1
|
Liang X, Zhang J, Tian J, Xie Z, Liu Y, Liu P, Ye D. Insight into catalytic performance and reaction mechanism for toluene total oxidation over Cu-Ce supported catalyst. J Environ Sci (China) 2025; 149:476-487. [PMID: 39181660 DOI: 10.1016/j.jes.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 08/27/2024]
Abstract
Herein, three supported catalysts, CuO/Al2O3, CeO2/Al2O3, and CuO-CeO2/Al2O3, were synthesized by the convenient impregnation method to reveal the effect of CeO2 addition on catalytic performance and reaction mechanism for toluene oxidation. Compared with CuO/Al2O3, the T50 and T90 (the temperatures at 50% and 90% toluene conversion, respectively) of CuO-CeO2/Al2O3 were reduced by 33 and 39 °C, respectively. N2 adsorption-desorption experiment, XRD, SEM, EDS mapping, Raman, EPR, H2-TPR, O2-TPD, XPS, NH3-TPD, Toluene-TPD, and in-situ DRIFTS were conducted to characterize these catalysts. The excellent catalytic performance of CuO-CeO2/Al2O3 could be attributed to its strong copper-cerium interaction and high oxygen vacancies concentration. Moreover, in-situ DRIFTS proved that CuO-CeO2/Al2O3 promoted the conversion of toluene to benzoate and accelerated the deep degradation path of toluene. This work provided valuable insights into the development of efficient and economical catalysts for volatile organic compounds.
Collapse
Affiliation(s)
- Xuan Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jin Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Juntai Tian
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zenghua Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yue Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peng Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Wu M, Chen C, Duo J, Li Q, Song M, Sun B, Su G. Super-exchange interaction enables Fe 2-xMn xO 3 perovskite with excellent catalytic oxidation activity toward hexabromocyclododecane under humidity. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135691. [PMID: 39217925 DOI: 10.1016/j.jhazmat.2024.135691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Although enhancing the catalytic oxidation activity is a hotspot in thermal-driven catalytic disposal of persistent organic pollutants, few studies have managed to improve catalysts' water-resistance properties. Herein, we developed Fe2-xMnxO3 perovskite to boost the catalytic oxidation of hexabromocyclododecane under humidity by modulating its super-exchange interaction (SEI, Fe3+ + Mn3+ → Fe2+ + Mn4+). Fe0.4Mn1.6O3, with the strongest SEI, exhibits the biggest oxidation rate-constant, which is 3 times higher than that of commonly used Fe2O3 without SEI. Notably, unlike Fe2O3 which deactivates at a relative humidity of 5 %. Fe0.4Mn1.6O3 maintains its activity and is even boosted by 22 % compared to dry conditions. Mechanistic insights reveal that SEI between Fe and Mn enhances the reactivity of Mn4+- linked Olatt by lowering the reductive temperature from Mn4+ to Mn3+. Meanwhile, SEI promotes the adsorption of the associatively adsorbed H2O (HOH-type water) by reducing adsorption energy, thereby facilitating the formation of hydroxyl species, which are crucial for the oxidation process under humidity.
Collapse
Affiliation(s)
- Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, and State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, and State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Duo
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of ecology and geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, and State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, and State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, and State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, and State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Huang H, Xie X, Xiao F, Liu B, Zhang T, Feng F, Lan B, Zhang C. A Critical Review of Deep Oxidation of Gaseous Volatile Organic Compounds via Aqueous Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18456-18473. [PMID: 39388166 DOI: 10.1021/acs.est.4c07202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Volatile organic compounds (VOCs) are considered to be the most recalcitrant gaseous pollutants due to their high toxicity, diversity, complexity, and stability. Gas-solid catalytic oxidation methods have been intensively studied for VOC treatment while being greatly hampered by energy consumption, catalyst deactivation, and byproduct formation. Recently, aqueous advanced oxidation processes (AOPs) have attracted increasing interest for the deep oxidation of VOCs at room temperature, owing to the generation of abundant reactive oxygen species (ROS). However, current reviews mainly focus on VOC degradation performance and have not clarified the specific reaction process, degradation products, and paths of VOCs in different AOPs. This study systematically reviews recent advances in the application of aqueous AOPs for gaseous VOC removal. First, the VOC gas-liquid mass transfer and chemical oxidation processes are presented. Second, the latest research progress of VOC removal by various ROS is reviewed to study their degradation performances, pathways, and mechanisms. Finally, the current challenges and future strategies are discussed from the perspectives of synergistic oxidation of VOC mixtures, accurate oxidation, and resource utilization of target VOCs via aqueous AOPs. This perspective provides the latest information and research inspiration for the future industrial application of aqueous AOPs for VOC waste gas treatment.
Collapse
Affiliation(s)
- Haibao Huang
- College of Ecology and Environment, School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- Northeast Guangdong Key Laboratory of New Functional Materials, School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
- Guangdong Provincial Engineering Research Center of Intelligent Low-Carbon Pollution Prevention and Digital Technology, South China Normal University, Guangzhou 510006, China
- SCNU (NAN'AN) Green and Low-Carbon Innovation Center, Nan'an SCNU Institute of Green and Low-Carbon Research, Quanzhou 362300, China
| | - Fei Xiao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Biyuan Liu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fada Feng
- Northeast Guangdong Key Laboratory of New Functional Materials, School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Bang Lan
- Northeast Guangdong Key Laboratory of New Functional Materials, School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Chao Zhang
- Guangdong Provincial Engineering Research Center of Intelligent Low-Carbon Pollution Prevention and Digital Technology, South China Normal University, Guangzhou 510006, China
- SCNU (NAN'AN) Green and Low-Carbon Innovation Center, Nan'an SCNU Institute of Green and Low-Carbon Research, Quanzhou 362300, China
| |
Collapse
|
4
|
Wang G, Wu C, Liu Q, Wan H, Dong L. Enhanced performance of photocatalytic oxidation of indoor toluene over Pd/TiO 2 catalyst by tuning surface defect concentrations. CHEMOSPHERE 2024; 366:143409. [PMID: 39326714 DOI: 10.1016/j.chemosphere.2024.143409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
An effective approach for the elimination of indoor gaseous toluene through photocatalytic oxidation involves the engineering of surface defects on catalysts. In this study, the concentrations of surface oxygen defects in PdTi-xN (x = 10, 30) catalysts were controlled using the sodium borohydride solid-phase reduction method, and their performances in the photocatalytic oxidation of indoor gaseous toluene were evaluated. PdTi-10 N demonstrated high photocatalytic efficiency for toluene oxidation, achieving 84% toluene conversion and approximately 75% CO2 mineralization. Characterization results indicated that surface oxygen defects can enhance the separation of photo-generated electrons and holes, facilitating their interaction with Pd0 species to form Ti3+ species. More reactive oxygen species (·OH-and ·O2-) were generated on PdTi-10 N due to the synergistic effect of surface oxygen defect and Ti3+ species, which played a significant role as the toluene oxidation. This work provides a new insight for the design and development of high-performance Pd/TiO2 catalysts in the field of indoor VOCs treatment.
