectable on surfaces in nearly half of children's homes, and nicotine was detectable on all surfaces. Surface NNK was positively correlated with surface nicotine and dust NNK. Detectable surface NNK levels were found in homes with indoor smoking bans, indicating the role of NNK as a persistent thirdhand smoke pollutant accumulating on surfaces as well as in dust.
Collapse
Affiliation(s)
- Ashley L Merianos
- University of Cincinnati, School of Human Services, PO Box 210068, Cincinnati, OH, 45221-0068, USA.
| | - Georg E Matt
- Department of Psychology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4611, USA
| | - Timothy M Stone
- Department of Environmental and Public Health Sciences, Division of Biostatistics and Bioinformatics, University of Cincinnati, College of Medicine, 160 Panzeca Way, Cincinnati, OH, 45267-0056, USA
| | - Roman A Jandarov
- Department of Environmental and Public Health Sciences, Division of Biostatistics and Bioinformatics, University of Cincinnati, College of Medicine, 160 Panzeca Way, Cincinnati, OH, 45267-0056, USA
| | - Eunha Hoh
- San Diego State University, School of Public Health, 5500 Campanile Drive, San Diego, CA, 92182-4162, USA
| | - Nathan G Dodder
- San Diego State University, School of Public Health, 5500 Campanile Drive, San Diego, CA, 92182-4162, USA
| | - Penelope J E Quintana
- San Diego State University, School of Public Health, 5500 Campanile Drive, San Diego, CA, 92182-4162, USA
| | - Nicolas Lopez-Galvez
- San Diego State University, School of Public Health, 5500 Campanile Drive, San Diego, CA, 92182-4162, USA
| | - Lara Stone
- Cincinnati Children's Hospital Medical Center, Division of Emergency Medicine, University of Cincinnati, College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - E Melinda Mahabee-Gittens
- Cincinnati Children's Hospital Medical Center, Division of Emergency Medicine, University of Cincinnati, College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| |
Collapse
|
8
|
Liu Y, Kan G, Wang Y, Chen Y, Niu Y, He J, Ju Y, Jiang Y, Jiang J, Zhang H. Nicotiana alkaloids-intervened phospholipid ozonolysis at the air-water interface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170456. [PMID: 38296096 DOI: 10.1016/j.scitotenv.2024.170456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Cigarette nicotiana alkaloids associated with lung and cardiovascular diseases attack enormous attention. However, the mechanism at the molecular level between nicotiana alkaloids and phospholipid ozonolysis remains elusive. Herein, we investigated the interfacial ozonolysis of a hung droplet containing 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) intervened by nicotiana alkaloids (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK; rac-N'-nitrosonornicotine, NNN; nicotine; and (R,S)-N-nitrosoanasabine, NAT) and followed by on-line mass spectrometry analysis. NNK and NNN showed an acceleration on the interfacial ozonolysis, while nicotine and NAT inhibited this chemistry. Such acceleration/inhibition on POPG ozonolysis was positively correlated with nicotiana alkaloid concentrations. The reaction rate constants suggested that the ozonolysis of lung phospholipids exposed to cigarette smoke at the air-water interface occurred rapidly. A possible mechanism of the hydrophilic/oleophilic nature of nicotiana alkaloids mediating the packing density of POPG was proposed. NNK and NNN with a hydrophilic nature inserted into the POPG monolayer loosed the packing, but nicotine and NAT with an oleophilic nature let the POPG closely pack and shield the CC double bonds exposed to ozone (O3). These results gain the knowledge of nicotiana alkaloids mediated phospholipid ozonolysis at the molecule level and provide a method for online interfacial reaction studies associated with elevated indoor pollutants on public health.
