1
|
Mishra AK, Mishra A, Mohakud SK, Acharya P, Muduli PR, Farooq SH. COVID-19 induced lockdown reduced metal concentration in the surface water and bottom sediment of Asia's largest lagoon. MARINE POLLUTION BULLETIN 2024; 209:117127. [PMID: 39427479 DOI: 10.1016/j.marpolbul.2024.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
COVID-19 (hereafter COVID) induced lockdown provided a unique opportunity to evaluate the effects of human activities on coastal ecosystems. This study quantified the seasonal variations in concentrations of nine metals (Al, Cr, Cd, Co, Cu, Fe, Mn, Ni, and Pb) in surface water and sediment samples of the largest brackish water lagoon in Asia (i.e., Chilika Lagoon), comparing pre-and post-COVID scenarios. The COVID lockdown resulted in a wide variation in metals concentrations, with surface water showing 1 to 8.6-fold reduction in metals such as Al, Cr, Cu, Fe, Mn, and Pb, while sediment displayed a more modest reduction of 1 to 1.3-fold. Metals like Cd, Co and Ni were below detection limit in post-COVID water samples with a slight decrease (1-fold) in the sediments. COVID lockdown did not show any significant correlation with metal concentrations in water or sediment. This study provides baseline data for metal contamination in the surface water and sediment of the Chilika Lagoon.
Collapse
Affiliation(s)
- Amrit Kumar Mishra
- Centre for Tropical Water & Aquatic Research (TropWATER), James Cook University, Bebuga Yumba Campus, Townsville, Queensland 4811, Australia; School of Earth Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, Jatni, Khorda, 752050, Odisha, India.
| | - Anjalis Mishra
- School of Earth Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, Jatni, Khorda, 752050, Odisha, India
| | - Sandip Kumar Mohakud
- School of Earth Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, Jatni, Khorda, 752050, Odisha, India
| | - Prasannajit Acharya
- School of Earth Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, Jatni, Khorda, 752050, Odisha, India
| | - Pradipta Ranjan Muduli
- Wetland Research and Training Center, Chilika Development Authority, Barkul, Balugaon 752030, Odisha, India
| | - Syed Hilal Farooq
- School of Earth Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, Jatni, Khorda, 752050, Odisha, India
| |
Collapse
|
2
|
Zhao F, Huang Y, Wei H, Wang M. Ocean acidification alleviated nickel toxicity to a marine copepod under multigenerational scenarios but at a cost with a loss of transcriptome plasticity during recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173585. [PMID: 38810735 DOI: 10.1016/j.scitotenv.2024.173585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Marine ecosystem has been experiencing multiple stressors caused by anthropogenic activities, including ocean acidification (OA) and nickel (Ni) pollution. Here, we examined the individual/combined effects of OA (pCO2 1000 μatm) and Ni (6 μg/L) exposure on a marine copepod Tigriopus japonicus for six generations (F1-F6), followed by one-generation recovery (F7) in clean seawater. Ni accumulation and several important phenotypic traits were measured in each generation. To explore within-generation response and transgenerational plasticity, we analyzed the transcriptome profile for the copepods of F6 and F7. The results showed that Ni exposure compromised the development, reproduction and survival of copepods during F1-F6, but its toxicity effects were alleviated by OA. Thus, under OA and Ni combined exposure, due to their antagonistic interaction, the disruption of Ca2+ homeostasis, and the inhibition of calcium signaling pathway and oxytocin signaling pathway were not found. However, as a cost of acclimatization/adaption potential to long-term OA and Ni combined exposure, there was a loss of transcriptome plasticity during recovery, which limited the resilience of copepods to previously begin environments. Overall, our work fosters a comprehensive understanding of within- and transgenerational effects of climatic stressor and metal pollution on marine biota.
Collapse
Affiliation(s)
- Fankang Zhao
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuehan Huang
- School of International Education, Beijing University of Chemical Technology, Beijing 102200, China
| | - Hui Wei
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Harmesa H, Wahyudi AJ, Wong KH, Ikhsani IY. The behaviour of particulate trace metals in marine systems: A review. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106729. [PMID: 39270439 DOI: 10.1016/j.marenvres.2024.106729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Changes in the ocean temperature, seawater acidity, and oxygen level are parts of global change that may indirectly impact the biogeochemical cycles of trace metals in the marine system, particularly for the particulate phase. The different factors influencing the level of particulate trace metals are interesting topics for investigation. Following up on marine research in the estuary and coastal areas, we specifically review the distribution of particulate trace metals. This review aims to provide an overview of the progress of studies on particulate metals in the marine environment and to understand the factors that influence the level of particulate metals. Spatially, the distribution of particulate trace metals decreases towards the sea due to the influence of salinity, while the temporal distribution portrays the unique feature of each location that differences in metal sources and phytoplankton bloom periods might cause.
Collapse
Affiliation(s)
- Harmesa Harmesa
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol, Jl. Pasir Putih 1, Ancol, Jakarta, 14430, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Kampus UI Depok, Depok, 16424, Indonesia.
| | - A'an Johan Wahyudi
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol, Jl. Pasir Putih 1, Ancol, Jakarta, 14430, Indonesia
| | - Kuo Hong Wong
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Idha Yulia Ikhsani
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol, Jl. Pasir Putih 1, Ancol, Jakarta, 14430, Indonesia
| |
Collapse
|
4
|
Xie D, Wei H, Huang Y, Qian J, Zhang Y, Wang M. Elevated temperature as a dominant driver to aggravate cadmium toxicity: Investigations through toxicokinetics and omics. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134789. [PMID: 38843636 DOI: 10.1016/j.jhazmat.2024.134789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/26/2024]
Abstract
Despite the great interest in the consequences of global change stressors on marine organisms, their interactive effects on cadmium (Cd) bioaccumulation/biotoxicity are very poorly explored, particularly in combination with the toxicokinetic model and molecular mechanism. According to the projections for 2100, this study investigated the impact of elevated pCO2 and increased temperature (isolated or joint) on Cd uptake dynamics and transcriptomic response in the marine copepod Tigriopus japonicus. Toxicokinetic results showed significantly higher Cd uptake in copepods under increased temperature and its combination with elevated pCO2 relative to the ambient condition, linking to enhanced Cd bioaccumulation. Transcriptome analysis revealed that, under increased temperature and its combination with elevated pCO2, up-regulated expression of Cd uptake-related genes but down-regulation of Cd exclusion-related genes might cause increased cellular Cd level, which not only activated detoxification and stress response but also induced oxidative stress and concomitant apoptosis, demonstrating aggravated Cd biotoxicity. However, these were less pronouncedly affected by elevated pCO2 exposure. Therefore, temperature seems to be a primary factor in increasing Cd accumulation and its toxicity in the future ocean. Our findings suggest that we should refocus the interactive effects between climate change stressors and Cd pollution, especially considering temperature as a dominant driver.
Collapse
Affiliation(s)
- Dongmei Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuehan Huang
- School of International Education, Beijing University of Chemical Technology, Beijing 102200, China
| | - Jing Qian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yunlei Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Schultz J, Berry Gobler DL, Young CS, Perez A, Doall MH, Gobler CJ. Ocean acidification significantly alters the trace element content of the kelp, Saccharina latissima. MARINE POLLUTION BULLETIN 2024; 202:116289. [PMID: 38564822 DOI: 10.1016/j.marpolbul.2024.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Seaweeds are ecosystem engineers that can serve as habitat, sequester carbon, buffer ecosystems against acidification, and, in an aquaculture setting, represent an important food source. One health issue regarding the consumption of seaweeds and specifically, kelp, is the accumulation of some trace elements of concern within tissues. As atmospheric CO2 concentrations rise, and global oceans acidify, the concentrations of elements in seawater and kelp may change. Here, we cultivated the sugar kelp, Saccharina latissima under ambient (~400 μatm) and elevated pCO2 (600-2400 μatm) conditions and examined the accumulation of trace elements using x-ray powder diffraction, sub-micron resolution x-ray imaging, and inductively coupled plasma mass spectrometry. Exposure of S. latissima to higher concentrations of pCO2 and lower pH caused a significant increase (p < 0.05) in the iodine and arsenic content of kelp along with increased subcellular heterogeneity of these two elements as well as bromine. The iodine-to‑calcium and bromine-to‑calcium ratios of kelp also increased significantly under high CO2/low pH (p < 0.05). In contrast, high CO2/low pH significantly reduced levels of copper and cadmium in kelp tissue (p < 0.05) and there were significant inverse correlations between concentrations of pCO2 and concentrations of cadmium and copper in kelp (p < 0.05). Changes in copper and cadmium levels in kelp were counter to expected changes in their free ionic concentrations in seawater, suggesting that the influence of low pH on algal physiology was an important control on the elemental content of kelp. Collectively, these findings reveal the complex effects of ocean acidification on the elemental composition of seaweeds and indicate that the elemental content of seaweeds used as food must be carefully monitored as climate change accelerates this century.
Collapse
Affiliation(s)
- Jack Schultz
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America; Westhampton Beach High School, Westhampton Beach, NY 11978, United States of America
| | - Dianna L Berry Gobler
- Westhampton Beach High School, Westhampton Beach, NY 11978, United States of America; Stony Brook University, School of Marine and Atmospheric Sciences, Southampton, NY 11968, United States of America
| | - Craig S Young
- Stony Brook University, School of Marine and Atmospheric Sciences, Southampton, NY 11968, United States of America
| | - Aleida Perez
- Brookhaven National Laboratory, Department of Educational Programs Upton, NY 11973, United States of America
| | - Michael H Doall
- Stony Brook University, School of Marine and Atmospheric Sciences, Southampton, NY 11968, United States of America
| | - Christopher J Gobler
- Stony Brook University, School of Marine and Atmospheric Sciences, Southampton, NY 11968, United States of America.
| |
Collapse
|
6
|
Romero-Freire A, De Marchi L, Freitas R, Velo A, Babarro JMF, Cobelo-García A. Ocean acidification impact on the uptake of trace elements by mussels and their biochemical effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106882. [PMID: 38442506 DOI: 10.1016/j.aquatox.2024.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
This study delves into the intricate interplay between ocean acidification (OA), metal bioaccumulation, and cellular responses using mussels (Mytilus galloprovincialis) as bioindicators. For this purpose, environmentally realistic concentrations of isotopically labelled metals (Cd, Cu, Ag, Ce) were added to investigate whether the OA increase would modify metal bioaccumulation and induce adverse effects at the cellular level. The study reveals that while certain elements like Cd and Ag might remain unaffected by OA, the bioavailability of Cu and Ce could potentially escalate, leading to amplified accumulation in marine organisms. The present findings highlight a significant rise in Ce concentrations within different mussel organs under elevated pCO2 conditions, accompanied by an increased isotopic fractionation of Ce (140/142Ce), suggesting a heightened potential for metal accumulation under OA. The results suggested that OA influenced metal accumulation in the gills of mussels. Conversely, metal accumulation in the digestive gland was unaffected by OA. The exposure to both trace metals and OA affects the biochemical responses of M. galloprovincialis, leading to increased metabolic capacity, changes in energy reserves, and alterations in oxidative stress markers, but the specific effects on other biomarkers (e.g., lipid peroxidation, some enzymatic responses or acetylcholinesterase activity) were not uniform, suggesting complex interactions between the stressors and the biochemical pathways in the mussels.
