1
|
Chu X, Liu J, He N, Li J, Li T, Tian Y, Zhao P. Cu fate driven by colloidal polystyrene microplastics with pipe scale destabilization in drinking water distribution systems. WATER RESEARCH 2024; 256:121613. [PMID: 38663210 DOI: 10.1016/j.watres.2024.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
Microplastics (MPs) and Cu have been detected in drinking water distribution systems (DWDSs). Investigating MP effects on Cu adsorption by pipe scales and concomitant variations of pipe scales was critical for improving the water quality, which remained unclear to date. Therefore, polystyrene microplastics (PSMPs) were adopted for the model MPs to determine their effects on Cu fate and pipe scale stabilization, containing batch adsorption, metal speciation extraction, and Cu release experiments. Findings demonstrated that complexation and electrostatic interactions were involved in Cu adsorption on pipe scales. PSMPs contributed to Cu adsorption via increasing negative charges of pipe scales and providing additional adsorption sites for Cu, which included the carrying and component effects of free and adsorbed PSMPs, respectively. The decreased iron and manganese oxides fraction (45.57 % to 29.91 %) and increased organic fraction (48.51 % to 63.58 %) of Cu in pipe scales when PSMPs were coexisting illustrated that PSMPs had a greater affinity for Cu than pipe scales and thus influenced its mobility. Additionally, the release of Cu could be facilitated by the coexisted PSMPs, with the destabilization of pipe scales. This study was the first to exhibit that Cu fate and pipe scale stabilization were impacted by MPs, providing new insight into MP hazards in DWDSs.
Collapse
Affiliation(s)
- Xianxian Chu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jing Liu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Nan He
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaxin Li
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tiantian Li
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Yan Y, Yang B, Ji G, Lu K, Zhao Z, Zhang H, Xia M, Wang F. Tunable zirconium-based metal organic frameworks synthesis for dibutyl phthalate efficient removal: An investigation of adsorption mechanism on macro and micro scale. J Colloid Interface Sci 2023; 650:222-235. [PMID: 37402328 DOI: 10.1016/j.jcis.2023.06.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
The tunable porous structure of metal organic frameworks (MOFs) plays a crucial role in determining their adsorption performance. In this study, we developed and employed a strategy involving monocarboxylic acid assistance to synthesize a series of zirconium-based MOFs (UiO-66-F4) for the removal of aqueous phthalic acid esters (PAEs). The adsorption mechanisms were investigated by combining batch experiments, characterization and theoretical simulation. By adjusting the affecting factors (i.e., initial concentration, pH values, temperature, contact time and interfering substance), the adsorption behavior was confirmed as a spontaneous and exothermic chemisorption process. The Langmuir model provided a good fit, and the maximum expected adsorption capacity of di-n-butyl phthalate (DnBP) on UiO-66-F4(PA) was calculated to be 530.42 mg·g-1. Besides, through carrying out the molecular dynamics (MD) simulation, the multistage adsorption process in the form of DnBP clusters was revealed on a microcosmic scale. The independent gradient model (IGM) method showed the types of weak interactions of inter-fragments or between DnBP and UiO-66-F4. Furthermore, the synthesized UiO-66-F4 displayed excellent removal efficiency (>96 % after 5 cycles), satisfactory chemical stability and reusability in the regeneration process. Hence, the modulated UiO-66-F4 will be regarded as a promising adsorbent for PAEs separation. This work will provide referential significance in tunable MOFs development and actual applications of PAEs removal.
Collapse
Affiliation(s)
- Yanghao Yan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Baogang Yang
- Shenglong Chemical Industry Company, Zaozhuang 277519, China
| | - Guangwei Ji
- Shenglong Chemical Industry Company, Zaozhuang 277519, China
| | - Keren Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhiren Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hongling Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
3
|
Kong Y, Li X, Tao M, Cao X, Wang Z, Xing B. Cation-π mechanism promotes the adsorption of humic acid on polystyrene nanoplastics to differently affect their aggregation: Evidence from experimental characterization and DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132071. [PMID: 37487331 DOI: 10.1016/j.jhazmat.2023.132071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Multiple water-chemistry factors determine nanoplastics aggregation and thus change their bioavailability and ecological risks in natural aquatic environments. However, the dominant factors and their interactive mechanisms remain elusive. In this study, polystyrene nanoplastics (PSNPs) showed greater colloidal stability in Li Lake water compared to ultrapure water. The RDA and PARAFAC results suggested that dissolved organic carbon, humic acid (HA) in particular, Ca2+, and pH are critical factors influencing PSNPs aggregation. Batch experiments showed that the critical coagulation concentration (CCC) of PSNPs was increased with pH increase; HA increased the CCC of PSNPs in NaCl by 2.6-fold but decreased that in CaCl2 by 1.8-fold. Moreover, cations increased the adsorption of HA on PSNPs. The DFT results suggested that HA-cations complexes (EAE = -1.10 eV and -0.51 eV for HA-Ca2+ and HA-Na+, respectively) but not HA alone (EAE = -0.33 eV) are the main scenarios for their adsorption on PSNPs, and a cation-π mechanism between PSNPs and HA-cations complexes dominates PSNPs aggregation in this scenario. The findings are significant for better understanding the environmental process and fate of nanoplastics in aquatic environments. ENVIRONMENTAL IMPLICATION: Nanoplastics are kinds of emerging contaminants. Nanoplastic aggregation determines their bioavailability and toxic risks to ecological health. Herein, the hydrodynamic sizes of PSNPs in local Li Lake water was tested and a redundancy analysis was performed to examine the key water-chemistry factors driving PSNPs aggregation. Moreover, the mechanisms in PSNPs aggregation driven by multiple dominant water-chemistry factors including cations, pH, and DOC were firstly unveiled by combining experimental characterization and theoretical computations. This work improves our understanding of the environmental fate of nanoplastics and provides a theoretical basis for the risk assessment and control of nanoplastics in real aquatic environments.