Collapse
Affiliation(s)
- Yaqi Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Yanjie Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Yijing Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China
| | - Yuqing Niu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China.
| |
Collapse
|
9
|
Frydrych A, Jurowski K. The comprehensive prediction of carcinogenic potency and tumorigenic dose (TD 50) for two problematic N-nitrosamines in food: NMAMPA and NMAMBA using toxicology in silico methods. Chem Biol Interact 2024; 389:110864. [PMID: 38199258 DOI: 10.1016/j.cbi.2024.110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
The identification and toxicological assessment of potential carcinogens is of paramount importance for public health and safety. This study aimed to predict the carcinogenic potency and tumorigenic dose (TD50) for two problematic N-nitrosamines (N-NAs) commonly found in food: N-2-methylpropyl-N-1-methylacetonylnitrosamine (NMAMPA, CAS: 93755-83-0) and N-3-Methylbutyl-N-1-methylacetonylnitrosamine (NMAMBA, CAS: 71016-15-4). To achieve this goal, in silico toxicology methods were employed due to their practical applications and potential in risk assessment. The justification for conducting these studies was incoherent results published by the European Food Safety Authority (EFSA). For this purpose, we applied various in silico tools, including qualitative methods (ToxTree, ProTox II and CarcinoPred-EL) and quantitative methods (QSAR Toolbox and LAZAR) were applied to predict the carcinogenic potency. These tools leverage computational approaches to analyze chemical structures for finding toxicophores and generating predictions, making them efficient alternatives to traditional in vivo experiments. The results obtained indicated that N-NAs are carcinogenic compounds, and quantitative data was obtained in the form of estimated doses of TD50 for the compounds tested.
Collapse
Affiliation(s)
- Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland
| | - Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland; Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland.
| |
Collapse
|
10
|
Matt GE, Merianos AL, Stone L, Wullenweber C, Quintana PJE, Hoh E, Dodder NG, Lopez Galvez N, Mahabee-Gittens EM. Changes and stability of hand nicotine levels in children of smokers: Associations with urinary biomarkers, reported child tobacco smoke exposure, and home smoking bans. ENVIRONMENT INTERNATIONAL 2023; 181:108239. [PMID: 37852151 DOI: 10.1016/j.envint.2023.108239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Exposure to thirdhand smoke (THS) residue takes place through inhalation, ingestion, and dermal transfer. Hand nicotine levels have been proposed to measure THS pollution in the environment of children, but little is known about its variability and stability over time and correlates of change. OBJECTIVES The goal was to determine the stability of hand nicotine in comparison to urinary biomarkers and to explore factors that influence changes in hand nicotine. METHODS Data were collected from 0 to 11-year-old children (Mean age = 5.9) who lived with ≥1 tobacco smokers (N = 129). At a 6-week interval, we collected repeated measures of hand nicotine, four urinary biomarkers (cotinine, trans-3'-hydroxycotinine, nicotelline N-oxides, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol), and parent-reported child tobacco smoke exposure (TSE). Dependent sample t-tests, correlations, and multivariable regression analyses were conducted to examine the changes in child TSE. RESULTS Hand nicotine levels (r = 0.63, p < 0.001) showed similar correlations between repeated measures to urinary biomarkers (r = 0.58-0.71; p < 0.001). Different from urinary biomarkers, mean hand nicotine levels increased over time (t(113) = 3.37, p < 0.001) being significantly higher in children from homes without smoking bans at Time 2 (p = 0.016) compared to Time 1 (p = 0.003). Changes in hand nicotine correlated with changes in cotinine and trans-3'-hydroxycotinine (r = 0.30 and r = 0.19, respectively, p < 0.05). Children with home smoking bans at Time 1 and 2 showed significantly lower hand nicotine levels compared to children without home smoking bans. DISCUSSION Findings indicate that hand nicotine levels provide additional insights into children's exposure to tobacco smoke pollutants than reported child TSE and urinary biomarkers. Changes in hand nicotine levels show that consistent home smoking bans in homes of children of smokers can lower THS exposure. Hand nicotine levels may be influenced by the environmental settings in which they are collected.