Collapse
Affiliation(s)
- Gehui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Cong Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Qinglong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Chen Z, Zhao C, Wei N, Yun J, Chu R, Zheng H, Feng X, Tong Z, Chen Z. New insights and reaction mechanisms in the design of catalysts for the synergistic removal of NO x and VOCs from coke oven flue gas: Dual regulation of oxidative properties and acidic sites. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135052. [PMID: 39067287 DOI: 10.1016/j.jhazmat.2024.135052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
The acid and redox sites of the MnCo catalysts are simultaneously fine-tuned by the addition of V. A dual-function catalyst, designated as V0.5Mn5Co5, has been constructed for the synergistic removal of NOx and volatile organic compounds under coke-oven flue gas conditions, which exhibits > 95 % NOx conversion and > 80 % N2 selectivity at 180-300 °C. Meanwhile, it removes 70 % of ethylene at 240 °C. Besides it has excellent sulfur and water resistance. The characterization results indicate that this acid-redox dual sites modulation strategy appropriately weakens the oxidation capacity of the catalysts while increasing the surface acidity of the catalysts. The catalyst mainly performs SCR reaction through the E-R mechanism, and N2O is generated through the transition dehydrogenation of NH3 and NSCR reaction. Ethylene is first adsorbed on the catalyst surface then oxidized to form carbonate species, and finally decomposed to CO2. Ethylene oxidation follows the MvK mechanism. There is a competitive adsorption between NH3 and C2H4, and a mutual inhibition between the SCR reaction and the ethylene oxidation reaction. V0.5Mn5Co5 exhibits excellent synergistic removal of NOx and VOCs in coke oven flue gas compared with commercial VWTi catalysts, which indicates great promise for industrial application.
Collapse
Affiliation(s)
- Zimo Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Cheng Zhao
- Guangdong Key Lab of Water & Air Pollution Control, Guangdong Province Engineering Laboratory for Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ninghan Wei
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Junge Yun
- College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Rencheng Chu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Han Zheng
- Guangdong Key Lab of Water & Air Pollution Control, Guangdong Province Engineering Laboratory for Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xin Feng
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Zhihang Chen
- Guangdong Key Lab of Water & Air Pollution Control, Guangdong Province Engineering Laboratory for Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Environment and Resources, Xiangtan University, Xiangtan, China.
| |
Collapse
|
6
|
Fu H, Liu H, Wang X, Zhang W, Zhang H, Luo Y, Deng X, King G, Chen N, Wang L, Wu YA. Reverse Hydrogen Spillover on Metal Oxides for Water-Promoted Catalytic Oxidation Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407534. [PMID: 38973643 DOI: 10.1002/adma.202407534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Understanding the water-involved mechanism on metal oxide surface and the dynamic interaction of water with active sites is crucial in solving water poisoning in catalytic reactions. Herein, this work solves this problem by designing the water-promoted function of metal oxides in the ethanol oxidation reaction. In situ multimodal spectroscopies unveil that the competitive adsorption of water-dissociated *OH species with O2 at Sn active sites results in water poisoning and the sluggish proton transfer in CoO-SnO2 imparts water-resistant effect. Carbon material as electron donor and proton transport channel optimizes the Co active sites and expedites the reverse hydrogen spillover from CoO to SnO2. The water-promoted function arises from spillover protons facilitating O2 activation on the SnO2 surface, leading to crucial *OOH intermediate formation for catalyzing C-H and C-C cleavage. Consequently, the tailored CoO-C-SnO2 showcases a remarkable 60-fold enhancement in ethanol oxidation reaction compared to bare SnO2 under high-humidity conditions.
Collapse
Affiliation(s)
- Hao Fu
- School of Chemistry and Chemical Engineering, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, P. R. China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, P. R. China
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Wenhua Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Hui Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Yunhong Luo
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P. R. China
| | - Xianwang Deng
- School of Chemistry and Chemical Engineering, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, P. R. China
| | - Graham King
- Canadian Light Source, Saskatoon, S7N 2V3, Canada
| | - Ning Chen
- Canadian Light Source, Saskatoon, S7N 2V3, Canada
| | - Liwei Wang
- School of Chemistry and Chemical Engineering, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, P. R. China
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, N2L 3G1, Canada
| |
Collapse
|
7
|
An C, Hong W, Jiang X, Sun Y, Li X, Shen F, Zhu T. Catalytic Ozonation of Low Concentration Toluene over MnFeO x-USY Catalyst: Effects of Interactions between Catalytic Components and Introduction of Gas Phase NO x. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39088742 DOI: 10.1021/acs.est.4c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
A series of Mn and Fe metal oxide catalysts loaded onto USY, as well as single metal oxides, were prepared and characterized. The effects of interactions between the catalytic components and the introduction of gas phase NO on the catalytic ozonation of toluene were investigated. Characterization showed that there existed strong interactions between MnOx, FeOx, and USY, which enhanced the content of oxygen vacancies and acid sites of the catalysts and thus boosted the generation of reactive oxygen species and the adsorption of toluene. The MnFeOx-USY catalyst with MnOx and FeOx dimetallic oxides exhibited the most excellent performance of catalytic ozonation of toluene. On the other hand, the presence of NOx in reaction gas mixtures significantly promoted both toluene conversion and mineralization, which was attributed to the formation of nitrate species on the catalysts surface and thus the increase of both acid sites and toluene oxidation sites. Meanwhile, the reaction mechanism between O3 and C7H8 was modified in which the strong interactions between MnOx, FeOx, and USY accelerated the reaction progress based on the L-H route. In addition, the formation of the surface nitrate species not only promoted reaction progress following the L-H route but also resulted in the occurrence of the reaction via the E-R route.
Collapse
Affiliation(s)
- Chenguang An
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Wei Hong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xinxin Jiang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Ye Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Tianle Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
8
|
Fang Y, Yang J, Pan C. The Surface/Interface Modulation of Platinum Group Metal (PGM)-Free Catalysts for VOCs and CO Catalytic Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37379-37389. [PMID: 38981038 DOI: 10.1021/acsami.4c08018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Effective management of volatile organic compounds (VOCs) and carbon monoxide (CO) is critical to human health and the ecological environment. Catalytic oxidation is one of the most promising technologies for achieving efficient VOCs and CO emission control. Platinum group metal (PGM)-free catalysts are recently receiving sustainable attention in catalyzing VOCs and CO removal due to their low cost, superior catalytic activity, and excellent stability, but PGM-free catalysts face challenges in low-temperature catalytic efficiency. In this mini-review, starting with discussing the catalytic mechanism of VOCs and CO oxidation, we summarize the surface/interface modulation strategies of PGM-free catalysts to promote oxygen and VOCs/CO molecule activation for enhanced low-temperature oxidation activity, including oxygen vacancy engineering, heteroatom doping, surface acidity modification, and active interface construction. We highlight the currently remaining challenges and prospects of advanced PGM-free catalyst development for highly efficient VOCs and CO emission control in practical applications.
