1
|
Black A, Luangphairin N, Alfredo K. The impact of the fourth regulatory determination on vulnerable populations. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:323. [PMID: 39992476 DOI: 10.1007/s10661-025-13689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/24/2025] [Indexed: 02/25/2025]
Abstract
In March of 2023, the first National Primary Drinking Water Standards for per- and polyfluoroalkyl substances (PFAS) were announced. The fourth Regulatory Determination that led to this development also included several other contaminants for consideration: 1,4-dioxane (dioxane), 1,2,3-trichloropropane (TCP), and strontium, which faced no determination at this time. In this study, the relative risks associated with these three contaminants and the two regulated PFAS, perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are analyzed on a subregion level, considering socioeconomic and racial factors in national exposure and risk levels for the U.S. population. Results indicate that PFOS and PFOA represent the greatest risk to the population in the subregions in which they are detected. Considering race and ethnicity, living in a majority-minority community may be a risk factor for exposure to strontium, while minority status did not increase exposure risk for dioxane, TCP, PFOS, and PFOA. Additionally, total cancer and non-cancer relative health indicator (RHI) matrices indicate that majority-minority communities face significantly greater risks from strontium exposure. Regression models also confirm results for strontium but place the risk on racial/ethnic minority populations more specifically in regions with greater Hispanic/Latino community percentages. Finally, while greater poverty in a subregion is associated with significantly higher cancer and non-cancer RHI values for dioxane, strontium, and TCP, after controlling for state-level variations, multi-level models reveal that greater poverty is associated with significantly lower risk from these three contaminants.
Collapse
Affiliation(s)
- Andrew Black
- Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL, USA
| | - Natchaya Luangphairin
- Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL, USA
| | - Katherine Alfredo
- Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
2
|
Ruyle BJ, Pennoyer EH, Vojta S, Becanova J, Islam M, Webster TF, Heiger-Bernays W, Lohmann R, Westerhoff P, Schaefer CE, Sunderland EM. High organofluorine concentrations in municipal wastewater affect downstream drinking water supplies for millions of Americans. Proc Natl Acad Sci U S A 2025; 122:e2417156122. [PMID: 39761386 PMCID: PMC11761303 DOI: 10.1073/pnas.2417156122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/09/2024] [Indexed: 01/28/2025] Open
Abstract
Wastewater receives per- and polyfluoroalkyl substances (PFAS) from diverse consumer and industrial sources, and discharges are known to be a concern for drinking water quality. The PFAS family includes thousands of potential chemical structures containing organofluorine moieties. Exposures to a few well-studied PFAS, mainly perfluoroalkyl acids (PFAA), have been associated with increased risk of many adverse health outcomes, prompting federal drinking water regulations for six compounds in 2024. Here, we find that the six regulated PFAS (mean = 7 to 8%) and 18 measured PFAA (mean = 11 to 21%) make up only a small fraction of the extractable organofluorine (EOF) in influent and effluent from eight large municipal wastewater treatment facilities. Most of the EOF in influent (75%) and effluent (62%) consists of mono- and polyfluorinated pharmaceuticals. The treatment technology and sizes of the treatment facilities in this study are similar to those serving 70% of the US population. Despite advanced treatment technologies, the maximum EOF removal efficiency among facilities in this work was <25%. Extrapolating our measurements to other large facilities across the United States results in a nationwide EOF discharge estimate of 1.0 to 2.8 million moles F y-1. Using a national model that simulates connections between wastewater discharges and downstream drinking water intakes, we estimate that the sources of drinking water for up to 23 million Americans could be contaminated above regulatory thresholds by wastewater-derived PFAS alone. These results emphasize the importance of further curbing ongoing PFAS sources and additional evaluations of the fate and toxicity of fluorinated pharmaceuticals.
Collapse
Affiliation(s)
- Bridger J. Ruyle
- Environmental Science & Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA94305
- Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, Brooklyn, NY11201
| | - Emily H. Pennoyer
- Department of Environmental Health, Boston University School of Public Health, Boston, MA02118
| | - Simon Vojta
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI02882
| | - Jitka Becanova
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI02882
| | - Minhazul Islam
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ85287
| | - Thomas F. Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA02118
| | - Wendy Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, MA02118
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI02882
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ85287
| | | | - Elsie M. Sunderland
- Environmental Science & Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA02115
| |
Collapse
|
3
|
Khan D, Franks S, Wang Z, Miles A, Hu H, Malin AJ. Urinary Fluoride Levels Among Youth in the National Health and Nutrition Examination Survey (NHANES) 2015-2016: Potential Differences According to Race. Nutrients 2025; 17:309. [PMID: 39861439 PMCID: PMC11768995 DOI: 10.3390/nu17020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Urinary fluoride (UF) is the most well-established biomarker for fluoride exposure, and understanding its distribution can inform risk assessment for potential adverse systemic health effects. To our knowledge, this study is the first to report distributions of UF among youth according to sociodemographic factors in a nationally representative United States (US) sample. METHODS The study included 1191 children aged 6-11 years and 1217 adolescents aged 12-19 years from the National Health and Nutrition Examination Survey (NHANES) 2015-2016. We examined UF according to sociodemographic variables as well as Spearman correlations between UF and plasma fluoride. Survey-weighted quantile regression examined associations between tap water fluoride and UF levels adjusted for covariates. RESULTS The average age of participants was 12.5 years. The median (IQR) UF and water fluoride concentrations were 0.52 (0.50) mg/L and 0.39 (0.54) mg/L, respectively. Children had higher UF levels than adolescents and males had higher UF levels than females. UF differed according to race/ethnicity among both children and adolescents. Specifically, non-Hispanic Black youth tended to have higher UF levels than all participants except for those classified as other race/multiracial. UF and plasma fluoride were moderately correlated for children and adolescents. Higher water fluoride levels were associated with higher UF levels, and the magnitudes of association were larger at higher quantiles of UF (β = 0.14, p < 0.001; β = 0.20, p< 0.001 at the 25th and 50th quantiles, respectively). The magnitude of association between water fluoride and UF was the largest for non-Hispanic Black participants (predictive margin = 0.3, p < 0.001). CONCLUSIONS Non-Hispanic Black youth in the US may have greater fluoride exposure and receive more of their fluoride intake from tap water than youth of other races/ethnicities. Factors contributing to potential racial/ethnic disparities in fluoride exposure within the US warrant further investigation so that they can be mitigated to reduce the potential for harm.
Collapse
Affiliation(s)
- Durdana Khan
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (D.K.); (S.F.); (Z.W.); (A.M.)
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stephen Franks
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (D.K.); (S.F.); (Z.W.); (A.M.)
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhilin Wang
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (D.K.); (S.F.); (Z.W.); (A.M.)
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Angela Miles
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (D.K.); (S.F.); (Z.W.); (A.M.)
| | - Howard Hu
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90032, USA;
| | - Ashley J. Malin
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (D.K.); (S.F.); (Z.W.); (A.M.)
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Maruzzo AJ, Hernandez AB, Swartz CH, Liddie JM, Schaider LA. Socioeconomic Disparities in Exposures to PFAS and Other Unregulated Industrial Drinking Water Contaminants in US Public Water Systems. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:17002. [PMID: 39812474 PMCID: PMC11734612 DOI: 10.1289/ehp14721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Unregulated contaminants in drinking water, such as per- and polyfluoroalkyl substances (PFAS), can contribute to cumulative health risks, particularly in overburdened and less-advantaged communities. To our knowledge, there has been no nationwide assessment of socioeconomic disparities in exposures to unregulated contaminants in drinking water. OBJECTIVE The goals of this study were to identify determinants of unregulated contaminant detection among US public water systems (PWSs) and evaluate disparities related to race, ethnicity, and socioeconomic status. METHODS We gathered data from the US Environmental Protection Agency's (US EPA's) Third Unregulated Contaminant Monitoring Rule (2013-2015), PWS characteristics, sociodemographic data, and suspected pollution sources from regulatory databases. We included four target contaminants (or classes) with industrial sources: PFAS, 1,4-dioxane, 1,1-dichloroethane, and chlorodifluoromethane (HCFC-22). Associations were evaluated with pairwise comparison tests and generalized logistic mixed-effects regression models for six dichotomous outcomes: detection of each of four target contaminants, detection of ≥ 1 target contaminant, and PWS exceedance of ≥ 1 US EPA health reference level that was in effect in 2017. RESULTS More than 97 million US residents were served by a PWS with detectable levels of 1,4-dioxane (22% of PWSs), HCFC-22 (5.8%), 1,1-dichloroethane (4.7%), and/or PFAS (4.0%). Unregulated contaminant detection was more frequent among large systems, urban systems, and systems using groundwater or a combination of groundwater and surface water. In comparison with PWSs with no detectable levels of these unregulated contaminants, PWSs with detectable levels served counties with higher proportions of Hispanic residents (17% vs. 13%), as did PWSs that exceeded EPA health reference levels in comparison with PWSs with no exceedances (18% vs. 14%). There were persistent positive associations between proportions of Hispanic residents and detections of target contaminants, even after accounting for pollution sources. DISCUSSION Previously, inequities in exposures to drinking water contaminants were underestimated because prior studies have focused on regulated contaminants. PWSs serving counties with more Hispanic residents, non-Hispanic Black residents, and urban households may benefit from additional resources to proactively mitigate unregulated chemical contamination. Future studies should evaluate factors underlying these disparities to promote actions that protect water quality for all residents. https://doi.org/10.1289/EHP14721.