Collapse
Affiliation(s)
- A Romero-Freire
- Department of Soil Science and Agriculture Chemistry, University of Granada (UGR), Granada, Spain; Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain.
| | - L De Marchi
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal; Department of Veterinary, University of Pisa, Via Derna 1 56126 Pisa, Italy
| | - R Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - A Velo
- Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain
| | - J M F Babarro
- Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain
| | - A Cobelo-García
- Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain.
| |
Collapse
|
7
|
Oliveira NR, Altafim GL, Alves AV, Choueri RB, Zanette J, Figueira RCL, Gallucci F. Emergent properties of free-living nematode assemblages exposed to multiple stresses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168790. [PMID: 38000735 DOI: 10.1016/j.scitotenv.2023.168790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Biological communities are currently facing multi-stressor scenarios whose ecological impacts are challenging to estimate. In that respect, considering the complex nature of ecosystems and types and interaction among stressors is mandatory. Microcosm approaches using free-living nematode assemblages can effectively be used to assess complexity since they preserve the interactions inherent to complex systems when testing for multiple stress effects. In this study, we investigated the interaction effects of three stress factors, namely i-metallic mixture of Cu, Pb, Zn, and Hg (control [L0], low, [L1] and high [L2]), ii- CO2-driven acidification (pH 7.6 and 8.0), and iii- temperature rise (26 and 28 °C), on estuarine free-living nematode assemblages. Metal contamination had the greatest influence on free-living nematode assemblages, irrespective of pH and temperature scenarios. Interestingly, whilst the most abundant free-living nematode genera showed significant decreases in their densities when exposed to contamination, other, less abundant, genera were apparently favored and showed significantly higher densities in contaminated treatments. The augmented densities of tolerant genera may be attributed to indirect effects resulting from the impacts of toxicity on other components of the system, indicating the potential for emergent effects in response to stress. Temperature and pH interacted significantly with contamination. Whilst temperature rise had potentialized contamination effects, acidification showed the opposite trend, acting as a buffer to the effects of contamination. Such results show that temperature rise and CO2-driven acidification interact with contamination on coastal waters, highlighting the importance of considering the intricate interplay of these co-occurring stressors when assessing the ecological impacts on coastal ecosystems.
Collapse
Affiliation(s)
- Nilvea Ramalho Oliveira
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, CEP: 96203-900, Campus Carreiros, Rio Grande, RS, Brazil.
| | - Giam Luca Altafim
- Universidade Federal de São Paulo, Campus Baixada Santista, Instituto do Mar, Rua Carvalho de Mendonça, 144, CEP: 11070-100, Santos, SP, Brazil
| | - Aline Vecchio Alves
- Universidade de São Paulo, Instituto Oceanográfico, Laboratório de Química Inorgânica Marinha, Pça do Oceanográfico, 191, Cidade Universitária, CEP: 05508-120, São Paulo, SP, Brazil
| | - Rodrigo Brasil Choueri
- Universidade Federal de São Paulo, Campus Baixada Santista, Instituto do Mar, Rua Carvalho de Mendonça, 144, CEP: 11070-100, Santos, SP, Brazil
| | - Juliano Zanette
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, CEP: 96203-900, Campus Carreiros, Rio Grande, RS, Brazil
| | - Rubens Cesar Lopes Figueira
- Universidade de São Paulo, Instituto Oceanográfico, Laboratório de Química Inorgânica Marinha, Pça do Oceanográfico, 191, Cidade Universitária, CEP: 05508-120, São Paulo, SP, Brazil
| | - Fabiane Gallucci
- Universidade Federal de São Paulo, Campus Baixada Santista, Instituto do Mar, Rua Carvalho de Mendonça, 144, CEP: 11070-100, Santos, SP, Brazil
| |
Collapse
|
8
|
Zhang Z, Ma J, Chen F, Chen Y, Pan K, Liu H. Mechanisms underlying the alleviated cadmium toxicity in marine diatoms adapted to ocean acidification. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132804. [PMID: 37890381 DOI: 10.1016/j.jhazmat.2023.132804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Anthropogenic activities have significantly increased the influx of carbon dioxide and metals into the marine environment. Combining ocean acidification (OA) and metal pollution may lead to unforeseen biological and ecological consequences. Several studies have shown that OA reduces cadmium (Cd) toxicity in marine diatoms. Although these studies have shed light on the physiological and transcriptomic responses of diatoms exposed to Cd, many aspects of the mechanisms underlying the reduced metal accumulation in diatoms remain unknown. This study aims to address this unresolved question by comparing Cd subcellular distribution, antioxidant enzyme activity, relative expression of metal transporters, surface potential, surface composition, and transmembrane potential in the diatom Phaeodactylum tricornutum grown under ambient and 1200 µatm pCO2 conditions. Our findings reveal that diatoms grown in acidified seawater exhibit higher surface potential and higher plasma membrane depolarization. These changes and the competing effects of increased H+ concentration result in a blunted response of P. tricornutum to the Cd challenge. Consequently, this study offers a new explanation for mitigating Cd toxicity by marine diatoms adapted to OA.
Collapse
Affiliation(s)
- Zhen Zhang
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Fengyuan Chen
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Yingya Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Ke Pan
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region; Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region.
| |
Collapse
|
9
|
Cheriyan E, Kumar BSK, Gupta GVM, Rao DB. Implications of ocean acidification on micronutrient elements-iron, copper and zinc, and their primary biological impacts: A review. MARINE POLLUTION BULLETIN 2024; 199:115991. [PMID: 38211542 DOI: 10.1016/j.marpolbul.2023.115991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/13/2024]
Abstract
This review has been undertaken to understand the effectiveness of ocean acidification on oceanic micronutrient metal cycles (iron, copper and zinc) and its potential impacts on marine biota. Ocean acidification will slow down the oxidation of Fe(II) thereby retarding Fe(III) formation and subsequent hydrolysis/precipitation leading to an increase in iron bioavailability. Further, the increased primary production sustains enzymatic bacteria assisted Fe(III) reduction and subsequently the binding of weaker ligands favours the dissociation of free Fe(II) ions, thus increasing the bioavailability. The increasing pCO2 condition increases the bioavailability of copper ions by decreasing the availability of free CO32- ligand concentration. The strong complexation by dissolved organic matter may decrease the bioavailable iron and zinc ion concentration. Since ocean acidification affects the bioavailability of essential metals, studies on the uptake rates of these elements by phytoplankton should be carried out to reveal the future scenario and its effect on natural environment.
Collapse
Affiliation(s)
- Eldhose Cheriyan
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi 682508, India
| | - B S K Kumar
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi 682508, India.
| | - G V M Gupta
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi 682508, India
| | - D Bhaskara Rao
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi 682508, India
| |
Collapse
|
10
|
Lincoln S, Chowdhury P, Posen PE, Robin RS, Ramachandran P, Ajith N, Harrod O, Hoehn D, Harrod R, Townhill BL. Interaction of climate change and marine pollution in Southern India: Implications for coastal zone management practices and policies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166061. [PMID: 37543339 DOI: 10.1016/j.scitotenv.2023.166061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Climate change and marine litter are inextricably linked, and their interaction manifests differently depending on the specific environmental and biological characteristics, and other human activities taking place. The negative impacts resulting from those synergistic interactions are threatening coastal and marine ecosystems and the many goods and services they provide. This is particularly pervasive in the coastal zone of the Indian subcontinent. India is already experiencing severe climate change impacts, which are projected to worsen in the future. At the same time, the country is gripped by a litter crisis that is overwhelming authorities and communities and hindering the country's sustainable development goals. The coastal environment and communities of the southern states of Kerala and Tamil Nadu are particularly vulnerable to the impacts of climate change. While these state governments and authorities are stepping up efforts to improve the management of their coastal zones, the scale and severity of these issues are mounting. Here we review the combined effects of climate change and marine litter pollution in Southern India, focusing on the Gulf of Mannar Reserve in Tamil Nadu and the Malabar Coast in Kerala. Finally, we discuss effective management options that could help improve resilience and sustainability.
Collapse
Affiliation(s)
- Susana Lincoln
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom.
| | - Piyali Chowdhury
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Paulette E Posen
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - Purvaja Ramachandran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - Nithin Ajith
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - Olivia Harrod
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Danja Hoehn
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Richard Harrod
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Bryony L Townhill
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| |
Collapse
|
11
|
Lampe RH, Coale TH, Forsch KO, Jabre LJ, Kekuewa S, Bertrand EM, Horák A, Oborník M, Rabines AJ, Rowland E, Zheng H, Andersson AJ, Barbeau KA, Allen AE. Short-term acidification promotes diverse iron acquisition and conservation mechanisms in upwelling-associated phytoplankton. Nat Commun 2023; 14:7215. [PMID: 37940668 PMCID: PMC10632500 DOI: 10.1038/s41467-023-42949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/26/2023] [Indexed: 11/10/2023] Open
Abstract
Coastal upwelling regions are among the most productive marine ecosystems but may be threatened by amplified ocean acidification. Increased acidification is hypothesized to reduce iron bioavailability for phytoplankton thereby expanding iron limitation and impacting primary production. Here we show from community to molecular levels that phytoplankton in an upwelling region respond to short-term acidification exposure with iron uptake pathways and strategies that reduce cellular iron demand. A combined physiological and multi-omics approach was applied to trace metal clean incubations that introduced 1200 ppm CO2 for up to four days. Although variable, molecular-level responses indicate a prioritization of iron uptake pathways that are less hindered by acidification and reductions in iron utilization. Growth, nutrient uptake, and community compositions remained largely unaffected suggesting that these mechanisms may confer short-term resistance to acidification; however, we speculate that cellular iron demand is only temporarily satisfied, and longer-term acidification exposure without increased iron inputs may result in increased iron stress.
Collapse
Affiliation(s)
- Robert H Lampe
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Tyler H Coale
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Kiefer O Forsch
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Loay J Jabre
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Samuel Kekuewa
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Erin M Bertrand
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Aleš Horák
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, CZ, Czechia
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, CZ, Czechia
| | - Miroslav Oborník
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, CZ, Czechia
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, CZ, Czechia
| | - Ariel J Rabines
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Elden Rowland
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Hong Zheng
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Andreas J Andersson
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Katherine A Barbeau
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andrew E Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.
| |
Collapse
|
12
|
Gentès S, Minet A, Lopes C, Tessier E, Gassie C, Guyoneaud R, Swarzenski PW, Bustamante P, Metian M, Amouroux D, Lacoue-Labarthe T. In Vivo Mercury (De)Methylation Metabolism in Cephalopods under Different pCO 2 Scenarios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5761-5770. [PMID: 36976251 DOI: 10.1021/acs.est.2c08513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This work quantified the accumulation efficiencies of Hg in cuttlefish, depending on both organic (MeHg) and inorganic (Hg(II)) forms, under increased pCO2 (1600 μatm). Cuttlefish were fed with live shrimps injected with two Hg stable isotopic tracers (Me202Hg and 199Hg(II)), which allowed for the simultaneous quantification of internal Hg accumulation, Hg(II) methylation, and MeHg demethylation rates in different organs. Results showed that pCO2 had no impact on Hg bioaccumulation and organotropism, and both Hg and pCO2 did not influence the microbiota diversity of gut and digestive gland. However, the results also demonstrated that the digestive gland is a key organ for in vivo MeHg demethylation. Consequently, cuttlefish exposed to environmental levels of MeHg could exhibit in vivo MeHg demethylation. We hypothesize that in vivo MeHg demethylation could be due to biologically induced reactions or to abiotic reactions. This has important implications as to how some marine organisms may respond to future ocean change and global mercury contamination.
Collapse
Affiliation(s)
- Sophie Gentès
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR, 5254 Pau, France
| | - Antoine Minet
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Christelle Lopes
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR, 5254 Pau, France
| | - Claire Gassie
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR, 5254 Pau, France
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR, 5254 Pau, France
| | - Peter W Swarzenski
- Radioecology Laboratory, International Atomic Energy Agency, Marine Environment Laboratories, Monaco 98000, Monaco
| | - Paco Bustamante
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Marc Metian
- Radioecology Laboratory, International Atomic Energy Agency, Marine Environment Laboratories, Monaco 98000, Monaco
| | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR, 5254 Pau, France
| | - Thomas Lacoue-Labarthe
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
13
|
Aboal JR, Pacín C, García-Seoane R, Varela Z, González AG, Fernández JA. Global decrease in heavy metal concentrations in brown algae in the last 90 years. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130511. [PMID: 36463737 DOI: 10.1016/j.jhazmat.2022.130511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
In the current scenario of global change, heavy metal pollution is of major concern because of its associated toxic effects and the persistence of these pollutants in the environment. This study is the first to evaluate the changes in heavy metal concentrations worldwide in brown algae over the last 90 years (>15,700 data across the globe reported from 1933 to 2020). The study findings revealed significant decreases in the concentrations of Cd, Co, Cr, Cu, Fe, Hg, Mn, Pb and Zn of around 60-84% (ca. 2% annual) in brown algae tissues. The decreases were consistent across the different families considered (Dictyotaceae, Fucaceae, Laminariaceae, Sargassaceae and Others), and began between 1970 and 1990. In addition, strong relationships between these trends and pH, SST and heat content were detected. Although the observed metal declines could be partially explained by these strong correlations, or by adaptions in the algae, other evidences suggest an actual reduction in metal concentrations in oceans because of the implementation of environmental policies. In any case, this study shows a reduction in metal concentrations in brown algae over the last 50 years, which is important in itself, as brown algae form the basis of many marine food webs and are therefore potential distributors of pollutants.