Collapse
Affiliation(s)
- Yarong Fang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ji Yang
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chuanqi Pan
- Henan Academy of Sciences, Zhengzhou 450046, P. R. China
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
| |
Collapse
|
9
|
Li D, Liu H, He X, Yao Y, Liu H, Chen J, Deng B, Lan X. Sepiolite-Supported Manganese Oxide as an Efficient Catalyst for Formaldehyde Oxidation: Performance and Mechanism. Molecules 2024; 29:2826. [PMID: 38930891 PMCID: PMC11207037 DOI: 10.3390/molecules29122826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The current study involved the preparation of a number of MnOx/Sep catalysts using the impregnation (MnOx/Sep-I), hydrothermal (MnOx/Sep-H), and precipitation (MnOx/Sep-P) methods. The MnOx/Sep catalysts that were produced were examined for their ability to catalytically oxidize formaldehyde (HCHO). Through the use of several technologies, including N2 adsorption-desorption, XRD, FTIR, TEM, H2-TPR, O2-TPD, CO2-TPD, and XPS, the function of MnOx in HCHO elimination was examined. The MnOx/Sep-H combination was shown to have superior catalytic activities, outstanding cycle stability, and long-term activity. It was also able to perform complete HCHO conversion at 85 °C with a high GHSV of 6000 mL/(g·h) and 50% humidity. Large specific surface area and pore size, a widely dispersed active component, a high percentage of Mn3+ species, and lattice oxygen concentration all suggested a potential reaction route for HCHO oxidation. This research produced a low-cost, highly effective catalyst for HCHO purification in indoor or industrial air environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaobing Lan
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China; (D.L.); (H.L.); (X.H.); (Y.Y.); (H.L.); (J.C.); (B.D.)
| |
Collapse
|
10
|
Pan T, Bai S, Zhang X, Deng H, Lu Y, Shan W, He H. In-Depth Understanding of the Oxidative Compatibility of Volatile Organic Compounds with Mn 2O 3 and Pt-Loaded Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9381-9392. [PMID: 38747138 DOI: 10.1021/acs.est.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Designing suitable catalysts for efficiently degrading volatile organic compounds (VOCs) is a great challenge due to the distinct variety and nature of VOCs. Herein, the suitability of different typical VOCs (toluene and acetone) over Pt-based catalysts and Mn2O3 was investigated carefully. The activity of Mn2O3 was inferior to Pt-loaded catalysts in toluene oxidation but showed superior ability for destroying acetone, while Pt loading could boost the catalytic activity of Mn2O3 for both acetone and toluene. This suitability could be determined by the physicochemical properties of the catalysts and the structure of the VOC since toluene destruction activity is highly reliant on Pt0 in the metallic state and linearly correlated with the amount of surface reactive oxygen species (Oads), while the crucial factor that affects acetone oxidation is the mobility of lattice oxygen (Olat). The Pt/Mn2O3 catalyst shows highly active Pt-O-Mn interfacial sites, favoring the generation of Oads and promoting Mn-Olat mobility, leading to its excellent performance. Therefore, the design of abundant active sites is an effective means of developing highly adaptive catalysts for the oxidation of different VOCs.
Collapse
Affiliation(s)
- Tingting Pan
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Xiamen Key Laboratory of Indoor Air and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijia Bai
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Xiamen Key Laboratory of Indoor Air and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueshan Zhang
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Xiamen Key Laboratory of Indoor Air and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hua Deng
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Xiamen Key Laboratory of Indoor Air and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqin Lu
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Xiamen Key Laboratory of Indoor Air and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Xiamen Key Laboratory of Indoor Air and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Xiamen Key Laboratory of Indoor Air and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
11
|
Xiang Y, Xie X, Zhong H, Xiao F, Xie R, Liu B, Guo H, Hu D, Zhang P, Huang H. Efficient Catalytic Elimination of Toxic Volatile Organic Compounds via Advanced Oxidation Process Wet Scrubbing with Bifunctional Cobalt Sulfide/Activated Carbon Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8846-8856. [PMID: 38728579 DOI: 10.1021/acs.est.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Advanced oxidation process (AOP) wet scrubber is a powerful and clean technology for organic pollutant treatment but still presents great challenges in removing the highly toxic and hydrophobic volatile organic compounds (VOCs). Herein, we elaborately designed a bifunctional cobalt sulfide (CoS2)/activated carbon (AC) catalyst to activate peroxymonosulfate (PMS) for efficient toxic VOC removal in an AOP wet scrubber. By combining the excellent VOC adsorption capacity of AC with the highly efficient PMS activation activity of CoS2, CoS2/AC can rapidly capture VOCs from the gas phase to proceed with the SO4•- and HO• radical-induced oxidation reaction. More than 90% of aromatic VOCs were removed over a wide pH range (3-11) with low Co ion leaching (0.19 mg/L). The electron-rich sulfur vacancies and low-valence Co species were the main active sites for PMS activation. SO4•- was mainly responsible for the initial oxidation of VOCs, while HO• and O2 acted in the subsequent ring-opening and mineralization processes of intermediates. No gaseous intermediates from VOC oxidation were detected, and the highly toxic liquid intermediates like benzene were also greatly decreased, thus effectively reducing the health toxicity associated with byproduct emissions. This work provided a comprehensive understanding of the deep oxidation of VOCs via AOP wet scrubber, significantly accelerating its application in environmental remediation.
Collapse
Affiliation(s)
- Yongjie Xiang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Huanran Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Fei Xiao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Ruijie Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Biyuan Liu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hao Guo
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| | - Di Hu
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| | - Pan Zhang
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| |
Collapse
|
12
|
Wang HJ, Yang HH, Li Z, Shen X, Chen TY, Zhan J, Zhou H, Yi X, Zhang SY, Liu Y. Surficial engineering of active hydroxyls for ambient formaldehyde oxidation via enhanced Lewis acidity over Zr-doped cryptomelane materials. ENVIRONMENTAL RESEARCH 2024; 247:118255. [PMID: 38266890 DOI: 10.1016/j.envres.2024.118255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024]
Abstract
Lewis acids of solid catalysts have been featured for a pivotal role in promoting various reactions. Regarding the oxidation protocol to remove formaldehyde, the inherent drawback of the best-studied MnO2 materials in acidic sites has eventually caused deficiency of active hydroxyls to sustain low-temperature activity. Herein, the cryptomelane-type MnO2 was targeted and it was tuned via incorporation of Zr metal, exhibiting great advances in not only the complete HCHO-to-CO2 degradation but also cycling performance. Zr species were existent in doping state in the MnO2 lattice, rendering lower crystallinity and breaking the regular growth of MnO2 crystallites, which thereby tripled surface area and created larger volume of smaller mesopores. Meantime, the local electronic properties of Mn atoms were also changed by Zr doping, i.e., more low-valence Mn species were formed due to the electron transfer from Zr to Mn. The results of infrared studies demonstrate the higher possession of Lewis acid sites on ZrMn, and this high degree of electrophilic agents favored the production of hydroxyl species. Furthermore, the reactivity of surface hydroxyls, as investigated by CO temperature programmed reduction and temperature programmed desorption of adsorbed O2, was obviously improved as well after Zr modification. It is speculated jointly with the characterizations of the post-reaction catalysts that the accelerated production of active hydroxyls helped rapidly convert formaldehyde into key intermediate-formate, which was then degraded into CO2, avoiding the side reaction path with undesired intermediate-hydrocarbonate-over the pristine MnO2, where active sites were blocked and formaldehyde oxidation was inhibited. Additionally, Zr decoration could stabilize Lewis acidity to be more resistant to heat degeneration, and this merit brought about advantageous thermal recyclability for cycled application.