Collapse
Affiliation(s)
| | - Amanda B. Hernandez
- Silent Spring Institute, Newton, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Christopher H. Swartz
- Silent Spring Institute, Newton, Massachusetts, USA
- Stockholm Environment Institute US, Somerville, Massachusetts, USA
| | - Jahred M. Liddie
- Silent Spring Institute, Newton, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Ogunbiyi OD, Lemos L, Brinn RP, Quinete NS. Bioaccumulation potentials of per-and polyfluoroalkyl substances (PFAS) in recreational fisheries: Occurrence, health risk assessment and oxidative stress biomarkers in coastal Biscayne Bay. ENVIRONMENTAL RESEARCH 2024; 263:120128. [PMID: 39389194 DOI: 10.1016/j.envres.2024.120128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Per-and polyfluoroalkyl substances (PFAS) are a group of synthetic, highly fluorinated, and emerging chemicals that are reported to be used for both industrial and domestic applications. Several PFAS have demonstrated persistent, bioaccumulative and toxic tendencies in marine organisms. Therefore, this research aims to characterize and quantify these compounds in both recreational fisheries and surface water samples, including estimating their bioaccumulation potentials. In addition, we assessed the potential contribution of biomonitoring tools such as oxidative stressors and morphological index on fish and ecological health. Finally, human health risk assessment was performed based on available toxicological data on limited PFAS. All PFAS were detected in at least one sample except for N-EtFOSAA in lobster which was below the method detection limit. ƩPFAS body burden ranged from 0.15 to 3.40 ng/g wet weight (ww) in blackfin tuna samples and 0.37-5.15 ng/g ww in lobster samples, respectively. Wilcoxon rank paired test (α = 0.05) shows that there is statistical significance (ρ < 0.05) of ƩPFAS between species. Bioaccumulation factors (BAF) suggest an increasing trend in PFAS classes (PFCAs < PFSAs < FTSs), with higher BAFs observed in tuna compared to lobster. Long-chain PFESAs and FASAA were reported at higher concentrations in lobster compared to Blackfin tuna due to their bioavailability through sediment-sorption interactions. Although Fulton's condition factor (FCF) indicates healthy fish conditions, oxidative stress biomarkers suggest that tuna and lobster might be under stress, which can weaken their immune system against exposure to emerging contaminants such as PFAS. Hazard risk (HR) suggests a low risk to human health based on the consumption of the studied species; however, the risk of contaminant exposure may be higher than estimated. This study is aimed at improving food safety by providing better understanding of how PFAS infiltrate into human diet and incorporating data on influence of contaminant exposure and environmental stressors on marine health.
Collapse
Affiliation(s)
- Olutobi Daniel Ogunbiyi
- Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151ST St, Biscayne Bay Campus, Marine Science Building, North Miami, FL, 33181, USA; Institute of Environment, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL, 33199, USA.
| | - Leila Lemos
- Institute of Environment, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL, 33199, USA
| | - Richard P Brinn
- Department of Biological Sciences -Institute of Environment-LACC, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL, 33199, USA
| | - Natalia Soares Quinete
- Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151ST St, Biscayne Bay Campus, Marine Science Building, North Miami, FL, 33181, USA; Institute of Environment, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL, 33199, USA.
| |
Collapse
|
6
|
Zhao Z, Zhou J, Shi A, Wang J, Li H, Yin X, Gao J, Wu Y, Li J, Sun YX, Yan H, Li Y, Chen G. Per- and poly-fluoroalkyl substances (PFAS) accelerate biological aging mediated by increased C-reactive protein. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136090. [PMID: 39405719 DOI: 10.1016/j.jhazmat.2024.136090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 12/01/2024]
Abstract
Unhealthy biological aging is related to higher incidence of varied age-related diseases, even higher all-cause mortality. Previous small sample size study suggested that Per- and poly-fluoroalkyl substances (PFAS) was associated with biological aging, but the evidence of exposure-response relationships, potential effect modifiers, and potential mediators were not investigated. Therefore, we conducted a cross-sectional analysis of national study including 14, 865 adults in the US from 8 survey cycles of NHANES from 2003 to 2018, to investigate the associations of PFAS compounds in body serum, including perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS), with biological aging. Generalized linear models showed that higher human exposure to PFAS was associated with accelerated biological aging. Importantly, human exposure to PFOA, PFOS, PFNA, and PFHxS with detected level (above 0.10 ng/mL) was associated with an average of 3.3 year (95 %CI: 2.7, 3.9, P < 0.001), 14.9 year (95 %CI: 7.2, 22.7, P < 0.001), 10.9 years (95 %CI: 3.9, 17.7, P < 0.001), and 8.8 years (95 %CI: 4.8, 12.9, P < 0.001) of biological aging acceleration. Cubic spline models indicated exposure-response relationships where there was no safe threshold of PFAS level regarding harms to human healthy aging. The weighted sum regression model found the significant associations of PFAS compound mixture with biological aging acceleration, and PFOA was the dominant contributor among 4 PFAS compounds. Mediation analysis suggested that C-reactive protein, one of the inflammation biomarkers, might play as mediator in PFAS-induced accelerated biological aging, but not Triglyceride-glucose index. In summary, our study suggests that the effects of PFAS on biological aging acceleration should be of concern and more action plans to address their negative impact on human health should be launched.
Collapse
Affiliation(s)
- Zongxi Zhao
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Jiayan Zhou
- School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Anye Shi
- System Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jingyi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongzheng Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiangjun Yin
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jialiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ying Wu
- Harvard Law School, Harvard University, Cambridge 02138, United States
| | - Jinlin Li
- PBC School of Finance, Tsinghua University, Beijing 100190, China
| | - Ya Xuan Sun
- T.H. Chan School of Public Health, Harvard University, Boston 02115, United States
| | - Hao Yan
- School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Yige Li
- Department of Health Care Policy, Harvard Medical School, Harvard University, Boston 02115, United States
| | - Guang Chen
- Broad Institute of MIT and Harvard, Cambridge 02142, United States; Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
7
|
Smalling KL, Romanok KM, Bradley PM, Hladik ML, Gray JL, Kanagy LK, McCleskey RB, Stavreva DA, Alexander-Ozinskas AK, Alonso J, Avila W, Breitmeyer SE, Bustillo R, Gordon SE, Hager GL, Jones RR, Kolpin DW, Newton S, Reynolds P, Sloop J, Ventura A, Von Behren J, Ward MH, Solomon GM. Mixed contaminant exposure in tapwater and the potential implications for human-health in disadvantaged communities in California. WATER RESEARCH 2024; 267:122485. [PMID: 39368187 DOI: 10.1016/j.watres.2024.122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
Water is an increasingly precious resource in California as years of drought, climate change, pollution, as well as an expanding population have all stressed the state's drinking water supplies. Currently, there are increasing concerns about whether regulated and unregulated contaminants in drinking water are linked to a variety of human-health outcomes particularly in socially disadvantaged communities with a history of health risks. To begin to address this data gap by broadly assessing contaminant mixture exposures, the current study was designed to collect tapwater samples from communities in Gold Country, the San Francisco Bay Area, two regions of the Central Valley (Merced/Fresno and Kern counties), and southeast Los Angeles for 251 organic chemicals and 32 inorganic constituents. Sampling prioritized low-income areas with suspected water quality challenges and elevated breast cancer rates. Results indicated that mixtures of regulated and unregulated contaminants were observed frequently in tapwater throughout the areas studied and the types and concentrations of detected contaminants varied by region, drinking-water source, and size of the public water system. Multiple exceedances of enforceable maximum contaminant level(s) (MCL), non-enforceable MCL goal(s) (MCLG), and other health advisories combined with frequent exceedances of benchmark-based hazard indices were also observed in samples collected in all five of the study regions. Given the current focus on improving water quality in socially disadvantaged communities, our study highlights the importance of assessing mixed-contaminant exposures in drinking water at the point of consumption to adequately address human-health concerns (e.g., breast cancer risk). Data from this pilot study provide a foundation for future studies across a greater number of communities in California to assess potential linkages between breast cancer rates and tapwater contaminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Diana A Stavreva
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Jesus Alonso
- Clean Water Action/Clean Water Fund, Oakland, CA, USA
| | - Wendy Avila
- Communities for a Better Environment, Los Angeles, CA, USA
| | | | | | | | - Gordon L Hager
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Rena R Jones
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Seth Newton
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Peggy Reynolds
- University of California San Francisco, San Francisco, CA, USA
| | - John Sloop
- ORISE, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | - Mary H Ward
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Gina M Solomon
- University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Von Behren J, Reynolds P, Bradley PM, Gray JL, Kolpin DW, Romanok KM, Smalling KL, Carpenter C, Avila W, Ventura A, English PB, Jones RR, Solomon GM. Per- and polyfluoroalkyl substances (PFAS) in drinking water in Southeast Los Angeles: Industrial legacy and environmental justice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176067. [PMID: 39244057 DOI: 10.1016/j.scitotenv.2024.176067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent chemicals of increasing concern to human health. PFAS contamination in water systems has been linked to a variety of sources including hydrocarbon fire suppression activities, industrial and military land uses, agricultural applications of biosolids, and consumer products. To assess PFAS in California tap water, we collected 60 water samples from inside homes in four different geographic regions, both urban and rural. We selected mostly small water systems with known history of industrial chemical or pesticide contamination and that served socioeconomically disadvantaged communities. Thirty percent of the tap water samples (18) had a detection of at least one of the 32 targeted PFAS and most detections (89 %) occurred in heavily industrialized Southeast Los Angeles (SELA). The residents of SELA are predominately Latino and low-income. Concentrations of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) ranged from 6.8 to 13.6 ng/L and 9.4-17.8 ng/L, respectively in SELA and were higher than State (PFOA: 0.007 ng/L; PFOS: 1.0 ng/L) and national health-based goals (zero). To look for geographic patterns, we mapped potential sources of PFAS contamination, such as chrome plating facilities, airports, landfills, and refineries, located near the SELA water systems; consistent with the multiple potential sources in the area, no clear spatial associations were observed. The results indicate the importance of systematic testing of PFAS in tap water, continued development of PFAS regulatory standards and advisories for a greater number of compounds, improved drinking-water treatments to mitigate potential health threats to communities, especially in socioeconomically disadvantaged and industrialized areas.