Collapse
Affiliation(s)
- J R Aboal
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| | - C Pacín
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| | - R García-Seoane
- Instituto Español de Oceanografía, IEO-CSIC, Centro Oceanográfico de A Coruña, 15001 A Coruña, Spain.
| | - Z Varela
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| | - A G González
- Instituto de Oceanografía y Cambio Global, IOCAG. Universidad de Las Palmas de Gran Canaria, ULPGC, Spain
| | - J A Fernández
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| |
Collapse
|
14
|
Xiao Z, Cao L, Liu J, Cui W, Dou S. pCO 2-driven seawater acidification affects aqueous-phase copper toxicity in juvenile flounder Paralichthys olivaceus: Metal accumulation, antioxidant defenses and detoxification in livers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160040. [PMID: 36347280 DOI: 10.1016/j.scitotenv.2022.160040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Ocean acidification potentially influences the biotoxicity of metals and the antioxidant defense systems of marine organisms. This study investigated how pCO2-driven seawater acidification (SA) affected aqueous-phase copper (Cu) toxicity in the juvenile flounder Paralichthys olivaceus from the perspective of hepatic oxidative stress and damage to better understand the mechanisms underlying the biological effects produced by the two stressors. Fish were exposed to aqueous-phase Cu at relevant ambient and polluted concentrations (0, 5, 10, 50, 100 and 200 μg L-1) at different pH levels (no SA: pH 8.10; moderate SA: pH 7.70, pCO2 ∼1353.89 μatm; extreme SA: pH 7.30, pCO2 ∼3471.27 μatm) for 28 days. A battery of biomarkers in the livers was examined to investigate their roles in antioxidant defense and detoxification in response to coexposure. Hepatic Cu accumulation (30.22-184.90 mg kg-1) was positively correlated with Cu concentrations. The biomarkers responded adaptively to different redox states following SA and Cu exposure. In unacidified seawater, increases in Cu concentrations significantly induced hepatic lipid peroxidation (LPO, by up to 27.03 %), although compensatory responses in antioxidant defenses and detoxification were activated. Moderate SA helped maintain hepatic redox homeostasis and alleviated LPO through different defense strategies, depending on Cu concentrations. Under extreme SA, antioxidant-based defenses were activated to cope with oxidative stress at ambient-low Cu concentrations but failed to defend against Cu toxicity at polluted Cu levels, and LPO (by up to 63.90 %) was significantly induced. Additionally, thiols (GSH and MT) responded actively to cope with Cu toxicity under SA. SOD, CAT, EROD, and GST were also sensitively involved in defending against hepatic oxidative stress during coexposure. These findings highlight the notable interactive effects of SA and Cu and provide a basis for understanding antioxidant-based defenses in marine fish confronting environmental challenges.
Collapse
Affiliation(s)
- Zitao Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Liang Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jinhu Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenting Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shuozeng Dou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
15
|
Xu D, Huang S, Fan X, Zhang X, Wang Y, Wang W, Beardall J, Brennan G, Ye N. Elevated CO 2 reduces copper accumulation and toxicity in the diatom Thalassiosira pseudonana. Front Microbiol 2023; 13:1113388. [PMID: 36687610 PMCID: PMC9853397 DOI: 10.3389/fmicb.2022.1113388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
The projected ocean acidification (OA) associated with increasing atmospheric CO2 alters seawater chemistry and hence the bio-toxicity of metal ions. However, it is still unclear how OA might affect the long-term resilience of globally important marine microalgae to anthropogenic metal stress. To explore the effect of increasing pCO2 on copper metabolism in the diatom Thalassiosira pseudonana (CCMP 1335), we employed an integrated eco-physiological, analytical chemistry, and transcriptomic approach to clarify the effect of increasing pCO2 on copper metabolism of Thalassiosira pseudonana across different temporal (short-term vs. long-term) and spatial (indoor laboratory experiments vs. outdoor mesocosms experiments) scales. We found that increasing pCO2 (1,000 and 2,000 μatm) promoted growth and photosynthesis, but decreased copper accumulation and alleviated its bio-toxicity to T. pseudonana. Transcriptomics results indicated that T. pseudonana altered the copper detoxification strategy under OA by decreasing copper uptake and enhancing copper-thiol complexation and copper efflux. Biochemical analysis further showed that the activities of the antioxidant enzymes glutathione peroxidase (GPX), catalase (CAT), and phytochelatin synthetase (PCS) were enhanced to mitigate oxidative damage of copper stress under elevated CO2. Our results provide a basis for a better understanding of the bioremediation capacity of marine primary producers, which may have profound effect on the security of seafood quality and marine ecosystem sustainability under further climate change.
Collapse
Affiliation(s)
- Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shujie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Wei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Georgina Brennan
- Institute of Marine Sciences, ICM-CSIC, Barcelona, Spain,*Correspondence: Georgina Brennan, ✉
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Naihao Ye, ✉
| |
Collapse
|
16
|
Sharma D, Biswas H, Chowdhury M, Silori S, Pandey M, Ray D. Phytoplankton community shift in response to experimental Cu addition at the elevated CO 2 levels (Arabian Sea, winter monsoon). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7325-7344. [PMID: 36038690 DOI: 10.1007/s11356-022-22709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Understanding phytoplankton community shifts under multiple stressors is becoming increasingly important. Among other combinations of stressors, the impact of trace metal toxicity on marine phytoplankton under the ocean acidification scenario is an important aspect to address. Such multiple stressor studies are rare from the Arabian Sea, one of the highest productive oceanic provinces within the North Indian Ocean. We studied the interactive impacts of copper (Cu) and CO2 enrichment on two natural phytoplankton communities from the eastern and central Arabian Sea. Low dissolved silicate (DSi < 2 µM) favoured smaller diatoms (e.g. Nitzschia sp.) and non-diatom (Phaeocystis). CO2 enrichment caused both positive (Nitzschia sp. and Phaeocystis sp.) and negative (Cylindrotheca closterium, Navicula sp., Pseudo-nitzschia sp., Alexandrium sp., and Gymnodinium sp.) growth impacts. The addition of Cu under the ambient CO2 level (A-CO2) hindered cell division in most of the species, whereas Chla contents were nearly unaffected. Interestingly, CO2 enrichment seemed to alleviate Cu toxicity in some species (Nitzschia sp., Cylindrotheca closterium, Guinardia flaccida, and Phaeocystis) and increased their growth rates. This could be related to the cellular Cu demand and energy budget at elevated CO2 levels. Dinoflagellates were more sensitive to Cu supply compared to diatoms and prymnesiophytes and could be related to the unavailability of prey. Such community shifts in response to the projected ocean acidification, oligotrophy, and Cu pollution may impact trophic transfer and carbon cycling in this region.
Collapse
Affiliation(s)
- Diksha Sharma
- Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, Goa, 403004, India
- Affiliated for PhD Under Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Haimanti Biswas
- Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, Goa, 403004, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Mintu Chowdhury
- Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, Goa, 403004, India
- School of Oceanographic Studies, Jadavpur University, Kolkata, 700032, India
| | - Saumya Silori
- Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, Goa, 403004, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Medhavi Pandey
- Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, Goa, 403004, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Durbar Ray
- Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, Goa, 403004, India
| |
Collapse
|
17
|
Minet A, Metian M, Taylor A, Gentès S, Azemard S, Oberhänsli F, Swarzenski P, Bustamante P, Lacoue-Labarthe T. Bioaccumulation of inorganic and organic mercury in the cuttlefish Sepia officinalis: Influence of ocean acidification and food type. ENVIRONMENTAL RESEARCH 2022; 215:114201. [PMID: 36057331 DOI: 10.1016/j.envres.2022.114201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The bioaccumulation of mercury (Hg) in marine organisms through various pathways has not yet been fully explored, particularly in cephalopods. This study utilises radiotracer techniques using the isotope 203Hg to investigate the toxicokinetics and the organotropism of waterborne inorganic Hg (iHg) and dietary inorganic and organic Hg (methylHg, MeHg) in juvenile common cuttlefish Sepia officinalis. The effect of two contrasting CO2 partial pressures in seawater (400 and 1600 μatm, equivalent to pH 8.08 and 7.54, respectively) and two types of prey (fish and shrimp) were tested as potential driving factors of Hg bioaccumulation. After 14 days of waterborne exposure, juvenile cuttlefish showed a stable concentration factor of 709 ± 54 and 893 ± 117 at pH 8.08 and 7.54, respectively. The accumulated dissolved i203Hg was depurated relatively rapidly with a radiotracer biological half-life (Tb1/2) of 44 ± 12 and 55 ± 16 days at pH 8.08 and 7.54, respectively. During the whole exposure period, approximately half of the i203Hg was found in the gills, but i203Hg also increased in the digestive gland. When fed with 203Hg-radiolabelled prey, cuttlefish assimilated almost all the Hg provided (>95%) independently of the prey type. Nevertheless, the prey type played a major role on the depuration kinetics with Hg Tb1/2 approaching infinity in fish fed cuttlefish vs. 25 days in shrimp fed cuttlefish. Such a difference is explained by the different proportion of Hg species in the prey, with fish prey containing more than 80% of MeHg vs. only 30% in shrimp. Four days after ingestion of radiolabelled food, iHg was primarily found in the digestive organs while MeHg was transferred towards the muscular tissues. No significant effect of pH/pCO2 variation was observed during both the waterborne and dietary exposures on the bioaccumulation kinetics and tissue distribution of i203Hg and Me203Hg. Dietary exposure is the predominant pathway of Hg bioaccumulation in juvenile cuttlefish.
Collapse
Affiliation(s)
- Antoine Minet
- Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France.
| | - Marc Metian
- International Atomic Energy Agency (IAEA), Marine Environment Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco, France
| | - Angus Taylor
- International Atomic Energy Agency (IAEA), Marine Environment Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco, France
| | - Sophie Gentès
- Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Sabine Azemard
- International Atomic Energy Agency (IAEA), Marine Environment Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco, France
| | - François Oberhänsli
- International Atomic Energy Agency (IAEA), Marine Environment Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco, France
| | - Peter Swarzenski
- International Atomic Energy Agency (IAEA), Marine Environment Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco, France
| | - Paco Bustamante
- Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes 75005, Paris, France
| | - Thomas Lacoue-Labarthe
- Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
18
|
Dai X, Zhang J, Zeng X, Huang J, Lin J, Lu Y, Liang S, Ye M, Xiao M, Zhao J, Overmans S, Xia J, Jin P. Adaptation of a marine diatom to ocean acidification increases its sensitivity to toxic metal exposure. MARINE POLLUTION BULLETIN 2022; 183:114056. [PMID: 36058179 DOI: 10.1016/j.marpolbul.2022.114056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Most previous studies investigating the interplay of ocean acidification (OA) and heavy metal on marine phytoplankton were only conducted in short-term, which may provide conservative estimates of the adaptive capacity of them. Here, we examined the physiological responses of long-term (~900 generations) OA-adapted and non-adapted populations of the diatom Phaeodactylum tricornutum to different concentrations of the two heavy metals Cd and Cu. Our results showed that long-term OA selected populations exhibited significantly lower growth and reduced photosynthetic activity than ambient CO2 selected populations at relatively high heavy metal levels. Those findings suggest that the adaptations to high CO2 results in an increased sensitivity of the marine diatom to toxic metal exposure. This study provides evidence for the costs and the cascading consequences associated with the adaptation of phytoplankton to elevated CO2 conditions, and improves our understanding of the complex interactions of future OA and heavy metal pollution in marine waters.