Collapse
Affiliation(s)
- Hui-Jun Wang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Huan-Huan Yang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Zhonghong Li
- Yingkou Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yingkou, 115004, China.
| | - Xudong Shen
- Yingkou Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yingkou, 115004, China.
| | - Tian-Yun Chen
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Jingjing Zhan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Hao Zhou
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Shi-Yu Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Yang Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
13
|
Mohd Raub AA, Bahru R, Mohamed MA, Latif R, Mohammad Haniff MAS, Simarani K, Yunas J. Photocatalytic activity enhancement of nanostructured metal-oxides photocatalyst: a review. NANOTECHNOLOGY 2024; 35:242004. [PMID: 38484390 DOI: 10.1088/1361-6528/ad33e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Nanostructured metal oxide semiconductors have emerged as promising nanoscale photocatalysts due to their excellent photosensitivity, chemical stability, non-toxicity, and biocompatibility. Enhancing the photocatalytic activity of metal oxide is critical in improving their efficiency in radical ion production upon optical exposure for various applications. Therefore, this review paper provides an in-depth analysis of the photocatalytic activity of nanostructured metal oxides, including the photocatalytic mechanism, factors affecting the photocatalytic efficiency, and approaches taken to boost the photocatalytic performance through structure or material modifications. This paper also highlights an overview of the recent applications and discusses the recent advancement of ZnO-based nanocomposite as a promising photocatalytic material for environmental remediation, energy conversion, and biomedical applications.
Collapse
Affiliation(s)
- Aini Ayunni Mohd Raub
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Raihana Bahru
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Rhonira Latif
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | | | - Khanom Simarani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Kuala Lumpur, Malaysia
| | - Jumril Yunas
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| |
Collapse
|
14
|
Bai B, Huang Y, Chen J, Lei J, Wang S, Wang J. Ultrathin MnO 2 with strong lattice disorder for catalytic oxidation of volatile organic compounds. J Colloid Interface Sci 2024; 653:1205-1216. [PMID: 37797496 DOI: 10.1016/j.jcis.2023.09.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Catalytic oxidation proves the most promising technology for volatile organic compounds (VOCs) abatement. Lattice disorder plays a crucial role in the catalytic activity of catalysts due to the exposure of more active sites. Inspired by this, we successfully prepared a series of ε-MnO2 with different lattice disorder defects via several simple methods and applied them to the catalytic oxidation of two typical VOCs (toluene and acetone). Various characterizations and performance tests confirm that the ultrathin (1.4-1.8 nm) structure and strong lattice disorder can enhance the low temperature reduction and reactive oxygen species, so that MnO2-R exhibits excellent toluene and acetone oxidation activities. In-situ DRIFTS tests were carried out to detect reaction intermediates in the toluene and acetone oxidation process on the catalyst surface. Moreover, we propose a possible synergistic mechanism for toluene and acetone mixtures catalytic oxidation. This work reveals the important role of lattice disorder defects in the catalytic oxidation of VOCs on Mn-based catalysts, and deepens the insights of the reaction path in toluene and acetone catalytic oxidation.
Collapse
Affiliation(s)
- Baobao Bai
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| | - Ying Huang
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jiajia Chen
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| | - Juan Lei
- Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030018, Shanxi, PR China.
| | - Shuang Wang
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Jiancheng Wang
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| |
Collapse
|
15
|
Zhao H, Meng P, Gao S, Wang Y, Sun P, Wu Z. Recent advances in simultaneous removal of NOx and VOCs over bifunctional catalysts via SCR and oxidation reaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167553. [PMID: 37802335 DOI: 10.1016/j.scitotenv.2023.167553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
NOx and volatile organic compounds (VOCs) are two major pollutants commonly found in industrial flue gas emissions. They play a significant role as precursors in the formation of ozone and fine particulate matter (PM2.5). The simultaneous removal of NOx and VOCs is crucial in addressing ozone and PM2.5 pollution. In terms of investment costs and space requirements, the development of bifunctional catalysts for the simultaneous selective catalytic reduction (SCR) of NOx and catalytic oxidation of VOCs emerges as a viable technology that has garnered considerable attention. This review provides a summary of recent advances in catalysts for the simultaneous removal of NOx and VOCs. It discusses the reaction mechanisms and interactions involved in NH3-SCR and VOCs catalytic oxidation, the effects of catalyst acidity and redox properties. The insufficiency of bifunctional catalysts was pointed out, including issues related to catalytic activity, product selectivity, catalyst deactivation, and environmental concerns. Subsequently, potential solutions are presented to enhance catalyst performance, such as optimizing the redox properties and acidity, enhancing resistance to poisoning, substituting environment friendly metals and introducing hydrocarbon selective catalytic reduction (HC-SCR) reaction. Finally, some suggestions are given for future research directions in catalyst development are prospected.
Collapse
Affiliation(s)
- Huaiyuan Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Pu Meng
- Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shan Gao
- Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yuejun Wang
- Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Pengfei Sun
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
16
|
Zhou B, Bai B, Zhu X, Guo J, Wang Y, Chen J, Peng Y, Si W, Ji S, Li J. Insights into effects of grain boundary engineering in composite metal oxide catalysts for improving catalytic performance. J Colloid Interface Sci 2024; 653:1177-1187. [PMID: 37788585 DOI: 10.1016/j.jcis.2023.09.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
Volatile Organic Compounds (VOCs) have long been a threat to human health. However, designing economical and efficient transition metal composite oxide catalysts for VOCs purification remains a challenge. Herein, this study demonstrates the enormous potential of grain boundary engineering in facilitating VOCs decomposition over ordered mesoporous composite oxide denoted as 3D-MnxCoy (x, y = 1, 3, 5, 7, 9). Specifically, the three-dimensional (3D) Mn7Co1 catalyst shows 100% ethyl acetate removal efficiency for a continuous airflow containing 1000 ppm ethyl acetate over 60000 h-1 space velocity at 160 °C. Mechanism study suggests that the high catalytic performance originates from the lattice distortion caused by the introduction of heteroatoms, along with the size effect of nanopore walls, which leads to the formation of various grain boundaries on the catalyst surface. The presence of grain boundaries facilitates the generation of oxygen vacancies, thus promoting the migration and activation of oxygen species. Furthermore, the near-atmospheric pressure X-ray photoelectron spectroscopy (NAP- XPS) monitoring results reveal that the bimetallic synergy enhanced by grain boundary accelerates the catalytic reaction rate of VOCs through Mn3++Co3+↔Mn4++Co2+ redox cycle. This study may shed light on the great potential of ordered mesoporous bimetallic oxide catalysts in VOCs pollution control.
Collapse
Affiliation(s)
- Bin Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bingyang Bai
- State Environmental Protection Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaofeng Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingjie Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Shengfu Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Sun X, Yang S, Liu X, Qiao Y, Liu Z, Li X, Pan J, Liu H, Wang L. The enhancement of benzene total oxidation over Ru xCeO 2 catalysts at low temperature: The significance of Ru incorporation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165574. [PMID: 37474046 DOI: 10.1016/j.scitotenv.2023.165574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Catalytic oxidation is considered to be the most efficient technology for eliminating benzene from waste gas. The challenge is the reduction of the catalytic reaction temperature for the deep oxidation of benzene. Here, highly efficient RuxCeO2 catalysts were utilized to turn the number of surface oxygen vacancies and Ce-O-Ru bonds via a one-step hydrothermal method, resulting in a preferable low-temperature reducibility for the total oxidation of benzene. The T50 of the Ru0.2CeO2 catalyst for benzene oxidation was 135 °C, which was better than that of pristine CeO2 (239 °C) and 0.2Ru/CeO2 (190 °C). The superior performance of Ru0.2CeO2 was attributed to its large surface area (approximately 114.23 m2·g-1), abundant surface oxygen vacancies, and Ce-O-Ru bonds. The incorporation of Ru into the CeO2 lattice could effectively facilitate the destruction of the CeO bond and the facile release of lattice oxygen, inducing the generation of surface oxygen vacancies. Meanwhile, the bridging action of Ce-O-Ru bonds accelerated electron transfer and lattice oxygen transportation, which had a synergistic effect with surface oxygen vacancies to reduce the reaction temperature. The Ru0.2CeO2 catalyst also exhibited high catalytic stability, water tolerance, and impact resistance in terms of benzene abatement. Using in situ infrared spectroscopy, it was demonstrated that the Ru0.2CeO2 catalyst can effectively enhance the accumulation of maleate species, which are key intermediates for benzene ring opening, thereby enhancing the deep oxidation of benzene.