Collapse
Affiliation(s)
- Julie Von Behren
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | - Wendy Avila
- Communities for a Better Environment, Los Angeles, CA, USA
| | | | - Paul B English
- Tracking California, Public Health Institute, Oakland, CA, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Gina M Solomon
- Division of Occupational, Environmental and Climate Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Wang D, Liu X, Guo Z, Shan W, Yang Z, Chen Y, Ju F, Zhang Y. Legacy and Novel Per- and Polyfluoroalkyl Substances in Surface Soils across China: Source Tracking and Main Drivers for the Spatial Variation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20160-20171. [PMID: 39475150 PMCID: PMC11562953 DOI: 10.1021/acs.est.4c05913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/13/2024]
Abstract
China aims to actively control the contamination of globally concerning per- and polyfluoroalkyl substances (PFASs). Evaluation of the current situation can provide a critical reference point for tracking the effectiveness of ongoing progress. Herein, we present the first comprehensive assessment of the spatial variations of 20 legacy and 54 novel PFASs in Chinese background soils in 2021. Novel PFASs were extensively detected in 98.4% of the samples, with 21 species being first reported, which greatly facilitated the appointment of diverse emission sources that aligned with local industrial structures. However, legacy PFASs still dominated the ∑74PFAS profile (median 0.51 ng/g, 0.050-8.33 ng/g). The spatial heterogeneity of soil PFASs was positively driven by economic development and atmospheric deposition, enabling the establishment of predictive models to project the national distribution and temporal trends. Elevated PFAS levels were predominantly distributed in the more industrialized eastern and southern regions, as well as other coastal areas with greater precipitation. ∑74PFAS in surface soils was estimated to increase by 12.9 pg/(g year) over 2002-2021, which would continue alongside economic growth, albeit with greater contributions from novel alternatives. Our work provides comprehensive baseline and predictive data to inform policies toward PFAS control in China.
Collapse
Affiliation(s)
- Danfan Wang
- College
of Environmental and Resource Sciences, Zhejiang University, Hangzhou ,Zhejiang 310058, China
- Key
Laboratory of Coastal Environment and Resources of Zhejiang Province,
School of Engineering, Westlake University, Hangzhou ,Zhejiang 310030, China
| | - Xiangyu Liu
- College
of Environmental and Resource Sciences, Zhejiang University, Hangzhou ,Zhejiang 310058, China
- Key
Laboratory of Coastal Environment and Resources of Zhejiang Province,
School of Engineering, Westlake University, Hangzhou ,Zhejiang 310030, China
| | - Zhefei Guo
- Key
Laboratory of Coastal Environment and Resources of Zhejiang Province,
School of Engineering, Westlake University, Hangzhou ,Zhejiang 310030, China
| | - Wenyu Shan
- College
of Environmental and Resource Sciences, Zhejiang University, Hangzhou ,Zhejiang 310058, China
- Key
Laboratory of Coastal Environment and Resources of Zhejiang Province,
School of Engineering, Westlake University, Hangzhou ,Zhejiang 310030, China
| | - Zilin Yang
- Key
Laboratory of Coastal Environment and Resources of Zhejiang Province,
School of Engineering, Westlake University, Hangzhou ,Zhejiang 310030, China
| | - Yinjuan Chen
- Instrumentation
and Service Center for Molecular Sciences, Westlake University, Hangzhou ,Zhejiang310030, China
| | - Feng Ju
- Research
Center for Industries of the Future, Westlake
University, Hangzhou ,Zhejiang310030, China
- Key
Laboratory of Coastal Environment and Resources of Zhejiang Province,
School of Engineering, Westlake University, Hangzhou ,Zhejiang 310030, China
- Institute
of Advanced Technology, Westlake Institute
for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanyan Zhang
- Research
Center for Industries of the Future, Westlake
University, Hangzhou ,Zhejiang310030, China
- Key
Laboratory of Coastal Environment and Resources of Zhejiang Province,
School of Engineering, Westlake University, Hangzhou ,Zhejiang 310030, China
- Institute
of Advanced Technology, Westlake Institute
for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
10
|
Harnett NG, Merrill LC, Fani N. Racial and ethnic socioenvironmental inequity and neuroimaging in psychiatry: a brief review of the past and recommendations for the future. Neuropsychopharmacology 2024; 50:3-15. [PMID: 38902354 PMCID: PMC11526029 DOI: 10.1038/s41386-024-01901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Neuroimaging is a major tool that holds immense translational potential for understanding psychiatric disorder phenomenology and treatment. However, although epidemiological and social research highlights the many ways inequity and representativeness influences mental health, there is a lack of consideration of how such issues may impact neuroimaging features in psychiatric research. More specifically, the potential extent to which racialized inequities may affect underlying neurobiology and impact the generalizability of neural models of disorders is unclear. The present review synthesizes research focused on understanding the potential consequences of racial/ethnic inequities relevant to neuroimaging in psychiatry. We first discuss historical and contemporary drivers of inequities that persist today. We then discuss the neurobiological consequences of these inequities as revealed through current research, and note emergent research demonstrating the impact such inequities have on our ability to use neuroimaging to understand psychiatric disease. We end with a set of recommendations and practices to move the field towards more equitable approaches that will advance our abilities to develop truly generalizable neurobiological models of psychiatric disorders.
Collapse
Affiliation(s)
- Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Livia C Merrill
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
11
|
Zhang S, Tang H. Low-salt diets and salt-free cooking help reduce exposure to Per- and polyfluoroalkyl substances (PFAS). CHEMOSPHERE 2024; 367:143606. [PMID: 39442581 DOI: 10.1016/j.chemosphere.2024.143606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The ubiquity of Per- and polyfluoroalkyl substances (PFAS) in various consumer and industrial products poses a significant public health challenge, but effective strategies to reduce human exposure to PFAS are limited. OBJECTIVES This study aims to evaluate the association between dietary patterns, specifically low-salt diets and salt-free cooking, and serum PFAS levels in the general population. METHODS The study analyzed data from 11,137 participants from the National Health and Nutrition Examination Survey (NHANES) using weighted linear regression. We assessed associations between low-salt or low-sodium dietary patterns and the way salt was used during cooking or food preparation and serum levels of five highly detectable PFAS compounds: perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorodecanoic acid (PFDA), and perfluorononanoic acid (PFNA). Since consuming fish and shellfish is a major source of PFAS exposure in humans, the intake status of these foods was adjusted for in the sensitivity analysis. Additionally, other sensitivity analyses, including propensity score matching, were conducted. RESULTS The analyses showed a significant negative association between low-salt or low-sodium diet and serum levels of the five PFAS compounds. In contrast, regular use of salt in cooking or food preparation was significantly and positively associated with higher serum levels of PFAS. These findings were consistent across all models. Also consistent were the results of sensitivity analyses based on participants' consumption of fish and shellfish and propensity score matching. CONCLUSIONS Low-salt or low-sodium dietary patterns, and salt-free cooking may be are associated with a reduced risk of PFAS exposure in the general population. While this study offers new insights into mitigating PFAS exposure, further validation in additional datasets is necessary, along with confirmation through intervention studies designed based on this hypothesis.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Male Reproductive Health, Lianyungang Maternal and Child Health Hospital, Qindongmen Avenue, Haizhou District, Lianyungang, 222000, China; Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Qindongmen Avenue, Haizhou District, Lianyungang city, 222000, China.