Collapse
Affiliation(s)
- Xiaoying Dai
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiale Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaopeng Zeng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiali Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiamin Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yucong Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shiman Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mengcheng Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mengting Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingyuan Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Sebastian Overmans
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
19
|
Wei H, Qian J, Xie ZX, Lin L, Wang DZ, Wang MH. Diel Fluctuation Superimposed on Steady High pCO 2 Generates the Most Serious Cadmium Toxicity to Marine Copepods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13179-13188. [PMID: 36044019 DOI: 10.1021/acs.est.2c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coastal systems experience diel fluctuation of pCO2 and cadmium (Cd) pollution; nevertheless, the effect of fluctuating pCO2 on Cd biotoxicity is poorly known. In this study, we initially performed the isotopically enriched organism bioassay to label Tigriopus japonicus with 113Cd (5 μg/L) to determine the Cd accumulation rate constant (kaccu) under ambient (400 μatm) and steadily (1000 μatm) and fluctuatingly elevated (1000 ± 600 μatm) pCO2 conditions for 48 h. Next, T. japonicus was interactively subjected to the above pCO2 exposures at Cd (control, 5, and 500 μg/L) treatments for 7 d. Biochemical and physiological responses for copepods were analyzed. The results showed that steadily increased pCO2 facilitated Cd bioaccumulation compared to ambient pCO2, and it was more under fluctuating acidification conditions. Despite compensatory reactions (e.g., increased energy production), Cd ultimately induced oxidative damage and apoptosis. Meanwhile, combined treatment exhibited higher toxicity (e.g., increased apoptosis) relative to Cd exposure, and even more if fluctuating acidification was considered. Intriguingly, fluctuating acidification inhibited Cd exclusion in Cd-treated copepods compared to steady acidification, linking to higher Cd kaccu and bioaccumulation. Collectively, CO2-driven acidification could aggravate Cd toxicity, providing a mechanistic understanding of the interaction between seawater acidification and Cd pollution in marine copepods.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen361102, China
| | - Jing Qian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen361102, China
| | - Zhang-Xian Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen361102, China
| | - Lin Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen361102, China
| | - Da-Zhi Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen361102, China
| | - Ming-Hua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen361102, China
| |
Collapse
|
20
|
Climate Change Implications for Metal and Metalloid Dynamics in Aquatic Ecosystems and its Context within the Decade of Ocean Sciences. WATER 2022. [DOI: 10.3390/w14152415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Anthropogenic activities are affecting marine ecosystems, notably coastal ones, in multiple ways and at increasing rates, leading to habitat degradation, loss of biodiversity, and greater exposure of flora and fauna to chemical contaminants, with serious effects on ocean health. Chemical pollution, in particular, is a significant negative stressor for aquatic ecosystems, both oceanic and coastal, and has recently been identified as a priority for conservation efforts. Metals and metalloids, in particular, present environmental persistence, bioavailability, tendency to bioaccumulate along the trophic chain, and potential toxic effects. However, the current scenario of climate change is increasingly affecting the aquatic environment, altering water mass flows and the transport of pollutants, aggravating toxic effects and ecological risks. Moreover, although traditional sources of contamination have been studied for decades, many knowledge gaps persist, in addition to the emerging effects of climate change that are still poorly studied. In this regard, this review aims to discuss climate change implications for metal and metalloid dynamics in aquatic ecosystems and its context within the Decade of Ocean Sciences. We also discuss how an increasing interest in plastic pollution has led to contamination by metals and metalloids being neglected, requiring mutual efforts to move forward in the understating of the negative and often lethal impacts of this type of pollutants, thus aiming at prioritizing contamination by metals and metalloids not just in the oceans, but in all water bodies.
Collapse
|
21
|
Belbachir I, Lopez-Lopez JA, Herce-Sesa B, Moreno C. A liquid micro-extraction based one-step method for the chemical fractionation of copper in seawater. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128505. [PMID: 35739683 DOI: 10.1016/j.jhazmat.2022.128505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 06/15/2023]
Abstract
In this work, the reagent Cyanex® 272 has been incorporated in a three-phase solvent bar micro-extraction system to selectively separate the inorganic and organic fractions of copper in seawater. Optimized conditions for micro-extraction of Cu fractions were 0.2 M Cyanex® 272 in the organic solution contained into the fiber pores, 0.5 M HCl as acceptor solution within the fiber, stirring rate of 500 rpm, and 60 min time of extraction, providing an enrichment factor of 51.6 ± 2.3. Experimental results for selective extraction of organic and inorganic Cu showed a good correlation with theoretical data for Cu speciation, and the relationship between enrichment factor and dissolved organic carbon (DOC) concentration in the samples was used to predict total Cu concentration. Instrumental determination of Cu presented a linear response within the range 0.1-20 µg L-1, obtaining a limit of detection of 0.03 µg L-1. Finally, the method was successfully applied to the study of Cu fractions in real seawater samples collected from the Bay of Cádiz (Spain).
Collapse
Affiliation(s)
- Ibtissem Belbachir
- Laboratoire de Chimie et d'Electrochimie des Complexes Métalliques (LCECM), Département de Chimie Organique industrielle, Faculté de Chimie, Université des Sciences et de la Technologie d'Oran-Mohamed Boudiaf (USTOMB), BP-1505 El- M'naouer, Oran, Algeria
| | - José A Lopez-Lopez
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, University Institute of Marine Research, University of Cádiz, Puerto Real, 11510 Cádiz, Spain.
| | - Belén Herce-Sesa
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, University Institute of Marine Research, University of Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Carlos Moreno
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, University Institute of Marine Research, University of Cádiz, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
22
|
Assessing the availability of trace metals and rare earth elements in deep ocean waters of the Clarion-Clipperton Zone, NE Pacific: Application of an in situ DGT passive sampling method. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Nazneen S, Mishra AK, Raju NJ, Mehmood G. Coastal macrophytes as bioindicators of trace metals in the Asia's largest lagoon ecosystem. MARINE POLLUTION BULLETIN 2022; 178:113576. [PMID: 35398688 DOI: 10.1016/j.marpolbul.2022.113576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Coastal trace metal contamination is of serious concern and the role of new bioindicator species in monitoring of trace metals is essential. The present study quantified the concentration of trace metals (Co, Cr, Cu, Mn, Ni, Pb and Zn) in the sediment and the macrophytes of Chilika lagoon, India, and investigated the bioindicator potential of the seagrasses, saltmarshes and macroalgae. The Igeo values for sediment indicated significant contamination of Cu and Zn in seagrass, Cu, Ni and Zn in saltmarsh and moderate contamination of Cr, Cu and Pb in macroalgal ecosystems. In general, the Bio-Sediment Accumulation Factor (BSAF) indicated that the macrophytes accumulated higher concentration of Mn and Ni from the sediments. The high concentration of trace metals in the sediment of the three macrophytes ecosystems did not result in higher accumulation of the same metals in the tissues of the respective macrophytes suggesting metal specific and species-specific behaviour.
Collapse
Affiliation(s)
- Sadaf Nazneen
- Department of Civil Engineering, Faculty of Engineering, Jamia Millia Islamia, New Delhi 110025, India
| | - Amrit Kumar Mishra
- School of Earth Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, Argul, Khorda, Odisha 752050, India
| | - N Janardhana Raju
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Gauhar Mehmood
- Department of Civil Engineering, Faculty of Engineering, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
24
|
Cui W, Liu J, Cao L, Dou S. Toxicological effects of cadmium on the immune response and biomineralization of larval flounder Paralichthys olivaceus under seawater acidification. CHEMOSPHERE 2022; 291:132919. [PMID: 34798117 DOI: 10.1016/j.chemosphere.2021.132919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Seawater acidification can cause threats to both calcifying and uncalcifying marine organisms, affecting their acid-base regulatory functions, immune system and biomineralization. Marine pollutants, such as cadmium (Cd) that is globally distributed in coastal ecosystems, do not affect organisms alone but commonly as combined stressors. To investigate the toxicological effects of Cd on the immune and biomineralization of marine fishes under seawater acidification, flounder Paralichthys olivaceus was exposed to seawater acidification (control (pH 8.10), 7.70 and 7.30) and Cd exposure (control (0.36 μg L-1), 0.01 and 0.15 mg L-1 Cd) for 49 days from embryonic stage until they became settled. Immune and biomineralization-related biomarkers of flounder at the end of exposure were investigated. Results showed that single seawater acidification and Cd exposure or combined exposure significantly affected the immune system-related enzyme activities. Specifically, lysozyme (LZM) activity was significantly inhibited by single seawater acidification and Cd exposure, indicating innate immunosuppression under two stressors. Contents of IgM, HSP70 and MT were induced by seawater acidification or Cd exposure, indicating a detoxification mechanism that responded to the stressors. The expressions of immune-related genes were upregulated (hsp70 and mt) or downregulated (lzm) under Cd exposure. Of the biomineralization-related enzymes, activities of carbonic anhydrase (CA), Na+/K+-ATPase and Ca2+-ATPase increased under seawater acidification and Cd exposure, a potential mechanism in response to changes of acid-base balance induced by the stressors. Generally, immune and biomineralization of the flounder responded more sensitively to Cd exposure than seawater acidification. Seawater acidification aggravated the toxicological effects of Cd exposure on the two physiological functions, while high Cd exposure augmented their responses to seawater acidification.
Collapse
Affiliation(s)
- Wenting Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jinhu Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Liang Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Shuozeng Dou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
25
|
Vinuganesh A, Kumar A, Prakash S, Alotaibi MO, Saleh AM, Mohammed AE, Beemster GTS, AbdElgawad H. Influence of seawater acidification on biochemical composition and oxidative status of green algae Ulva compressa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150445. [PMID: 34844304 DOI: 10.1016/j.scitotenv.2021.150445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The sequestration of elevated atmospheric CO2 levels in seawater results in increasing acidification of oceans and it is unclear what the consequences of this will be on seaweed ecophysiology and ecological services they provide in the coastal ecosystem. In the present study, we examined the physiological and biochemical response of intertidal green seaweed Ulva compressa to elevated pCO2 induced acidification. The green seaweed was exposed to control (pH 8.1) and acidified (pH 7.7) conditions for 2 weeks following which net primary productivity, pigment content, oxidative status and antioxidant enzymes, primary and secondary metabolites, and mineral content were assessed. We observed an increase in primary productivity of the acidified samples, which was associated with increased levels of photosynthetic pigments. Consequently, primary metabolites levels were increased in the thalli grown under lowered pH conditions. There was also richness in various minerals and polyunsaturated fatty acids, indicating that the low pH elevated the nutritional quality of U. compressa. We found that low pH reduced malondialdehyde (MDA) content, suggesting reduced oxidative stress. Consistently we found reduced total antioxidant capacity and a general reduction in the majority of enzymatic and non-enzymatic antioxidants in the thalli grown under acidified conditions. Our results indicate that U. compressa will benefit from seawater acidification by improving productivity. Biochemical changes will affect its nutritional qualities, which may impact the food chain/food web under future acidified ocean conditions.
Collapse
Affiliation(s)
- A Vinuganesh
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India
| | - Amit Kumar
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India; Sathyabama Marine Research Station, Sallimalai Street, Rameswaram, Tamil Nadu, India.
| | - S Prakash
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India; Sathyabama Marine Research Station, Sallimalai Street, Rameswaram, Tamil Nadu, India
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Gerrit T S Beemster
- University of Antwerp, Department of Biology, Integrated Molecular Plant Physiology Research Group, Antwerp, Belgium
| | - Hamada AbdElgawad
- University of Antwerp, Department of Biology, Integrated Molecular Plant Physiology Research Group, Antwerp, Belgium; Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
26
|
Mishra AK, Farooq SH. Trace metal accumulation in seagrass and saltmarsh ecosystems of India: comparative assessment and bioindicator potential. MARINE POLLUTION BULLETIN 2022; 174:113251. [PMID: 34954634 DOI: 10.1016/j.marpolbul.2021.113251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Coastal macrophytes serve as bioindicators of coastal trace metal contamination. In this study, trace metal levels in India's seagrass and saltmarsh ecosystems were assessed for their suitability as bioindicators of metal contamination. Trace metal accumulation and bioindicator potential of both seagrasses and saltmarshes were found to be metal and species-specific. Higher concentrations of Cu, Fe, Mg and Mn were found in the tissues of seagrasses, while saltmarshes showed higher accumulation of Cd, Cr, Hg, Ni, Pb and Zn. The leaves of seagrasses are suitable bioindicator of metals in the water column, while the roots and rhizomes of saltmarshes/seagrasses are suitable bioindicators of metals in the sediment. This study proposes the development of a monitoring network using seagrasses and saltmarss as model organisms for short and long-term monitoring of coastal metal contamination. Determining the phytotoxic levels of trace metals in seagrasses and saltmarsh is important for monitoring plant die-offs and loss.
