1
|
Ding Y, Feng H, Han J, Jiang W, Dong S, Cheng H, Wang M, Wang A. Effect of UV pretreatment on the source control of floR during subsequent biotreatment of florfenicol wastewater. Appl Microbiol Biotechnol 2024; 108:120. [PMID: 38212963 DOI: 10.1007/s00253-023-12826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/29/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
UV photolysis has been recommended as an alternative pretreatment method for the elimination of antibacterial activity of antibiotics against the indicator strain, but the pretreated antibiotic intermediates might not lose their potential to induce antibiotic resistance genes (ARGs) proliferation during subsequent biotreatment processes. The presence of florfenicol (FLO) in wastewater seriously inhibits the metabolic performance of anaerobic sludge microorganisms, especially the positive correlation between UV irradiation doses and ATP content, while it did not significantly affect the organics utilization ability and protein biosynthetic process of aerobic microorganisms. After sufficient UV pretreatment, the relative abundances of floR from genomic or plasmid DNA in subsequent aerobic and anaerobic biotreatment processes both decreased by two orders of magnitude, maintained at the level of the groups without FLO selective pressure. Meanwhile, the abundances of floR under anaerobic condition were always lower than that under aerobic condition, suggesting that anaerobic biotreatment systems might be more suitable for the effective control of target ARGs. The higher abundance of floR in plasmid DNA than in genome also indicated that the potential transmission risk of mobile ARGs should not be ignored. In addition, the relative abundance of intI1 was positively correlated with floR in its corresponding genomic or plasmid DNA (p < 0.05), which also increased the potential horizontal transfer risk of target ARGs. This study provides new insights into the effect of preferential UV photolysis as a pretreatment method for the enhancement of metabolic performance and source control of target ARGs in subsequent biotreatment processes. KEY POINTS: • Sufficient UV photolytic pretreatment efficiently controlled the abundance of floR • A synchronous decrease in abundance of intI1 reduced the risk of horizontal transfer • An appreciable abundance of floR in plasmid DNA was a potential source of total ARGs.
Collapse
Affiliation(s)
- Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
- School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Jinglong Han
- School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China.
| | - Wenli Jiang
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, USA
| | - Shuangjing Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Haoyi Cheng
- School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
- School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
2
|
Zhang M, Liu J, Zhang W, Feng M, Yu X, Ye C. Neglected contributors to the transmission of bacterial antibiotic resistance in drinking water: Extracellular antibiotic resistance genes and the natural transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175970. [PMID: 39241883 DOI: 10.1016/j.scitotenv.2024.175970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance genes (ARGs) have increasingly gained recognition as an "emerging contaminant" that poses a threat to the biosafety of drinking water. However, previous researches have primarily focused on the intracellular state of ARGs and rarely investigated the ecological characteristics (e.g., distribution and origin), environmental behavior (spread), and risks of extracellular form (eARGs) within drinking water systems. Therefore, this review evaluated isolation strategies and extraction methods for recovering eARGs from drinking water, elucidated the distribution characteristics of eARGs, and examined their impact on the antibiotic resistome from source water to tap water. We emphasized that chlorination and biological treatments significantly contribute to the prevalence and persistence of eARGs in drinking water. Moreover, we highlighted the role of biological reactors (e.g., biofilter, biological activated carbon) and drinking water distribution systems in facilitating the natural transformation of eARGs while significantly contributing to bacterial antibiotic resistance (BAR) propagation. Finally, we summarized the current risk assessment systems for ARGs and critically address remaining challenging questions necessary for better forecasting health risks associated with eARGs in drinking water environments. Collectively, this review enhances the understanding of ecological characteristics and environmental behavior of eARGs in drinking water while providing important implications for controlling and reducing BAR contamination not only in drinking water but also in other aquatic environments.
Collapse
Affiliation(s)
- Menglu Zhang
- Postdoctoral Research Station of Ecology, Fujian Normal University, Fuzhou 350117, China; College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China.