Collapse
Affiliation(s)
- Xiaoxia Sun
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shu Yang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xin Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yarui Qiao
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhilou Liu
- School of Metallurgical Engineering, JiangXi University of Science and Technology, Ganzhou 341000, PR China
| | - Xinxin Li
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jingwen Pan
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
18
|
Li R, Huang Y, Shi X, Wang L, Li Z, Zhu D, Liang X, Cao J, Xiong Y. Dopant Site Engineering on 2D Co 3O 4 Enables Enhanced Toluene Oxidation in a Wide Temperature Range. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13236-13246. [PMID: 37615390 DOI: 10.1021/acs.est.3c03617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Development of cost-effective oxide catalysts holds the key to the removal of toluene, one of the most important volatile organic compounds. However, the catalysts follow varied working mechanisms at different reaction temperatures, posing a challenge to achieving efficient toluene removal over a wide temperature range. Here we report an agitation-assisted molten salt method, which achieves the rational doping on a two-dimensional Co3O4 catalyst and forms two different structures of active sites to enhance catalytic oxidation of toluene in specific temperature intervals, enabling a facile tandem design for working in a wide temperature range. Specifically, Co3O4 is doped with Cu at the octahedral site (Cu-Co3O4) and Zn at the tetrahedral site (Zn-Co3O4) to form CuOh-O-CoTe and ZnTe-O-CoOh structures on the surface, respectively. Mechanistic studies reveal the different working mechanisms of these two active sites toward remarkable performance enhancement at specific temperature intervals, and the improved performance derived from accelerated consumption of intermediates adsorbed on the catalyst surface. Taken together, Cu-Co3O4 and Zn-Co3O4 achieve excellent toluene purification performance over a wide temperature range. This work provides insights into the mechanism-oriented design of active sites at the atomic level.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Huang
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Xianjin Shi
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liqin Wang
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Zhiyu Li
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dandan Zhu
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
19
|
Li Q, Zhou W, Deng C, Lu C, Huang P, Xia D, Tan L, Zhou C, Zhang YW, Dong L. Hydroxyl-Decorated Pt as a Robust Water-Resistant Catalyst for Catalytic Benzene Oxidation. Inorg Chem 2023; 62:13544-13553. [PMID: 37561968 DOI: 10.1021/acs.inorgchem.3c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
In catalytic oxidation reactions, the presence of environmental water poses challenges to the performance of Pt catalysts. This study aims to overcome this challenge by introducing hydroxyl groups onto the surface of Pt catalysts using the pyrolysis reduction method. Two silica supports were employed to investigate the impact of hydroxyl groups: SiO2-OH with hydroxyl groups and SiO2-C without hydroxyl groups. Structural characterization confirmed the presence of Pt-Ox, Pt-OHx, and Pt0 species in the Pt/SiO2-OH catalysts, while only Pt-Ox and Pt0 species were observed in the Pt/SiO2-C catalysts. Catalytic performance tests demonstrated the remarkable capacity of the 0.5 wt % Pt/SiO2-OH catalyst, achieving complete conversion of benzene at 160 °C under a high space velocity of 60,000 h-1. Notably, the catalytic oxidation capacity of the Pt/SiO2-OH catalyst remained largely unaffected even in the presence of 10 vol % water vapor. Moreover, the catalyst exhibited exceptional recyclability and stability, maintaining its performance over 16 repeated cycles and a continuous operation time of 70 h. Theoretical calculations revealed that the construction of Pt-OHx sites on the catalyst surface was beneficial for modulating the d-band structure, which in turn enhanced the adsorption and activation of reactants. This finding highlights the efficacy of decorating the Pt surface with hydroxyl groups as an effective strategy for improving the water resistance, catalytic activity, and long-term stability of Pt catalysts.
Collapse
Affiliation(s)
- Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Wenyu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Chunyan Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Peng Huang
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Dong Xia
- Manchester Fuel Cell Innovation Centre, Department of Natural Sciences, Manchester Metropolitan University, Manchester M15 6BH, U.K
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
20
|
Lyu H, Hu K, Wu Z, Shen B, Tang J. Functional materials contributing to the removal of chlorinated hydrocarbons from soil and groundwater: Classification and intrinsic chemical-biological removal mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163011. [PMID: 36965728 DOI: 10.1016/j.scitotenv.2023.163011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Chlorinated hydrocarbons (CHs) are the main contaminants in soil and groundwater and have posed great challenge on the remediation of soil and ground water. Different remediation materials have been developed to deal with the environmental problems caused by CHs. Remediation materials can be classified into three main categories according to the corresponding technologies: adsorption materials, chemical reduction materials and bioaugmentation materials. In this paper, the classification and preparation of the three materials are briefly described in terms of synthesis and properties according to the different types. Then, a detailed review of the remediation mechanisms and applications of the different materials in soil and groundwater remediation is presented in relation to the various properties of the materials and the different challenges encountered in laboratory research or in the environmental application. The removal trends in different environments were found to be largely similar, which means that composite materials tend to be more effective in removing CHs in actual remediation. For instance, adsorbents were found to be effective when combined with other materials, due to the ability to take advantage of the respective strengths of both materials. The rapid removal of CHs while minimizing the impact of CHs on another material and the material itself on the environment. Finally, suggestions for the next research directions are given in conjunction with this paper.
Collapse
Affiliation(s)
- Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kai Hu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
21
|
Zhang K, Wang W, Ding H, Pan W, Ma J, Zhao Y, Song J, Zhang Z. Catalytic Oxidation of Acetone on SmMn 2O 5: Effect of Acid Etching and Loading Treatment. Inorg Chem 2023. [PMID: 37314819 DOI: 10.1021/acs.inorgchem.3c00748] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The key of catalytic oxidation technology is to develop a stable catalyst with high activity. It is still a serious challenge to achieve high conversion efficiency of acetone with an integral catalyst at low temperature. In this study, the SmMn2O5 catalyst after acid etching was used as the support, and the manganese mullite composite catalyst was prepared by loading Ag and CeO2 nanoparticles on its surface. By means of SEM, TEM, XRD, N2-BET, XPS, EPR, H2-TPR, O2-TPD, NH3-TPD, DRIFT, and other characterization methods, the related factors and mechanism analysis of acetone degradation activity of the composite catalyst were discussed. Among them, the CeO2-SmMn2O5-H catalyst has the best catalytic activity at 123 and 185 °C for T50 and T100, respectively, and shows excellent water and thermal resistance and stability. In essence, the surface and lattice defects of highly exposed Mn sites were formed by acid etching, and the dispersibility of Ag and CeO2 nanoparticles was optimized. Highly dispersed Ag and CeO2 nanoparticles have a highly synergistic effect with the support SmMn2O5, and the reactive oxygen species provided by CeO2 and the electron transfer brought by Ag further promote the decomposition of acetone on the carrier SMO-H. In the field of catalytic degradation of acetone, a new catalyst modification method of high-quality active noble metals and transition metal oxides supported by acid-etched SmMn2O5 has been developed.
