1
|
Xie Y, Chen W, Ye Z, Yan J, Yu X, Feng M. Mechanistic insight into the environmental fate of highly concerned transformation products of aqueous micropollutants during the solar/chlorine treatment. WATER RESEARCH 2025; 278:123413. [PMID: 40043573 DOI: 10.1016/j.watres.2025.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 04/14/2025]
Abstract
Transformation products (TPs) arising from the degradation of micropollutants have been frequently detected in various water bodies and may exhibit higher toxicity than their parent compounds. However, the current understanding of their chemical reactivity remains limited, and the mechanisms underlying the solar-driven oxidation processes (e.g., solar/chlorine system) of TPs have not been well investigated. This study explored the elimination of six typical TPs derived from carbamazepine (CBZ) and atrazine (ATZ) by solar/oxidant systems. It was observed that these TPs could be effectively degraded in the solar/oxidant systems, except for the solar/hydrogen peroxide system. The reactivity evaluation and quantitative contribution analysis revealed that hydroxyl radicals (•OH) and ozone played pivotal roles in the removal of all six typical TPs by the solar/chlorine system, whereas the reactive chlorine species contributed minimally. The transformation mechanisms of carbamazepine 10, 11-epoxide (CBZ-EP) involved hydroxyl addition and electron transfer, while the TPs of ATZ underwent dealkylation only. The computational study indicated that •OH primarily reacted with CBZ-EP via radical addition reaction. Furthermore, the TPs of CBZ-EP and hydroxyatrazine showed no obvious change in environmental persistence but enhanced mobility and toxicity compared to the parent compounds, implying treatment-driven secondary risks. Overall, this investigation provided an in-depth mechanistic exploration of the transformation behaviors, fate, and secondary environmental risks of highly concerned TPs under the solar/oxidant treatments.
Collapse
Affiliation(s)
- Yuwei Xie
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Wenzheng Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Zhantu Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Junmei Yan
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
2
|
Li J, O'Brien JW, Tscharke BJ, Verhagen R, He C, Shimko KM, Shao X, Zhai N, Hulleman T, Mueller JF, Thomas KV. Occurrence, Removal, and Risk Assessment of Antimicrobials and Their Transformation Products in Effluent from Australian Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6825-6838. [PMID: 40126121 DOI: 10.1021/acs.est.5c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Despite Australia's high antimicrobial use, their residues in wastewater and their impacts on receiving waters remain largely unknown. This study assessed the occurrence, removal, and risk for antimicrobial resistance (AMR) of 102 antimicrobial substances and selected transformation products (TPs) in wastewater effluent from 47 wastewater treatment plants (WWTPs) across Australia. Thirty-two antimicrobials and 13 TPs were detected, with 14 analytes occurring at >80% frequencies. Ampicillin, penicillin V, penicilloic V acid, fluconazole, and tazobactam M1 were observed with high median concentrations of >0.2 μg/L. Collectively, the WWTPs released 5.4 kg/day or 0.54 g/day/1000 inhabitants of antimicrobials/TPs into natural waters, with β-lactams, quinolones, nitroimidazoles/azoles, and sulfonamides comprising high volumes, which was correlated with the population's socioeconomic statuses. Thirty-seven analytes were removed at rates >80% post-treatment, whereas quinolones, nitroimidazoles/azoles, lincosamides, and macrolide TPs were observed with poor removal efficiencies, which were affected by treatment processes and regional climate. Comparing measured concentrations with the predicted no-effect concentrations for AMR selection (PNECAMR), 7 antimicrobials exerted selection risk for resistant bacteria. Concerningly, ciprofloxacin posed medium/high risk in most of the assessed WWTPs. The accumulative effects of antimicrobial classes and certain TPs might further aggravate adverse impacts on AMR development. Our study provides insights into the presence and AMR implications of antimicrobials in treated wastewater, aiming to safeguard public health and ecosystems.
Collapse
Affiliation(s)
- Jinglong Li
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1090 GD Amsterdam, The Netherlands
| | - Ben J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rory Verhagen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Chang He
- Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Katja M Shimko
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Xueting Shao
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - Naixiang Zhai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Tobias Hulleman
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
3
|
Pastor-López EJ, Escolà Casas M, Hellman D, Müller JA, Matamoros V. Impact of riverbed renaturalization on the attenuation of antibiotics and antimicrobial resistance in wastewater effluent-dominated streams. ENVIRONMENTAL RESEARCH 2025; 270:120910. [PMID: 39880113 DOI: 10.1016/j.envres.2025.120910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Mediterranean streams contain substantial proportions of wastewater treatment plant effluent, occasionally constituting the entire water flow. Here, we analysed the seasonal occurrence of 23 antibiotics (AB) and antimicrobial resistance (AMR) by tracking 3 marker genes and bacterial community dynamics in two wastewater effluent-dominated streams. One stream was renaturalized with meanders and vegetation, while the other was linear and had a low vegetation density. The concentration of ABs in the effluents ranged from 33 to 1313 ng·L-1 during summer and 4 to 2337 ng·L-1 during winter. The attenuation of ABs 3.5 km downstream varied depending on the compound, ranging from 42 to 88%. The half-lives of ABs obtained for the streams were 0.2-4.1 h in summer and 0.6-12.6 h in winter. Most ABs had a half-life of <5 h, except sulfamethoxazole, acetyl-sulfamethoxazole, and trimethoprim. The vegetated stream exhibited a higher attenuation of ABs than the unaltered stream (88% vs. 67% on average), while also showing lower half-life values (on average 1.3 vs. 3.8 h). The bacterial community profiles in both streams were typical of effluents, with greater longitudinal dynamics in the vegetated stream during summer than in the other samplings. Similarly, AMR indicator genes decreased most in the vegetated stream during summer (0.8-1.1 log units). The ecotoxicological risk and the potential microbial risk selection values downstream at 3.5 km were reduced by > 45%. Overall, the results suggest that vegetation and meanders play an important role in the in-stream attenuation of ABs and AMRs.
Collapse
Affiliation(s)
- Edward J Pastor-López
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Mònica Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Dominik Hellman
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jochen A Müller
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
4
|
Li R, Liu Z, Qin J, Lin K, Xu W, Li M, Yeung KL, Zhu X, Fang J, Zhou G, Fang Z. Photogenerated electron transfer in Ni/NiO supported on g-C 3N 4 enables sustainable catalytic activation of peroxymonosulfate for emerging pollutant removal. ENVIRONMENTAL RESEARCH 2025; 275:121460. [PMID: 40127745 DOI: 10.1016/j.envres.2025.121460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/05/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Emerging pollutants such as enrofloxacin (ENR), a widely used fluoroquinolone antibiotic, pose significant threats to aquatic ecosystems due to their persistence, bioaccumulation, and toxicity. This study reports the development of a stable and efficient Ni-NiO/g-C3N4 heterojunction photocatalyst for ENR degradation under visible light and in the presence of peroxymonosulfate (PMS). The catalyst, synthesized via a templated self-assembly and hydrothermal method, achieved 98.7 % ENR removal within 45 min. Mechanistic studies revealed that the charge transfer along lower energy bands in ternary heterojunctions enhances charge separation and promotes the generation of reactive oxygen species (ROS), including sulfate radicals (SO4•-), hydroxyl radicals (•OH), and singlet oxygen (1O2). Density functional theory calculations confirmed strong PMS adsorption on the heterojunction of metallic Ni and exposed Ni in NiO, facilitating efficient ROS production and bond polarization for pollutant degradation. The catalyst exhibited remarkable structural stability, maintaining consistent performance over six reuse cycles, attributed to the robust g-C3N4 matrix and dynamic redox cycling of Ni/NiO. Toxicity assessments showed significant detoxification of ENR into less harmful byproducts, emphasizing the environmental safety of the process. This work demonstrates the potential of the Ni-NiO/g-C3N4/PMS system as a sustainable and scalable approach to address the challenges posed by emerging pollutants in aquatic environments. The research highlights the significance of integrating photocatalysis and PMS activation for advanced oxidation processes, offering an effective pathway to mitigate antibiotic pollution and its ecological impact and can contribute to the development of next-generation catalysts for environmental remediation.
Collapse
Affiliation(s)
- Runqi Li
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China; Guangzhou Accurate and Correct Test Co., Ltd, Guangzhou, 510700, PR China
| | - Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, Kowloon, PR China.
| | - Jingjun Qin
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Kaichun Lin
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Weicheng Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - King Lun Yeung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, Kowloon, PR China
| | - Ximiao Zhu
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Jianzhang Fang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China; Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou, 510006, PR China.
| | - Guangying Zhou
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China.
| | - Zhanqiang Fang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China; Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou, 510006, PR China
| |
Collapse
|
5
|
Zhang Y, Rosado-García FM, Peña YP, Karanis P, Yu X, Feng M, Ye C. Sulfonamide metabolites enhance resistance transmission via conjugative transfer pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137932. [PMID: 40117768 DOI: 10.1016/j.jhazmat.2025.137932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Human beings release thousands of antibiotics into the environment, which could generate the related transformation products (TPs), most of which have yet to be identified and lack rigorous microbial risk information. This study aimed to investigate the impact and mechanisms of 4-nitro sulfamethoxazole, N4-acetylated sulfamethoxazole, and N4-acetylated sulfadiazine, three typical sulfonamide (SAs) metabolites, on the risk of antibiotic resistance genes (ARGs) transmission. The results revealed that TPs significantly enhance the risk of conjugative transfer of RP4 plasmid at clinically and environmentally relevant concentrations (10 ng/L to 100 μg/L), with a maximum increase of up to 73-fold. These three metabolites' capabilities to enhance the conjugative transfer of ARGs are more pronounced than the parent sulfonamides. The induction mechanisms of TPs on ARGs transmission are also more complex, which primarily arise from the enhancement of reactive oxygen species, further increased cell membrane permeability and upregulated bacterial secretion systems. Transcriptomic analysis validated the aforementioned biological processes and showed that TPs also increased the activity of toxin-antitoxin system and bacterial intracellular transposon, thereby promoting the spread of ARGs. This research contributes to a better understanding of the antibiotic-like effects of TPs, which is crucial for improving our understanding of non-antibiotic drug-induced bacterial resistance risks.