Collapse
Affiliation(s)
- Amrit Kumar Mishra
- School of Earth Ocean and Climate Sciences, Indian Institute of Technology, Bhubaneswar, Jatni, Khorda, Odisha, India.
| | - Syed Hilal Farooq
- School of Earth Ocean and Climate Sciences, Indian Institute of Technology, Bhubaneswar, Jatni, Khorda, Odisha, India
| |
Collapse
|
27
|
Lo HKA, Chua VA, Chan KYK. Near future ocean acidification modulates the physiological impact of fluoxetine at environmental concentration on larval urchins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149709. [PMID: 34425440 DOI: 10.1016/j.scitotenv.2021.149709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/19/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals found in human wastes are emergent pollutants that are continuously released into aquatic systems. While exposure to pharmaceuticals alone could adversely impact aquatic organisms, few studies have considered the interactive effects of pharmaceuticals and the future environmental conditions, such as decreasing pH due to ocean acidification. Given the bioavailability of many pharmaceuticals is dependent on these physical conditions, we investigated the effect of environmentally-relevant concentrations of fluoxetine (10 and 100 ng L-1) under ambient (pH 8.0) and reduced pH conditions (pH 7.7) on physiology, behavior, and DNA integrity of larval sea urchins (Heliocidaris crassispina). Notably, the negative impacts of fluoxetine exposure were attenuated by reduced pH. Larvae exposed to both reduced pH and fluoxetine exhibited lower levels of DNA damage compared to those exposed to only one of the stressors. Similar antagonistic interactions were observed at the organismal level: for example, fluoxetine exposure at 10 ng L-1 under ambient pH increased the percentage of embryos at later developmental stages, but such effects of fluoxetine were absent at pH 7.7. However, despite the modulation of fluoxetine impacts under ocean acidification, control larvae performed better than those exposed to either stressor, alone or in combination. We also observed that pH alone impacted organismal behaviors, as larvae swam slower at reduced pH regardless of fluoxetine exposure. Our findings highlight the need to consider multi-stressor interactions when determining future organismal performance and that multiple metrics are needed to paint a fuller picture of ecological risks.
Collapse
Affiliation(s)
- Hau Kwan Abby Lo
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | | | - Kit Yu Karen Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong; Biology Department, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA.
| |
Collapse
|
28
|
Wei H, Bai Z, Xie D, Chen Y, Wang M. CO 2-driven seawater acidification increases cadmium toxicity in a marine copepod. MARINE POLLUTION BULLETIN 2021; 173:113145. [PMID: 34800761 DOI: 10.1016/j.marpolbul.2021.113145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Here, we examined the 48-h acute toxicity of cadmium (Cd) in the marine copepod Tigriopus japonicus under two pCO2 concentrations (400 and 1000 μatm). Subsequently, T. japonicus was interactively exposed to different pCO2 (400, 1000 μatm) and Cd (control, 500 μg/L) treatments for 48 h. After exposure, biochemical and physiological responses were analyzed for the copepods. The results showed that the 48-h LC50 values of Cd were calculated as 12.03 mg/L and 9.08 mg/L in T. japonicus, respectively, under 400 and 1000 μatm pCO2 conditions. Cd exposure significantly promoted Cd exclusion/glycolysis, detoxification/stress response, and oxidative stress/apoptosis while it depressed that of antioxidant capacity. Intriguingly, CO2-driven acidification enhanced Cd bioaccumulation and its toxicity in T. japonicus. Overall, our study provides a mechanistic understanding about the interaction between seawater acidification and Cd pollution in marine copepods.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zhuoan Bai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dongmei Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yao Chen
- Xiamen Marine Environmental Monitoring Central Station (SOA), Xiamen 361008, China.
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
29
|
Gauthier PT, Blewett TA, Garman ER, Schlekat CE, Middleton ET, Suominen E, Crémazy A. Environmental risk of nickel in aquatic Arctic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148921. [PMID: 34346380 DOI: 10.1016/j.scitotenv.2021.148921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The Arctic faces many environmental challenges, including the continued exploitation of its mineral resources such as nickel (Ni). The responsible development of Ni mining in the Arctic requires establishing a risk assessment framework that accounts for the specificities of this unique region. We set out to conduct preliminary assessments of Ni exposure and effects in aquatic Arctic ecosystems. Our analysis of Ni source and transport processes in the Arctic suggests that fresh, estuarine, coastal, and marine waters are potential Ni-receiving environments, with both pelagic and benthic communities being at risk of exposure. Environmental concentrations of Ni show that sites with elevated Ni concentrations are located near Ni mining operations in freshwater environments, but there is a lack of data for coastal and estuarine environments near such operations. Nickel bioavailability in Arctic freshwaters seems to be mainly driven by dissolved organic carbon (DOC) concentrations with bioavailability being the highest in the High Arctic, where DOC levels are the lowest. However, this assessment is based on bioavailability models developed from non-Arctic species. At present, the lack of chronic Ni toxicity data on Arctic species constitutes the greatest hurdle toward the development of Ni quality standards in this region. Although there are some indications that polar organisms may not be more sensitive to contaminants than non-Arctic species, biological adaptations necessary for life in polar environments may have led to differences in species sensitivities, and this must be addressed in risk assessment frameworks. Finally, Ni polar risk assessment is further complicated by climate change, which affects the Arctic at a faster rate than the rest of the world. Herein we discuss the source, fate, and toxicity of Ni in Arctic aquatic environments, and discuss how climate change effects (e.g., permafrost thawing, increased precipitation, and warming) will influence risk assessments of Ni in the Arctic.
Collapse
Affiliation(s)
- Patrick T Gauthier
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2M9, Canada
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2M9, Canada
| | | | | | | | - Emily Suominen
- Department of Biological Sciences, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Anne Crémazy
- Department of Biological Sciences, University of New Brunswick, Saint John, NB E2L 4L5, Canada.
| |
Collapse
|
30
|
Lestari L, Harmesa H, Taufiqurrahman E, Budiyanto F, Wahyudi AJ. Assessment of potential variability of cadmium and copper trace metals using hindcast estimates. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:705. [PMID: 34623520 DOI: 10.1007/s10661-021-09501-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Trace metals are vital to primary productivity and play an essential role as main components in regulating oceanic biogeochemical cycles. Dissolved and particulate trace metals within the water column may vary due to primary production, temperature, and nutrient changes, factors that may also vary spatially and temporally. Furthermore, assessment of trace metals mainly relies on in situ observation, and so wide-area investigation of trace-metal concentration may be challenging and subject to technical constraints. A specific approach is therefore necessary that combines biogeochemical proxies, satellite data, and trace-metal linear correlation. This study aims to assess the potential spatio-temporal variability of sea surface cadmium (Cd) and copper (Cu) concentrations in Indonesian seas and surrounding areas. The correlations of Cd and Cu concentrations with primary production and nutrient data were used to convert hindcast satellite data into estimates of the metals' concentrations. The potential variability of trace metals can be determined by overlaying both data. Indonesia's Fisheries Management Areas (FMAs) were used for data clustering and analysis. The results show that Cd and Cu trace metals have similar distribution patterns throughout the year. However, dissolved Cu has a more diverse coverage area than dissolved Cd, including within the Halmahera, Seram, and Maluku Seas (FMAs 716 and 717), the Makassar Strait (FMA 717), and the Java-Sumatra upwelling area (FMA 573). Both Cd and Cu concentrations in the Java-Sumatra upwelling region follow the periodic upwelling pattern. Overall, both Cd and Cu show a declining trend in concentration from 2012 to 2019. It is estimated that dissolved Cd concentration declined from 1500-2000 pmol/kg in 2012 to 1000-1500 pmol/kg in 2019 for all locations. Dissolved Cu concentration decreased from 30-35 nmol/kg in 2012 to 25-30 nmol/kg in 2019. Estimated dissolved Cd and Cu follow the linear functions of silicate (SiO4), nitrate (NO3), and primary productivity. The fluctuation of anthropogenic activities and global warming are likely to indirectly impact the decline in metal concentrations by affecting nutrients and primary productivity.
Collapse
Affiliation(s)
- Lestari Lestari
- Research Center for Oceanography, National Research and Innovation Agency (Formerly Indonesian Institute of Sciences - LIPI), Jakarta, Indonesia
| | - Harmesa Harmesa
- Research Center for Oceanography, National Research and Innovation Agency (Formerly Indonesian Institute of Sciences - LIPI), Jakarta, Indonesia
| | - Edwards Taufiqurrahman
- Research Center for Oceanography, National Research and Innovation Agency (Formerly Indonesian Institute of Sciences - LIPI), Jakarta, Indonesia
| | - Fitri Budiyanto
- Research Center for Oceanography, National Research and Innovation Agency (Formerly Indonesian Institute of Sciences - LIPI), Jakarta, Indonesia
- Marine Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A'an Johan Wahyudi
- Research Center for Oceanography, National Research and Innovation Agency (Formerly Indonesian Institute of Sciences - LIPI), Jakarta, Indonesia.
| |
Collapse
|
31
|
Wang M, Chen J, Lee YH, Lee JS, Wang D. Projected near-future ocean acidification decreases mercury toxicity in marine copepods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117140. [PMID: 33930777 DOI: 10.1016/j.envpol.2021.117140] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/05/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Here, we examined the combinational effect of ocean acidification (OA) and mercury (Hg) in the planktonic copepod Pseudodiaptomus annandalei in cross-factored response to different pCO2 (400, 800 μatm) and Hg (control, 1.0 and 2.5 μg/L) exposures for three generations (F0-F2), followed by single-generation recovery (F3) under clean condition. Several phenotypic traits and Hg accumulation were analyzed for F0-F3. Furthermore, shotgun-based quantitative proteomics was performed for F0 and F2. Our results showed that OA insignificantly influenced the traits. During F0-F2, combined exposure reduced Hg accumulation as compared with the counterpart Hg treatment, supporting the mitigating effect of OA on Hg toxicity in copepods. Proteomics analysis indicated that the copepods probably increased energy production/storage and stress response to ensure physiological resilience against OA. However, Hg induced many toxic events (e.g., energy depletion and degenerated organomorphogenesis/embryogenesis for F0; cell cycle arrest and detrimental stress-defense for F2), which were translated to the population-level adverse outcome, i.e., compromised growth/reproduction. Particularly, compensatory proteome response was identified (e.g., increased immune defense for F0; energetic compensation and enhanced embryogenesis for F2), accounting for a negative interaction between OA and Hg. Together, this study provides the molecular mechanisms behind the effects of OA and Hg pollution in marine copepods.
Collapse
Affiliation(s)
- Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| | - Jingyan Chen
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
32
|
Acclimation and adaptation to elevated pCO 2 increase arsenic resilience in marine diatoms. THE ISME JOURNAL 2021; 15:1599-1613. [PMID: 33452476 PMCID: PMC8163839 DOI: 10.1038/s41396-020-00873-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023]
Abstract
Arsenic pollution is a widespread threat to marine life, but the ongoing rise pCO2 levels is predicted to decrease bio-toxicity of arsenic. However, the effects of arsenic toxicity on marine primary producers under elevated pCO2 are not well characterized. Here, we studied the effects of arsenic toxicity in three globally distributed diatom species (Phaeodactylum tricornutum, Thalassiosira pseudonana, and Chaetoceros mulleri) after short-term acclimation (ST, 30 days), medium-term exposure (MT, 750 days), and long-term (LT, 1460 days) selection under ambient (400 µatm) and elevated (1000 and 2000 µatm) pCO2. We found that elevated pCO2 alleviated arsenic toxicity even after short acclimation times but the magnitude of the response decreased after mid and long-term adaptation. When fed with these elevated pCO2 selected diatoms, the scallop Patinopecten yessoensis had significantly lower arsenic content (3.26-52.83%). Transcriptomic and biochemical analysis indicated that the diatoms rapidly developed arsenic detoxification strategies, which included upregulation of transporters associated with shuttling harmful compounds out of the cell to reduce arsenic accumulation, and upregulation of proteins involved in synthesizing glutathione (GSH) to chelate intracellular arsenic to reduce arsenic toxicity. Thus, our results will expand our knowledge to fully understand the ecological risk of trace metal pollution under increasing human activity induced ocean acidification.