Collapse
Affiliation(s)
- Kai Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 1851 Hucheng Ring Road, Pudong New District, Shanghai 201306, China
| | - Wenhuan Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 1851 Hucheng Ring Road, Pudong New District, Shanghai 201306, China
- Shanghai Power Environmental Protection Engineering Technology Research Center, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation in No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, No. 200240, Shanghai 201306, China
| | - Honglei Ding
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 1851 Hucheng Ring Road, Pudong New District, Shanghai 201306, China
- Shanghai Power Environmental Protection Engineering Technology Research Center, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation in No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, No. 200240, Shanghai 201306, China
| | - Weiguo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 1851 Hucheng Ring Road, Pudong New District, Shanghai 201306, China
- Shanghai Power Environmental Protection Engineering Technology Research Center, No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation in No. 2588 Changyang Road, Yangpu District, Shanghai 201306, China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, No. 200240, Shanghai 201306, China
| | - Junchi Ma
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 1851 Hucheng Ring Road, Pudong New District, Shanghai 201306, China
| | - Yuetong Zhao
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 1851 Hucheng Ring Road, Pudong New District, Shanghai 201306, China
| | - Jie Song
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 1851 Hucheng Ring Road, Pudong New District, Shanghai 201306, China
| | - Ziyi Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 1851 Hucheng Ring Road, Pudong New District, Shanghai 201306, China
| |
Collapse
|
22
|
Wan X, Shi K, Li H, Shen F, Gao S, Duan X, Zhang S, Zhao C, Yu M, Hao R, Li W, Wang G, Peressi M, Feng Y, Wang W. Catalytic Ozonation of Polluter Benzene from -20 to >50 °C with High Conversion Efficiency and Selectivity on Mullite YMn 2O 5. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37225661 DOI: 10.1021/acs.est.3c01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Catalytic decomposition of aromatic polluters at room temperature represents a green route for air purification but is currently challenged by the difficulty of generating reactive oxygen species (ROS) on catalysts. Herein, we develop a mullite catalyst YMn2O5 (YMO) with dual active sites of Mn3+ and Mn4+ and use ozone to produce a highly reactive O* upon YMO. Such a strong oxidant species on YMO shows complete removal of benzene from -20 to >50 °C with a high COx selectivity (>90%) through the generated reactive species O* on the catalyst surface (60 000 mL g-1 h-1). Although the accumulation of water and intermediates gradually lowers the reaction rate after 8 h at 25 °C, a simple treatment by ozone purging or drying in the ambient environment regenerates the catalyst. Importantly, when the temperature increases to 50 °C, the catalytic performance remains 100% conversion without any degradation for 30 h. Experiments and theoretical calculations show that such a superior performance stems from the unique coordination environment, which ensures high generation of ROS and adsorption of aromatics. Mullite's catalytic ozonation degradation of total volatile organic compounds (TVOC) is applied in a home-developed air cleaner, resulting in high efficiency of benzene removal. This work provides insights into the design of catalysts to decompose highly stable organic polluters.
Collapse
Affiliation(s)
- Xiang Wan
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Kai Shi
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Huan Li
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Fangxie Shen
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Shan Gao
- Physics Department, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xiangmei Duan
- Physics Department, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Shen Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Chunning Zhao
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Meng Yu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Ruiting Hao
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, Yunnan Province, China
| | - Weifang Li
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin 300191, China
| | - Gen Wang
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin 300191, China
| | - Maria Peressi
- Department of Physics, University of Trieste, Trieste 34151, Italy
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weichao Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
23
|
Xiong G, Feng C, Chen HC, Li J, Jiang F, Tao S, Wang Y, Li Y, Pan Y. Atomically Dispersed Pt-Doped Co 3 O 4 Spinel Nanoparticles Embedded in Polyhedron Frames for Robust Propane Oxidation at Low Temperature. SMALL METHODS 2023:e2300121. [PMID: 37002182 DOI: 10.1002/smtd.202300121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Indexed: 06/19/2023]
Abstract
This study adopts a facile and effective in situ encapsulation-oxidation strategy for constructing a coupling catalyst composed of atomically dispersed Pt-doped Co3 O4 spinel nanoparticles (NPs) embedded in polyhedron frames (PFs) for robust propane total oxidation. Benefiting from the abundant oxygen vacancies and more highly valent active Co3+ species caused by the doping of Pt atoms as well as the confinement effect, the optimized 0.2Pt-Co3 O4 NPs/PFs catalyst exhibits excellent propane catalytic activity with low T90 (184 °C), superior apparent reaction rate (21.62×108 (mol gcat -1 s-1 )), low apparent activation energy (Ea = 17.89 kJ mol-1 ), high turnover frequency ( 811×107 (mol gcat -1 s-1 )) as well as good stability. In situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculations indicate that the doping of Pt atoms enhances the oxygen activation ability, and decreases the energy barrier required for CH bond breaking, thus improving the deep oxidation process of the intermediate species. This study opens up new ideas for constructing coupling catalysts from atomic scale with low cost to enhance the activation of oxygen molecules and the deep oxidation of linear short chain alkanes at low temperature.
Collapse
Affiliation(s)
- Gaoyan Xiong
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chao Feng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Center for Green Technology, Chang Gung University, Taoyuan, 33302, Taiwan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunxia Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yichuan Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
24
|
Nickel-Copper Oxide Catalysts Deposited on Stainless Steel Meshes by Plasma Jet Sputtering: Comparison with Granular Analogues and Synergistic Effect in VOC Oxidation. Catalysts 2023. [DOI: 10.3390/catal13030595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
A novel method for the preparation of Ni-Cu oxide catalysts—deposition on stainless steel meshes using hollow cathode plasma jet sputtering—was studied. This method allows the preparation of thin oxide films. Consequently, the whole volume of the active phase is readily accessible for the reactants and can be employed in the catalytic reaction due to the negligible effect of internal diffusion. As a result, the activity of our sputtered catalyst was seven times higher in ethanol oxidation and 61 times higher in toluene oxidation than that of the corresponding granular catalyst. Moreover, due to stainless steel meshes used as a catalyst support, the pressure drop across the catalyst bed was lower. Finally, the catalytic activity of the sputtered Ni-Cu oxide catalyst with Ni:Cu molar ratio of 1:1 in ethanol oxidation was 1.7 times higher than that of the commercial EnviCat® VOC-1544 catalyst, while the amount of the active phase in the catalyst bed was 139 times lower. The outstanding performance of the Ni0.5Cu0.5 catalyst was ascribed to the synergistic effect between the copper and nickel components.