| | - Hanhan Tang
- Plastic Surgery Department, Xuzhou Central Hospital, No. 209, Tongshan Road, Xuzhou city, 221004, China
| |
Collapse
|
12
|
Pickard HM, Ruyle BJ, Haque F, Logan JM, LeBlanc DR, Vojta S, Sunderland EM. Characterizing the Areal Extent of PFAS Contamination in Fish Species Downgradient of AFFF Source Zones. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19440-19453. [PMID: 39412174 PMCID: PMC11526379 DOI: 10.1021/acs.est.4c07016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024]
Abstract
Most monitoring programs next to large per- and polyfluoroalkyl substances (PFAS) sources focus on drinking water contamination near source zones. However, less is understood about how these sources affect downgradient hydrological systems and food webs. Here, we report paired PFAS measurements in water, sediment, and aquatic biota along a hydrological gradient away from source zones contaminated by the use of legacy aqueous film-forming foam (AFFF) manufactured using electrochemical fluorination. Clustering analysis indicates that the PFAS composition characteristic of AFFF is detectable in water and fishes >8 km from the source. Concentrations of 38 targeted PFAS and extractable organofluorine (EOF) decreased in fishes downgradient of the AFFF-contaminated source zones. However, PFAS concentrations remained above consumption limits at all locations within the affected watershed. Perfluoroalkyl sulfonamide precursors accounted for approximately half of targeted PFAS in fish tissues, which explain >90% of EOF across all sampling locations. Suspect screening analyses revealed the presence of a polyfluoroketone pharmaceutical in fish species, and a fluorinated agrochemical in water that likely does not accumulate in biological tissues, suggesting the presence of diffuse sources such as septic system and agrochemical inputs throughout the watershed in addition to AFFF contamination. Based on these results, monitoring programs that consider all hydrologically connected regions within watersheds affected by large PFAS sources would help ensure public health protection.
Collapse
Affiliation(s)
- Heidi M. Pickard
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Bridger J. Ruyle
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Global Ecology, Carnegie Institution
for Science, Stanford, California 94305, United States
| | - Faiz Haque
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - John M. Logan
- Massachusetts
Division of Marine Fisheries, New
Bedford, Massachusetts 02744, United States
| | - Denis R. LeBlanc
- U.S.
Geological Survey, Emeritus Scientist, New
England Water Science Center, Northborough, Massachusetts 01532, United States
| | - Simon Vojta
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Elsie M. Sunderland
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
13
|
Liddie JM, Bind MA, Karra M, Sunderland EM. County-level associations between drinking water PFAS contamination and COVID-19 mortality in the United States. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00723-5. [PMID: 39369072 DOI: 10.1038/s41370-024-00723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Epidemiologic and animal studies both support relationships between exposures to per- and polyfluoroalkyl substances (PFAS) and harmful effects on the immune system. Accordingly, PFAS have been identified as potential environmental risk factors for adverse COVID-19 outcomes. OBJECTIVE Here, we examine associations between PFAS contamination of U.S. community water systems (CWS) and county-level COVID-19 mortality records. Our analyses leverage two datasets: one at the subnational scale (5371 CWS serving 621 counties) and one at the national scale (4798 CWS serving 1677 counties). The subnational monitoring dataset was obtained from statewide drinking monitoring of PFAS (2016-2020) and the national monitoring dataset was obtained from a survey of unregulated contaminants (2013-2015). METHODS We conducted parallel analyses using multilevel quasi-Poisson regressions to estimate cumulative incidence ratios for the association between county-level measures of PFAS drinking water contamination and COVID-19 mortality prior to vaccination onset (Jan-Dec 2020). In the primary analyses, these regressions were adjusted for several county-level sociodemographic factors, days after the first reported case in the county, and total hospital beds. RESULTS In the subnational analysis, detection of at least one PFAS over 5 ng/L was associated with 12% higher [95% CI: 4%, 19%] COVID-19 mortality. In the national analysis, detection of at least one PFAS above the reporting limits (20-90 ng/L) was associated with 13% higher [95% CI: 8%, 19%] COVID-19 mortality. IMPACT STATEMENT Our findings provide evidence for an association between area-level drinking water PFAS contamination and higher COVID-19 mortality in the United States. These findings reinforce the importance of ongoing state and federal monitoring efforts supporting the U.S. Environmental Protection Agency's 2024 drinking water regulations for PFAS. More broadly, this example suggests that drinking water quality could play a role in infectious disease severity. Future research would benefit from study designs that combine area-level exposure measures with individual-level outcome data.
Collapse
Affiliation(s)
- Jahred M Liddie
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Marie-Abèle Bind
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mahesh Karra
- Frederick S. Pardee School of Global Studies, Boston University, Boston, MA, USA
| | - Elsie M Sunderland
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
14
|
Zhou X, Wang X, Ou T, Huang L, He B. Association between family economic situation and serum PFAS concentration in American adults with hypertension and hyperlipemia. Sci Rep 2024; 14:20799. [PMID: 39242648 PMCID: PMC11379923 DOI: 10.1038/s41598-024-71664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Although there is an association between income status and concentration of perfluoroalkyl and polyfluoroalkyl substance (PFAS), the association remains uncertain in patients with hypertension, hyperlipidemia, and comorbidities. Data from the 2013-2016 National Health and Nutrition Examination Survey were analyzed. A total of 2665 adults were included, and the data included participants' serum PFAS (perfluorooctanoic acid [PFOA], perfluorononaic acid, perfluorodecanoic acid, perfluoroundecanoic acid, perfluorohexane sulfonic acid, and perfluorooctane sulfonic acid) levels and selected covariates. Multivariate linear regression models were used to examine the association between the ratio of family income to poverty (PIR) and individual serum PFAS concentrations in the hypertensive and/or hyperlipidemia groups after adjusting for covariates. The potential effects of sex and age on the results were explored using stratified analysis. A mediating effect model was used to explore the mediating effects of body mass index (BMI) and waist circumference on the association results. After adjusting for potential confounders, for hyperlipidemia and comorbidities (hypertension and hyperlipidemia), serum levels of multiple common PFAS increased by 0.09% (95%Confidence interval [CI] 0.02-0.15%) to 0.13% (95%CI 0.08-0.19%) and 0.10% (95%CI 0.02-0.17%) to 0.12% (95%CI 0.06-0.18%), respectively, with each 1% increase in PIR. The covariate model and stratified analyses results suggested the potential effects of different covariates such as age and sex, leading to changes in the statistical significance of the association results. BMI significantly mediated the effect of PIR on PFOA in hyperlipidemia (13%, P < 0.001). Household income in adults with hyperlipidemia and comorbidities positively correlated with serum PFAS concentration in the United States. Obesity played an indispensable mediating role in the association between economic income and PFAS concentration.
Collapse
Affiliation(s)
- Xingye Zhou
- Hospital Infection Management and Disease Prevention and Control Department, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xingren Wang
- Department for Endemic and Chronic Disease Control, Hainan Provincial Center for Disease Control and Prevention, Haikou, Hainan, China
| | - Tingting Ou
- Department for Endemic and Chronic Disease Control, Hainan Provincial Center for Disease Control and Prevention, Haikou, Hainan, China
| | - Lei Huang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin He
- Hainan Provincial Center for Disease Control and Prevention, 40 Haifu Avenue, Haikou, Hainan, China.
| |
Collapse
|
15
|
Zong S, Wang L, Wang S, Wang Y, Jiang Y, Sun L, Zong Y, Li X. Exposure to per- and polyfluoroalkyl substances is associated with impaired cardiovascular health: a cross-sectional study. Front Public Health 2024; 12:1418134. [PMID: 39267634 PMCID: PMC11390656 DOI: 10.3389/fpubh.2024.1418134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Background Per- and polyfluoroalkyl substance (PFAS) exposure and cardiovascular disease are controversial. We aimed to assess the association between serum PFAS exposure and cardiovascular health (CVH) in U.S. adults. Methods We analyzed serum PFAS concentration data of U.S. adults reported in the National Health and Nutrition Examination Survey (NHANES) study (2005-2018). We employed two weighted logistic regression models and a restricted cubic spline (RCS) to examine the association between each PFAS and impaired CVH (defined as moderate and low CVH). Quantile g-computation (Qgcomp) and weighted quantile sum (WQS) analysis were used to estimate the effects of mixed exposures to PFASs on impaired CVH. Results PFAS were associated with an increased risk of impaired CVH (ORPFNA: 1.40, 95% CI: 1.09, 1.80; ORPFOA: 1.44, 95% CI: 1.10, 1.88; ORPFOS: 1.62, 95% CI: 1.25, 2.11). PFOA and PFOS exhibited nonlinear relationships with impaired CVH. Significant interactions were observed for impaired CVH between race/ethnicity and PFHxS (p = 0.02), marital status and PFOA (p = 0.03), and both marital status and race/ethnicity with PFOS (p = 0.01 and p = 0.02, respectively). Analysis via WQS and Qgcomp revealed that the mixture of PFAS was positively associated with an increased risk of impaired CVH. Conclusion PFNA, PFOA, and PFOS exposure are associated with an increased risk of impaired CVH in U.S. adults. Race/ethnicity and marital status may influence CVH. Reducing PFAS exposure could alleviate the burden of disease associated with impaired CVH.