Collapse
Affiliation(s)
- Yu Kong
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
4
|
Chen J, Xu B, Lu L, Zhang Q, Lu T, Farooq U, Chen W, Zhou Q, Qi Z. Insight into the inhibitory roles of ionic liquids in the adsorption of levofloxacin onto clay minerals. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Pei T, Shi F, Liu C, Lu Y, Lin X, Hou D, Yang S, Li J, Zheng Z, Zheng Y. Bamboo-derived nitrogen-doping magnetic porous hydrochar coactivated by K 2FeO 4 and CaCO 3 for phenol removal: Governing factors and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121871. [PMID: 37225081 DOI: 10.1016/j.envpol.2023.121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
In this study, a novel nitrogen-doped magnetic Fe-Ca codoped biochar for phenol removal was successfully fabricated via a hydrothermal and coactivation pyrolysis method. A series of adsorption process parameters (K2FeO4 to CaCO3 ratio, initial phenol concentration, pH value, adsorption time, adsorbent dosage and ion strength) and adsorption models (kinetic models, isotherms and thermodynamic models) were determined using batch experiments and various analysis techniques (XRD, BET, SEM-EDX, Raman spectroscopy, VSM, FTIR and XPS) to investigate the adsorption mechanism and metal-nitrogen-carbon interaction. The biochar with a ratio of Biochar: K2FeO4: CaCO3 = 3:1:1 exhibited superior properties for adsorption of phenol and had a maximum adsorption capacity of 211.73 mg/g at 298 K, C0 = 200 mg/L, pH = 6.0 and t = 480 min. These excellent adsorption properties were due to superior physicomechanical properties (a large specific surface area (610.53 m2/g) and pore volume (0.3950 cm3/g), a well-developed pore structure (hierarchical), a high graphitization degree (ID/IG = 2.02), the presence of O/N-rich functional groups and Fe-Ox,Ca-Ox, N-doping, as well as synergistic activation by K2FeO4 and CaCO3). The Freundlich and pseudo-second-order models effectively fit the adsorption data, indicating multilayer physicochemical adsorption. Pore filling and π-π interactions were the predominant mechanisms for phenol removal, and H-bonding interactions, Lewis-acid-base interactions, and metal complexation played an important role in enhancing phenol removal. A simple, feasible approach with application potential to organic contaminant/pollutant removal was developed in this study.
Collapse
Affiliation(s)
- Tao Pei
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Feng Shi
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Yi Lu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Shunxiong Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Jirong Li
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Zhifeng Zheng
- Xiamen Key Laboratory for High-valued Conversion Technology of Agricultural Biomass (Xiamen University), Fujian Provincial Engineering and Research Center of Clean and High-valued Technologies for Biomass, College of Energy, Xiamen University, Xiamen, 361102, PR China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China.
| |
Collapse
|
6
|
Tang S, Sun P, Qu G, Tian Y, Liu J, Pervez MN, Li X, Cao C, Zhao Y. Photo-aged non-biodegradable and biodegradable mulching film microplastics alter the interfacial behaviors between agricultural soil and inorganic arsenic. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131552. [PMID: 37207479 DOI: 10.1016/j.jhazmat.2023.131552] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/17/2023] [Accepted: 04/30/2023] [Indexed: 05/21/2023]
Abstract
The impacts of microplastics (MPs) prevalent in soil on the transport of pollutants were urged to be addressed, which has important implications for ecological risk assessment. Therefore, we investigated the influence of virgin/photo-aged biodegradable polylactic acid (PLA) and non-biodegradable black polyethylene (BPE) mulching films MPs on arsenic (As) transport behaviors in agricultural soil. Results showed that both virgin PLA (VPLA) and aged PLA (APLA) enhanced the adsorption of As(Ⅲ) (9.5%, 13.3%) and As(Ⅴ) (22.0%, 6.8%) due to the formation of abundant H-bonds. Conversely, virgin BPE (VBPE) reduced the adsorption of As(Ⅲ) (11.0%) and As(Ⅴ) (7.4%) in soil owing to the "dilution effect", while aged BPE (ABPE) improved arsenic adsorption amount to the level of pure soil due to newly generated O-containing functional groups being feasible to form H-bonds with arsenic. Site energy distribution analysis indicated that the dominant adsorption mechanism of arsenic, chemisorption, was not impacted by MPs. The occurrence of biodegradable VPLA/APLA MPs rather than non-biodegradable VBPE/ABPE MPs resulted in an increased risk of soil accumulating As(Ⅲ) (moderate) and As(Ⅴ) (considerable). This work uncovers the role of biodegradable/non-biodegradable mulching film MPs in arsenic migration and potential risks in the soil ecosystem, depending on the types and aging of MPs.
Collapse
Affiliation(s)
- Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Peipei Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Guojuan Qu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yue Tian
- School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Junlai Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Md Nahid Pervez
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Xiuyan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Chengjin Cao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
7
|
Liu Y, Song Y, Li H, Ma Z, Yang Z. Enhanced removal of organophosphate esters by iron-modified biochar with developed mesoporous: Performance and mechanism based on site energy distribution theory. CHEMOSPHERE 2023; 330:138722. [PMID: 37084903 DOI: 10.1016/j.chemosphere.2023.138722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/19/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Removing the widely concerned pollutant of organophosphate esters (OPEs) by agriculture waste biochar is an effective way to address the waste and pollutant problem simultaneously. In this work, an iron-modified coconut shell biochar (MCSB) was prepared by co-pyrolysis method and used to adsorb tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCPP), which were two typical OPEs. The attention was focused on comprehensively investigating the adsorption behaviors to study the adsorption mechanisms of TCEP and TCPP onto MCSB. With the development of mesoporous and formation of γ-Fe2O3 in MCSB, the adsorption equilibrium was quickly reached in 60 min with the Langmuir maximum adsorption capacities of 211.3 mg/g for TCEP and 223.7 mg/g for TCPP, respectively. Results of adsorption kinetics and isotherm showed the heterogeneous and multilayer of the adsorption process. Pore-filling interaction, the Lewis acid-base interaction, and the hydrophobic interaction were considered to drive the adsorption. And the site energy distribution theory was introduced to further reveal that the physisorption was the main adsorption mechanism, while the Lewis acid-base interaction was responsible for the differences in adsorption of TCEP and TCPP onto MCSB. Additionally, the excellent adsorption performances of MCSB in various circumstances and fixed-bed column experiments suggested that the MCSB would be a promising adsorbent for OPEs removal.