Collapse
Affiliation(s)
- Georg E Matt
- Department of Psychology, San Diego State University, San Diego, CA, USA.
| | - Ashley L Merianos
- School of Human Services, University of Cincinnati, Cincinnati, OH, USA
| | - Lara Stone
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, USA
| | - Chase Wullenweber
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, USA
| | | | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Nathan G Dodder
- School of Public Health, San Diego State University, San Diego, CA, USA; San Diego State University Research Foundation, San Diego, CA, USA
| | | | - E Melinda Mahabee-Gittens
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
11
|
Tang X, Gambier C, López-Gálvez N, Padilla S, Rapp VH, Russell ML, Klivansky LM, Mayorga R, Perrino C, Gundel LA, Hoh E, Dodder NG, Hammond SK, Zhang H, Matt GE, Quintana PJE, Destaillats H. Remediation of Thirdhand Tobacco Smoke with Ozone: Probing Deep Reservoirs in Carpets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37366549 DOI: 10.1021/acs.est.3c01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
We assessed the efficacy of ozonation as an indoor remediation strategy by evaluating how a carpet serves as a sink and long-term source of thirdhand tobacco smoke (THS) while protecting contaminants absorbed in deep reservoirs by scavenging ozone. Specimens from unused carpet that was exposed to smoke in the lab ("fresh THS") and contaminated carpets retrieved from smokers' homes ("aged THS") were treated with 1000 ppb ozone in bench-scale tests. Nicotine was partially removed from fresh THS specimens by volatilization and oxidation, but it was not significantly eliminated from aged THS samples. By contrast, most of the 24 polycyclic aromatic hydrocarbons detected in both samples were partially removed by ozone. One of the home-aged carpets was installed in an 18 m3 room-sized chamber, where its nicotine emission rate was 950 ng day-1 m-2. In a typical home, such daily emissions could amount to a non-negligible fraction of the nicotine released by smoking one cigarette. The operation of a commercial ozone generator for a total duration of 156 min, reaching concentrations up to 10,000 ppb, did not significantly reduce the carpet nicotine loading (26-122 mg m-2). Ozone reacted primarily with carpet fibers, rather than with THS, leading to short-term emissions of aldehydes and aerosol particles. Hence, by being absorbed deeply into carpet fibers, THS constituents can be partially shielded from ozonation.
Collapse
Affiliation(s)
- Xiaochen Tang
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Clément Gambier
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicolás López-Gálvez
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Samuel Padilla
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Vi H Rapp
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marion L Russell
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liana M Klivansky
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Raphael Mayorga
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Charles Perrino
- School of Public Health, University of California Berkeley, Berkeley, California 94720, United States
| | - Lara A Gundel
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Nathan G Dodder
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - S Katharine Hammond
- School of Public Health, University of California Berkeley, Berkeley, California 94720, United States
| | - Haofei Zhang
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - George E Matt
- Department of Psychology, San Diego State University, San Diego, California 92182, United States
| | - Penelope J E Quintana
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Hugo Destaillats
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Arfaeinia H, Ghaemi M, Jahantigh A, Soleimani F, Hashemi H. Secondhand and thirdhand smoke: a review on chemical contents, exposure routes, and protective strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28128-1. [PMID: 37306877 DOI: 10.1007/s11356-023-28128-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Secondhand smoke (SHS: a mixture of sidestream and mainstream smoke) and thirdhand smoke (THS: made up of the pollutants that settle indoors after smoking in closed environments) are a significant public health concern. SHS and THS contain various chemicals which can be released into the air or settle on surfaces. At present, the hazards of SHS and THS are not as well documented. In this review, we describe the chemical contents of THS and SHS, exposure routes, vulnerable groups, health effects, and protective strategies. The literature search was conducted for published papers on September 2022 in Scopus, Web of Science, PubMed, and Google Scholar databases. This review could provide a comprehensive understanding of the chemical contents of THS and SHS, exposure routes, vulnerable groups, health effects, protective strategies, and future researches on environmental tobacco smoke.