Collapse
|
33
|
Galceran J, Gao Y, Puy J, Leermakers M, Rey-Castro C, Zhou C, Baeyens W. Speciation of Inorganic Compounds in Aquatic Systems Using Diffusive Gradients in Thin-Films: A Review. Front Chem 2021; 9:624511. [PMID: 33889563 PMCID: PMC8057345 DOI: 10.3389/fchem.2021.624511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
The speciation of trace metals in an aquatic system involves the determination of free ions, complexes (labile and non-labile), colloids, and the total dissolved concentration. In this paper, we review the integrated assessment of free ions and labile metal complexes using Diffusive Gradients in Thin-films (DGT), a dynamic speciation technique. The device consists of a diffusive hydrogel layer made of polyacrylamide, backed by a layer of resin (usually Chelex-100) for all trace metals except for Hg. The best results for Hg speciation are obtained with agarose as hydrogel and a thiol-based resin. The diffusive domain controls the diffusion flux of the metal ions and complexes to the resin, which strongly binds all free ions. By using DGT devices with different thicknesses of the diffusive or resin gels and exploiting expressions derived from kinetic models, one can determine the labile concentrations, mobilities, and labilities of different species of an element in an aquatic system. This procedure has been applied to the determination of the organic pool of trace metals in freshwaters or to the characterization of organic and inorganic complexes in sea waters. The concentrations that are obtained represent time-weighted averages (TWA) over the deployment period.
Collapse
Affiliation(s)
- Josep Galceran
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Yue Gao
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jaume Puy
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Martine Leermakers
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Rey-Castro
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Chunyang Zhou
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Willy Baeyens
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
34
|
Wilson-McNeal A, Hird C, Hobbs C, Nielson C, Smith KE, Wilson RW, Lewis C. Fluctuating seawater pCO 2/pH induces opposing interactions with copper toxicity for two intertidal invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141370. [PMID: 32814294 DOI: 10.1016/j.scitotenv.2020.141370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Global ocean pCO2 is increasing as a result of anthropogenic CO2 emissions, driving a decline in seawater pH. However, coastal waters already undergo fluctuations in pCO2/pH conditions over far shorter timescales, with values regularly exceeding those predicted for the open ocean by the year 2100. The speciation of copper, and therefore its potential toxicity, is affected by changing seawater pH, yet little is known concerning how present-day natural fluctuations in seawater pH affect copper toxicity to marine biota. Here, we test the hypothesis that a fluctuating seawater pCO2/pH regime will alter the responses of the mussel Mytilus edulis and the ragworm Alitta virens to sub-lethal copper, compared to a static seawater pCO2/pH scenario. Mussels and worms were exposed to 0.1 and 0.25 μM copper respectively, concentrations determined to produce comparable toxicity responses in these species, for two weeks under a fluctuating 12-hour pCO2/pH cycle (pH 8.14-7.53, pCO2 445-1747 μatm) or a static pH 8.14 (pCO2 432 μatm) treatment. Mussels underwent a haemolymph acidosis of 0.1-0.2 pH units in the fluctuating treatments, alongside two-fold increases in the superoxide dismutase activity and DNA damage induced by copper, compared to those induced by copper under static pH conditions. Conversely, ragworms experienced an alkalosis of 0.3 pH units under fluctuating pH/pCO2, driven by a two-fold increase in coelomic fluid bicarbonate. This mitigated the copper-induced oxidative stress to slightly reduce both antioxidant activity and DNA damage, relative to the static pH + copper treatment. These opposing responses suggest that differences in species acid-base physiology were more important in determining toxicity responses than the pH-induced speciation change. With variability in seawater chemistry predicted to increase as climate change progresses, understanding how fluctuating conditions interact with the toxicity of pH-sensitive contaminants will become more crucial in predicting their risk to coastal biota.
Collapse
Affiliation(s)
- Alice Wilson-McNeal
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom.
| | - Cameron Hird
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Catherine Hobbs
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Clara Nielson
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Kathryn E Smith
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Rod W Wilson
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Ceri Lewis
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
35
|
Hunnestad AV, Vogel AIM, Armstrong E, Digernes MG, Ardelan MV, Hohmann-Marriott MF. From the Ocean to the Lab-Assessing Iron Limitation in Cyanobacteria: An Interface Paper. Microorganisms 2020; 8:E1889. [PMID: 33260337 PMCID: PMC7760322 DOI: 10.3390/microorganisms8121889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential, yet scarce, nutrient in marine environments. Phytoplankton, and especially cyanobacteria, have developed a wide range of mechanisms to acquire iron and maintain their iron-rich photosynthetic machinery. Iron limitation studies often utilize either oceanographic methods to understand large scale processes, or laboratory-based, molecular experiments to identify underlying molecular mechanisms on a cellular level. Here, we aim to highlight the benefits of both approaches to encourage interdisciplinary understanding of the effects of iron limitation on cyanobacteria with a focus on avoiding pitfalls in the initial phases of collaboration. In particular, we discuss the use of trace metal clean methods in combination with sterile techniques, and the challenges faced when a new collaboration is set up to combine interdisciplinary techniques. Methods necessary for producing reliable data, such as High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS), Flow Injection Analysis Chemiluminescence (FIA-CL), and 77K fluorescence emission spectroscopy are discussed and evaluated and a technical manual, including the preparation of the artificial seawater medium Aquil, cleaning procedures, and a sampling scheme for an iron limitation experiment is included. This paper provides a reference point for researchers to implement different techniques into interdisciplinary iron studies that span cyanobacteria physiology, molecular biology, and biogeochemistry.
Collapse
Affiliation(s)
- Annie Vera Hunnestad
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.V.H.); (M.G.D.)
| | - Anne Ilse Maria Vogel
- PhotoSynLab, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.I.M.V.); (M.F.H.-M.)
| | - Evelyn Armstrong
- NIWA/University of Otago Research Centre for Oceanography, Department of Chemistry, University of Otago, 9054 Dunedin, New Zealand;
| | - Maria Guadalupe Digernes
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.V.H.); (M.G.D.)
| | - Murat Van Ardelan
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.V.H.); (M.G.D.)
| | - Martin Frank Hohmann-Marriott
- PhotoSynLab, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.I.M.V.); (M.F.H.-M.)
| |
Collapse
|
36
|
Zhang X, Xu D, Huang S, Wang S, Han W, Liang C, Zhang Y, Fan X, Zhang X, Wang Y, Wang W, Egan S, Saha M, Li F, Ye N. The effect of elevated pCO 2 on cadmium resistance of a globally important diatom. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122749. [PMID: 32361134 DOI: 10.1016/j.jhazmat.2020.122749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) pollution is a widespread threat to marine life, and ongoing ocean acidification (OA) is predicted to impact bio-toxicity of Cd compounds. However, the cascading effects of changed Cd toxicity to marine primary producers are not well characterized. Here, we studied the impact of OA on Cd toxicity responses in a globally important diatom Phaeodactylum tricornutum under both ambient and elevated pCO2 conditions. We found that increased pCO2 alleviated the impact of additive Cd toxicity on P. tricornutum not only under controlled indoor experiments but also in outdoor mesocosm experiments that reflect more natural growth conditions. Transcriptome analysis suggested that genes involved in Cd efflux and phytochelatin production were up-regulated and genes involved in Cd influx were down-regulated in long-term selected lineages under elevated pCO2. We further found a significant reduction of Cd transfer across trophic level, when the scallop Argopecten irradians was fed with Cd-exposed P. tricornutum previously cultured under elevated pCO2. Our results indicate that after long-term selection of P. tricornutum exposed to future OA conditions (i.e. elevated pCO2), the diatom alters its Cd detoxification strategy, which could have broader impacts on the bio-geochemical cycle of Cd in the marine ecosystem.
Collapse
Affiliation(s)
- Xiansheng Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shujie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Shaohua Wang
- Rongcheng Comprehensive Technology Transfer Center, Rongcheng, China
| | - Wentao Han
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Chengwei Liang
- Qingdao University of Science and Technology, Qingdao, China
| | - Yan Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Wei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW 2052, Australia
| | - Mahasweta Saha
- Marine Ecology and Biodiversity, Plymouth Marine Laboratory, PL13DH Plymouth, UK
| | - Fang Li
- Qingdao University of Science and Technology, Qingdao, China.
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
37
|
Britto RS, Nascimento JP, Serode T, Santos AP, Soares AMVM, Figueira E, Furtado C, Lima-Ventura J, Monserrat JM, Freitas R. The effects of co-exposure of graphene oxide and copper under different pH conditions in Manila clam Ruditapes philippinarum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30945-30956. [PMID: 31808098 DOI: 10.1007/s11356-019-06643-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Carbon nanomaterials (CNM), such as graphene oxide (GO), have been the focus of study in several areas of science mostly due to their physical-chemical properties. However, data concerning the potential toxic effects of these CNM in bivalves are still scarce. When present in the aquatic systems, the combination with other contaminants, as well as pH environmental variations, can influence the behavior of these nanomaterials and, consequently, their toxicity. Thus, the main goal of this study was to evaluate the effect of exposure of clam Ruditapes philippinarum to GO when acting alone and in the combination with copper (Cu), under two pH levels (control 7.8 and 7.3). A 28-day exposure was performed and metabolism and oxidative stress-related parameters were evaluated. The effects caused by GO and Cu exposures, either isolated or co-exposed, showed a direct and dependent relationship with the pH in which the organisms were exposed. In clams maintained at control pH (7.8), Cu and GO + Cu treatments showed lower lipid peroxidation (LPO) and lower electron transport system (ETS) activity, respectively. In clams maintained at low pH, glutathione-S-transferases (GSTs) activities were increased in Cu and Cu + GO treatments, whereas reduced glutathione (GSH) levels were increased in Cu treatment and ETS activity was higher in GO + Cu. Thus, it can be observed that clams responses to Cu and GO were strongly modulated by pH in terms of their defense system and energy production, although this does not result into higher LPO levels.
Collapse
Affiliation(s)
- Roberta Socoowski Britto
- Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas(ICB), FURG, Rio Grande, Brazil
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | | | - Tiago Serode
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Minas Gerais, MG, Brazil
| | - Adelina P Santos
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Minas Gerais, MG, Brazil
| | | | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Clascídia Furtado
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Minas Gerais, MG, Brazil
| | - Juliane Lima-Ventura
- Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas(ICB), FURG, Rio Grande, Brazil
| | - José M Monserrat
- Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas(ICB), FURG, Rio Grande, Brazil.
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
38
|
Sezer N, Kılıç Ö, Sıkdokur E, Çayır A, Belivermiş M. Impacts of elevated pCO 2 on Mediterranean mussel (Mytilus galloprovincialis): Metal bioaccumulation, physiological and cellular parameters. MARINE ENVIRONMENTAL RESEARCH 2020; 160:104987. [PMID: 32907725 DOI: 10.1016/j.marenvres.2020.104987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Ocean acidification alters physiology, acid-base balance and metabolic activity in marine animals. Near future elevated pCO2 conditions could be expected to influence the bioaccumulation of metals, feeding rate and immune parameters in marine mussels. To better understand such impairments, a series of laboratory-controlled experiment was conducted by using a model marine mussel, Mytilus galloprovincialis. The mussels were exposed to three pH conditions according to the projected CO2 emissions in the near future (one ambient: 8.10 and two reduced: 7.80 and 7.50). At first, the bioconcentration of Ag and Cd was studied in both juvenile (2.5 cm) and adult (5.1 cm) mussels by using a highly sensitive radiotracer method (110mAg and 109Cd). The uptake and depuration kinetics were followed 21 and 30 days, respectively. The biokinetic experiments demonstrated that the effect of ocean acidification on bioconcentration was metal-specific and size-specific. The uptake, depuration and tissue distribution of 110mAg were not affected by elevated pCO2 in both juvenile and adult mussels, whereas 109Cd uptake significantly increased with decreasing pH in juveniles but not in adults. Regardless of pH, 110mAg accumulated more efficiently in juvenile mussels than adult mussels. After executing the biokinetic experiment, the perturbation was sustained by using the same mussels and the same experimental set-up, which enabled us to determine filtration rate, haemocyte viability, lysosomal membrane stability, circulating cell-free nucleic acids (ccf-NAs) and protein (ccf-protein) levels. The filtration rate and haemocyte viability gradually decreased by increasing pCO2 level, whereas the lysosomal membrane stability, ccf-NAs, and ccf-protein levels remained unchanged in the mussels exposed to elevated pCO2 for eighty-two days. This study suggests that acidified seawater partially shift metal bioaccumulation, physiological and cellular parameters in the mussel Mytilus galloprovincialis.