Collapse
Affiliation(s)
- Yang Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Yang Song
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| | - Zhizi Ma
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| |
Collapse
|
8
|
Jia A, Zhao Y, Liu Z, Zhang F, Shi C, Liu Z, Hong M, Li Y. New insight into enhanced transport of multi-component porous covalent-organic polymers with alkyl chains as injection agents for levofloxacin removal in saturated sand columns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160773. [PMID: 36509275 DOI: 10.1016/j.scitotenv.2022.160773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/19/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Levofloxacin (LEV) is prone to be retained in aquifers due to its strong adsorption affinity onto sand, thus posing a threat to groundwater quality. In-situ injection technology for remediating LEV-contaminated soil and groundwater is still challenging owing to the lack of appropriate remedial agents. Herein, two novel multi-component porous covalent-organic polymers (namely, SLEL-1 and SLEL-2) with alkyl chains were constructed through Schiff-base reactions to adsorb LEV from an aqueous solution, in which the kinetics, isotherms, influenced factors were investigated. Plausible adsorption mechanisms were proposed through characterization and experimental analysis, including pore filling effect, π-π electron-donor-acceptor (EDA) interaction, hydrogen bonding force, hydrophobic-hydrophobic interaction as well as electrostatic force. In addition, response surface methodology (RSM) revealed the treatment optimization and reciprocal relationship within multi-variables. Furthermore, taking advantage of favorable dispersion and outstanding competitive behavior, SLEL-1 was established as an in-situ adsorptive agent in dynamic saturated columns on a laboratory scale to investigate the removal of LEV from water-bearing stratum. Overall, the findings of this work provided an insight into the fabrication of SLELs as long-term mobile and reusable adsorptive agents for practical in-situ applications in the future.
Collapse
Affiliation(s)
- Aiyuan Jia
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Yongsheng Zhao
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Zhi Liu
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, PR China
| | - Fangyuan Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Can Shi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Zhisheng Liu
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, PR China
| | - Mei Hong
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| | - Yangxue Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; Chongqing Research Institute, Jilin University, Chongqing 401123, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
9
|
Zhang X, Zhen D, Liu F, Chen R, Peng Q, Wang Z. An achieved strategy for magnetic biochar for removal of tetracyclines and fluoroquinolones: Adsorption and mechanism studies. BIORESOURCE TECHNOLOGY 2023; 369:128440. [PMID: 36470496 DOI: 10.1016/j.biortech.2022.128440] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
In this study, poplar wood biochar modified with Fe3O4 (MPBC) was prepared using poplar wood as carbon source applied to remove tetracyclines and fluoroquinolones. The adsorption behavior was investigated by batch experiments, and a series of characterization techniques were used to study the corresponding mechanism. Characterizations indicated that pore filling, electrostatic interactions, π-π interaction, surface complexation, and hydrogen bond contributed to the adsorption of antibiotics on MPBC. Most importantly, the thermodynamic experiment results showed that the adsorption capacity of MPBC for tetracyclines (70.28-89.58 mg⋅g-1) was significantly higher than fluoroquinolones (35.54-60.31 mg⋅g-1), which was further explained by hydrogen bond interactions calculated from Conductor-like screening model for real solvents (COSMO-RS). In addition, the adsorption between MPBC and antibiotics was favorable at lower ionic strengths and neutral conditions. Conclusively, this study could provide a promising approach to controlling the pollution of tetracyclines and fluoroquinolones.
Collapse
Affiliation(s)
- Xianzhao Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Dawei Zhen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Fengmao Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Rui Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qingrong Peng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Zongyi Wang
- Beijing Key Laboratory of Detection and Control of Spoilage Microorganisms and Pesticide Residues in Agricultural Products, Beijing University of Agricultural, Beijing 102206, China
| |
Collapse
|
10
|
Xu Z, Jiang J, Wang M, Wang J, Tang Y, Li S, Liu J. Enhanced levofloxacin degradation by hierarchical porous Co3O4 with rich oxygen vacancies activating peroxymonosulfate: Performance and mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Wu M, Yang H, Wu Q, Yang Y, He Z. Adsorption and competition mechanism of tetracycline and erythromycin on montmorillonite: experimental and theoretical investigation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Enhanced adsorption for fluoroquinolones by MnOx-modified palygorskite composites: Preparation, properties and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Saya L, Malik V, Gautam D, Gambhir G, Singh WR, Hooda S. A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152529. [PMID: 34953830 DOI: 10.1016/j.scitotenv.2021.152529] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Among various classes of antibiotics, fluoroquinolones, especially Levofloxacin, are being administered on a large scale for numerous purposes. Being highly stable to be completely metabolized, residual quantities of Levofloxacin get accumulated into the food chain proving a great global threat for aquatic as well as terrestrial ecosystems. Various removal techniques including both conventional and advanced methods have been reported for this purpose. This review is a novel attempt to make a critical analysis of the recent advances made exclusively toward the sequestration of Levofloxacin from wastewater through an extensive literature survey (2015-2021). Adsorption and advanced oxidation processes especially photocatalytic degradation are the most tested techniques in which assorted nanomaterials play a significant role. Several photocatalysts exhibited up to 100% degradation of LEV which makes photocatalytic degradation the best method among other tested methods. However, the degraded products need to be further monitored in terms of their toxicity. Biological degradation may prove to be the most environment-friendly with the least toxicity, unfortunately, not much research is reported in the field. With these key findings and knowledge gaps, authors suggest the scope of hybrid techniques, which have been experimented on other antibiotics. These can potentially minimize the disadvantages of the individual techniques concurrently improving the efficiency of LEV removal. Besides, techniques like column adsorption, membrane treatment, and ozonation, being least reported, reserve good perspectives for future research. With these implications, the review will certainly serve as a breakthrough for researchers working in this field to aid their future findings.