Collapse
|
25
|
Yuan B, Tao Y, Qi S, Xie A, Luo S. Effect of A, B-site cation on the catalytic activity of La 1-xA xMn 1-yB yO 3 (A = Ce, B = Ni) perovskite-type oxides for toluene oxidation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36993-37003. [PMID: 36564700 DOI: 10.1007/s11356-022-24916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
ABO3-type perovskites (A = La, Ce; B = Mn, Ni) were prepared by sol-gel method, and applied for catalytic oxidation of toluene. The activity test results show that the activity of LaMnO3 can be improved when a small amount of Ce and Ni are doped into the A and B sites of LaMnO3, respectively. The effects of different calcination temperatures and different calcination time on the preparation of La-based perovskites were also investigated. The results illustrate that the toluene conversion of La0.8Ce0.2Mn0.8Ni0.2O3 is the highest when the calcination temperature is 700 °C and the calcination time is 4 h in La1-xCexMn1-yNiyO3 perovskites, and it requires lower reaction temperature when the conversion rate of toluene reaches 100% as compared to other catalysts, the T90 is 295 °C (T90, the temperature corresponding to the 90% of toluene conversion). Importantly, the mechanism of catalytic oxidation was also discussed. Therefore, the catalyst has potential prospects in the volatile organic compounds (VOCs) degradation.
Collapse
Affiliation(s)
- Bo Yuan
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Yuwei Tao
- Center of Information Development and Management, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Songya Qi
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Aijuan Xie
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, People's Republic of China.
| | - Shiping Luo
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| |
Collapse
|
26
|
Zhao Z, Ma S, Gao B, Bi F, Qiao R, Yang Y, Wu M, Zhang X. A systematic review of intermediates and their characterization methods in VOCs degradation by different catalytic technologies. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
27
|
Review of Emission Characteristics and Purification Methods of Volatile Organic Compounds (VOCs) in Cooking Oil Fume. Processes (Basel) 2023. [DOI: 10.3390/pr11030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Volatile organic compounds (VOCs) in cooking oil fumes need to be efficiently removed due to the significant damage they cause to the environment and human health. This review discusses the emission characteristics, which are influenced by different cooking temperatures, cooking oils, and cuisines. Then, various cooking oil fume purification methods are mainly classified into physical capture, chemical decomposition, and combination methods. VOCs removal rate, system operability, secondary pollution, application area, and cost are compared. The catalytic combustion method was found to have the advantages of high VOC removal efficiency, environmental protection, and low cost. Therefore, the last part of this review focuses on the research progress of the catalytic combustion method and summarizes its mechanisms and catalysts. The Marse-van Krevelen (MVK), Langmuir-Hinshelwood (L-H), and Eley-Rideal (E-R) mechanisms are analyzed. Noble metal and non-noble metal catalysts are commonly used. The former showed excellent activity at low temperatures due to its strong adsorption and electron transfer abilities, but the high price limits its application. The transition metals primarily comprise the latter, including single metal and composite metal catalysts. Compared to single metal catalysts, the interaction between metals in composite metal catalysts can further enhance the catalytic performance.
Collapse
|
28
|
Yang JN, Zhan J, Zhou H, Yang HH, Zhang SY, Yi X, Shan J, Liu Y. Enhanced oxidative ability, recyclability, water tolerance and aromatic resistance of α-MnO 2 catalyst for room-temperature formaldehyde oxidation via simple oxalic acid treatment. ENVIRONMENTAL RESEARCH 2023; 217:114938. [PMID: 36436556 DOI: 10.1016/j.envres.2022.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
To obtain a versatile formaldehyde oxidation material, simultaneously increasing the oxidative ability, recyclability and deactivation repellence (e.g., enduring the interference from moisture and aromatic compound omnipresent in indoor air) is of great significance. Herein, the above properties of α-MnO2 were synchronously updated via one step treatment in oxalic acid (H2C2O4), and an in-depth understanding of the surface properties-performance relationship was provided by systematic characterizations and designed experiments. Compared with the pristine sample, XPS, ESR, O2-TPD, CO-TPR and pyridine-IR reveal that H2C2O4 created substantial Mn3+ species on surface, exposing a higher coverage of oxygen vacancies that actively participated in the dissociative activation of gas-phase O2 into reactive chemically adsorbed oxygen (OC), and the abundant Lewis acid sites further enabled the effective O2 activation process. The large amount of oxygen OC promoted the HCHO-to-CO2 conversion and inhibited the accumulation of formate that required a high temperature of 170 °C to be eliminated, thus conspicuously improving the α-MnO2's thermal recovery. The combined H2O-TPD, H2O-preadsorbed CO-TPR, C6H6-TPD and C6H6-preadsorbed CO-TPR investigations shed light on the H2C2O4-induced water and benzene resistance. The notably weakened water and benzene binding strength with the H2C2O4-modified surface together with the unrestrained oxygen OC accounted for the outstanding anti-deactivation performance.
Collapse
Affiliation(s)
- Ji-Ning Yang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Jingjing Zhan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Hao Zhou
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Huan-Huan Yang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Shi-Yu Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Jiajia Shan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Yang Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
29
|
Catalytic Properties of the Spinel-Like CuxMn3−xO4 Copper Manganese Oxides—An Overview. Catalysts 2023. [DOI: 10.3390/catal13010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Copper manganese oxide spinels and related (multiphase) materials with the formula CuxMn3−xO4 are the active catalysts in a wide variety of industrially important processes due to their great diversity in their phase relations, metal ion valence/site distribution, and chemical properties. In this review, we summarize the preparation methods and their effects on the composition, properties, and catalytic properties of various CuxMn3−xO4 catalysts with various Cu/Mn ratios. The main summarized catalytic reactions are the oxidation of carbon monoxide, nitrogen oxide, and hydrogen sulfide and the oxidative removal of organic solvents such as benzene, toluene, and xylene from the air. Some industrially important reactions (steam reforming of methanol or synthesis gas) and the manufacture of organic chemicals (methyl formate, propylene oxide, and benzyl alcohol) catalyzed by CuxMn3−xO4 spinels are also reviewed.
Collapse
|
30
|
Li J, Zhang R, Liu Y, Sun T, Jia J, Guo M. Enhanced catalytic activity of toluene oxidation over in-situ prepared Mn3O4-Fe2O3 with acid-etching treatment. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2022.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
31
|
Zhang Y, Wang Y, Xie R, Huang H, Leung MKH, Li J, Leung DYC. Photocatalytic Oxidation for Volatile Organic Compounds Elimination: From Fundamental Research to Practical Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16582-16601. [PMID: 36367480 DOI: 10.1021/acs.est.2c05444] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photocatalysis is regarded as one of the most promising technologies for indoor volatile organic compounds (VOCs) elimination due to its low cost, safe operation, energy efficiency, and high mineralization efficiency under ambient conditions. However, the practical applications of this technology are limited, despite considerable research efforts in recent decades. Until now, most of the works were carried out in the laboratory and focused on exploring new catalytic materials. Only a few works involved the immobilization of catalysts and the design of reactors for practical applications. Therefore, this review systematically summarizes the research and development on photocatalytic oxidation (PCO) of VOCs, with emphasis on recent catalyst's immobilization and reactor designs in detail. First, different types of photocatalytic materials and the mechanisms for PCO of VOCs are briefly discussed. Then, both the catalyst's immobilization techniques and reactor designs are reviewed in detail. Finally, the existing challenges and future perspectives for PCO of VOCs are proposed. This work aims to provide updated information and research inspirations for the commercialization of this technology in the future.