Collapse
Affiliation(s)
- Yuan Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | | | - Yamila Puig Peña
- National Institute of Hygiene, Epidemiology and Microbiology of Cuba, Havana, Cuba
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, Cologne, Germany; University of Nicosia Medical School, Department of Basic and Clinical Sciences, Nicosia, Cyprus
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Calgaro L, Giubilato E, Lamon L, Semenzin E, Marcomini A. Investigating the environmental fate of active pharmaceutical compounds in a coastal lagoon using a multimedia level III fugacity model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36217-6. [PMID: 40080272 DOI: 10.1007/s11356-025-36217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
The use of active pharmaceutical ingredients (APIs) has enhanced life quality and longevity but poses significant environmental risks to ecosystems and human health. Evidence-based risk assessments are essential for addressing these issues, requiring detailed data on API presence, behavior, and effects in the environment. In particular, predictive exposure models offer a cost-effective tool to support such investigations. This study focuses on the application of a multimedia level III fugacity model to estimate the predicted environmental concentrations (PECs) and to simulate transport, distribution, and persistence of nine APIs in the Venice Lagoon (Italy), a transitional environment subjected to multiple anthropogenic stressors. Concentrations of the studied APIs in water were estimated within one order of magnitude of measured data, while the model underestimated the concentration of azithromycin and 17-β-estradiol in the sediments due to water half-life overestimation and lack of information about unmonitored emission sources. In detail, the highest levels of APIs in the water were estimated for amoxicillin and clarithromycin, while sediments showed a significant presence of azithromycin and ciprofloxacin. Model results also showed the possibility for sediments to act as sink for azithromycin, ciprofloxacin, erythromycin, estrone, and 17-β-estradiol. For all target APIs, degradation in the water column and adjective outflow were the most important elimination processes, while degradation in the sediments was significant only for erythromycin, ciprofloxacin, and clarithromycin. Monte-Carlo uncertainty and sensitivity analysis showed that degradation in water, affinity to organic matter, and sediment dynamics were the parameters with the strongest influence on model's results. Overall, this work provided valuable information on the environmental fate and behavior of the investigated APIs in a complex transitional waterbody such as the Venice Lagoon and can be useful to support future environmental risk assessments as well as studies to evaluate the effects of emission control measures (e.g., restriction of use, substitution, or implementation of new technologies for wastewater treatment) on APIs environmental exposure.
Collapse
Affiliation(s)
- Loris Calgaro
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy
| | - Elisa Giubilato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy
| | - Lara Lamon
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy
| | - Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy.
| |
Collapse
|
7
|
Singh AK, Abellanas-Perez P, de Andrades D, Cornet I, Fernandez-Lafuente R, Bilal M. Laccase-based biocatalytic systems application in sustainable degradation of pharmaceutically active contaminants. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136803. [PMID: 39672062 DOI: 10.1016/j.jhazmat.2024.136803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
The outflow of pharmaceutically active chemicals (PhACs) exerts a negative impact on biological systems even at extremely low concentrations. For instance, enormous threats to human and aquatic species have resulted from the widespread use of antibiotics in ecosystems, which stimulate the emergence and formation of antibiotic-resistant bacterial species and associated genes. Additionally, it is challenging to eliminate these PhACs by employing conventional physicochemical water treatment techniques. Enzymatic approaches, including laccase, have been identified as a promising alternative to eliminate a broad array of PhACs from water matrices. However, their application in environmental bioremediation is hindered by several factors, including the enzyme's stability and its location in the aqueous environment. Such obstacles may be surmounted by employing laccase immobilization, which enables enhanced stability (including inactivation caused by the substrate), and thus improved catalysis. This review emphasizes the potential hazards of PhACs to aquatic organisms within the detection concentration range of ngL-1 to µgL-1, as well as the deployment of laccase-based multifunctional biocatalytic systems for the environmentally friendly mitigation of anticancer drugs, analgesics/NSAIDs, antibiotics, antiepileptic agents, and beta blockers as micropollutants. This approach could reduce the underlying toxicological consequences. In addition, current developments, potential applications, and viewpoints have focused on computer-assisted investigations of laccase-PhACs binding at enzyme cavities and degradability prediction.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pedro Abellanas-Perez
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, C/ Marie Curie 2, Madrid, Spain
| | - Diandra de Andrades
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, C/ Marie Curie 2, Madrid, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão, Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Iris Cornet
- BioWAVE research group, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | | | - Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., Gdansk 80-233, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
8
|
Wu Y, Ailijiang N, Cui Y, Abdusalam Z, Wu Y, Ma J, Luo X, Li M. Removal of mixed antibiotics from saline wastewater under intermittent electrical stimulation and alterations of microbial communities and resistance genes. ENVIRONMENTAL RESEARCH 2025; 268:120772. [PMID: 39761776 DOI: 10.1016/j.envres.2025.120772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) are severe refractory pollutants in water. However, the effect of an intermittent electrical stimulation on the removal of antibiotics and ARGs from saline wastewater remains unclear. An anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) was used to treat tetracyclines (TCs) and quinolones (QNs) in saline wastewater. In an aerobic cathode-anaerobic anode reactor at an intermittent voltage of 0.9 V, antibiotic wastewater with a salinity of 15 g/L was treated. The removal rates of oxytetracycline, tetracycline, norfloxacin, and ciprofloxacin were 29.30%, 35.14%, 15.49%, and 15.84% higher, respectively, than those in reactors without voltage application. Compared with non-saline wastewater, the removal of TCs and QNs from saline wastewater was improved significantly by intermittent electrical stimulation. The contribution of the anaerobic region was significantly higher than that of the aerobic region. Intermittent electrical stimulation enriches and degrades Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Dysgonomonas, Hydrogenophaga, Terrimonas, and Methyloversatilis related functional microorganisms. The anaerobic anode reactor with an aerobic cathode was advantageous for the removal of ARGs in general. However, it showed enrichment for certain targeted genes. Therefore, AO-UBERs is an effective method for antibiotic removal. However, its effect on the removal of ARGs needs further investigation.
Collapse
Affiliation(s)
- Yixian Wu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Nuerla Ailijiang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China.
| | - Yincang Cui
- The Analysis and Testing Center of Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Zaimire Abdusalam
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Yiping Wu
- Urumqi Hexi Water Co., Ltd, Urumqi, 830037, PR China
| | - Junxuan Ma
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Xiaoxiao Luo
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Min Li
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| |
Collapse
|
9
|
Hu J, Lyu Y, Liu Y, You X, Helbling DE, Sun W. Incorporating Transformation Products for an Integrated Assessment of Antibiotic Pollution and Risks in Surface Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2815-2826. [PMID: 39884857 DOI: 10.1021/acs.est.4c12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The widespread presence of antibiotics in aquatic ecosystems is a global challenge, yet the occurrence and risks associated with their transformation products (TPs) remain poorly understood. This study investigated the occurrence and potential risks of antibiotics and their TPs in water along the Chaobai River in Beijing. We used high-resolution mass spectrometry and an integrated target, suspect, and nontarget screening approach to identify 21 parent antibiotics and 78 TPs among 90 water samples, with the majority from macrolides and sulfonamides. Notably, target quantification and machine-learning-assisted semiquantification revealed that the cumulative concentrations of TPs were higher than the cumulative concentrations of parent compounds, with average contributions of TPs ranging between 50.7 and 63.7%. Most downstream water samples were largely influenced by domestic sewage, as indicated by the significantly higher concentrations and proportions of TPs, as well as the greater diversity in their composition profiles compared to upstream and reservoir samples. Moreover, of the 78 TPs, 26.9, 67.9, and 6.4% exhibited greater persistence, mobility, or toxicity than their parent antibiotics, respectively. Sixteen macrolide TPs presented both greater ecological risks to aquatic organisms and higher resistance selection risks than their parent antibiotics. TPs contributed substantially to the overall antibiotic-related risks by an average of between 31.2 and 54.1%. This study highlights the occurrence of antibiotic TPs in river water, underscoring the need to consider TPs in comprehensive risk assessments of antibiotics.
Collapse
Affiliation(s)
- Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yi Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Xiuqi You
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
10
|
Liu R, Long Q, Liu Y, Wang L. Screening of priority antibiotics in Fenhe River Basin based on the environmental exposure, ecological effects, and human health risk. CHEMOSPHERE 2025; 370:143953. [PMID: 39708951 DOI: 10.1016/j.chemosphere.2024.143953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Antibiotics in surface water have attracted increasing attention because of their potential threats to aquatic ecosystems and public health. Therefore, it is crucial to develop a priority antibiotic list and establish a regulatory framework for antibiotic control. Taking the Fenhe River Basin in North China as the study area, a method to rank priority antibiotics based on their environmental exposure, ecological effects, and human health risks was established. Twenty antibiotics were detected, with the highest average concentration (118.30 ng/L) of sulfonamides. Among them, azithromycin had the lowest BioWIN3 value, and its logKow value was >4, which means that it has poor biodegradability, is relatively easily adsorbed in the soil or sediment, and is persistent. Additionally, based on a survey of local species with different nutritional structures, the ecological risk thresholds of antibiotics were calculated. The results showed that quinolones had the lowest risk threshold of average value 287.23 ng/L, with a greater potential for a negative effect on the ecological environment. Based on the threshold, norfloxacin, ofloxacin, and erythromycin were identified as the pollutants of ecological risk, their peak concentrations were approximately 2.4 times, 2 times, and 9 times their risk thresholds, respectively, which mainly distributed in the middle reaches. Regarding human health risks, ciprofloxacin posed the highest health risk, with an average health risk entropy of 2.81. Finally, the calculated results of the priority rating of antibiotics showed that ciprofloxacin, enrofloxacin, erythromycin, and azithromycin were the highest-priority antibiotics and should be prioritized in risk management.