Collapse
Affiliation(s)
- Laishram Saya
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Dhaula Kuan, New Delhi 110021, India; Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India; Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Vipin Malik
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - Drashya Gautam
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - Geetu Gambhir
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - W Rameshwor Singh
- Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India.
| | - Sunita Hooda
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
14
|
Wu Q, Zhang Y, Cui MH, Liu H, Liu H, Zheng Z, Zheng W, Zhang C, Wen D. Pyrolyzing pharmaceutical sludge to biochar as an efficient adsorbent for deep removal of fluoroquinolone antibiotics from pharmaceutical wastewater: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127798. [PMID: 34838357 DOI: 10.1016/j.jhazmat.2021.127798] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
This study explored the impact of pyrolysis parameters and modification methods on the characteristics of pharmaceutical sludge biochar, and investigated its capacity and mechanisms for levofloxacin (LEV), a typical fluoroquinolone antibiotics, adsorption. The results showed that SBET of the biochar was improved with temperature increase, but decreased when temperature reached 900 °C. Under the optimal pyrolysis condition of 800 °C and 90 min, the biochar possessed the highest SBET of 264.05 m2 g-1, excellent iodine value of 401.41 ± 3.84 mg∙g-1 and phenol adsorption of 57.36 ± 3.39 mg∙g-1. Among KOH, ZnCl2, and CO2 modifications, ZnCl2 modification achieved the highest phenol adsorption of 123.40 ± 4.65 mg g-1, with a significantly improved SBET of 534.91 m2 g-1. The maximum LEV adsorption capacity of ZnCl2 modified biochar, PZBC800, reached 159.26 mg g-1, which overwhelmed the reported sludge biochars. BET, zeta potential, FT-IR, XPS, and Raman analysis, along with quantum chemistry calculation, revealed that pore filling, hydrogen bonding, π-π interaction, surface complexation, and electrostatic interaction were the main mechanisms for the excellent LEV adsorption performance of PZBC800. Deep removal (99.9%) of Fluoroquinolones (FQs) from pharmaceutical wastewater was also achieved by PZBC800 adsorption. The study promoted the development of pharmaceutical sludge biochar preparation and its application in advanced treatment of FQs pharmaceutical wastewater.
Collapse
Affiliation(s)
- Qinyue Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China.
| | - Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Hongbo Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Zhiyong Zheng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Wei Zheng
- Department of Environmental Technology and Ecology, Yangtze Delta Region Institute of Tsinghua University Zhejiang, Jiaxing 314006, China.
| | - Cuicui Zhang
- Envirtecs Water and Wastewater Technology Company, Jiaxing 314000, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Zhao Y, Zhao C, Yang Y, Li Z, Qiu X, Gao J, Ji M. Adsorption of sulfamethoxazole on polypyrrole decorated volcanics over a wide pH range: Mechanisms and site energy distribution consideration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Chen Z, Ma W, Lu G, Hu J, Zhang Z, Wang B, Cheng Z, Pan Y. Parallel-slipped π-π electron-donor-acceptor in adsorption process: Molecular dynamics simulation. J Mol Graph Model 2021; 111:108100. [PMID: 34890895 DOI: 10.1016/j.jmgm.2021.108100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/14/2021] [Accepted: 11/28/2021] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulation was used to study the adsorption of single wall carbon nanotubes (SCNT) in levofloxacin (LEV) solutions of different concentrations by Radial distribution function, mean square displacement and interaction energy. The results showed that levofloxacin molecules were adsorbed around the carbon nanotubes. The adsorption effect of large concentration solution was not as good as that of low concentration solution because of agglomeration. LEV molecules with different concentration were free diffusion within 15ns, and gradually agglomerated under the influence of adsorption. The energy change is proportional to the concentration of the molecule. The distance between benzene rings corresponding to the agglomeration effect of levofloxacin molecules was 0.4 nm, which should be the effect of parallel-slipped π-π electron-donor-acceptor (EDA) interactions. The simulation results are valuable to study the adsorption and removal of benzenes by adsorbent.
Collapse
Affiliation(s)
- Zhen Chen
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Wei Ma
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, PR China.
| | - Guang Lu
- School of Environmental and Safety Engineering, Liaoning Shihua University, Fushun, 113001, PR China
| | - Jinglu Hu
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Zhe Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Baodong Wang
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, PR China
| | - Zihong Cheng
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, PR China
| | - Yuzhen Pan
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, PR China
| |
Collapse
|
17
|
Yuan Y, Li J, Wang C, An G. Contrasting microcystin-LR sorption and desorption capability of different farmland soils amended with biochar: Effects of biochar dose and aging time. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117364. [PMID: 34052651 DOI: 10.1016/j.envpol.2021.117364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
This study explored biochar (BC) amendment effects on microcystin-LR (MCLR) concentration-dependent sorption and sequential desorption (SDE) by diverse soils to assess MCLR-trapping by BC-amended soils. Soil properties varied with rising BC dose and aging time. As aging proceeded, BC-amended soils shared a generally similar 'firstly increase and then decrease' trend of MCLR sorption and 'firstly decrease and then increase' trend of desorption at most cases. It appeared that MCLR sorption by BC-amended soils was most positively correlated with mesoporosity and surface basic functionality. BC-amendment increased MCLR-trapping for most soils, especially 4% BC at 3 month-aging maximized trapping ratio of GZ, SY and SX to 86.59%-95.43%, 80.01%-87.20% and 78.73%-90.85%, respectively, at 50-500 μg/L MCLR by largely increasing sorption and decreasing desorption. BC-amendment best matched GZ soil because MCLR-trapping of BC-amended GZ exceeded other amended soils at the same BC dose and aging time, but failed to obviously increase MCLR-trapping of HS soil at most cases, except only case with 2% BC at 3 month-aging. Site energy distribution verified that maximally enhanced MCLR-trapping of most soils was due to greatly enhanced sorption affinity during sorption and 1st desorption cycle, making closer MCLR-binding that more resistant to desorption. Contrarily, BC-amendment did not enhance sorption affinity of HS along sorption-SDE to compromise MCLR-trapping increase at most cases. This study validated 3 months as suitable BC-aging time to maximize MCLR-trapping in diverse soils, and elucidated influencing factors and mechanisms from view of site energy distribution, which shed novel insights on MCLR sorption-desorption by BC-amended soils, and guided to optimize BC-amendment strategy for efficient MCLR-immobilization and eco-risk elimination in diverse soils.