Collapse
Affiliation(s)
- Narin Sezer
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Turkey
| | - Önder Kılıç
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Turkey
| | - Ercan Sıkdokur
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul, Turkey
| | - Akın Çayır
- Vocational Health College, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Murat Belivermiş
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Turkey.
| |
Collapse
|
39
|
Liu F, Tan QG, Weiss D, Crémazy A, Fortin C, Campbell PGC. Unravelling Metal Speciation in the Microenvironment Surrounding Phytoplankton Cells to Improve Predictions of Metal Bioavailability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8177-8185. [PMID: 32539359 PMCID: PMC7467636 DOI: 10.1021/acs.est.9b07773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/29/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
A lack of knowledge on metal speciation in the microenvironment surrounding phytoplankton cells (i.e., the phycosphere) represents an impediment to accurately predicting metal bioavailability. Phycosphere pH and O2 concentrations from a diversity of algae species were compiled. For marine algae in the light, the average increases were 0.32 pH units and 0.17 mM O2 in the phycosphere, whereas in the dark the average decreases were 0.10 pH units and 0.03 mM O2, in comparison to bulk seawater. In freshwater algae, the phycosphere pH increased by 1.28 units, whereas O2 increased by 0.38 mM in the light. Equilibrium modeling showed that the pH alteration influenced the chemical species distribution (i.e., free ion, inorganic complexes, and organic complexes) of Al, Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb, Sc, Sm, and Zn in the phycosphere, and the O2 fluctuation increased oxidation rates of Cu(I), Fe(II) and Mn(II) from 2 to 938-fold. The pH/O2-induced changes in phycosphere metal chemistry were larger for freshwater algae than for marine species. Reanalyses of algal metal uptake data in the literature showed that uptake of the trivalent metals (Sc, Sm and Fe), in addition to divalent metals, can be better predicted after considering the phycosphere chemistry.
Collapse
Affiliation(s)
- Fengjie Liu
- Department
of Earth Science and Engineering, Imperial
College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Qiao-Guo Tan
- Key
Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education,
College of Environment and Ecology, Xiamen
University, Xiamen, Fujian 361102, P. R. China
| | - Dominik Weiss
- Department
of Earth Science and Engineering, Imperial
College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Anne Crémazy
- Department
of Biological Sciences, University of New
Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Claude Fortin
- Institut
National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec Québec, G1K 9A9, Canada
| | - Peter G. C. Campbell
- Institut
National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec Québec, G1K 9A9, Canada
| |
Collapse
|
40
|
Belivermiş M, Besson M, Swarzenski P, Oberhaensli F, Taylor A, Metian M. Influence of pH on Pb accumulation in the blue mussel, Mytilus edulis. MARINE POLLUTION BULLETIN 2020; 156:111203. [PMID: 32510362 DOI: 10.1016/j.marpolbul.2020.111203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Changes in seawater pH can alter the chemical speciation of waterborne chemical elements, affecting their bioavailability and, consequently, their bioaccumulation in marine organisms. Here, controlled environmental conditions and a 210Pb radiotracer were used to assess the effect of five distinct pH conditions (pHT ranging from 7.16 to 7.94) on the short-term (9 days) accumulation of Pb in the blue mussel, Mytilus edulis. After 9 days of exposure, higher levels of Pb were observed in the soft tissues of mussels maintained in the lower pH conditions, while Pb levels accumulated by mussel shells showed no difference across pH conditions. These results suggest that pH decreases such as those predicted by ocean acidification scenarios could enhance Pb contamination in marine organisms, with potential subsequent contamination and effect risks for human consumers.
Collapse
Affiliation(s)
- Murat Belivermiş
- Department of Biology, Faculty of Science, Istanbul University, 34134 Vezneciler, Istanbul, Turkey.
| | - Marc Besson
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, MC-98000, Principality of Monaco, Monaco
| | - Peter Swarzenski
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, MC-98000, Principality of Monaco, Monaco
| | - François Oberhaensli
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, MC-98000, Principality of Monaco, Monaco
| | - Angus Taylor
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, MC-98000, Principality of Monaco, Monaco
| | - Marc Metian
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, MC-98000, Principality of Monaco, Monaco
| |
Collapse
|
41
|
Cui W, Cao L, Liu J, Ren Z, Zhao B, Dou S. Effects of seawater acidification and cadmium on the antioxidant defense of flounder Paralichthys olivaceus larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137234. [PMID: 32087580 DOI: 10.1016/j.scitotenv.2020.137234] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Increasing atmospheric carbon dioxide has led to a decrease in the pH of the ocean, which influences the speciation of heavy metals and consequently affects metal toxicity in marine organisms. To investigate the effects of seawater acidification and metals on the antioxidant defenses of marine fishes, the flounder Paralichthys olivaceus, was continuously exposed to cadmium (Cd; control, 0.01 and 0.15 mg L-1) and acidified seawater (control (pH 8.10), 7.70 and 7.30) for 49 days from embryogenesis to settlement. The results demonstrated that both Cd and acidified seawater could induce oxidative stress and consequently cause lipid peroxidation (LPO) in the larvae. Antioxidants (i.e., superoxide dismutase, SOD; catalase, CAT; reduced glutathione, GSH; glutathione S-transferase, GST; glutathione peroxidase, GPx; and glutathione reductase, GR) functioned to defend the larvae against oxidative damage. Overall, Cd induced (SOD, GST and GSH) or inhibited (CAT and GPx) the enzymatic activities or contents of all the selected antioxidants except for GR. The antioxidants responded differently to seawater acidification, depending on their interaction with the metal. Similarly, the mRNA expressions of the antioxidant-related genes were upregulated (sod, gr and gst) or downregulated (cat and gpx) in response to increasing Cd exposure. Seawater acidification did not necessarily affect all of the biomarkers; in some cases (e.g., SOD and sod, GR and gr), Cd stress may have exceeded and masked the stress from seawater acidification in regulating the antioxidant defense of the larvae. The integrated biomarker response (IBR) was enhanced with increasing levels of the stressors. These findings support the hypothesis that seawater acidification not only directly affects the antioxidant defense in flounder larvae but also interacts with Cd to further regulate this defense. This study has ecological significance for assessing the long-term impacts of ocean acidification and metal pollution on the recruitment of fish populations in the wild.
Collapse
Affiliation(s)
- Wenting Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Liang Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jinhu Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zhonghua Ren
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bo Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuozeng Dou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
42
|
Dong F, Wang P, Qian W, Tang X, Zhu X, Wang Z, Cai Z, Wang J. Mitigation effects of CO 2-driven ocean acidification on Cd toxicity to the marine diatom Skeletonema costatum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113850. [PMID: 31887602 DOI: 10.1016/j.envpol.2019.113850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Ocean acidification (OA) is a global problem to marine ecosystems. Cadmium (Cd) is a typical metal pollutant, which is non-essential but extremely toxic to marine organisms. The combined effects of marine pollution and climate-driven ocean changes should be considered for the effective marine ecosystem management of coastal areas. Previous reports have separately investigated the influences of OA and Cd pollution on marine organisms. However, little is known of the potential combined effects of OA and Cd pollution on marine diatoms. We investigated the sole and combined influences of OA (1500 ppm CO2) and Cd exposure (0.4 and 1.2 mg/L) on the coastal diatom Skeletonema costatum. Our results clearly showed that OA significantly alleviated the toxicity of Cd to S. costatum growth and mitigated the oxidant stress, although the intercellular Cd accumulation still increased. OA partially rescued S. costatum from the inhibition of photosynthesis and pyruvate metabolism caused by Cd exposure. It also upregulated genes involved in gluconeogenesis, glycolysis, the citrate cycle (TCA), Ribonucleic acid (RNA) metabolism, and especially the biosynthesis of non-protein thiol compounds. These changes might contribute to algal growth and Cd resistance. Overall, this study demonstrates that OA can alleviate Cd toxicity to S. costatum and explores the potential underlying mechanisms at both the cellular and molecular levels. These results will ultimately help us understand the impacts of combined stresses of climate change and metal pollution on marine organisms and expand the knowledge of the ecological risks of OA.
Collapse
Affiliation(s)
- Fang Dong
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China; Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Pu Wang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Wei Qian
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Xing Tang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China
| | - Xiaoshan Zhu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, PR China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 2141122, PR China
| | - Zhonghua Cai
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Jiangxin Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China
| |
Collapse
|
43
|
Sharma D, Biswas H, Silori S, Bandyopadhyay D, Shaik AU, Cardinal D, Mandeng-Yogo M, Ray D. Impacts of Zn and Cu enrichment under ocean acidification scenario on a phytoplankton community from tropical upwelling system. MARINE ENVIRONMENTAL RESEARCH 2020; 155:104880. [PMID: 32072984 DOI: 10.1016/j.marenvres.2020.104880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Increasing dissolution of CO2 in the surface ocean is rapidly decreasing its pH and changing carbon chemistry which is further affecting marine biota in several ways. Phytoplankton response studies under the combination of elevated CO2 and trace metals are rare. We have conducted two consecutive onboard incubation experiments (R. V. Sindhu Sadhana; August 2017) in the eastern Arabian Sea (SW coast of India) during an upwelling event. A nutrient enriched diatom bloom was initiated onboard and grown under ambient (≈400 μatm, A-CO2) and high CO2 levels (≈1000 μatm; H-CO2) with different zinc (Zn; 1 nM) and copper (Cu) concentrations (1 nM, 2 nM and 8 nM). Phytoplankton community composition and the dominant genera were different during these two experiments. CO2 enrichment alone did not show any significant growth stimulating impact on the experimental community except enhanced cell density in the first experiment. Addition of Zn at A-CO2 level revealed no noticeable responses; whereas, the same treatment under H-CO2 level significantly reduced cell number. Considerably high protein content under H-CO2+Zn treatment was possibly counteracting Zn toxicity which also caused slower growth rate. Cu addition did not show any noticeable impact on growth and biomass production except increased protein content as well as decreased carbohydrate: protein ratio. This can be attributed to relatively higher protein synthesis than carbohydrate to alleviate oxidative stress generated by Cu. The centric diatom Chaetoceros and toxin producing pennate diatom Pseudo-nitzschia showed no significant response to either CO2 or Zn enrichment. Large centric diatom Leptocylindrus and Skeletonema responded positively to Zn addition in both CO2 levels. The former species showed the most sensitive response at the highest Cu and H-CO2 treatment; whereas, the pennate diatoms Nitzschia and Pseudo-nitzschia (toxigenic diatom) showed higher resilience under elevated CO2 and Cu levels. This observation indicated that in future ocean, increasing CO2 concentrations and trace metal pollution may potentially alter phytoplankton community structure and may facilitate toxigenic diatom bloom in the coastal waters.