Collapse
Affiliation(s)
- Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Qingfeng Long
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Yue Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Linfang Wang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong, 030600, China
| |
Collapse
|
11
|
Li S, Wang R, Zhang Y, Zheng H, Dong X, Leong YK, Chang JS. Ecological risks of sulfonamides and quinolones degradation intermediates: Toxicity, microbial community, and antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2025; 418:131967. [PMID: 39662843 DOI: 10.1016/j.biortech.2024.131967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
The ecological risks posed by incompletely degraded antibiotic intermediates in aquatic environments warrant significant attention. This study investigated the degradation mechanisms of sulfonamides (sulfadiazine, sulfamethoxazole) and quinolones (ciprofloxacin, norfloxacin) during thermally activated persulfate (TAP) treatment. The main degradation mechanisms for sulfonamides involved S-N bond cleavage and -NH2 oxidation mediated by sulfate and hydroxyl radicals, whereas quinolone degradation occurred primarily through piperazine ring cleavage facilitated by a single linear oxygen. Toxic degradation intermediates were found to be enriched with bacteria in real water samples, including Aeromonas (SDZ-50, 9.61%), Acinetobacter (SMZ-50, 21.91%), unclassified Archaea (CIP-50, 19.32%), and Herbaspirillum (NOR-50, 17.36%). Meanwhile, the abundance of sulfonamide-associated antibiotic resistance genes (ARGs) (sul1 and sul2) and quinolone-associated ARGs (mfpA, emrA, and lfrA) significantly increased, with SMZ-50 and NOR-50 reaching 659.34 and 2009.98 RPKM, respectively. Correlation analysis revealed differences in host diversity and composition driven by the same classes of antibiotics and their intermediates.
Collapse
Affiliation(s)
- Shuo Li
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Ran Wang
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yunfei Zhang
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Heshan Zheng
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Xu Dong
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
12
|
Wang L, Wang W, Zhang S, Wei J, Chen Q, Jiao T, Lin A, Chen Q, Chen XM. G-Quadruplex DNAzyme-Based Biocatalysis Combined with an Intelligent Electromagnetic-Actuated Microfluidic Chip for Tetracycline Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1598-1607. [PMID: 39811934 DOI: 10.1021/acs.jafc.4c09976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In this study, we present an intelligent electromagnetic-actuated microfluidic chip integrated with a G-quadruplex DNAzyme-based biocatalysis platform for rapid and sensitive tetracycline (TC) detection. In this sensing system, TC significantly quenches fluorescent magnetic carbon dots (M-CDs) via the internal filtration effect and dynamic quenching (the excitation and emission wavelength at 350 and 440 nm, respectively). Then, the G-quadruplex on the M-CDs-Aptamer is exposed and bound with hemin to form hemin-G-quadruplex DNAzyme, catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine to produce blue color. This enables the fluorescence/colorimetric detection of TC. Importantly, an automatic electromagnet-integrated microfluidic chip was designed to control the shuttling of magnetic materials in each function slot according to a programmed sequence. Under the optimal conditions, the detection limits of TC for fluorescence and colorimetric methods were 11 and 43 μmol/L, respectively. The detection results for tilapia (Oreochromis nilotica) were comparable to those of traditional high-performance liquid chromatography. This platform offers excellent performance for TC determination and potential for portable, intelligent detection of trace pollutants in food and the environment.
Collapse
Affiliation(s)
- Li Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Wanwan Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Shumin Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Anhui Lin
- School of Marine Engineering, Jimei University, Xiamen 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiao-Mei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
13
|
Della-Negra O, Camotti Bastos M, Barbieri MV, Bru-Adan V, Santa-Catalina G, Ait-Mouheb N, Chiron S, Patureau D. Temporal dynamic of soil microbial communities and antibiotic resistance markers exposed to increasing concentrations of sulfamethoxazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125306. [PMID: 39537085 DOI: 10.1016/j.envpol.2024.125306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
The reuse of treated wastewater (TWW) for irrigation is widely applied to alleviate pressure on freshwater resources. However, TWW contains antibiotics that once in soils, can exert selective pressure, promoting the emergence and spread of antimicrobial resistance (AMR) in the environment. Current environmental risk assessments for antibiotic residues rely on indicators such as Predicted No Effect Concentrations (PNECs), usually determined in liquid media. These PNECs aim to predict antibiotic concentrations that may promote resistance in the environment. Given the complexity of soil matrices, few studies have established PNEC values for soil, which likely differ significantly from aquatic environments. To address this gap, we developed a simplified experimental model using soil microcosms irrigated with TWW and the antibiotic sulfamethoxazole (SMX) to estimate threshold concentrations favouring resistance transfer or/and emergence within the soil microbiome. We identified SMX concentrations between 0.01 and 0.1 mg/kgdry soil that likely increased the abundance of sulfonamide resistance genes in soil. A time window of 1-7 days post-exposure showed a temporary rise in sul1 and intl1 gene abundance (over 1 log/soil 16S rDNA), the appearance of SMX transformation products, and an increase in some Rhodocyclaceae. After 1.5 months of incubation and complete SMX transformation, the relative abundance of sul1 and intl1 remained about 0.5 log higher than in SMX-free controls and soils with SMX levels below 0.1 mg/kg dry soil. A persistent transformation product, 4-N-glucuronide-SMX, was also observed. Here, the estimated PNEC for SMX in soil, between 0.01 and 0.1 mg/kg, exceeds typical SMX concentrations found in soils exposed to TWW. This may suggest low impact on resistance selection for this compound in the context of TWW exposure. However further studies on other soils, water, and antibiotics need to be conducted to expand our knowledge on soil PNECs.
Collapse
Affiliation(s)
- Oriane Della-Negra
- INRAE, University of Montpellier, LBE, Av. des Étangs, 11100, Narbonne, France; UMR HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34093, Montpellier, cedex 5, France
| | - Marilia Camotti Bastos
- INRAE, University of Montpellier, LBE, Av. des Étangs, 11100, Narbonne, France; UMR HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34093, Montpellier, cedex 5, France
| | - Maria Vittoria Barbieri
- UMR HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34093, Montpellier, cedex 5, France
| | - Valérie Bru-Adan
- INRAE, University of Montpellier, LBE, Av. des Étangs, 11100, Narbonne, France
| | | | - Nassim Ait-Mouheb
- INRAE, University of Montpellier, UMR GEAU, 361 rue Jean-François Breton, 34196, Montpellier, France
| | - Serge Chiron
- UMR HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34093, Montpellier, cedex 5, France
| | - Dominique Patureau
- INRAE, University of Montpellier, LBE, Av. des Étangs, 11100, Narbonne, France.
| |
Collapse
|
14
|
Specker JC, Praetorius A, de Baat ML, Sutton NB, van Wezel AP. Risk characterisation of chemicals of emerging concern in real-life water reuse applications. ENVIRONMENT INTERNATIONAL 2025; 195:109226. [PMID: 39824024 DOI: 10.1016/j.envint.2024.109226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/20/2025]
Abstract
Water reuse is a viable option to address temporal or structural water shortages. However, the ubiquitous presence of chemicals of emerging concern (CECs) in natural systems, especially the aquatic environment, represents a significant obstacle to water reuse and the receiving environment. Therefore, an extensive literature review was performed to identify current water reuse practices at field scale, reported types and levels of CECs and their associated risks for human and environmental health. Treated wastewater was the primary reused water source, with agricultural reuse being the most frequently reported reuse application (28 %), followed by indirect-potable reuse (16 %). Contrary to potable reuse, it was observed that almost no studies applied additional treatment before water reuse for agricultural purposes. Based on calculated risk quotients, ecological risks were identified for perfluorooctanesulfonic acid, chlorpyrifos, triclocarban, and ethinylestradiol, and human health risks for perfluorooctanesulfonic acid and perfluorooctanoic acid. Environmental risks could be assessed for 77 % of detected CECs, while the human health risk assessment is limited to 28 %. For agricultural reuse, it was observed that CEC concentrations in produced crops were at acceptable levels. However, a thorough risk assessment of CECs during water reuse is currently limited due to a focus on a defined class of contaminants in the literature, i.e., pharmaceuticals, and falls short of per- and polyfluoroalkyl substances. Therefore, future water reuse studies should include a broader set of CECs and study additional mitigation options to decrease CEC concentrations before or during water reuse. Moreover, environmental harm caused by CECs during water reuse such as adverse effects on the microbial soil community or leaching to non-target sources has hardly been studied in the field and presents a knowledge gap.