Collapse
Affiliation(s)
- Yue Yuan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| | - Chengyu Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Guangqi An
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
18
|
Ultra-fast adsorption of four typical pollutants using magnetically separable ethanolamine-functionalized graphene. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Ashiq A, Vithanage M, Sarkar B, Kumar M, Bhatnagar A, Khan E, Xi Y, Ok YS. Carbon-based adsorbents for fluoroquinolone removal from water and wastewater: A critical review. ENVIRONMENTAL RESEARCH 2021; 197:111091. [PMID: 33794177 DOI: 10.1016/j.envres.2021.111091] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/23/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
This review summarizes the adsorptive removal of Fluoroquinolones (FQ) from water and wastewater. The influence of different physicochemical parameters on the adsorptive removal of FQ-based compounds is detailed. Further, the mechanisms involved in the adsorption of FQ-based antibiotics on various adsorbents are succinctly described. As the first of its kind, this paper emphasizes the performance of each adsorbent for FQ-type antibiotic removal based on partition coefficients of the adsorbents that is a more sensitive parameter than adsorption capacity for comparing the performances of adsorbents under various adsorbate concentrations and heterogeneous environmental conditions. It was found that π-π electron donor-acceptor interactions, electrostatic interactions, and pore-filling were the most prominent mechanisms for FQ adsorption by carbon and clay-based adsorbents. Among all the categories of adsorbents reviewed, graphene showed the highest performance for the removal of FQ antibiotics from water and wastewater. Based on the current state of knowledge, this review fills the gap through methodolically understanding the mechanism for further improvement of FQ antibiotics adsorption performance from water and wastewater.
Collapse
Affiliation(s)
- Ahmed Ashiq
- Ecosphere Resilience Research Centre, Faculty of Applied Science, University of Sri Jayewardenepura, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Science, University of Sri Jayewardenepura, Sri Lanka.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Manish Kumar
- Department of Earth Sciences, Indian Institute of Technology Gandhinagar, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada - Las Vegas, Las Vegas, NV, USA
| | - Yunfei Xi
- Institute for Future Environments & School of Earth and Atmospheric Sciences, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland, 4001, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
20
|
Tang S, Lin L, Wang X, Sun X, Yu A. Adsorption of fulvic acid onto polyamide 6 microplastics: Influencing factors, kinetics modeling, site energy distribution and interaction mechanisms. CHEMOSPHERE 2021; 272:129638. [PMID: 33485046 DOI: 10.1016/j.chemosphere.2021.129638] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Information on the interactions of microplastics (MPs) with dissolved organic matter (DOM) is essential for understanding their environmental impacts. This study selected fulvic acid (FA) as a typical DOM to investigate the influence of contact time, temperature, dosage, solution pH, salinity, and coexisting metal ions on the adsorption of FA onto polyamide 6 (PA6) MPs. The adsorption kinetic and isotherm can be successfully described by mixed-order (MO) and Freundlich models. The adsorption site energy distribution based on the Freundlich equation was applied to analyze the interaction between FA and PA6-MPs and the adsorption site heterogeneity. Thermodynamic analysis demonstrated that the values of parameters (ΔGads°, ΔSads°, ΔHads°) were significantly affected by initial solution concentrations and the adsorption process was spontaneous, endothermic, and randomness-increased. Fourier transform-infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) revealed the importance of amide functional groups of PA6-MPs in controlling FA adsorption. Hydrogen bonds, hydrophobic, electrostatic, and n-π electron donor-acceptor (n-π EDA) interactions played different roles on adsorption of FA under different conditions of solution chemistry. These findings are beneficial to provide new insights involving the adsorption behavior and interaction mechanisms of FA onto PA6-MPs for the environmental risk assessment of MPs.
Collapse
Affiliation(s)
- Shuai Tang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Lujian Lin
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Xuesong Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China.
| | - Xuan Sun
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Anqi Yu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| |
Collapse
|
21
|
Shao P, Pei J, Tang H, Yu S, Yang L, Shi H, Yu K, Zhang K, Luo X. Defect-rich porous carbon with anti-interference capability for adsorption of bisphenol A via long-range hydrophobic interaction synergized with short-range dispersion force. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123705. [PMID: 32829230 DOI: 10.1016/j.jhazmat.2020.123705] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/16/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Wastewater features-directed design of an adsorbent is promising but challenging strategy for sustainable remediation of actual bisphenol A (BPA)-polluted water. Herein, we report that the discarded cigarette butt-derived porous carbon (AC-800) exhibit high capacity (865 mg/g), rapid reaction rate (186.9 mg/g/min) and outstanding durability for adsorption of BPA. Different from the most reported carbon-based adsorbents, quantitative structure-activity relationship studies unveil that graphitic defect plays a crucial role in the improvement of adsorptivity. Further studies illuminate that π-π interactions, electrostatic attraction and hydrogen-bond interaction play a negligible role whereas long-range hydrophobic interaction synergized with short-range dispersion force make a substantial contribution to BPA adsorption on AC-800. Benefited from this unique adsorption mechanism, AC-800 features a remarkable anti-interference capability and realizes the efficient clean-up of BPA from actual wastewater with complex backgrounds. This work sheds new light on mechanistic insight into the BPA adsorption on carbon-based materials and develops a fit-for-purpose designed adsorbent toward green remediation of practical wastewater.