Collapse
Affiliation(s)
- Shuli Zong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sutong Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongcheng Wang
- Department of Cardiovascular Diseases, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Yuehua Jiang
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Liping Sun
- Department of Endocrine Tumor Intervention, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Zong
- Department of Business Administration, Shandong Yingcai University, Jinan, China
| | - Xiao Li
- Department of Cardiovascular Diseases, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
16
|
Roth K, Yang Z, Agarwal M, Birbeck J, Westrick J, Lydic T, Gurdziel K, Petriello MC. Exposure of Ldlr-/- Mice to a PFAS Mixture and Outcomes Related to Circulating Lipids, Bile Acid Excretion, and the Intestinal Transporter ASBT. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:87007. [PMID: 39177951 PMCID: PMC11343043 DOI: 10.1289/ehp14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Previous epidemiological studies have repeatedly found per- and polyfluoroalkyl substances (PFAS) exposure associated with higher circulating cholesterol, one of the greatest risk factors for development of coronary artery disease. The main route of cholesterol catabolism is through its conversion to bile acids, which circulate between the liver and ileum via enterohepatic circulation. Patients with coronary artery disease have decreased bile acid excretion, indicating that PFAS-induced impacts on enterohepatic circulation may play a critical role in cardiovascular risk. OBJECTIVES Using a mouse model with high levels of low-density and very low-density lipoprotein (LDL and VLDL, respectively) cholesterol and aortic lesion development similar to humans, the present study investigated mechanisms linking exposure to a PFAS mixture with increased cholesterol. METHODS Male and female L d l r - / - mice were fed an atherogenic diet (Clinton/Cybulsky low fat, 0.15% cholesterol) and exposed to a mixture of 5 PFAS representing legacy, replacement, and emerging subtypes (i.e., PFOA, PFOS, PFHxS, PFNA, GenX), each at a concentration of 2 mg / L , for 7 wk. Blood was collected longitudinally for cholesterol measurements, and mass spectrometry was used to measure circulating and fecal bile acids. Transcriptomic analysis of ileal samples was performed via RNA sequencing. RESULTS After 7 wk of PFAS exposure, average circulating PFAS levels were measured at 21.6, 20.1, 31.2, 23.5, and 1.5 μ g / mL in PFAS-exposed females and 12.9, 9.7, 23, 14.3, and 1.7 μ g / mL in PFAS-exposed males for PFOA, PFOS, PFHxS, PFNA, and GenX, respectively. Total circulating cholesterol levels were higher in PFAS-exposed mice after 7 wk (352 mg / dL vs. 415 mg / dL in female mice and 392 mg / dL vs. 488 mg / dL in male mice exposed to vehicle or PFAS, respectively). Total circulating bile acid levels were higher in PFAS-exposed mice (2,978 pg / μ L vs. 8,496 pg / μ L in female mice and 1,960 pg / μ L vs. 4,452 pg / μ L in male mice exposed to vehicle or PFAS, respectively). In addition, total fecal bile acid levels were lower in PFAS-exposed mice (1,797 ng / mg vs. 682 ng / mg in females and 1,622 ng / mg vs. 670 ng / mg in males exposed to vehicle or PFAS, respectively). In the ileum, expression levels of the apical sodium-dependent bile acid transporter (ASBT) were higher in PFAS-exposed mice. DISCUSSION Mice exposed to a PFAS mixture displayed higher circulating cholesterol and bile acids perhaps due to impacts on enterohepatic circulation. This study implicates PFAS-mediated effects at the site of the ileum as a possible critical mediator of increased cardiovascular risk following PFAS exposure. https://doi.org/10.1289/EHP14339.
Collapse
Affiliation(s)
- Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Johnna Birbeck
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, Michigan, USA
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, Michigan, USA
| | - Todd Lydic
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Katherine Gurdziel
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
- Genome Sciences Core, Wayne State University, Detroit, Michigan, USA
| | - Michael C. Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
17
|
Williams PA, Zaidi SK, Ramian H, Sengupta R. AACR Cancer Disparities Progress Report 2024: Achieving the Bold Vision of Health Equity. Cancer Epidemiol Biomarkers Prev 2024; 33:870-873. [PMID: 38748491 DOI: 10.1158/1055-9965.epi-24-0658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
Advances in cancer prevention, early detection, and treatments have led to unprecedented progress against cancer. However, these advances have not benefited everyone equally. Because of a long history of structural inequities and systemic injustices in the United States, many segments of the US population continue to shoulder a disproportionate burden of cancer. The American Association for Cancer Research (AACR) Cancer Disparities Progress Report 2024 (CancerDisparitiesProgressReport.org) outlines the recent progress against cancer disparities, the ongoing challenges faced by medically underserved populations, and emphasizes the vital need for further advances in cancer research and patient care to benefit all populations.
Collapse
Affiliation(s)
- Patrick A Williams
- Scientific Research Analysis and Dissemination, American Association for Cancer Research, Philadelphia, Pennsylvania
| | - Sayyed K Zaidi
- Scientific Research Analysis and Dissemination, American Association for Cancer Research, Philadelphia, Pennsylvania
| | - Haleh Ramian
- Scientific Research Analysis and Dissemination, American Association for Cancer Research, Philadelphia, Pennsylvania
| | - Rajarshi Sengupta
- Scientific Research Analysis and Dissemination, American Association for Cancer Research, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Baumert BO, Wang H, Samy S, Park SK, Lam CN, Dunn K, Pinto-Pacheco B, Walker D, Landero J, Conti D, Chatzi L, Hu H, Goodrich JA. Environmental pollutant risk factors for worse COVID-19 related clinical outcomes in predominately hispanic and latino populations. ENVIRONMENTAL RESEARCH 2024; 252:119072. [PMID: 38729411 PMCID: PMC11198996 DOI: 10.1016/j.envres.2024.119072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Per- and poly-fluorinated compounds (PFAS) and heavy metals constitute two classes of environmental exposures with known immunotoxicant effects. In this pilot study, we aimed to evaluate the impact of exposure to heavy metals and PFAS on COVID-19 severity. We hypothesized that elevated plasma-PFAS concentrations and urinary heavy metal concentrations would be associated with increased odds of ICU admission in COVID-19 hospitalized individuals. METHODS Using the University of Southern California Clinical Translational Sciences Institute (SC-CTSI) biorepository of hospitalized COVID-19 patients, urinary concentrations of 15 heavy metals and urinary creatinine were measured in n = 101 patients and plasma concentrations of 13 PFAS were measured in n = 126 patients. COVID-19 severity was determined based on whether a patient was admitted to the ICU during hospitalization. Associations of metals and PFAS with ICU admission were assessed using logistic regression models, controlling for age, sex, ethnicity, smoking status, and for metals, urinary dilution. RESULTS The average age of patients was 55 ± 14.2 years. Among SC-CTSI participants with urinary measurement of heavy metals and blood measures of PFAS, 54.5% (n = 61) and 54.8% (n = 80) were admitted to the ICU, respectively. For heavy metals, we observed higher levels of Cd, Cr, and Cu in ICU patients. The strongest associations were with Cadmium (Cd). After accounting for covariates, each 1 SD increase in Cd resulted in a 2.00 (95% CI: 1.10-3.60; p = 0.03) times higher odds of admission to the ICU. When including only Hispanic or Latino participants, the effect estimates between cadmium and ICU admission remained similar. Results for PFAS were less consistent, with perfluorodecanesulfonic acid (PFDS) exhibiting a positive but non-significant association with ICU admission (Odds ratio, 95% CI: 1.50, 0.97-2.20) and perfluorodecanoic acid (PFDA) exhibiting a negative association with ICU admission (0.53, 0.31-0.88). CONCLUSIONS This study supports the hypothesis that environmental exposures may impact COVID-19 severity.