Collapse
Affiliation(s)
- Jan C Specker
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | - Antonia Praetorius
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Milo L de Baat
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Nora B Sutton
- Department of Environmental Technology, Wageningen University and Research, Wageningen, The Netherlands
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Khan UA, Löffler P, Spilsbury F, Wiberg K, Stålsby Lundborg C, Lai FY. Towards sustainable water reuse: A critical review and meta-analysis of emerging chemical contaminants with risk-based evaluation, health hazard prediction and prioritization for assessment of effluent water quality. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136175. [PMID: 39461297 DOI: 10.1016/j.jhazmat.2024.136175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Abstract
Reuse of treated wastewater is necessary to address water shortages in a changing climate. Sustainability of wastewater reuse requires reducing the environmental impacts of contaminants of emerging concern (CECs), but it is being questioned as CECs are not regulated in the assessment of effluent water quality for reuse both nationally in Sweden and at the broader European Union level. There is also a lack of details in this topic on which CECs to be addressed and methodologies to be used for assessing their environmental impacts. A better understanding of the ecological risks and health hazards of CECs associated with wastewater reuse will assist in the development of effective regulations on water reuse, (inter)nationally, as well as related treatment/monitoring guidelines. This review provides a list of specific chemical CECs that hinder sustainable wastewater reuse, and also demonstrates a holistic quantitative methodology for assessing, scoring and prioritizing their associated ecological risks and health hazards posed to the environment and humans. To achieve this, we compile information and concentrations of a wide range of CECs (∼15 000 data entries) identified in Swedish effluent wastewater from domestic (blackwater, greywater, mixture of both) and municipal settings, and further perform a meta-analysis of their potentials for 14 risk and hazard features, consisting of ecological risk, environmental hazard, and human health hazard. The features are then scored against defined criteria including guideline values, followed by score ranking for prioritization. This finally produces a unique list of chemical CECs from high to low priority based on risk- and hazard-evaluations. Out of the priority chemicals, 30, mainly pharmaceuticals, had risk quotient ≥ 1, indicating ecological risk, 16 had environmental hazard being persistent and mobile, and around 60 resulted in positive predictions for at least four human health hazards (particularly skin sensitization, developmental toxicity, hepatoxicity, and carcinogenicity). The 10 highest-priority chemicals (final score 2.3-3.0 out of 4.0) were venlafaxine, bicalutamide, desvenlafaxine, diclofenac, amoxicillin, clarithromycin, diethyltoluamide, genistein, azithromycin, and fexofenadine. Potential crop exposure to selected chemicals following one year of wastewater reuse for agricultural irrigation was also estimated, resulting in a range of 0.04 ng/kg (fluoxetine) to 1160 ng/kg (carbamazepine). Overall, our work will help focus efforts and costs on the critical chemicals in future (waste)water-related studies, such as, to evaluate removal efficiency of advanced treatment technologies and to study upstream source tracing (polluter-pays principle), and also in supporting policymakers to better regulate CECs for sustainable wastewater reuse in the future.
Collapse
Affiliation(s)
- Uzair Akbar Khan
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden.
| | - Paul Löffler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Francis Spilsbury
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, 14319 Gothenburg, Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Cecilia Stålsby Lundborg
- Department of Global Public Health, Karolinska Institutet, Tomtebodavägen 18A, 17177, Stockholm, Sweden
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden.
| |
Collapse
|
16
|
Shi S, Ye Z, Jiang J, Yan J, Yu X, Feng M. First insight into the environmental fate of N-acetylated sulfonamides from wastewater disinfection to solar-irradiated receiving waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136172. [PMID: 39413520 DOI: 10.1016/j.jhazmat.2024.136172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
The worldwide detection of emerging transformation products of organic micropollutants has raised accumulating concerns owing to their unknown environmental fate and undesired toxicity. This work first explored the reaction kinetics and mechanisms of the prevalent N-acetylated sulfonamides (N4-AcSAs, the typical sulfonamide metabolites) from wastewater disinfection to solar-irradiated receiving waters. The transformation scenarios included chlorination/bromination, photodegradation, and solar/chlorine treatment. The halogenations of two N4-AcSAs (N4-acetylated sulfadiazine, N4-AcSDZ; N4-acetylated sulfamethoxazole, N4-AcSMX) were pH-dependent at pH 5.0-8.0, and the reactions between the neutral forms of oxidants and anionic N4-AcSAs dominated the process. Furthermore, solar-based photolysis significantly eliminated N4-AcSAs in small water bodies with low dissolved organic carbon levels, while the indirect photolysis mediated by hydroxyl radicals and carbonate radicals contributed the most. The presence of chlorine residues in solar-irradiated wastewater effluents promoted the decay of N4-AcSAs, in which the generated hydroxyl radicals and ozone played a major role. Product analysis suggested the main transformation patterns of N4-AcSAs during the above scenarios included electrophilic attack, bond cleavage, SO2 extrusion, hydroxylation, and rearrangement. Multiple secondary products maintained higher persistence, mobility, and toxicity to aquatic organisms than N4-AcSAs. Overall, the natural and engineered transformations of such micropollutants underlined the necessity of including their degradation products in future chemical management and risk assessment.
Collapse
Affiliation(s)
- Shuiqin Shi
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Zhantu Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Jiayan Jiang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Junmei Yan
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
17
|
Azuma T, Usui M, Hasei T, Hayashi T. Occurrence and environmental fate of anti-influenza drugs in a subcatchment of the Yodo River Basin, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176086. [PMID: 39260509 DOI: 10.1016/j.scitotenv.2024.176086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Understanding the current situation and risk of environmental contamination by anti-influenza drugs in aquatic environments is key to prevent the unexpected emergence and spread of drug-resistant viruses. However, few reports have been focused on newer drugs that have recently been introduced in clinical settings. In this study, the behaviour of the prodrug baloxavir marboxil (BALM)-the active ingredient of Xofluza, an increasingly popular anti-influenza drug-and its pharmacologically active metabolite baloxavir (BAL) in the aquatic environment was evaluated. Additionally, their presence in urban rivers and a wastewater treatment plant (WWTP) in the Yodo River basin was investigated and compared with those of the major anti-influenza drugs used to date (favipiravir (FAV), peramivir (PER), laninamivir (LAN), and its active metabolite, laninamivir octanoate (LANO), oseltamivir (OSE), and its active metabolite, oseltamivir carboxylate (OSEC), and zanamivir (ZAN)) to comprehensively assess their environmental fate in the aquatic environment. The results clearly showed that BALM, FAV, and BAL were rapidly degraded through photolysis (2-h, 0.6-h, and 0.4-h half-lives, respectively), followed by LAN, which was gradually biodegraded (7-h half-life). In addition, BALM and BAL decreased by up to 47 % after 4 days and 34 % after 2 days of biodegradation in river water. However, the remaining conventional drugs, except for LANO (<1 % after 10 days), were persistent, being transported from the upstream to downstream sites. The LogKd values for the rates of sorption of BALM (0.5-1.6) and BAL (1.8-3.1) on river sediment were higher than those of conventional drugs (-0.5 to 1.7). Notably, all anti-influenza drugs were effectively removed by ozonation (>90-99.9 % removal) after biological treatment at a WWTP. Thus, these findings suggest the importance of introducing ozonation to reduce pollution loads in rivers and the environmental risks associated with drug-resistant viruses in aquatic environments, thereby promoting safe river environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tomohiro Hasei
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
18
|
Terzic S, Ivankovic K, Jambrosic K, Kurtovic B, Ahel M. Bioaccumulation and tissue distribution of pharmaceuticals and their transformation products in fish along the pollution gradients of a wastewater-impacted river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177339. [PMID: 39505042 DOI: 10.1016/j.scitotenv.2024.177339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
A field study on the occurrence and distribution of forty-three pharmaceutically active compounds (PhACs) in water and fish samples from anthropogenically impacted section of the Sava River (Croatia) was performed to estimate the importance of bioaccumulation for the environmental risk assessment of PhACs. The study was performed using a highly specific LC-MS/MS method, tailored to include the most prominent PhACs from different therapeutic categories as well as their major metabolites and/or transformation products (TPs). The results revealed a widespread occurrence of PhAC residues both in water and fish samples with a large spatial variability reflecting the distance from the dominant wastewater discharges. The most prominent PhAC categories in less polluted upstream part of the river were common psychostimulants caffeine and cotinine, therapeutic opioids and cardiovascular drugs, while in the river section affected by the local municipal and industrial wastewater inputs, antibiotic drugs became clearly predominant, especially in fish tissue samples. The apparent bioconcentration factors (BCFs) of investigated PhACs varied over several orders of magnitude, from 0.02 ± 0.01 L kg-1 for O-desmethyl tramadol in fish muscle to 784 ± 260 L kg-1 for terbinafine in fish liver, indicating rather large differences in their bioconcentration potential and affinity to different tissues, with the tissue-specific BCFs increasing in the following order: muscle < gills < gonads < heart < liver < kidneys. The bioconcentration potential of most of the PhACs included in this study was only low to moderate however moderately high BCFs of certain PhACs (e.g. sertraline, terbinafine, loratadine, diazepam and azithromycin) in some tissues should be taken into consideration when assessing their potential environmental risks. Moreover, it was shown that BCFs could be strongly affected by biotransformation in fish. Risk prioritization based on risk quotient (RQ) and ToxPi index, revealed antibiotics, in particular azithromycin, and therapeutic psychoactive substances as the most hazardous pharmaceutical contaminants in the Sava River.
Collapse
Affiliation(s)
- Senka Terzic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia.
| | - Klaudija Ivankovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Karlo Jambrosic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Bozidar Kurtovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Marijan Ahel
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
19
|
Mirzahedayat B, Kalvani N, Mehrasbi MR, Assadi A. Advances in photocatalytic degradation of tetracycline using graphene-based composites in water: a systematic review and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62510-62529. [PMID: 39455515 DOI: 10.1007/s11356-024-35359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
In this study, a comprehensive systematic review was conducted to better recognize the applicability of graphene-based photocatalytic processes for the degradation of tetracycline (TC) from water. A broad search strategy was developed for English language articles available in PubMed, Scopus, and Web of Science. The effect of parameters such as pH, TC concentration, photocatalyst dose, radiation source intensity, and the effect of graphene on the process, kinetics, and reuse of the photocatalyst were investigated. A total of 63 out of a possible 3498 retrieved records met inclusion criteria. The results showed that most related studies have increased since 2019. About 46.7% of the articles showed 90-100% TC removal efficiency and 59.52% of the studies had optimal pH equal to 5 and 6. Also, the widespread use of visible light had a significant trend. The effect of the dose of graphene in the catalyst was one of the most important and effective factors on the process; hence, the difference in efficiency with and without graphene was completely evident. This review indicated that the presence of graphene has been able to have a positive effect on increasing the efficiency of oxidation processes, and it can be used for environmental pollutants remediation.