Collapse
Affiliation(s)
- Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Junjun Pei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Huan Tang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Shuiping Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Kai Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Kai Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| |
Collapse
|
22
|
Preparation of a nano bio-composite based on cellulosic biomass and conducting polymeric nanoparticles for ibuprofen removal: Kinetics, isotherms, and energy site distribution. Int J Biol Macromol 2020; 162:663-677. [DOI: 10.1016/j.ijbiomac.2020.06.095] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/07/2022]
|
23
|
Yan B, Munoz G, Sauvé S, Liu J. Molecular mechanisms of per- and polyfluoroalkyl substances on a modified clay: a combined experimental and molecular simulation study. WATER RESEARCH 2020; 184:116166. [PMID: 32698092 DOI: 10.1016/j.watres.2020.116166] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 05/22/2023]
Abstract
Repeated application of aqueous film-forming foams (AFFF) in designated firefighting training areas has caused severe groundwater contamination by per- and polyfluoroalkyl substances (PFASs). Many research efforts are currently engaged for the effective removal of these chemicals from environmental waters. In this study, we demonstrate that modified clay produced by intercalating quaternary ammonium cations in the exchangeable interlayer sites of smectite clay can effectively remove PFAS pollutants in real groundwater via strong adsorption. The performance of the modified clay (with removal efficiencies 95~99%) is superior to those of granular activated carbon or hard-wood biochar and comparable to an ion exchange resin. Removal efficiency is not impacted by potential organic co-contaminants (e.g., diesel, BTEX, TCE, and 1,4 dioxane) or water chemistry (Ca2+ and Na+) at environmentally relevant concentrations. Furthermore, piecewise isotherms are identified to represent the uptake of PFASs by the modified clay. Based on molecular dynamics simulations, the anionic PFASs first occupy the highly polarized bare interlayer edge sites leading to a linear isotherm and then the interlayer surface sites resulting in a Langmuir isotherm. The ionic interactions between the cationic intercalant (N+) and the terminal oxygen atoms of carboxylate or sulfonate groups of PFASs play a dominant role in adsorption, and the lateral interaction in particular fluorophilic attraction among PFASs accelerate the adsorption. The strength of these interactions is quantified using Density Functional Theory calculations. Simulation results match reasonably well with the experimentally determined basal spacing and Fourier transform infrared spectroscopy of the modified clay loaded with PFASs. Overall, the combined experimental and molecular simulation studies elucidate the adsorption mechanism of PFASs on the modified clay and provide critical information to guide the use of modified clays for PFAS water treatment in the field.
Collapse
Affiliation(s)
- Bei Yan
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
24
|
Abdurahman A, Cui K, Wu J, Li S, Gao R, Dai J, Liang W, Zeng F. Adsorption of dissolved organic matter (DOM) on polystyrene microplastics in aquatic environments: Kinetic, isotherm and site energy distribution analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110658. [PMID: 32339926 DOI: 10.1016/j.ecoenv.2020.110658] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/04/2020] [Accepted: 04/17/2020] [Indexed: 05/09/2023]
Abstract
Microplastics and dissolved organic matter (DOM) are ubiquitous in aquatic environments. The adsorption behavior of DOM on microplastics in aquatic environments is a prominent concern. In this study, the adsorption of two types of DOM, Suwannee River Humic Acid (HA) and Suwannee River Fulvic Acid (FA), on polystyrene microplastics (PSMPs, 10 μm) in aquatic environments was investigated. The adsorption of both HA and FA on PSMPs could be well described by using pseudo second-order and Freundlich models. The adsorption of HA and FA on PSMPs was low pH-dependent, particularly for FA adsorption. However, the elevated ionic strength slightly increased the adsorption of HA and FA on PSMPs. Based on Freundlich model, the site energy distribution of HA and FA adsorption on PSMPs under the experimental conditions were estimated. HA and FA first occupied the high-energy adsorption sites and then diffused to the low-energy adsorption sites on PSMPs. With higher site energies, HA demonstrated a much stronger adsorption affinity to PSMPs than FA. The adsorption site heterogeneity (σe*) on PSMPs under the experimental conditions were close. Hydrophobic interaction and π-π electron donor acceptor interaction acted simultaneously in the HA and FA adsorption on PSMPs. The results of this study suggested that the environmental behaviors of microplastics would be influenced by the amount and the type of DOM as well as solution chemistry.
Collapse
Affiliation(s)
- Abliz Abdurahman
- School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou, 510275, China; Guangdong Key Laboratory of Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong, Guangzhou, 510650, China
| | - Kunyan Cui
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangdong, Guangzhou, 510275, China
| | - Jie Wu
- Testing and Analysis Centre, Bureau of Geology and Mineral Exploration and Development of Jiangxi Province, Jiangxi, Nanchang, 330030, China
| | - Shuocong Li
- School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou, 510275, China
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou, 510275, China
| | - Juan Dai
- School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou, 510275, China
| | - Weiqian Liang
- School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou, 510275, China
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou, 510275, China.
| |
Collapse
|
25
|
Li B, Wei D, Li Z, Zhou Y, Li Y, Huang C, Long J, Huang H, Tie B, Lei M. Mechanistic insights into the enhanced removal of roxsarsone and its metabolites by a sludge-based, biochar supported zerovalent iron nanocomposite: Adsorption and redox transformation. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122091. [PMID: 31972529 DOI: 10.1016/j.jhazmat.2020.122091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Roxarsone is a phenyl-substituted arsonic acid comprising both arsenate and benzene rings. Few adsorbents are designed for the effective capture of both the organic and inorganic moieties of ROX molecules. Herein, nano zerovalent iron (nZVI) particles were incorporated on the surface of sludge-based biochar (SBC) to fabricate a dual-affinity sorbent that attracts both the arsenate and benzene rings of ROX. The incorporation of nZVI particles significantly increased the binding affinity and sorption capacity for ROX molecules compared to pristine SBC and pure nZVI. The enhanced elimination of ROX molecules was ascribed to synergetic adsorption and degradation reactions, through π-π* electron donor/acceptor interactions, H-bonding, and As-O-Fe coordination. Among these, the predominate adsorption force was As-O-Fe coordination. During the sorption process, some ROX molecules were decomposed into inorganic arsenic and organic metabolites by the reactive oxygen species (ROS) generated during the early stages of the reaction. The degradation pathways of ROX were proposed according to the oxidation intermediates. This work provides a theoretical and experimental basis for the design of adsorbents according to the structure of the target pollutant.