Collapse
Affiliation(s)
- Brittney O Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hongxu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Shar Samy
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, United States
| | - Sung Kyun Park
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Chun Nok Lam
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kathryn Dunn
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brismar Pinto-Pacheco
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Douglas Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Julio Landero
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Howard Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
19
|
Hohweiler K, Krometis LA, Ling EJ, Xia K. Incidence of per- and polyfluoroalkyl substances (PFAS) in private drinking water supplies in Southwest Virginia, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172539. [PMID: 38649039 DOI: 10.1016/j.scitotenv.2024.172539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of man-made contaminants of human health concern due to their resistance to degradation, widespread environmental occurrence, bioaccumulation in living organisms, and potential negative health impacts. Private drinking water supplies may be uniquely vulnerable to PFAS contamination in impacted areas, as these systems are not protected under federal regulations and often include limited treatment or remediation, if contaminated, prior to use. The goal of this study was to determine the incidence of PFAS contamination in private drinking water supplies in two counties in Southwest Virginia, USA (Floyd and Roanoke) that share similar bedrock geologies, are representative of different state Department of Health risk categories, and to examine the potential for reliance on citizen-science based strategies for sample collection in subsequent efforts. Samples for inorganic ions, bacteria, and PFAS analysis were collected on separate occasions by participants and experts at the home drinking water point of use (POU) for comparison. Experts also collected outside tap samples for analysis of 30 PFAS compounds. At least one PFAS was detectable in 95 % of POU samples collected (n = 60), with a mean total PFAS concentration of 23.5 ± 30.8 ppt. PFOA and PFOS, two PFAS compounds which presently have EPA health advisories, were detectable in 13 % and 22 % of POU samples, respectively. On average, each POU sample contained >3 PFAS compounds, and one sample contained as many as 8 compounds, indicating that exposure to a mixture of PFAS in drinking water may be occurring. Although there were significant differences in total PFAS concentrations between expert and participant collected samples (Wilcoxon, alpha = 0.05), collector bias was inconsistent, and may be due to the time of day of sampling (i.e. morning, afternoon) or specific attributes of a given home. Further research is required to resolve sources of intra-sample variability.
Collapse
Affiliation(s)
- Kathleen Hohweiler
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, 155 Ag Quad Lane, Blacksburg, VA 24061-0303, United States of America.
| | - Leigh-Anne Krometis
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, 155 Ag Quad Lane, Blacksburg, VA 24061-0303, United States of America.
| | - Erin J Ling
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, 155 Ag Quad Lane, Blacksburg, VA 24061-0303, United States of America.
| | - Kang Xia
- Virginia Agricultural Experiment Station, the Center for Advanced Innovation in Agriculture, School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, 185 Ag Quad Lane, Blacksburg, VA 24061-0303, United States of America.
| |
Collapse
|
20
|
Libenson A, Karasaki S, Cushing LJ, Tran T, Rempel JL, Morello-Frosch R, Pace CE. PFAS-Contaminated Pesticides Applied near Public Supply Wells Disproportionately Impact Communities of Color in California. ACS ES&T WATER 2024; 4:2495-2503. [PMID: 38903201 PMCID: PMC11186009 DOI: 10.1021/acsestwater.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Abstract
Contaminated drinking water from widespread environmental pollutants such as perfluoroalkyl and polyfluoroalkyl substances (PFAS) poses a rising threat to public health. PFAS monitoring in groundwater is limited and fails to consider pesticides found to contain PFAS as a potential contamination source. Given previous findings on the disproportionate exposure of communities of Color to both pesticides and PFAS, we investigated disparities in PFAS-contaminated pesticide applications in California based on community-level sociodemographic characteristics. We utilized statewide pesticide application data from the California Department of Pesticide Regulation and recently reported concentrations of PFAS chemicals detected in eight pesticide products to calculate the areal density of PFAS applied within 1 km of individual community water systems' (CWSs) supply wells. Spatial regression analyses suggest that statewide, CWSs that serve a greater proportion of Latinx and non-Latinx People of Color residents experience a greater areal density of PFAS applied and greater likelihood of PFAS application near their public supply wells. These results highlight agroecosystems as potentially important sources of PFAS in drinking water and identify areas that may be at risk of PFAS contamination and warrant additional PFAS monitoring and remediation.
Collapse
Affiliation(s)
- Arianna Libenson
- Environmental
Science, Policy, and Management, University
of California Berkeley, Berkeley, California 94720, United States
| | - Seigi Karasaki
- Energy
and Resources Group, University of California
Berkeley, Berkeley, California 94720 United States
| | - Lara J. Cushing
- Fielding
School of Public Health, University of California
Los Angeles, Los Angeles, California 90095, United States
| | - Tien Tran
- Community
Water Center, Sacramento and Visalia, California 93291, United States
| | - Jenny L. Rempel
- Energy
and Resources Group, University of California
Berkeley, Berkeley, California 94720 United States
| | - Rachel Morello-Frosch
- Environmental
Science, Policy, and Management, University
of California Berkeley, Berkeley, California 94720, United States
- School
of Public Health, University of California
Berkeley, Berkeley, California 94720, United States
| | - Clare E. Pace
- Environmental
Science, Policy, and Management, University
of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Schlezinger JJ, Gokce N. Perfluoroalkyl/Polyfluoroalkyl Substances: Links to Cardiovascular Disease Risk. Circ Res 2024; 134:1136-1159. [PMID: 38662859 PMCID: PMC11047059 DOI: 10.1161/circresaha.124.323697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Conservative estimates by the World Health Organization suggest that at least a quarter of global cardiovascular diseases are attributable to environmental exposures. Associations between air pollution and cardiovascular risk have garnered the most headlines and are strong, but less attention has been paid to other omnipresent toxicants in our ecosystem. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are man-made chemicals that are extensively used in industrial and consumer products worldwide and in aqueous film-forming foam utilized in firefighting. As such, our exposure to PFAS is essentially ubiquitous. Given the long half-lives of these degradation-resistant chemicals, virtually, all people are carrying a body burden of PFAS. Health concerns related to PFAS are growing such that the National Academies of Sciences, Engineering and Medicine has recommended standards for clinical follow-up of individuals with high PFAS blood levels, including prioritizing screening for dyslipidemia. The link between PFAS and dyslipidemia has been extensively investigated, and evidence for associations is compelling. However, dyslipidemia is not the only cardiovascular risk factor with which PFAS is associated. Here, we review the epidemiological evidence for links between PFAS of concern identified by the National Academies of Sciences, Engineering and Medicine and risk factors for cardiovascular disease, including overweight/obesity, glucose intolerance, hypertension, dyslipidemia, and hyperuricemia. Moreover, we review the potential connections of PFAS with vascular disease and atherosclerosis. While observational data support associations between the National Academies of Sciences, Engineering and Medicine PFAS and selected cardiac risk factors, additional research is needed to establish causation and better understand how exposure to PFAS leads to the development of these conditions.
Collapse
Affiliation(s)
| | - Noyan Gokce
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
22
|
Cordner A, Brown P, Cousins IT, Scheringer M, Martinon L, Dagorn G, Aubert R, Hosea L, Salvidge R, Felke C, Tausche N, Drepper D, Liva G, Tudela A, Delgado A, Salvatore D, Pilz S, Horel S. PFAS Contamination in Europe: Generating Knowledge and Mapping Known and Likely Contamination with "Expert-Reviewed" Journalism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6616-6627. [PMID: 38569050 DOI: 10.1021/acs.est.3c09746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
While the extent of environmental contamination by per- and polyfluoroalkyl substances (PFAS) has mobilized considerable efforts around the globe in recent years, publicly available data on PFAS in Europe were very limited. In an unprecedented experiment of "expert-reviewed journalism" involving 29 journalists and seven scientific advisers, a cross-border collaborative project, the "Forever Pollution Project" (FPP), drew on both scientific methods and investigative journalism techniques such as open-source intelligence (OSINT) and freedom of information (FOI) requests to map contamination across Europe, making public data that previously had existed as "unseen science". The FPP identified 22,934 known contamination sites, including 20 PFAS manufacturing facilities, and 21,426 "presumptive contamination sites", including 13,745 sites presumably contaminated with fluorinated aqueous film-forming foam (AFFF) discharge, 2911 industrial facilities, and 4752 sites related to PFAS-containing waste. Additionally, the FPP identified 231 "known PFAS users", a new category for sites with an intermediate level of evidence of PFAS use and considered likely to be contamination sources. However, the true extent of contamination in Europe remains significantly underestimated due to a lack of comprehensive geolocation, sampling, and publicly available data. This model of knowledge production and dissemination offers lessons for researchers, policymakers, and journalists about cross-field collaborations and data transparency.