Collapse
Affiliation(s)
- Bahare Mirzahedayat
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran
| | - Nima Kalvani
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran
| | - Mohammad Reza Mehrasbi
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran
| | - Ali Assadi
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran.
| |
Collapse
|
20
|
Li T, Li CY, Wang YF, Zhang JN, Li H, Wu HF, Yang XL, Song HL. Insights to the cooperation of double-working potential electroactive biofilm for performance of sulfamethoxazole removal: ARG fate and microorganism communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135357. [PMID: 39079293 DOI: 10.1016/j.jhazmat.2024.135357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/06/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Bioelectrochemical systems (BESs) have shown great potential in enhancing sulfamethoxazole (SMX) removal. However, electroactive biofilms (EBs) constructed with single potentials struggle due to limited biocatalytic activity, hindering deep SMX degradation. Here, we constructed a double-working potential BES (BES-D) to investigate its ability to eliminate SMX and reduce the levels of corresponding antibiotic resistance genes (ARGs). The preferable electrochemical activity of EB in BES-D was confirmed by electrochemical characterization, EPS analysis, physical structure, viability of the biofilm, and cytochrome content. BES-D exhibited a notably greater SMX removal efficiency (94.2 %) than did the single-working potential BES (BES-S) and the open-circuit group (OC). Degradation pathway analysis revealed that the cooperative EB could accelerate the in-depth removal of SMX. Moreover, EB interaction in BES-D decreased the relative abundance of ARGs in biofilms compared to that in BES-S, although the absolute number of ARG copies increased in BES-D effluents. Compared to those in BES-S and OC, more complex cross-niche microbial associations in the EB of BES-D were observed by network analysis of the bacterial community and ARG hosts, enhancing the degradation efficiency of SMX. In conclusion, BES-D has significant potential for SMX removal and the enhancement of EB activity. Nonetheless, the risk of ARG dissemination in effluent remains a concern.
Collapse
Affiliation(s)
- Tao Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Chen-Ying Li
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China.
| | - Yan-Fei Wang
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Jing-Nan Zhang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Hua Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China; Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hui-Fang Wu
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| |
Collapse
|
21
|
Luo Y, Su R. Preparation of NH 2-MIL-101(Fe) Metal Organic Framework and Its Performance in Adsorbing and Removing Tetracycline. Int J Mol Sci 2024; 25:9855. [PMID: 39337342 PMCID: PMC11432026 DOI: 10.3390/ijms25189855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Tetracycline's accumulation in the environment poses threats to human health and the ecological balance, necessitating efficient and rapid removal methods. Novel porous metal-organic framework (MOF) materials have garnered significant attention in academia due to their distinctive characteristics. This paper focuses on studying the adsorption and removal performance of amino-modified MIL-101(Fe) materials towards tetracycline, along with their adsorption mechanisms. The main research objectives and conclusions are as follows: (1) NH2-MIL-101(Fe) MOF materials were successfully synthesized via the solvothermal method, confirmed through various characterization techniques including XRD, FT-IR, SEM, EDS, XPS, BET, and TGA. (2) NH2-MIL-101(Fe) exhibited a 40% enhancement in tetracycline adsorption performance compared to MIL-101(Fe), primarily through chemical adsorption following pseudo-second-order kinetics. The adsorption process conformed well to Freundlich isotherm models, indicating multilayer and heterogeneous adsorption characteristics. Thermodynamic analysis revealed the adsorption process as a spontaneous endothermic reaction. (3) An increased adsorbent dosage and temperature correspondingly improved NH2-MIL-101(Fe)'s adsorption efficiency, with optimal performance observed under neutral pH conditions. These findings provide new strategies for the effective removal of tetracycline from the environment, thus holding significant implications for environmental protection.
Collapse
Affiliation(s)
- Yiting Luo
- School of Business, Hunan First Normal University, Changsha 410114, China
- National Engineering Laboratory of Southern Forestry Ecological Application Technology, Changsha 410004, China
| | - Rongkui Su
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
22
|
Yu C, Liu Y, Zhang Y, Shen MZ, Wang JH, Chi ZY. Seawater Chlorella sp. biofilm for mariculture effluent polishing under environmental combined antibiotics exposure and ecological risk evaluation based on parent antibiotics and transformation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173643. [PMID: 38821282 DOI: 10.1016/j.scitotenv.2024.173643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Mariculture effluent polishing with microalgal biofilm could realize effective nutrients removal and resolve the microalgae-water separation issue via biofilm scraping or in-situ aquatic animal grazing. Ubiquitous existence of antibiotics in mariculture effluents may affect the remediation performances and arouse ecological risks. The influence of combined antibiotics exposure at environment-relevant concentrations towards attached microalgae suitable for mariculture effluent polishing is currently lack of research. Results from suspended cultures could offer limited guidance since biofilms are richer in extracellular polymeric substances that may protect the cells from antibiotics and alter their transformation pathways. This study, therefore, explored the effects of combined antibiotics exposure at environmental concentrations towards seawater Chlorella sp. biofilm in terms of microalgal growth characteristics, nutrients removal, anti-oxidative responses, and antibiotics removal and transformations. Sulfamethoxazole (SMX), tetracycline (TL), and clarithromycin (CLA) in single, binary, and triple combinations were investigated. SMX + TL displayed toxicity synergism while TL + CLA revealed toxicity antagonism. Phosphorus removal was comparable under all conditions, while nitrogen removal was significantly higher under SMX and TL + CLA exposure. Anti-oxidative responses suggested microalgal acclimation towards SMX, while toxicity antagonism between TL and CLA generated least cellular oxidative damage. Parent antibiotics removal was in the order of TL (74.5-85.2 %) > CLA (60.8-69.5 %) > SMX (13.5-44.1 %), with higher removal efficiencies observed under combined than single antibiotic exposure. Considering the impact of residual parent antibiotics, CLA involved cultures were identified of high ecological risks, while medium risks were indicated in other cultures. Transformation products (TPs) of SMX and CLA displayed negligible aquatic toxicity, the parent antibiotics themselves deserve advanced removal. Four out of eight TPs of TL could generate chronic toxicity, and the elimination of these TPs should be prioritized for TL involved cultures. This study expands the knowledge of combined antibiotics exposure upon microalgal biofilm based mariculture effluent polishing.
Collapse
Affiliation(s)
- Chong Yu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yang Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ying Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ming-Zhi Shen
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China.
| | - Zhan-You Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
23
|
Wang H, Zhang L, Cui H, Ma X, Li Z, Liang B, Wang AJ. Mechanisms linking triclocarban biotransformation to functional response and antimicrobial resistome evolution in wastewater treatment systems. WATER RESEARCH 2024; 260:121909. [PMID: 38878310 DOI: 10.1016/j.watres.2024.121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
Evaluating the role of antimicrobials biotransformation in the regulation of metabolic functions and antimicrobial resistance evolution in wastewater biotreatment systems is crucial to ensuring water security. However, the associated mechanisms remain poorly understood. Here, we investigate triclocarban (TCC, one of the typical antimicrobials) biotransformation mechanisms and the dynamic evolution of systemic function disturbance and antimicrobial resistance risk in a complex anaerobic hydrolytic acidification (HA)-anoxic (ANO)/oxic (O) process. We mined key functional genes involved in the TCC upstream (reductive dechlorination and amide bonds hydrolysis) and downstream (chloroanilines catabolism) biotransformation pathways by metagenomic sequencing. Acute and chronic stress of TCC inhibit the production of volatile fatty acids (VFAs), NH4+ assimilation, and nitrification. The biotransformation of TCC via a single pathway cannot effectively relieve the inhibition of metabolic functions (e.g., carbon and nitrogen transformation and cycling) and enrichment of antimicrobial resistance genes (ARGs). Importantly, the coexistence of TCC reductive dechlorination and hydrolysis pathways and subsequent ring-opening catabolism play a critical role for stabilization of systemic metabolic functions and partial control of antimicrobial resistance risk. This study provides new insights into the mechanisms linking TCC biotransformation to the dynamic evolution of systemic functions and risks, and highlights critical regulatory information for enhanced control of TCC risks in complex biotreatment systems.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
24
|
Chepchirchir R, Mwalimu R, Tanui I, Kiprop A, Krauss M, Brack W, Kandie F. Occurrence, removal and risk assessment of chemicals of emerging concern in selected rivers and wastewater treatment plants in western Kenya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174982. [PMID: 39053549 DOI: 10.1016/j.scitotenv.2024.174982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Water resources play a crucial role in sustaining life on earth yet chemicals of emerging concern (CECs) arising from extensive human applications are an increasing threat towards their existence. In this study, we examined the occurrence, removal and potential risk of CECs found in rivers and wastewater treatment plants (WWTPs) in western Kenya. Samples were prepared by solid-phase extraction and analysed using high performance liquid chromatography-mass spectrometry with a target list of 785 compounds. Out of these, 333 and 352 (influent 322, effluent 265) compounds were quantified in rivers and wastewater respectively, with pharmaceuticals, industrial compounds, and pesticides being frequently detected in both rivers and WWTPs. Compounds with highest concentrations included saccharin (9.9 μg/L), metformin (7.5 μg/L), and oxypurinol (6.5 μg/L) in rivers whereas caffeine (280 μg/L), deoxycholic acid (179 μg/L), 2-oxindole (10.9 μg/L) and ibuprofen (8.1 μg/L) were found at high concentrations in WWTPs. Based on the types of crops grown, samples from maize growing regions recorded the highest number of pesticides (75) which coincided with the spraying season. The WWTP showed the capacity to eliminate some compounds although the removal efficiencies varied greatly with 204 compounds exhibiting an average removal efficiency exceeding 50 %. Based on the risk assessment, crustaceans had the highest potential risk for toxicity with toxic unit (TU) values up to 5.4 driven primarily by diazinon and dichlorvos followed by algae (TU up to 0.07) and fish (TU up to 0.01) in rivers. A similar trend was observed in WWTP with diazinon (TU up to 5.5), diuron (TU up to 0.07) and carbendazim (TU up to 0.006) driving the risk for crustaceans, algae and fish respectively. These findings highlight the significance of surface water and WWTPs as sources and sinks of CECs in the environment translating to potential risks on aquatic organisms and humans.