Collapse
Affiliation(s)
- Bingyu Li
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Dongning Wei
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Zhuoqing Li
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Yimin Zhou
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Yongjie Li
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Changhong Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Jiumei Long
- College of Life Sciences & Environment, Hengyang Normal University, Hengyang, 421008, PR China
| | - HongLi Huang
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Baiqing Tie
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Ming Lei
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China.
| |
Collapse
|
26
|
Guo C, Liu H, Wang C, Zhao J, Zhao W, Lu N, Qu J, Yuan X, Zhang YN. Electrochemical removal of levofloxacin using conductive graphene/polyurethane particle electrodes in a three-dimensional reactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114101. [PMID: 32084701 DOI: 10.1016/j.envpol.2020.114101] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/06/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The conductive polyurethane/polypyrrole/graphene (CPU/PPy/Gr) particle electrode was prepared by an in-situ oxidative polymerization method and used as particle electrodes to degrade levofloxacin (LEV) in a three-dimensional electrode reactor. The prepared CPU/PPy/Gr electrode was characterized systematically and the effects of initial pH, initial LEV concentration, aeration volume, voltage, and electrolyte concentration on the degradation efficiency were investigated. Results showed that more than 90% LEV was degraded and the energy consumption was 20.12 kWh/g LEV under conditions of pH 7, 6 V voltage, 2.0 L/min aeration volume, 20 mg/L initial LEV concentration, and 7 mM concentration of electrolyte (Na2SO4). A possible electrochemical oxidation pathway of LEV by the CPU/PPy/Gr electrode was proposed. In addition, the biotoxicity of LEV and its oxidation products was calculated using ECOSAR (Ecological Structure Activity Relationships) program in EPISuite. Toxicity evaluation using luminescent bacteria showed that the toxicities of some intermediates were higher than the parent compound. But the toxicity of degradation processes for LEV was effective decreasing. A possible reactive mechanism in the three-dimensional reactor was also recommended. In brief, the prepared CPU/PPy/Gr particle electrode constitutes an insight into the promising practical application in the wastewater treatment.
Collapse
Affiliation(s)
- Cuicui Guo
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130024, China
| | - Haiyang Liu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130024, China
| | - Chengzhi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jianchen Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130024, China
| | - Wenjun Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130024, China
| | - Nan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130024, China.
| | - Xing Yuan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130024, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130024, China.
| |
Collapse
|
27
|
Liao P, Li B, Xie L, Bai X, Qiao H, Li Q, Yang B, Liu C. Immobilization of Cr(VI) on engineered silicate nanoparticles: Microscopic mechanisms and site energy distribution. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121145. [PMID: 31522069 DOI: 10.1016/j.jhazmat.2019.121145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Engineered nanoparticles-mediated contaminant transport has been recognized as a significant process governing the mobility of metals and radionuclides in groundwater. Engineered silicate nanoparticles (ESNPs) are attractive materials for the sequestration or extraction of Cr(VI) and other metals and radionuclides from groundwater. While great efforts have been devoted toward the application of these materials for Cr(VI) sequestration, the underlying interface adsorption mechanism is not thoroughly elucidated. This study investigates the immobilization mechanisms of Cr(VI) on a representative ESNPs, NH2-MCM-41, over a range of water chemistry conditions. By combining batch adsorption experiments with an array of complementary characterizations, we provided spectroscopic and microscopic evidence that the electrostatic interactions between the positively charged NH2-MCM-41 surface derived from amino functionality and the negatively charged Cr(VI) species was the dominant mechanism responsible for Cr(VI) immobilization. In addition, the weak hydrogen bonding interactions may also contribute to adsorption to a degree. Furthermore, thermodynamic studies suggested a favorable, spontaneous, and exothermic adsorption process. Site energy analysis illustrated that the distribution of energy binding sites on NH2-MCM-41 is Cr(VI) loading dependent. The new insights provided here can advance understanding of the transport of Cr(VI) associated NH2-MCM-41 that benefits the application of ESNPs-based technologies for metals immobilization in groundwater.
Collapse
Affiliation(s)
- Peng Liao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China.
| | - Binrui Li
- School of Environment, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, PR China
| | - Lin Xie
- Department of Physics, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, PR China
| | - Xiaoao Bai
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Han Qiao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Qianqian Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Biwei Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Chongxuan Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China.
| |
Collapse
|
28
|
Cadmium removal from water by enhanced adsorption on iron-embedded granular acicular mullite ceramic network. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2019.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Adsorption of levofloxacin onto mechanochemistry treated zeolite: Modeling and site energy distribution analysis. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Zhang P, Xiang M, Liu H, Yang C, Deng S. Novel Two-Dimensional Magnetic Titanium Carbide for Methylene Blue Removal over a Wide pH Range: Insight into Removal Performance and Mechanism. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24027-24036. [PMID: 31246391 DOI: 10.1021/acsami.9b04222] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two-dimensional (2D) layer-structured titanium carbide MXenes (e.g., 2D Ti3C2 MXene) have received tremendous attention owing to their excellent properties and unique 2D planar topology. Nevertheless, there are still several challenges to be addressed for well dispersibility and easy separation from a heterogeneous system, hindering the practical applications. Herein, 2D Ti3C2 MXene, as the most typical member of 2D MXenes, is functionalized with magnetic Fe3O4 nanoparticles via an in situ growth approach (designated as MXene@Fe3O4), which exhibits the intriguing phenomenon on methylene blue (MB) adsorption in the environmental remediation realm. The maximum adsorption capacity of the MXene@Fe3O4 composites for MB is calculated to be 11.68 mg·g-1 by a Langmuir isotherm model. A thermodynamic study of the adsorption demonstrates that the reaction process is exothermic and entropy-driven. Attractively, the removal process is a pH-independent process, and the optimal MB adsorption capacity is achieved at pH = 3 or 11, which is ascribed to electrostatic interactions and the hydrogen bond effect. X-ray diffraction, Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and density functional theory calculation results reveal that the adsorption process is based on a combination of Ti-OH···N bonding, electrostatic attraction, and reductivity. Furthermore, multiple cycle runs demonstrate an excellent stability and reusability of MXene@Fe3O4 composites. This study provides a promising approach for the alternative removal of MB and broadens the potential application of 2D MXene for the treatment of practical acidic or alkaline wastewater.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering , Nanchang University , Nanchang 330031 , China