Collapse
Affiliation(s)
- Alissa Cordner
- Department of Sociology, Whitman College, Walla Walla, Washington 99362, United States
| | - Phil Brown
- Department of Sociology and Anthropology and Department of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ian T Cousins
- Department of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | - Martin Scheringer
- Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland
| | | | | | | | | | | | - Catharina Felke
- Norddeutscher Rundfunk, Ressort Investigation, Berlin 10117, Germany
| | | | | | | | | | | | - Derrick Salvatore
- Massachusetts Department of Environmental Protection, Woburn, Massachusetts 01801, United States
| | - Sarah Pilz
- Freelance Journalist, Weißenfelder Straße 7, Parsdorf, Munich 85599, Germany
| | | |
Collapse
|
23
|
Smalling KL, Bradley PM. Invited Perspective: Per- and Polyfluoroalkyl Substances in Drinking Water-Disparities in Community Exposures Based on Race and Socioeconomic Status. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:41302. [PMID: 38656166 PMCID: PMC11041623 DOI: 10.1289/ehp13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
|
24
|
Mueller R, Salvatore D, Brown P, Cordner A. Quantifying Disparities in Per- and Polyfluoroalkyl Substances (PFAS) Levels in Drinking Water from Overburdened Communities in New Jersey, 2019-2021. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47011. [PMID: 38656167 PMCID: PMC11041625 DOI: 10.1289/ehp12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Policymakers have become increasingly concerned regarding the widespread exposure and toxicity of per- and polyfluoroalkyl substances (PFAS). While concerns exist about unequal distribution of PFAS contamination in drinking water, research is lacking. OBJECTIVES We assess the scope of PFAS contamination in drinking water in New Jersey (NJ), the first US state to develop regulatory levels for PFAS in drinking water. We test for inequities in PFAS concentrations by community sociodemographic characteristics. METHODS We use PFAS testing data for community water systems (CWS) (n = 491 ) from the NJ Department of Environmental Protection (NJDEP) from 2019 to 2021 and demographic data at the block group level from the US Census to estimate the demographics of the NJ population served by CWS. We use difference in means tests to determine whether CWSs serving "overburdened communities" (OBCs) have a statistically significant difference in likelihood of PFAS detections. OBCs are defined by the NJDEP to be census block groups in which: a) at least 35% of the households qualify as low-income, b) at least 40% of the residents identify as people of color, or c) at least 40% of the households have limited English proficiency. We calculate statewide summary statistics to approximate the relative proportions of sociodemographic groups that are served by CWSs with PFAS detections. RESULTS We find that 63% of all CWSs tested by NJDEP from 2019 to 2021 had PFAS detections in public drinking water, collectively serving 84% of NJ's population receiving water from CWSs. Additionally, CWSs serving OBCs had a statistically significant higher likelihood of PFAS detection and a higher likelihood of exposure above state MCLs. We also find that a larger proportion of people of color lived in CWS service areas with PFAS detections compared to the non-Hispanic white population. DISCUSSION These findings quantitatively identify disparities in PFAS contamination of drinking water by CWS service area and highlight the extent of PFAS drinking water contamination and the importance of PFAS remediation efforts for protecting environmental health and justice. https://doi.org/10.1289/EHP12787.
Collapse
Affiliation(s)
- Rosie Mueller
- Department of Economics, Whitman College, Walla Walla, Washington, USA
| | | | - Phil Brown
- Department of Sociology and Anthropology, Northeastern University, Boston, Massachusetts, USA
- Department of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Alissa Cordner
- Department of Sociology, Whitman College, Walla Walla, Washington, USA
| |
Collapse
|
25
|
Kang KH, Saifuddin M, Chon K, Bae S, Kim YM. Recent advances in the application of magnetic materials for the management of perfluoroalkyl substances in aqueous phases. CHEMOSPHERE 2024; 352:141522. [PMID: 38401865 DOI: 10.1016/j.chemosphere.2024.141522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Perfluoroalkyl substances (PFASs) are a class of artificially synthesised organic compounds extensively used in both industrial and consumer products owing to their unique characteristics. However, their persistence in the environment and potential risk to health have raised serious global concerns. Therefore, developing effective techniques to identify, eliminate, and degrade these pollutants in water are crucial. Owing to their high surface area, magnetic responsiveness, redox sensitivity, and ease of separation, magnetic materials have been considered for the treatment of PFASs from water in recent years. This review provides a comprehensive overview of the recent use of magnetic materials for the detection, removal, and degradation of PFASs in aqueous solutions. First, the use of magnetic materials for sensitive and precise detection of PFASs is addressed. Second, the adsorption of PFASs using magnetic materials is discussed. Several magnetic materials, including iron oxides, ferrites, and magnetic carbon composites, have been explored as efficient adsorbents for PFASs removal from water. Surface modification, functionalization, and composite fabrication have been employed to improve the adsorption effectiveness and selectivity of magnetic materials for PFASs. The final section of this review focuses on the advanced oxidation for PFASs using magnetic materials. This review suggests that magnetic materials have demonstrated considerable potential for use in various environmental remediation applications, as well as in the treatment of PFASs-contaminated water.
Collapse
Affiliation(s)
- Kyeong Hwan Kang
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Md Saifuddin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Kangmin Chon
- Department of Environmental Engineering, Kangwon National University, Chuncheon-si, Gangwon Province, 24341, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, Gwangjin-gu, Seou, 05029, Republic of Korea.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
26
|
Hampson HE, Costello E, Walker DI, Wang H, Baumert BO, Valvi D, Rock S, Jones DP, Goran MI, Gilliland FD, Conti DV, Alderete TL, Chen Z, Chatzi L, Goodrich JA. Associations of dietary intake and longitudinal measures of per- and polyfluoroalkyl substances (PFAS) in predominantly Hispanic young Adults: A multicohort study. ENVIRONMENT INTERNATIONAL 2024; 185:108454. [PMID: 38316574 PMCID: PMC11089812 DOI: 10.1016/j.envint.2024.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are pollutants linked to adverse health effects. Diet is an important source of PFAS exposure, yet it is unknown how diet impacts longitudinal PFAS levels. OBJECTIVE To determine if dietary intake and food sources were associated with changes in blood PFAS concentrations among Hispanic young adults at risk of metabolic diseases. METHODS Predominantly Hispanic young adults from the Children's Health Study who underwent two visits (CHS; n = 123) and young adults from NHANES 2013-2018 who underwent one visit (n = 604) were included. Dietary data at baseline was collected using two 24-hour dietary recalls to measure individual foods and where foods were prepared/consumed (home/restaurant/fast-food). PFAS were measured in blood at both visits in CHS and cross-sectionally in NHANES. In CHS, multiple linear regression assessed associations of baseline diet with longitudinal PFAS; in NHANES, linear regression was used. RESULTS In CHS, all PFAS except PFDA decreased across visits (all p < 0.05). In CHS, A 1-serving higher tea intake was associated with 24.8 %, 16.17 %, and 12.6 % higher PFHxS, PFHpS, and PFNA at follow-up, respectively (all p < 0.05). A 1-serving higher pork intake was associated with 13.4 % higher PFOA at follow-up (p < 0.05). Associations were similar in NHANES, including unsweetened tea, hot dogs, and processed meats. For food sources, in CHS each 200-gram increase in home-prepared food was associated with 0.90 % and 1.6 % lower PFOS at baseline and follow-up, respectively, and in NHANES was associated with 0.9 % lower PFDA (all p < 0.05). CONCLUSION Results suggest that beverage consumption habits and food preparation are associated with differences in PFAS levels in young adults. This highlights the importance of diet in determining PFAS exposure and the necessity of public monitoring of foods and beverages for PFAS contamination.
Collapse
Affiliation(s)
- Hailey E Hampson
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Elizabeth Costello
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, the United States of America
| | - Hongxu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Brittney O Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, the United States of America
| | - Sarah Rock
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, the United States of America
| | - Michael I Goran
- Department of Pediatrics, Keck School of Medicine, USC and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, the United States of America
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, the United States of America
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America.
| |
Collapse
|
27
|
Ayodele A, Obeng-Gyasi E. Exploring the Potential Link between PFAS Exposure and Endometrial Cancer: A Review of Environmental and Sociodemographic Factors. Cancers (Basel) 2024; 16:983. [PMID: 38473344 PMCID: PMC10931119 DOI: 10.3390/cancers16050983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
This exploratory narrative review paper delves into the intricate interplay between per- and polyfluoroalkyl substances (PFAS) exposure, sociodemographic factors, and the influence of stressors in the context of endometrial cancer. PFAS, ubiquitous environmental contaminants notorious for their persistence in the ecosystem, have garnered attention for their potential to disrupt endocrine systems and provoke immune responses. We comprehensively examine the various sources of PFAS exposure, encompassing household items, water, air, and soil, thus shedding light on the multifaceted routes through which individuals encounter these compounds. Furthermore, we explore the influence of sociodemographic factors, such as income, education, occupation, ethnicity/race, and geographical location and their relationship to endometrial cancer risk. We also investigated the role of stress on PFAS exposure and endometrial cancer risk. The results revealed a significant impact of sociodemographic factors on both PFAS levels and endometrial cancer risk. Stress emerged as a notable contributing factor influencing PFAS exposure and the development of endometrial cancer, further emphasizing the importance of stress management practices for overall well-being. By synthesizing evidence from diverse fields, this review underscores the need for interdisciplinary research and targeted interventions to comprehensively address the complex relationship between PFAS, sociodemographic factors, stressors, and endometrial cancer.