Collapse
Affiliation(s)
- Hossein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Ghaemi
- Iranian National Institute for Oceanography and Atmospheric Science, No. 3, Etemadzadeh St., Fatemi Ave, Tehran, 1411813389, Iran
| | - Anis Jahantigh
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farshid Soleimani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Hassan Hashemi
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Zheng Y, Dai Y, Hong J, Fan H, Zhang Q, Jiang W, Xu W, Fei J, Hong J. Magnetic dummy template molecularly imprinted particles functionalized with dendritic nanoclusters for selective enrichment and determination of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in tobacco products. RSC Adv 2023; 13:13824-13833. [PMID: 37152563 PMCID: PMC10160923 DOI: 10.1039/d3ra00610g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
The compound 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), one of the tobacco specific nitrosamines (TSNAs), is widely recognized as a major carcinogen found in tobacco products, environmental tobacco smoke and wastewater. Thus, a selective enrichment and sensitive detection method for monitoring the risk of NNK exposure is highly desirable. In this study, a magnetic molecularly imprinted polymer (MMIP) functionalized with dendritic nanoclusters was synthesized to selectively recognize NNK via the dummy template imprinting strategy, aiming to avoid residual template leakage and increase the imprinting efficiency. The nanocomposites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, as well as vibrating sample magnetometry (VSM) and nitrogen adsorption/desorption analysis. The resulting MMIPs exhibited high adsorption capacity, fast binding kinetics and good selectivity for trace amounts of NNK. A rapid, low cost and efficient method for detecting NNK in tobacco products was established using magnetic dispersive solid-phase extraction coupled with HPLC-DAD with a good linear range of 0.1-250 μg mL-1. The limit of detection (LOD) and limit of quantification (LOQ) of NNK were 13.5 and 25.0 ng mL-1, respectively. The average recoveries were 87.8-97.3% with RSDs lower than 3%. The results confirmed that the MMIPs could be used as an excellent selective adsorbent for NNK, with potential applications in the pretreatment of tobacco products.
Collapse
Affiliation(s)
- Yani Zheng
- School of Pharmacy, Nanjing Medical University Nanjing Jiangsu 211166 China +86 25 86868476 +86 25 86868476
| | - Yin Dai
- School of Pharmacy, Nanjing Medical University Nanjing Jiangsu 211166 China +86 25 86868476 +86 25 86868476
| | - Junqiang Hong
- Department of Radiotherapy, Fujian Medical University Affiliated Xiamen Humanity Hospital Xiamen Fujian 361000 China
| | - Huizhu Fan
- School of Pharmacy, Nanjing Medical University Nanjing Jiangsu 211166 China +86 25 86868476 +86 25 86868476
| | - Qing Zhang
- School of Pharmacy, Nanjing Medical University Nanjing Jiangsu 211166 China +86 25 86868476 +86 25 86868476
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine Hefei 230012 China
| | - Wei Jiang
- Yunnan Key Laboratory of Tobacco Chemistry, Research and Development Center of China Tobacco Yunnan Industrial Co. Ltd Kunming Yunnan 650231 China
| | - Wei Xu
- School of Pharmacy, Nanjing Medical University Nanjing Jiangsu 211166 China +86 25 86868476 +86 25 86868476
| | - Jianwen Fei
- School of Pharmacy, Nanjing Medical University Nanjing Jiangsu 211166 China +86 25 86868476 +86 25 86868476
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University Nanjing Jiangsu 211166 China +86 25 86868476 +86 25 86868476
| |
Collapse
|
14
|
Zhang H, Zhao C, Zhang Y, Lu L, Shi W, Zhou Q, Pu Y, Wang S, Liu R, Yin L. Multi-omics analysis revealed NMBA induced esophageal carcinoma tumorigenesis via regulating PPARα signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121369. [PMID: 36858103 DOI: 10.1016/j.envpol.2023.121369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
As widespread environmental carcinogens causing esophageal carcinoma (EC), the effects of N-nitrosamines on human health hazards and accurate toxicity mechanisms have not been well-elucidated. In this study, we explored the tumorigenic mechanism of N-nitrosomethylbenzylamine (NMBA) exposure using both cell and rat models. It was found that NMBA (2 μM) exposure for 26 weeks induced malignant transformation of normal esophageal epithelial (Het-1A) cells. After then proteomics analysis showed that lipid metabolism disorder predominantly participated in the process of NMBA-induced cell malignant transformation. Further the integrated proteomics and lipidomics analysis revealed that the enhancement of fatty acid metabolism promoted the EC tumorigenesis induced by NMBA through facilitating the fatty acid-associated PPARα signaling pathway. The animal studies also revealed that accelerated fatty acid decomposition in the progression of NMBA-induced EC models of rats was accompanied by the activation of the PPARα pathway. Overall, our findings depicted the key dynamic molecular alteration triggered by N-nitrosamines, and provided comprehensive biological perspectives into the carcinogenic risk assessment of N-nitrosamines.