Collapse
Affiliation(s)
- Ruth Chepchirchir
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900, Eldoret, Kenya
| | - Rashid Mwalimu
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900, Eldoret, Kenya
| | - Isaac Tanui
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900, Eldoret, Kenya; Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany; Institute of Ecology, Evolution and Diversity-Goethe University, Frankfurt am Main, Germany
| | - Ambrose Kiprop
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900, Eldoret, Kenya
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Werner Brack
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany; Institute of Ecology, Evolution and Diversity-Goethe University, Frankfurt am Main, Germany
| | - Faith Kandie
- Department of Biological Sciences, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900, Eldoret, Kenya; Stellenbosch Institute for Advanced Study, Marais Rd, Mostertsdrift, Stellenbosch 7600, South Africa.
| |
Collapse
|
25
|
Aladekoyi O, Siddiqui S, Hania P, Hamza R, Gilbride K. Accumulation of antibiotics in the environment: Have appropriate measures been taken to protect Canadian human and ecological health? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116513. [PMID: 38820820 DOI: 10.1016/j.ecoenv.2024.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
In Canada, every day, contaminants of emerging concern (CEC) are discharged from waste treatment facilities into freshwaters. CECs such as pharmaceutical active compounds (PhACs), personal care products (PCPs), per- and polyfluoroalkyl substances (PFAS), and microplastics are legally discharged from sewage treatment plants (STPs), water reclamation plants (WRPs), hospital wastewater treatment plants (HWWTPs), or other forms of wastewater treatment facilities (WWTFs). In 2006, the Government of Canada established the Chemicals Management Plan (CMP) to classify chemicals based on a risk-priority assessment, which ranked many CECs such as PhACs as being of low urgency, therefore permitting these substances to continue being released into the environment at unmonitored rates. The problem with ranking PhACs as a low priority is that CMP's risk management assessment overlooks the long-term environmental and synergistic effects of PhAC accumulation, such as the long-term risk of antibiotic CEC accumulation in the spread of antibiotic resistance genes. The goal of this review is to specifically investigate antibiotic CEC accumulation and associated environmental risks to human and environmental health, as well as to determine whether appropriate legislative strategies are in place within Canada's governance framework. In this research, secondary data on antibiotic CEC levels in Canadian and international wastewaters, their potential to promote antibiotic-resistant residues, associated environmental short- and long-term risks, and synergistic effects were all considered. Unlike similar past reviews, this review employed an interdisciplinary approach to propose new strategies from the perspectives of science, engineering, and law.
Collapse
Affiliation(s)
- Oluwatosin Aladekoyi
- Department of Chemistry and Biology, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Salsabil Siddiqui
- Department of Chemistry and Biology, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Patricia Hania
- Department of Business and Law, Toronto Metropolitan University (formerly Ryerson University), Canada; TMU Urban Water, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Rania Hamza
- Department of Civil Engineering, Toronto Metropolitan University (formerly Ryerson University), Canada; TMU Urban Water, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Kimberley Gilbride
- Department of Chemistry and Biology, Toronto Metropolitan University (formerly Ryerson University), Canada; TMU Urban Water, Toronto Metropolitan University (formerly Ryerson University), Canada.
| |
Collapse
|
26
|
Chrapkiewicz K, Lipp AG, Barron LP, Barnes R, Roberts GG. Apportioning sources of chemicals of emerging concern along an urban river with inverse modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172827. [PMID: 38701930 DOI: 10.1016/j.scitotenv.2024.172827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Concentrations of chemicals in river water provide crucial information for assessing environmental exposure and risks from fertilisers, pesticides, heavy metals, illicit drugs, pathogens, pharmaceuticals, plastics and perfluorinated substances, among others. However, using concentrations measured along waterways (e.g., from grab samples) to identify sources of contaminants and understand their fate is complicated by mixing of chemicals downstream from diverse diffuse and point sources (e.g., agricultural runoff, wastewater treatment plants). To address this challenge, a novel inverse modelling approach is presented. Using waterway network topology, it quantifies locations and concentrations of contaminant sources upstream by inverting concentrations measured in water samples. It is computationally efficient and quantifies uncertainty. The approach is demonstrated for 13 contaminants of emerging concern (CECs) in an urban stream, the R. Wandle (London, UK). Mixing (the forward problem) was assumed to be conservative, and the location of sources and their concentrations were treated as unknowns to be identified. Calculated CEC source concentrations, which ranged from below detection limit (a few ng/L) up to 1μg/L, were used to predict concentrations of chemicals downstream. Using this approach, >90% of data were predicted within observational uncertainty. Principal component analysis of calculated source concentrations revealed signatures of two distinct chemical sources. First, pharmaceuticals and insecticides were associated with a subcatchment containing a known point source of treated effluent from a wastewater treatment plant. Second, illicit drugs and salicylic acid were associated with multiple sources, interpreted as input from untreated sewage including Combined Sewer Overflows (CSOs), misconnections, runoff and direct disposal throughout the catchment. Finally, a simple algorithmic approach that incorporates network topology was developed to design sampling campaigns to improve resolution of source apportionment. Inverse modelling of contaminant measurements can provide objective means to apportion sources in waterways from spot samples in catchments on a large scale.
Collapse
Affiliation(s)
- Kajetan Chrapkiewicz
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Alex G Lipp
- Merton College, University of Oxford, Merton Street, Oxford OX1 4JD, Oxfordshire, UK
| | - Leon P Barron
- MRC Centre for Environment and Health, Environment Research Group, School of Public Health, Imperial College London, Wood Lane, London W12 0BZ, UK
| | - Richard Barnes
- Lawrence Berkeley National Laboratory, Wang Hall, Berkeley, CA 94720, USA
| | - Gareth G Roberts
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
27
|
Cai S, Zhang X, Chen S, Peng S, Sun T, Zhang Y, Yang P, Chai H, Wang D, Zhang W. Solid-liquid redistribution and degradation of antibiotics during hydrothermal treatment of sewage sludge: Interaction between biopolymers and antibiotics. WATER RESEARCH 2024; 258:121759. [PMID: 38754299 DOI: 10.1016/j.watres.2024.121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Waste activated sludge serves an important reservoir for antibiotics within wastewater treatment plants, and understanding the occurrence and evolution of antibiotics during sludge treatment is crucial to mitigate the potential risks of subsequent resource utilization of sludge. This study explores the degradation and transformation mechanisms of three typical antibiotics, oxytetracycline (OTC), ofloxacin (OFL), and azithromycin (AZI) during sludge hydrothermal treatment (HT), and investigates the influence of biopolymers transformation on the fate of these antibiotics. The findings indicate that HT induces a shift of antibiotics from solid-phase adsorption to liquid-phase dissolution in the initial temperature range of 25-90 °C, underscoring this phase's critical role in preparing antibiotics for subsequent degradation phases. Proteins (PN) and humic acids emerge as crucial for antibiotic binding, facilitating their redistribution within sludge. Specifically, the binding capacity sequence of biopolymers to antibiotics is as follows: OFL>OTC>AZI, highlighting that OFL-biopolymers display stronger electrostatic attraction, more available adsorption sites, and more stable binding strength. Furthermore, antibiotic degradation mainly occurs above 90 °C, with AZI being the most temperature-sensitive, degrading 92.97% at 180 °C, followed by OTC (91.26%) and OFL (52.51%). Concurrently, the degradation products of biopolymers compete for active sites to form novel amino acid-antibiotic conjugates, which inhibits the further degradation of antibiotics. These findings illuminate the effects of biopolymers evolution on intricate dynamics of antibiotics fate in sludge HT and are helpful to optimize the sludge HT process for effective antibiotics abatement.
Collapse
Affiliation(s)
- Siying Cai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xinyu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Shuaiyu Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Sainan Peng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Tong Sun
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Peng Yang
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, Jilin, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Dongsheng Wang
- Department of environmental engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
28
|
Ferrando N, Pino-Otín MR, Terrado E, Ballestero D, Langa E. Bioactivity of Eugenol: A Potential Antibiotic Adjuvant with Minimal Ecotoxicological Impact. Int J Mol Sci 2024; 25:7069. [PMID: 39000177 PMCID: PMC11241589 DOI: 10.3390/ijms25137069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Combining commercial antibiotics with adjuvants to lower their minimum inhibitory concentration (MIC) is vital in combating antimicrobial resistance. Evaluating the ecotoxicity of such compounds is crucial due to environmental and health risks. Here, eugenol was assessed as an adjuvant for 7 commercial antibiotics against 14 pathogenic bacteria in vitro, also examining its acute ecotoxicity on various soil and water organisms (microbiota, Vibrio fischeri, Daphnia magna, Eisenia foetida, and Allium cepa). Using microdilution methods, checkerboard assays, and kinetic studies, the MICs for eugenol were determined together with the nature of its combinations with antibiotics against bacteria, some unexposed to eugenol previously. The lethal dose for the non-target organisms was also determined, as well as the Average Well Color Development and the Community-Level Physiological Profiling for soil and water microbiota. Our findings indicate that eugenol significantly reduces MICs by 75 to 98%, which means that it could be a potent adjuvant. Ecotoxicological assessments showed eugenol to be less harmful to water and soil microbiota compared to studied antibiotics. While Vibrio fischeri and Daphnia magna were susceptible, Allium cepa and Eisenia foetida were minimally affected. Given that only 0.1% of eugenol is excreted by humans without metabolism, its environmental risk when used with antibiotics appears minimal.