Collapse
Affiliation(s)
- Aderonke Ayodele
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
28
|
Estien CO, Wilkinson CE, Morello-Frosch R, Schell CJ. Historical Redlining Is Associated with Disparities in Environmental Quality across California. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:54-59. [PMID: 38371654 PMCID: PMC10867848 DOI: 10.1021/acs.estlett.3c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Historical policies have been shown to underpin environmental quality. In the 1930s, the federal Home Owners' Loan Corporation (HOLC) developed the most comprehensive archive of neighborhoods that would have been redlined by local lenders and the Federal Housing Administration, often applying racist criteria. Our study explored how redlining is associated with environmental quality across eight California cities. We integrated HOLC's graded maps [grades A (i.e., "best" and "greenlined"), B, C, and D (i.e., "hazardous" and "redlined")] with 10 environmental hazards using data from 2018 to 2021 to quantify the spatial overlap among redlined neighborhoods and environmental hazards. We found that formerly redlined neighborhoods have poorer environmental quality relative to those of other HOLC grades via higher pollution, more noise, less vegetation, and elevated temperatures. Additionally, we found that intraurban disparities were consistently worse for formerly redlined neighborhoods across environmental hazards, with redlined neighborhoods having higher pollution burdens (77% of redlined neighborhoods vs 18% of greenlined neighborhoods), more noise (72% vs 18%), less vegetation (86% vs 12%), and elevated temperature (72% vs 20%), than their respective city's average. Our findings highlight that redlining, a policy abolished in 1968, remains an environmental justice concern by shaping the environmental quality of Californian urban neighborhoods.
Collapse
Affiliation(s)
- Cesar O. Estien
- Department
of Environmental Science, Policy, and Management, University of California−Berkeley, 130 Mulford Hall, Berkeley, California 94720, United States
| | - Christine E. Wilkinson
- Department
of Environmental Science, Policy, and Management, University of California−Berkeley, 130 Mulford Hall, Berkeley, California 94720, United States
- California
Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118, United States
| | - Rachel Morello-Frosch
- Department
of Environmental Science, Policy, and Management, University of California−Berkeley, 130 Mulford Hall, Berkeley, California 94720, United States
- School
of Public Health, University of California−Berkeley, 2121 Berkeley Way, Berkeley, California 94720, United States
| | - Christopher J. Schell
- Department
of Environmental Science, Policy, and Management, University of California−Berkeley, 130 Mulford Hall, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Hicks PM, Simmons K, Newman-Casey PA, Woodward MA, Elam AR. Spatial Vision Inequalities: A Literature Review of the Impact of Place on Vision and Eye Health Outcomes. Transl Vis Sci Technol 2024; 13:22. [PMID: 38285463 PMCID: PMC10829826 DOI: 10.1167/tvst.13.1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
"Neighborhood and built environment" is one of the five domains of social determinants of health that has been outlined by Healthy People 2030, and this domain impacts an individual's well-being, health, and quality of life. Social risk factors (SRFs) in the neighborhood and built environment domain include unstable or unsafe housing, poor access to transportation, lack of green spaces, pollution, safety concerns, and neighborhood measures of inequity. In this narrative literature review, we assess the relationship between neighborhood and built environment SRFs and eye health and vision outcomes. We explain how mapping neighborhood-level SRFs may be used to advance health equity in the field of eye health and vision care.
Collapse
Affiliation(s)
- Patrice M. Hicks
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Kirsten Simmons
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Paula Anne Newman-Casey
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, USA
| | - Maria A. Woodward
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, USA
| | - Angela R. Elam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Levin R, Villanueva CM, Beene D, Cradock AL, Donat-Vargas C, Lewis J, Martinez-Morata I, Minovi D, Nigra AE, Olson ED, Schaider LA, Ward MH, Deziel NC. US drinking water quality: exposure risk profiles for seven legacy and emerging contaminants. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:3-22. [PMID: 37739995 PMCID: PMC10907308 DOI: 10.1038/s41370-023-00597-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Advances in drinking water infrastructure and treatment throughout the 20th and early 21st century dramatically improved water reliability and quality in the United States (US) and other parts of the world. However, numerous chemical contaminants from a range of anthropogenic and natural sources continue to pose chronic health concerns, even in countries with established drinking water regulations, such as the US. OBJECTIVE/METHODS In this review, we summarize exposure risk profiles and health effects for seven legacy and emerging drinking water contaminants or contaminant groups: arsenic, disinfection by-products, fracking-related substances, lead, nitrate, per- and polyfluorinated alkyl substances (PFAS) and uranium. We begin with an overview of US public water systems, and US and global drinking water regulation. We end with a summary of cross-cutting challenges that burden US drinking water systems: aging and deteriorated water infrastructure, vulnerabilities for children in school and childcare facilities, climate change, disparities in access to safe and reliable drinking water, uneven enforcement of drinking water standards, inadequate health assessments, large numbers of chemicals within a class, a preponderance of small water systems, and issues facing US Indigenous communities. RESULTS Research and data on US drinking water contamination show that exposure profiles, health risks, and water quality reliability issues vary widely across populations, geographically and by contaminant. Factors include water source, local and regional features, aging water infrastructure, industrial or commercial activities, and social determinants. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general problems, ascertaining the state of drinking water resources, and developing mitigation strategies. IMPACT STATEMENT Drinking water contamination is widespread, even in the US. Exposure risk profiles vary by contaminant. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general public health problems, ascertaining the state of drinking water resources, and developing mitigation strategies.
Collapse
Affiliation(s)
- Ronnie Levin
- Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Cristina M Villanueva
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Daniel Beene
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- University of New Mexico Department of Geography & Environmental Studies, Albuquerque, NM, USA
| | | | - Carolina Donat-Vargas
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johnnye Lewis
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Irene Martinez-Morata
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Darya Minovi
- Center for Science and Democracy, Union of Concerned Scientists, Washington, DC, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Erik D Olson
- Natural Resources Defense Council, Washington, DC, USA
| | | | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | |
Collapse
|
31
|
Berthold TA, McCrary A, deVilleneuve S, Schramm M. Let's talk about PFAS: Inconsistent public awareness about PFAS and its sources in the United States. PLoS One 2023; 18:e0294134. [PMID: 37971973 PMCID: PMC10653490 DOI: 10.1371/journal.pone.0294134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
The presence of per- and polyfluoroalkyl substances (PFAS) in U.S. drinking water has recently garnered significant attention from the media, federal government, and public health professionals. While concerns for PFAS exposure continue to mount, the general public's awareness and knowledge of the contaminant has remained unknown. This exploratory study sought to fill this data gap by administering a nationwide survey in which the awareness of PFAS and community contamination, awareness of PFAS containing products and intentions to change product use, and awareness and concern about PFAS in drinking water were assessed. The results indicated that almost half the respondents had never heard of PFAS and do not know what it is (45.1%). Additionally, 31.6% responded that they had heard of PFAS but do not know what it is. A large portion of respondents (97.4%) also responded that they did not believe their drinking water had been impacted by PFAS. Demographic association did not influence knowledge of PFAS or levels of concern with PFAS in drinking water. The strongest predictor of PFAS awareness was awareness due to known community exposure. The respondents aware of community exposure were more likely to have knowledge of PFAS sources, change their use of items with potential PFAS contamination, and answer that their drinking water sources were also contaminated with PFAS. Based on the received responses, PFAS information and health risks need to be better communicated to the public to help increase awareness. These efforts should also be coordinated between government agencies, utilities, the research community, and other responsible entities to bolster their effectiveness.
Collapse
Affiliation(s)
- T. Allen Berthold
- Texas Water Resources Institute, Texas A&M AgriLife, College Station, Texas, United States of America
| | - Audrey McCrary
- Texas Water Resources Institute, Texas A&M AgriLife, College Station, Texas, United States of America
| | - Stephanie deVilleneuve
- Texas Water Resources Institute, Texas A&M AgriLife, College Station, Texas, United States of America
| | - Michael Schramm
- Texas Water Resources Institute, Texas A&M AgriLife, College Station, Texas, United States of America
| |
Collapse
|