Collapse
Affiliation(s)
- Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Chao Zhao
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou, 225000, China
| | - Ying Zhang
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou, 225000, China
| | - Lu Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Wei Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Qian Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
15
|
Yang H, Wang X, Wang P, He L, Schick SF, Jacob P, Benowitz N, Gundel LA, Zhu C, Xia Y, Inman JL, Chang H, Snijders AM, Mao JH, Hang B. Thirdhand tobacco smoke exposure increases the genetic background-dependent risk of pan-tumor development in Collaborative Cross mice. ENVIRONMENT INTERNATIONAL 2023; 174:107876. [PMID: 36940581 PMCID: PMC11439420 DOI: 10.1016/j.envint.2023.107876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/15/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Increasing evidence has shown that thirdhand smoke (THS) exposure is likely to induce adverse health effects. An important knowledge gap remains in our understanding of THS exposure related to cancer risk in the human population. Population-based animal models are useful and powerful in investigating the interplay between host genetics and THS exposure on cancer risk. Here, we used the Collaborative Cross (CC) mouse population-based model system, which recapitulates the genetic and phenotypic diversity observed in the human population, to assess cancer risk after a short period of exposure, between 4 and 9 weeks of age. Eight CC strains (CC001, CC019, CC026, CC036, CC037, CC041, CC042 and CC051) were included in our study. We quantified pan-tumor incidence, tumor burden per mouse, organ tumor spectrum and tumor-free survival until 18 months of age. At the population level, we observed a significantly increased pan-tumor incidence and tumor burden per mouse in THS-treated mice as compared to the control (p = 3.04E-06). Lung and liver tissues exhibited the largest risk of undergoing tumorigenesis after THS exposure. Tumor-free survival was significantly reduced in THS-treated mice compared to control (p = 0.044). At the individual strain level, we observed a large variation in tumor incidence across the 8 CC strains. CC036 and CC041 exhibited a significant increase in pan-tumor incidence (p = 0.0084 and p = 0.000066, respectively) after THS exposure compared to control. We conclude that early-life THS exposure increases tumor development in CC mice and that host genetic background plays an important role in individual susceptibility to THS-induced tumorigenesis. Genetic background is an important factor that should be taken into account when determining human cancer risk of THS exposure.
Collapse
Affiliation(s)
- Hui Yang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xinzhi Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Li He
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Suzyann F Schick
- Department of Medicine, Division of Occupational and Environmental Medicine, University of California, San Francisco, CA 94143, USA
| | - Peyton Jacob
- Department of Medicine, Division of Cardiology, Clinical Pharmacology Program, University of California, San Francisco, CA 94143, USA
| | - Neal Benowitz
- Department of Medicine, Division of Cardiology, Clinical Pharmacology Program, University of California, San Francisco, CA 94143, USA
| | - Lara A Gundel
- Indoor Environment Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chi Zhu
- Hanszen College, Rice University, Houston, TX 77005, USA
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jamie L Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|