Collapse
Affiliation(s)
- Diksha Sharma
- CSIR National Institute of Oceanography, Biological Oceanography Division, Dona Paula, Goa, 403 004, India
| | - Haimanti Biswas
- CSIR National Institute of Oceanography, Biological Oceanography Division, Dona Paula, Goa, 403 004, India.
| | - Saumya Silori
- CSIR National Institute of Oceanography, Biological Oceanography Division, Dona Paula, Goa, 403 004, India
| | - D Bandyopadhyay
- CSIR National Institute of Oceanography, Biological Oceanography Division, Dona Paula, Goa, 403 004, India
| | - Aziz urRahman Shaik
- CSIR National Institute of Oceanography, Biological Oceanography Division, Dona Paula, Goa, 403 004, India
| | - Damien Cardinal
- Laboratoire d'Océanographieet du Climat:Expérimentations et ApprochesNumériques (LOCEAN UMR7159, SU, IRD, CNRS, MNHN), Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Magloire Mandeng-Yogo
- LOCEAN (UMR7159, SU, IRD, CNRS, MNHN) -Institut de recherche pour le développement (IRD), 32 Avenue Henri Varagnat, 93140, Bondy, France
| | - Durbar Ray
- CSIR National Institute of Oceanography, Biological Oceanography Division, Dona Paula, Goa, 403 004, India
| |
Collapse
|
44
|
González-Álvarez RJ, Pinto JJ, López-López JA, Mendiguchía C, Moreno C. Selective solvent bar micro-extraction as a single-step approach for the measurement of Cu fractions in seawater. Anal Bioanal Chem 2020; 412:1863-1870. [PMID: 31975154 DOI: 10.1007/s00216-020-02433-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/17/2022]
Abstract
Hollow fibre-supported liquid membrane was used for Cu fractionation in marine waters, using di-2-pyridylketone benzoylhydrazone (dPKBH) as a carrier due to its capacity to transport dissolved inorganic Cu at natural seawater pH. Optimized conditions were dPKBH (0.5 mmol L-1), HNO3 (0.5 mol L-1) as acceptor agent, extraction time of 120 min and stirring speed of 800 rpm. Additionally, the selectivity of the method for the extraction of the inorganic Cu fraction was validated by comparing the experimental results with theoretical data, and a mathematical model was obtained for estimation of Cu linked to dissolved organic matter. The method was applied for the measurement of Cu fractions in real seawater samples. Results were successfully compared with the reference material BCR 403 and recovery analysis in waters from the Gulf of Cádiz, showing that it could be used as a simple approach for the study of different Cu fractions in marine waters. Graphical abstract.
Collapse
Affiliation(s)
- Rafael J González-Álvarez
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, Instituto de Investigación Marina (INMAR), University of Cádiz, Puerto Real, 11510, Cádiz, Spain
| | - Juan J Pinto
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, Instituto de Investigación Marina (INMAR), University of Cádiz, Puerto Real, 11510, Cádiz, Spain
| | - José A López-López
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, Instituto de Investigación Marina (INMAR), University of Cádiz, Puerto Real, 11510, Cádiz, Spain.
| | - Carolina Mendiguchía
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, Instituto de Investigación Marina (INMAR), University of Cádiz, Puerto Real, 11510, Cádiz, Spain
| | - Carlos Moreno
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, Instituto de Investigación Marina (INMAR), University of Cádiz, Puerto Real, 11510, Cádiz, Spain
| |
Collapse
|
45
|
Trace Element Concentrations in Livers of Pacific Harbor Seals ( Phoca vitulina richardii) from San Juan County, Washington, USA. J Wildl Dis 2019. [PMID: 31622186 DOI: 10.7589/2019-04-087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Approximately 5,000 Pacific harbor seals (Phoca vitulina richardii) reside year-round in San Juan County (SJC), Washington (US) in the center of the binational Salish Sea. We retrospectively analyzed total cadmium (Cd), copper (Cu), iron (Fe), mercury (Hg), magnesium (Mg), manganese (Mn), lead (Pb), selenium (Se), and zinc (Zn) in livers of dead stranded harbor seals (n=57) collected in SJC between 2009 and 2012 to identify age-related and regional patterns of trace element exposure. Consistent with prior studies of contaminants in pinnipeds, Hg, Cd, and Se concentrations increased with age, and Se:Hg molar ratios approached 1:1 in adult seals. Concentrations of Cd and Hg were below putative marine mammal toxicity thresholds. Mercury concentrations were comparable among Salish Sea populations. Although SJC is less urbanized with fewer industrial inputs than South Puget Sound (SPS), SJC nonpups had greater concentrations of Cd, Cu, and Zn, and pups had greater concentrations of Zn compared to SPS seals. We hypothesize these regional differences could be due to prey preference and availability or to natural geochemical processes. Reported concentrations inform future sampling protocols and can assist in tracking long-term temporal and spatial trends of trace elements in marine organisms.
Collapse
|
46
|
Duarte LFDA, Moreno JB, Catharino MGM, Moreira EG, Trombini C, Pereira CDS. Mangrove metal pollution induces biological tolerance to Cd on a crab sentinel species subpopulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:768-779. [PMID: 31412480 DOI: 10.1016/j.scitotenv.2019.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Metals are persistent pollutants, able to accumulate in the biota and magnify in trophic web. In the specific case of cadmium contamination, it has been the subject of considerable interest in recent years because of its biological effects and it is one of major pollutant in estuarine areas. Ucides cordatus is considered a mangrove local sentinel crab species in Brazil and there are previous studies reporting crab subpopulations living from pristine to heavily metal impacted areas in São Paulo coast (Southeastern Brazil). Taking into account the background knowledge about these subpopulations, we proposed the hypothesis that crabs from a highly polluted mangrove (Cubatão - CUB) have developed biological tolerance to cadmium compared to animals from an Environmental Protected Area (Jureia - JUR). Aiming to verify this hypothesis, we have investigated total bioaccumulation and subcellular partition of Cd, besides biomarkers' responses during a long-term exposure bioassay (28 days, with weekly sampling) using a supposedly safe Cd concentration (0.0022 mg L-1). Specimens from the pristine area (JUR) accumulated higher total Cd, as such as in its biologically active form in gills. Animals living in the polluted site (CUB) presented higher amounts of Cd in the mainly detoxifying tissue (hepatopancreas), which could be considered a pathway leading to tolerance for this metal. Multivariate analysis indicated that bioaccumulation (active, detoxified and total Cd) is linked to geno-cytotoxic damages. CUB subpopulation was considered more tolerant since it presented proportionally less damage and more capacity to allocate Cd in the main detoxifying forms and tissues.
Collapse
Affiliation(s)
- Luis Felipe de Almeida Duarte
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, Campus Baixada Santista, Rua Maria Máximo, 168, Ponta da Praia, Santos, SP 11030-100, Brazil.
| | - Julián Blasco Moreno
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Campus Río San Pedro, s/n, Puerto Real, Cádiz, Spain.
| | - Marília Gabriela Miranda Catharino
- Instituto de Pesquisas Energéticas e Nucleares (IPEN - CNEN/SP), Av. Professor Lineu Prestes, 2242, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Edson Gonçalves Moreira
- Instituto de Pesquisas Energéticas e Nucleares (IPEN - CNEN/SP), Av. Professor Lineu Prestes, 2242, Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| | - Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Campus Río San Pedro, s/n, Puerto Real, Cádiz, Spain.
| | - Camilo Dias Seabra Pereira
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, Campus Baixada Santista, Rua Maria Máximo, 168, Ponta da Praia, Santos, SP 11030-100, Brazil.
| |
Collapse
|
47
|
Gao Y, Zhou C, Gaulier C, Bratkic A, Galceran J, Puy J, Zhang H, Leermakers M, Baeyens W. Labile trace metal concentration measurements in marine environments: From coastal to open ocean areas. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Nielson C, Hird C, Lewis C. Ocean acidification buffers the physiological responses of the king ragworm Alitta virens to the common pollutant copper. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:120-127. [PMID: 31103733 DOI: 10.1016/j.aquatox.2019.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Ocean acidification (OA) has the potential to alter the bioavailability of pH sensitive metals contaminating coastal sediments, particularly copper, by changing their speciation in seawater. Hence OA may drive increased toxicity of these metals to coastal biota. Here, we demonstrate complex interactions between OA and copper on the physiology and toxicity responses of the sediment dwelling polychaete Alitta virens. Worm coelomic fluid pCO2 was not increased by exposure to OA conditions (pHNBS 7.77, pCO2 530 μatm) for 14 days, suggesting either physiological or behavioural responses to control coelomic fluid pCO2. Exposure to 0.25 μM nominal copper caused a decrease in coelomic fluid pCO2 by 43.3% and bicarbonate ions by 44.6% but paradoxically this copper-induced effect was reduced under near-future OA conditions. Hence OA appeared to 'buffer' the copper-induced acid-base disturbance. DNA damage was significantly increased in worms exposed to copper under ambient pCO2 conditions, rising by 11.1% compared to the worms in the no copper control, but there was no effect of OA conditions on the level of DNA damage induced by copper when exposed in combination. These interactions differ from the increased copper toxicity under OA conditions reported for several other invertebrate species. Hence this new evidence adds to the developing paradigm that species' physiology is key in determining the interactions of these two stressors rather than it purely being driven by the changes in metal chemistry under lower seawater pH.
Collapse
Affiliation(s)
- Clara Nielson
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom.
| | - Cameron Hird
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom.
| | - Ceri Lewis
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom.
| |
Collapse
|
49
|
James AK, Kelly LW, Nelson CE, Wilbanks EG, Carlson CA. Elevated pCO 2 alters marine heterotrophic bacterial community composition and metabolic potential in response to a pulse of phytoplankton organic matter. Environ Microbiol 2019; 21:541-556. [PMID: 30461157 DOI: 10.1111/1462-2920.14484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Factors that affect the respiration of organic carbon by marine bacteria can alter the extent to which the oceans act as a sink of atmospheric carbon dioxide. We designed seawater dilution experiments to assess the effect of pCO2 enrichment on heterotrophic bacterial community composition and metabolic potential in response to a pulse of phytoplankton-derived organic carbon. Experiments included treatments of elevated (1000 p.p.m.) and low (250 p.p.m.) pCO2 amended with 10 μmol L-1 dissolved organic carbon from Emiliana huxleyi lysates, and were conducted using surface-seawater collected from the South Pacific Subtropical Gyre. To assess differences in community composition and metabolic potential, shotgun metagenomic libraries were sequenced from low and elevated pCO2 treatments collected at the start of the experiment and following exponential growth. Our results indicate bacterial communities changed markedly in response to the organic matter pulse over time and were significantly affected by pCO2 enrichment. Elevated pCO2 also had disproportionate effects on the abundance of sequences related to proton pumps, carbohydrate metabolism, modifications of the phospholipid bilayer, resistance to toxic compounds and conjugative transfer. These results contribute to a growing understanding of the effects of elevated pCO2 on bacteria-mediated carbon cycling during phytoplankton bloom conditions in the marine environment.
Collapse
Affiliation(s)
- Anna K James
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Linda W Kelly
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Craig E Nelson
- Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Elizabeth G Wilbanks
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Craig A Carlson
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
50
|
Dorey N, Maboloc E, Chan KYK. Development of the sea urchin Heliocidaris crassispina from Hong Kong is robust to ocean acidification and copper contamination. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:1-10. [PMID: 30296660 DOI: 10.1016/j.aquatox.2018.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Metallic pollution is of particular concern in coastal cities. In the Asian megacity of Hong Kong, despite water qualities have improved over the past decade, some local zones are still particularly affected and could represent sinks for remobilization of labile toxic species such as copper. Ocean acidification is expected to increase the fraction of the most toxic form of copper (Cu2+) by 2.3-folds by 2100 (pH ≈7.7), increasing its bioavailability to marine organisms. Additionally, multiple stressors are likely to exert concomitant effects (additive, synergic or antagonist) on the organisms living in the sea. Here, we tested the hypothesis that copper-contaminated waters are more toxic to sea urchin larvae under future pH conditions. We exposed sea urchin embryos and larvae to two low-pH and two copper treatments (0.1 and 1.0 μM) in three separate experiments. Over the short time typically used for toxicity tests (up to 4-arm plutei, i.e. 3 days), larvae of the sea urchin Heliocidaris crassispina were robust and survived the copper levels present in Hong Kong waters today (≤0.19 μM) as well as the average pH projected for 2100. We, however, observed significant mortality with lowering pH in the longer, single-stressor experiment (Expt A: 8-arm plutei, i.e. 9 days). Abnormality and arm asymmetry were significantly increased by pH or/and by copper presence (depending on the experiment and copper level). Body size (d3; but not body growth rates in Expt A) was significantly reduced by both lowered pH and added copper. Larval respiration (Expt A) was doubled by a decrease at pHT from 8.0 to 7.3 on d6. In Expt B1.0 and B0.1, larval morphology (relative arm lengths and stomach volume) were affected by at least one of the two investigated factors. Although the larvae appeared robust, these sub-lethal effects may have indirect consequences on feeding, swimming and ultimately survival. The complex relationship between pH and metal speciation/uptake is not well-characterized and further investigations are urgently needed to detangle the mechanisms involved and to identify possible caveats in routinely used toxicity tests.
Collapse
Affiliation(s)
- Narimane Dorey
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Elizaldy Maboloc
- School of Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Kit Yu Karen Chan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|