Collapse
Affiliation(s)
- Yingguang Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yifei Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518071, China
| | - Ruijie Xie
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Michael K H Leung
- School of Energy & Environment, City University of Hong Kong, Hong Kong, China
| | - Jiantao Li
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China
| | - Dennis Y C Leung
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
32
|
Feng Y, Ma P, Wang Z, Shi Y, Wang Z, Peng Y, Jing L, Liu Y, Yu X, Wang X, Zhang X, Deng J, Dai H. Synergistic Effect of Reactive Oxygen Species in Photothermocatalytic Removal of VOCs from Cooking Oil Fumes over Pt/CeO 2/TiO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17341-17351. [PMID: 36413583 DOI: 10.1021/acs.est.2c07146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The volatile organic compounds (VOCs) from cooking oil fumes are very complex and do harm to humans and the environment. Herein, we develop the high-efficiency and energy-saving synergistic photothermocatalytic oxidation approach to eliminate the mixture of heptane and hexanal, the representative VOCs with high concentrations in cooking oil fumes. The Pt/CeO2/TiO2 catalyst with nanosized Pt particles was prepared by the simple hydrothermal and impregnation methods, and the physicochemical properties of the catalyst were measured using numerous techniques. The Pt/CeO2/TiO2 catalyst eliminated the VOC mixture at low light intensity (100 mW cm-2) and low temperature (200 °C). In addition, it showed 25 h of catalytic stability and water resistance (water concentration up to 20 vol %) at 140 or 190 °C. It is concluded that O2 picked up the electrons from Pt to generate the •O2- species, which were transformed to the O22- and O- species after the rise in temperature. In the presence of water, the •OH species induced by light irradiation on the catalyst surface and the •OOH species formed via the thermal reaction were both supplementary oxygen species for VOC oxidation. The synergistic interaction of photo- and thermocatalysis was generated by the reactive oxygen species.
Collapse
Affiliation(s)
- Ying Feng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Peijie Ma
- Beijing Key Lab of Microstructure and Properties of Advanced Materials, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Yijie Shi
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Xun Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Xiaofan Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| |
Collapse
|
33
|
Shao Q, Wei S, Hu X, Dong H, Wen T, Gao L, Long C. Tuning the Micro-coordination Environment of Al in Dealumination Y Zeolite to Enhance Electron Transfer at the Cu-Mn Oxides Interface for Highly Efficient Catalytic Ozonation of Toluene at Low Temperatures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15449-15459. [PMID: 36254461 DOI: 10.1021/acs.est.2c05766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of stable, highly active, and inexpensive catalysts for the ozone catalytic oxidation of volatile organic compounds (VOCs) is challenging but of great significance. Herein, the micro-coordination environment of Al in commercial Y zeolite was regulated by a specific dealumination method and then the dealuminated Y zeolite was used as the support of Cu-Mn oxides. The optimized catalyst Cu-Mn/DY exhibited excellent performance with around 95% of toluene removal at 30 °C. Besides, the catalyst delivered satisfactory stability in both high-humidity conditions and long-term reactions, which is attributed to more active oxygen vacancies and acidic sites, especially the strong Lewis acid sites newly formed in the catalyst. The decrease in the electron cloud density around aluminum species enhanced electron transfer at the interface between Cu-Mn oxides. Moreover, extra-framework octahedrally coordinated Al in the support promoted the electronic metal-support interaction (EMSI). Compared with single Mn catalysts, the incorporation of the Cu component changed the degradation pathway of toluene. Benzoic acid, as the intermediate of toluene oxidation, can directly ring-open on Cu-doped catalysts rather than being further oxidized to other byproducts, which increased the rate of the catalytic reaction. This work provides a new insight and theoretical guidance into the rational design of efficient catalysts for the catalytic ozonation of VOCs.
Collapse
Affiliation(s)
- Qi Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Shuangshuang Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xueyu Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Hao Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Tiancheng Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Lei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Beifeng Road, Quanzhou 362000, China
| |
Collapse
|
34
|
Yang Y, Si W, Peng Y, Wang Y, Liu H, Su Z, Li J. Defect Engineering on CuMn 2O 4 Spinel Surface: A New Path to High-Performance Oxidation Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16249-16258. [PMID: 36305714 DOI: 10.1021/acs.est.2c04858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Catalytic combustion is an efficient method to eliminate CO and volatile organic compound (VOC) pollutants. CuMn2O4 spinel is a high-performance non-noble metal oxide catalyst for catalytic combustion and has the potential to replace noble metal catalysts. In order to further improve the catalytic activity of CuMn2O4 spinel, we propose a simple and low-cost approach to introduce numerous oxygen and metal vacancies simultaneously in situ on the CuMn2O4 spinel surface for the catalytic combustion of CO and VOCs. Alkali treatment was used to generate oxygen vacancies (VO), copper vacancies (VCu), and novel active sites (VO combines with Mn2O3 at the interface between Mn2O3(222) and CuMn2O4(311)) on the CuMn2O4 spinel surface. In the catalytic combustion of CO and VOCs, the vacancies and new active sites showed high activity and stability. The oxidation rate of CO increased by 4.13 times at 160 °C, and that of toluene increased by 11.63 times at 250 °C. Oxygen is easier to adsorb and dissociate on VO and novel sites, and the dissociated oxygen also more easily participates in the oxidation reaction. Furthermore, the lattice oxygen at VCu more readily participates in the oxidation reaction. This strategy is beneficial for the development of defect engineering on spinel surfaces and provides a new idea for improving the catalytic combustion activity of CuMn2O4 spinel.
Collapse
Affiliation(s)
- Yu Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Hao Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ziang Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Peng L, Guo A, Chen D, Liu P, Peng B, Fu M, Ye D, Chen P. Ammonia Abatement via Selective Oxidation over Electron-Deficient Copper Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14008-14018. [PMID: 36099172 DOI: 10.1021/acs.est.2c03666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Selective catalytic ammonia-to-dinitrogen oxidation (NH3-SCO) is highly promising for the abatement of NH3 emissions from flue gas purification devices. However, there is still a lack of high-performance and cost-effective NH3-SCO catalysts for real applications. Here, highly dispersed, electron-deficient Cu-based catalysts were fabricated using nitrogen-doped carbon nanotubes (NCNT) as support. In NH3-SCO catalysis, the Cu/NCNT outperformed Cu supported on N-free CNTs (Cu/OCNT) and on other types of supports (i.e., activated carbon, Al2O3, and zeolite) in terms of activity, selectivity to the desired product N2, and H2O resistance. Besides, Cu/NCNT demonstrated a better structural stability against oxidation and a higher NH3 storage capacity (in the presence of H2O vapor) than Cu/OCNT. Quasi in situ X-ray photoelectron spectroscopy revealed that the surface N species facilitated electron transfer from Cu to the NCNT support, resulting in electron-deficient Cu catalysts with superior redox properties, which are essential for NH3-SCO catalysis. By temperature-programmed surface reaction studies and systematic kinetic measurements, we unveiled that the NH3-SCO reaction over Cu/NCNT proceeded via the internal selective catalytic reaction (i-SCR) route; i.e., NH3 was oxidized first to NO, which then reacted with NH3 and O2 to form N2 and H2O. This study paves a new route for the design of highly active, H2O-tolerant, and low-cost Cu catalysts for the abatement of slip NH3 from stationary emissions via selective oxidation to N2.
Collapse
Affiliation(s)
- Lin Peng
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Anqi Guo
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Dongdong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Peng Liu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, Bochum 44780, Germany
| | - Mingli Fu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| |
Collapse
|