| | - Mingxue Xiang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering , Nanchang University , Nanchang 330031 , China
| | - Huiling Liu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , China
| | - Chenkai Yang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering , Nanchang University , Nanchang 330031 , China
| | - Shuguang Deng
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering , Nanchang University , Nanchang 330031 , China
- School for Engineering of Matter, Transport and Energy , Arizona State University , 551 E. Tyler Mall , Tempe , Arizona 85287 , United States
| |
Collapse
|
31
|
Zhou H, Wu S, Zhou Y, Yang Y, Zhang J, Luo L, Duan X, Wang S, Wang L, Tsang DCW. Insights into the oxidation of organic contaminants by iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell: Catalyzed Fenton-like reaction at natural pH. ENVIRONMENT INTERNATIONAL 2019; 128:77-88. [PMID: 31029982 DOI: 10.1016/j.envint.2019.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/17/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell (B/N-C@Fe) were synthesized through a novel and green pyrolysis process using melamine, boric acid, and ferric nitrate as the precursors. The surface morphology, structure, and composition of the B/N-C@Fe materials were thoroughly investigated. The materials were employed as novel catalysts for the activation of potassium monopersulfate triple salt (PMS) for the degradation of levofloxacin (LFX). Linear sweep voltammograms and quenching experiments were used to identify the mechanisms of PMS activation and LFX oxidation by B/N-C@Fe, where SO4- as well as HO were proved to be the main radicals for the reaction processes. This study also discussed how the fluvic acid and inorganic anions in the aqueous solutions affected the degradation of LFX and use this method to simulate the degradation in the real wastewater. The synthesized materials showed a high efficiency (85.5% of LFX was degraded), outstanding stability, and excellent reusability (77.7% of LFX was degraded in the 5th run) in the Fenton-like reaction of LFX. In view of these advantages, B/N-C@Fe have great potentials as novel strategic materials for environmental catalysis.
Collapse
Affiliation(s)
- Hao Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shikang Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Lei Wang
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin St, Sheffield S1 3JD, United Kingdom; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
32
|
He J, Guo J, Zhou Q, Yang J, Fang F, Huang Y. Analysis of 17α-ethinylestradiol and bisphenol A adsorption on anthracite surfaces by site energy distribution. CHEMOSPHERE 2019; 216:59-68. [PMID: 30359917 DOI: 10.1016/j.chemosphere.2018.10.136] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 05/27/2023]
Abstract
17α-Ethinylestradiol (EE2) and bisphenol A (BPA) are highly toxic and widely detected endocrine-disrupting compounds (EDCs) throughout the world in surface waters. Adsorption is an effective way to remove EE2 and BPA from water. However, it is difficult to clearly explain the mechanism of adsorption theoretically only through classic adsorption models. In order to insight into the adsorption of EE2 and BPA, site energy distribution (SED) theory was introduced to investigate the adsorption of EE2 and BPA on heterogeneous surfaces. EE2 and BPA were adsorbed on un-anthracite (unmodified anthracite) and 4K anthracite (4 mol L-1 KOH-modified anthracite) in single- and bi-component systems under various temperatures and pHs. The results suggested that EE2 and BPA molecules first occupied the high-energy adsorption sites and then spread to low-energy adsorption sites. There were more high-energy sites on 4K anthracite, resulting in a higher adsorption capability for EE2 and BPA. Besides, increasing temperature and acidic environment were conducive to the EE2 and BPA adsorption. SED analyses indicated that, in neutral solutions, π-π electron donor-acceptor (EDA) interaction might be the primary mechanism for BPA adsorption, while ligand exchange, hydrogen bonds, and π-π EDA interaction might simultaneously work in the adsorption of EE2. It was possible that EE2 molecule was near perpendicular to surface, while BPA molecule was parallel to surface, resulting in the higher adsorption capacities of EE2. However, compared with EE2, BPA had outstanding competitive advantages in bi-component system because of the stronger π-π EDA interaction between BPA and anthracite.
Collapse
Affiliation(s)
- Jing He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China.
| | - Qiuhong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China
| | - Jixiang Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China
| | - Yang Huang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| |
Collapse
|
33
|
Yan B, Niu CH. Adsorption behavior of norfloxacin and site energy distribution based on the Dubinin-Astakhov isotherm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1525-1533. [PMID: 29727976 DOI: 10.1016/j.scitotenv.2018.03.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
Concerns about the water resources contaminated by fluoroquinolone antibiotics have prompted research on effective and efficient treatment technologies. In this work, adsorbents based on barley straw were characterized on morphology, surface functional groups, and charge states for the adsorption of norfloxacin, a representative of fluoroquinolone antibiotics, from aqueous solutions. The effects of solution pH were studied, and high norfloxacin adsorption capacities of pretreated barley straw were achieved in a wide pH range (2.90-10.50), which were much higher than those of raw barley straw. The adsorbent was also able to remove norfloxacin from low to high concentration range, demonstrating its capability for norfloxacin removal from water bodies. The electron-donor-acceptor interactions were proposed as one of the main adsorption mechanisms. The adsorption kinetic data achieved at a range of concentrations were well described by the pseudo-second-order kinetic model. The adsorption equilibrium data were reasonably well-fitted by the Dubinin-Astakhov model, and a site energy distribution function based on the Dubinin-Astakhov model was determined. With higher site energies, the pretreated barley straw demonstrated a much stronger adsorption affinity for norfloxacin than raw barley straw.
Collapse
Affiliation(s)
- Bei Yan
- School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Catherine Hui Niu
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan S7N 5C8, Canada.
| |
Collapse
|
34
|
Zhao X, Yi S, Dong S, Xu H, Sun Y, Hu X. Removal of Levofloxacin from aqueous solution by Magnesium-impregnated Biochar: batch and column experiments. CHEMICAL SPECIATION & BIOAVAILABILITY 2018. [DOI: 10.1080/09542299.2018.1487775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaoqing Zhao
- Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, China
| | - Shengze Yi
- Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, China
| | - Shunan Dong
- Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, China
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, China
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Center of Material Analysis, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|