Collapse
Affiliation(s)
- Natalia Ferrando
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autovía Mudéjar, km. 299, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.)
| | - María Rosa Pino-Otín
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autovía Mudéjar, km. 299, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.)
| | - Eva Terrado
- Facultad de Educación, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain;
| | - Diego Ballestero
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autovía Mudéjar, km. 299, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.)
| | - Elisa Langa
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autovía Mudéjar, km. 299, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.)
| |
Collapse
|
29
|
da Silva MRF, Souza KS, da Silva FHS, Santos MDV, de Veras BO, da Silva IJS, Motteran F, de Oliveira Luz AC, Balbino TCL, de Araújo LCA, Malafaia G, de Oliveira MBM. Hidden ecotoxicological dangers: Investigating pathogen circulation and non-toxic risks hazards in a crucial brazilian watershed. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106931. [PMID: 38718520 DOI: 10.1016/j.aquatox.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Numerous studies evaluate chemical contaminants released by human activities and their effects on biota and aquatic ecosystems. However, few of these studies address non-toxic agents and their potentially harmful effects, which, in a concealed manner, culminate in an increased ecotoxicological risk for aquatic life and public health. This study investigated the presence of toxic and non-toxic pollutants in one of the main watersheds in Northeast Brazil (Rio São Francisco) and proposed a model of dispersion and transfer of resistance among the analyzed bacteria, also assessing the health risks of individuals and aquatic organisms present there. The results are worrying because although most toxic parameters, including physical-chemical and chromatographic aspects, comply with Brazilian environmental standards, non-toxic (microbiological) parameters do not. This research reveals the circulation of pathogens in several points of this hydrographic basin, highlighting the hidden ecotoxicological potential of an aquatic environment considered unaffected by the usual patterns of toxic parameters.
Collapse
Affiliation(s)
| | - Karolayne Silva Souza
- Molecular Biology Laboratory, Department of Biochemistry, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| | | | | | - Bruno Oliveira de Veras
- Molecular Biology Laboratory, Department of Biochemistry, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| | - Iago José Santos da Silva
- Department of Civil and Environmental Engineering, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| | - Fabricio Motteran
- Department of Civil and Environmental Engineering, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| | | | | | | | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | | |
Collapse
|
30
|
Chen C, Roose-Amsaleg C, Hanna K, Laverman AM. How mineral induced antibiotic transformation products impact bacterial growth and denitrification activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41025-41031. [PMID: 38842778 DOI: 10.1007/s11356-024-33908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
The abiotic transformations of quinolones and tetracyclines facilitated by redox-active minerals has been studied extensively, however limited information is available regarding the antimicrobial activity and toxicity of their resultant transformation products. In this study, we first investigated the mechanisms underlying the transformation of two commonly used antibiotics, ciprofloxacin (CIP) and tetracycline (TC), by the ubiquitous redox soil mineral, birnessite (MnO2). Subsequently, we evaluated the impact of these transformation products on both the growth and activity of the environmental denitrifier Pseudomonas veronii. Following the reaction with birnessite, four transformation products for CIP and five for TC were identified. Remarkably, the antibacterial activity of both CIP and TC was lost upon the formation of transformation products during their interaction with birnessite. This loss of antimicrobial efficacy was associated with specific chemical transformations, such as the opening of the piperazine ring for CIP and hydroxylation and demethylation for TC. Interestingly, denitrifying activity, quantified in terms of nitrate reduction rates, remained unaffected by both CIP and TC at low concentrations that did not impact bacterial growth. However, under certain conditions, specifically at low concentrations of CIP, the second step of denitrification-nitrite reduction-was hindered, leading to the accumulation of nitrite. Our findings highlight that the transformation products induced by the mineral-mediated reactions of CIP or TC lose the initial antibacterial activity observed in the parent compounds. This research contributes valuable insights into the intricate interplay between antibiotics, redox-active minerals, and microbial activity in environmental systems.
Collapse
Affiliation(s)
- Chen Chen
- Univ Rennes, CNRS, ECOBIO - UMR 6553, 35000, Rennes, France
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000, Rennes, France
| | | | - Khalil Hanna
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000, Rennes, France
| | | |
Collapse
|
31
|
Richardson SD, Manasfi T. Water Analysis: Emerging Contaminants and Current Issues. Anal Chem 2024; 96:8184-8219. [PMID: 38700487 DOI: 10.1021/acs.analchem.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for GSR, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Tarek Manasfi
- Eawag, Environmental Chemistry, Uberlandstrasse 133, Dubendorf 8600, Switzerland
| |
Collapse
|
32
|
Cui E, Fan X, Cui B, Li S, Chen T, Gao F, Li J, Zhou Z. The introduction of influent sulfamethoxazole loads induces changes in the removal pathways of sulfamethoxazole in vertical flow constructed wetlands featuring hematite substrate. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133964. [PMID: 38452680 DOI: 10.1016/j.jhazmat.2024.133964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
High frequent detection of sulfamethoxazole (SMX) in wastewater cannot be effectively removed by constructed wetlands (CWs) with a traditional river sand substrate. The role of emerging substrate of hematite in promoting SMX removal and the effect of influent SMX loads remain unclear. The removal efficiency of SMX in hematite CWs was significantly higher than that in river sand CWs by 12.7-13.8% by improving substrate adsorption capacity, plant uptake and microbial degradation. With increasing influent SMX load, the removal efficiency of SMX in hematite CWs slightly increased, and the removal pathways varied significantly. The contribution of plant uptake was relatively small (< 0.1%) under different influent SMX loads. Substrate adsorption (37.8%) primarily contributed to SMX removal in hematite CWs treated with low-influent SMX. Higher influent SMX loads decreased the contribution of substrate adsorption, and microbial degradation (67.0%) became the main removal pathway. Metagenomic analyses revealed that the rising influent load increased the abundance of SMX-degrading relative bacteria and the activity of key enzymes. Moreover, the abundance of high-risk ARGs and sulfonamide resistance genes in hematite CWs did not increase with the increasing influent load. This study elucidates the potential improvements in CWs with hematite introduction under different influent SMX loads.
Collapse
Affiliation(s)
- Erping Cui
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiangyang Fan
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Bingjian Cui
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Shengshu Li
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Taotao Chen
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Gao
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China.
| | - Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhenchao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Feng J, Pan M, Zhuang Y, Luo J, Chen Y, Wu Y, Fei J, Zhu Y, Xu Z, Yuan Z, Chen M. Genetic epidemiology and plasmid-mediated transmission of mcr-1 by Escherichia coli ST155 from wastewater of long-term care facilities. Microbiol Spectr 2024; 12:e0370723. [PMID: 38353552 PMCID: PMC10913736 DOI: 10.1128/spectrum.03707-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 03/07/2024] Open
Abstract
Long-term care facilities (LTCFs) for older people play an important and unique role in multidrug-resistant organism transmission. Herein, we investigated the genetic characteristics of mobile colistin resistance gene (mcr-1)-carrying Escherichia coli strains isolated from wastewater of LTCFs in Shanghai. Antimicrobial susceptibility test was carried out by agar dilution methods. Whole-genome sequencing and plasmid sequencing were conducted, and resistance genes and sequence types of colistin in E. coli isolates were analyzed. Core genome multilocus sequence typing (cgMLST) analysis was performed by the Ridom SeqSphere+ software. Phylogenetic tree through the maximum likelihood method was constructed by MEGA X. Out of 306 isolates, only 1 E. coli named ECSJ33 was found, and the plasmid pECSJ33 from ECSJ33 harbored the mcr-1 gene that was located with 59,080 bp belonging to IncI2 type. The plasmid pECSJ33 was capable of conjugation with an efficiency of 2.9 × 10-2. Bioinformatic analysis indicated pECSJ33 shared backbone with the previously reported mcr-1-harboring pHNGDF93 isolated from fish source. Moreover, the cgMLST analysis revealed that ECSJ33 belongs to different lineages from those reported from previous E. coli strains but shared high similarity to NCTC11129 in cluster 11. The phylogenetic tree revealed MCR-1 of ECSJ33 in this study was mostly of animal food origin and that they were closely related. Our study firstly reports detection of genome sequence of a multidrug-resistant mcr-1-harboring E. coli ST155 from wastewater of LTCF source in China. The data may prove that the plasmid pECSJ33 belongs to food origin and help to understand the antimicrobial resistance mechanisms and genomic features of colistin resistance under One Health approach.IMPORTANCEOne Escherichia coli named ECSJ33 was found from wastewater of a long-term care facility (LTCF) and the plasmid pECSJ33 from ECSJ33 harbored the mobile colistin resistance gene (mcr-1) that was located with 59,080 bp belonging to IncI2 type, which was capable of conjugation with an efficiency of 2.9 × 10-2. This paper firstly reports an mcr-1-carrying E. coli strain ST155 isolated from LTCF in China. Comparative genomics analysis indicated pECSJ33 shared backbone with the previously reported mcr-1-harboring pHNGDF93 isolated from fish source. The phylogenetic tree revealed MCR-1 protein of ECSJ33 in this study was mostly of animal food origin and that they were closely related. Therefore, the pECSJ33 could be considered as food-origin transmission mcr-1-harboring plasmid.
Collapse
Affiliation(s)
- Jun Feng
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Miao Pan
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Jiayuan Luo
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yong Chen
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yitong Wu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Jiayi Fei
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yanqi Zhu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Zhen Xu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Zhengan Yuan
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Min Chen
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| |
Collapse
|
34
|
Montone CM, Giannelli Moneta B, Laganà A, Piovesana S, Taglioni E, Cavaliere C. Transformation products of antibacterial drugs in environmental water: Identification approaches based on liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal 2024; 238:115818. [PMID: 37944459 DOI: 10.1016/j.jpba.2023.115818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
In recent years, the presence of antibiotics in the aquatic environment has caused increasing concern for the possible consequences on human health and ecosystems, including the development of antibiotic-resistant bacteria. However, once antibiotics enter the environment, mainly through hospital and municipal discharges and the effluents of wastewater treatment plants, they can be subject to transformation reactions, driven by both biotic (e.g. microorganism and mammalian metabolisms) and abiotic factors (e.g. oxidation, photodegradation, and hydrolysis). The resulting transformation products (TPs) can be less or more active than their parent compounds, therefore the inclusion of TPs in monitoring programs should be mandatory. However, only the reference standards of a few known TPs are available, whereas many other TPs are still unknown, due to the high diversity of possible transformation reactions in the environment. Modern high-resolution mass spectrometry (HRMS) instrumentation is now ready to tackle this problem through suspect and untargeted screening approaches. However, for handling the large amount of data typically encountered in the analysis of environmental samples, these approaches also require suitable processing workflows and accurate tandem mass spectra interpretation. The compilation of a suspect list containing the possible monoisotopic masses of TPs retrieved from the literature and/or from laboratory simulated degradation experiments showed unique advantages. However, the employment of in silico prediction tools could improve the identification reliability. In this review, the most recent strategies relying on liquid chromatography-HRMS for the analysis of environmental TPs of the main antibiotic classes were examined, whereas TPs formed during water treatments or disinfection were not included.
Collapse
Affiliation(s)
- Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | | | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
35
|
Gracia-Marín E, Rico A, Fabregat-Safont D, López FJ, Hernández F, Pitarch E, Bijlsma L. Comprehensive study on the potential environmental risk of temporal antibiotic usage through wastewater discharges. CHEMOSPHERE 2024; 346:140587. [PMID: 37918528 DOI: 10.1016/j.chemosphere.2023.140587] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
Antibiotic residues can reach aquatic ecosystems through urban wastewater discharges, posing an ecotoxicological risk for aquatic organisms and favoring the development of bacterial resistance. To assess the emission rate and hazardousness of these compounds, it is important to carry out periodic chemical monitoring campaigns that provide information regarding the actual performance of wastewater treatment plants (WWTPs) and the potential impact of the treated wastewater in the aquatic environment. In this study, 18 of the most widely consumed antibiotics in Spain were determined by liquid chromatography-tandem mass spectrometry in both influent (IWW) and effluent wastewater (EWW) samples collected over four seasons along 2021-2022. Eleven antibiotics were detected in EWW with azithromycin, ciprofloxacin and levofloxacin showing the highest concentration levels (around 2 μg L-1 of azithromycin and 0.4 μg L-1 of quinolone compounds). Data showed that only 4 out of the 11 compounds were removed by more than 50 % in the WWTP, with sulfamethoxazole standing out with an average removal efficiency >80 %. The risk that treated water could pose to the aquatic environment was also assessed, with 6 compounds indicating a potential environmental risk by exceeding established ecotoxicological and resistance thresholds. Based on the risk assessment, the WWTP removal efficiency required to reduce such risk for antibiotics was estimated. In addition, pooled wastewater samples were screened by LC coupled to high resolution mass spectrometry with ion mobility separation, searching for metabolites and transformation products of the antibiotics investigated to widen future research. Studies like this are crucial to map the impact of antibiotic pollution and to provide the basis for designing water quality and risk prevention monitoring programs.
Collapse
Affiliation(s)
- Elisa Gracia-Marín
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, 28805, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | - David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain; Applied Metabolomics Research Group, Hospital Del Mar Medical Research Institute - (IMIM), Barcelona, Spain
| | - Francisco J López
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Elena Pitarch
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain.
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain.
| |
Collapse
|
36
|
Hu J, Lyu Y, Chen H, Li S, Sun W. Suspect and Nontarget Screening Reveal the Underestimated Risks of Antibiotic Transformation Products in Wastewater Treatment Plant Effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17439-17451. [PMID: 37930269 DOI: 10.1021/acs.est.3c05008] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Antibiotics are anthropogenic contaminants with a global presence and of deep concern in aquatic environments, while less is known about the occurrence and risks of their transformation products (TPs). Herein, we developed a comprehensive suspect and nontarget screening workflow based on high-resolution mass spectrometry to identify unknown antibiotic TPs in wastewater treatment plant effluents. We identified 211 compounds (35 parent antibiotics and 176 TPs) at confidence levels of ≥3 and 107 TPs originated from macrolides. TPs were quantified by 17 TPs standards and semiquantified by the predicted response factors and accounted for 55.6-95.1% (76.7% on average) of the total concentrations of parents and TPs. 22.2%, 63.1%, and 18.8% of the identified TPs were estimated to be more persistent, mobile, and toxic than their parent antibiotics, respectively. Further ecological risk assessment based on concentrations and toxicity to aquatic organisms revealed that the cumulative risks of TPs were generally higher than those of parents. Despite the newly formed N-oxide TPs, the tertiary treatment process (mainly ozonation) could decrease the averaged 20.3% of concentrations and 36.2% of the risks of antibiotic-related compounds. This study highlights the necessity to include antibiotic TPs in environmental scrutiny and risk assessment of antibiotics in different aquatic environments.
Collapse
Affiliation(s)
- Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
37
|
Huang Z, Hu LX, Yang JB, Liu YS, He LY, Zhao JL, Ying GG. Comprehensive discovery and migration evaluation of antimicrobial drugs and their transformation products in a swine farm by target, suspect, and nontarget screening. ENVIRONMENT INTERNATIONAL 2023; 181:108304. [PMID: 37931561 DOI: 10.1016/j.envint.2023.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Swine farms contaminated the surrounding environment through manure application and biogas slurry irrigation, hence causing the wide residual of multiple antimicrobial drugs (ADs) and their transformation products (TPs). This study performed target, suspect, and nontarget screening methods to comprehensively investigate the pollution profiles of ADs in a typical swine farm, and characterize the potential transformed pathway of TPs and distinguish specific reactions of different catalog of ADs. Samples of fresh feces, compost, biogas slurry, topsoil, column soil, groundwater and plants were analyzed using the database containing 98 target analytes, 679 suspected parent ADs, and ∼ 107 TPs. In total, 29 ADs were quantitively detected, and tetracyclines (TCs) were mostly frequently detected ADs with the concentrations up to 4251 ng/g in topsoil. Soil column investigation revealed that doxycycline (DOX) and tetracycline (TC) in soil could migrate to depths of approximately 1 m in soil. Suspect screening identified 75 parent ADs, with 10 being reported for the first time in environmental media. Semi-quantification of ADs revealed that one of the less-concerned ADs, clinafloxacin, was detected to exceed 5000 ng/L in biogas slurry, suggesting that significant attentions should be paid to these less-concerned ADs. Moreover, 314 TPs was identified, and most of them were found to undergo microbial/enzymatic metabolism pathways. Overall, our study displays a comprehensive overview of ADs and their TPs in swine farming environments, and provides an inventory of crucial list that worthy of concern. The results emphasize the need to quantify the levels and distribution of previously overlooked ADs and their TPs in livestock farms.
Collapse
Affiliation(s)
- Zheng Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Jiong-Bin Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| |
Collapse
|
38
|
Wen H, Shen M, Lai Z, Peng X, Ye YX, Xu J, Ouyang G. Noncovalent Tagging for Identifying Unknown Contaminants of Specific Bioactivity in Environmental Water. Anal Chem 2023; 95:15851-15855. [PMID: 37857307 DOI: 10.1021/acs.analchem.3c04208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Identifying contaminants of specific bioactivities from complicated environmental matrices remains costly and time-consuming, as it requires us to not only resolve their structures but also determine their bioactivities. Herein, a novel noncovalent tagging method is integrated in mass spectrometry for identifying unknown contaminants that target dopamine (DA) receptors. Via proteolysis of bovine serum albumin, a stereoselective hexapeptide (ACFAVE) is selected for noncovalently tagging the contaminants that possess the stereostructural characteristics of binding to DA receptors. The tagged contaminants can be readily distinguished from the coexisting species for subsequent structural analysis based on the tagging-induced shifts of the mass-to-charge ratios. Thus, both bioactivity evaluation and structure analysis are accomplished via mass spectrometry. By using this method, 1,3-diphenylguanidine (DPG), a widely used additive in rubber and plastics, is successfully identified out of 2495 features detected in the Pearl River water, with its concentration determined as only 9.8 μg L-1. Furthermore, DPG is confirmed as a potential disrupter to the DA receptors via a simulated docking experiment, which has not been reported before. The present noncovalent tagging method provides a cost-effective and time-efficient way of identifying bioactive molecules in complicated matrices. And proteolysis of proteins is promising for developing more taggants with other desired stereoselectivities in the future.
Collapse
Affiliation(s)
- Hongyu Wen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Minhui Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhisheng Lai
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xiaoru Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yu-Xin Ye
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
| |
Collapse
|