| | - Jinchi Liu
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China
| | - Weifang Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Zhang Y, Zuo S, Zheng Q, Yu G, Wang Y. Removal of antibiotic resistant bacteria and antibiotic resistance genes by an electrochemically driven UV/chlorine process for decentralized water treatment. WATER RESEARCH 2024; 265:122298. [PMID: 39173362 DOI: 10.1016/j.watres.2024.122298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
The UV/chlorine (UV/Cl2) process is a developing advanced oxidation process and can efficiently remove antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, the transportation and storage of chlorine solutions limit the application of the UV/Cl2 process, especially for decentralized water treatment. To overcome the limitation, an electrochemically driven UV/Cl2 process (E-UV/Cl2) where Cl2 can be electrochemically produced in situ from anodic oxidation of chloride (Cl-) ubiquitously present in various water matrices was evaluated in this study. >5-log inactivation of the ARB (E. coli) was achieved within 5 s of the E-UV/Cl2 process, and no photoreactivation of the ARB was observed after the treatment. In addition to the ARB, intracellular and extracellular ARGs (tetA, sul1, sul2, and ermB) could be effectively degraded (e.g., log(C0/C) > 4 for i-ARGs) within 5 min of the E-UV/Cl2 process. Atomic force microscopy showed that the most of the i-ARGs were interrupted into short fragments (< 30 nm) during the E-UV/Cl2 process, which can thus effectively prevent the self-repair of i-ARGs and the horizontal gene transfer. Modelling results showed that the abatement efficiencies of i-ARG correlated positively with the exposures of •OH, Cl2-•, and ClO• during the E-UV/Cl2 process. Due to the short treatment time (5 min) required for ARB and ARG removal, insignificant concentrations of trihalomethanes (THMs) were generated during of the E-UV/Cl2 process, and the energy consumption (EEO) of ARG removal was ∼0.20‒0.27 kWh/m3-log, which is generally comparable to that of the UV/Cl2 process (0.18-0.23 kWh/m3-log). These results demonstrate that the E-UV/Cl2 process can provide a feasible and attractive alternative to the UV/Cl2 process for ARB and ARG removal in decentralized water treatment system.
Collapse
Affiliation(s)
- Yinqiao Zhang
- State of Key Laboratory of Natural Medicines, School of Engineering, China Pharmaceutical University, Nanjing 211198, China; School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Sijin Zuo
- State of Key Laboratory of Natural Medicines, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Quan Zheng
- China State Construction Hailong Technology Company Ltd., Shenzhen 518045, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Yu C, Gu L, Wu Z, Chen K, Wu Y, Zhang L, Long Q, Shi H, Xiong Z, Lai B. N-coordinated iron sites dispersed in porous carbon frameworks to activate peroxymonosulfate for efficient sulfisoxazole degradation and real hospital wastewater decontamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136149. [PMID: 39423642 DOI: 10.1016/j.jhazmat.2024.136149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Herein, an N-coordinated Fe site dispersed in porous carbon frameworks (Fe-NC) fabricated from zeolitic imidazolate frameworks encapsulated with iron acetylacetonate (Fe(acac)3 @ZIFs) was employed to activate peroxymonosulfate (PMS) for the attenuation of sulfisoxazole (SIZ) and treating real hospital wastewater. The constructed Fe-NC/PMS system exhibited good catalytic stability for SIZ degradation, maintaining excellent degradation performance over multiple cycles with virtually no leaching. The quenching experiments, electron paramagnetic resonance (EPR) capture analyses, and semi-quantitative measurements showed that singlet oxygen (1O2) and high-valent metal-oxo species were mainly responsible for SIZ degradation by Fe-NC/PMS. Significantly, ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to trace 134 pharmaceutical contaminants in real hospital wastewater. Effective degradation was achieved for 87 % of the pharmaceutical contaminants by the Fe-NC/PMS process. Seventy-four pharmaceutical contaminants were eliminated. Taken together, this work successfully established the Fe-NC/PMS technology using the developed iron-based materials and explored its application to real hospital wastewater treatment, providing an eco-friendly and effective strategy for treating wastewater.
Collapse
Affiliation(s)
- Chunxiu Yu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sichuan Province Engineering Technology Research Center of Emerging Contaminants Treatment and Environmental Health, Sichuan Academy of Eco-Environmental Sciences, Chengdu 610041, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Lingyun Gu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sichuan Province Engineering Technology Research Center of Emerging Contaminants Treatment and Environmental Health, Sichuan Academy of Eco-Environmental Sciences, Chengdu 610041, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zelin Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Kexin Chen
- Sichuan Province Engineering Technology Research Center of Emerging Contaminants Treatment and Environmental Health, Sichuan Academy of Eco-Environmental Sciences, Chengdu 610041, China
| | - Yi Wu
- Sichuan Province Engineering Technology Research Center of Emerging Contaminants Treatment and Environmental Health, Sichuan Academy of Eco-Environmental Sciences, Chengdu 610041, China
| | - Li Zhang
- Sichuan Province Engineering Technology Research Center of Emerging Contaminants Treatment and Environmental Health, Sichuan Academy of Eco-Environmental Sciences, Chengdu 610041, China
| | - Quan Long
- Sichuan Province Engineering Technology Research Center of Emerging Contaminants Treatment and Environmental Health, Sichuan Academy of Eco-Environmental Sciences, Chengdu 610041, China
| | - Hongle Shi
- Sichuan Province Engineering Technology Research Center of Emerging Contaminants Treatment and Environmental Health, Sichuan Academy of Eco-Environmental Sciences, Chengdu 610041, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Sun S, Chen X. Mechanism-guided strategies for combating antibiotic resistance. World J Microbiol Biotechnol 2024; 40:295. [PMID: 39122871 DOI: 10.1007/s11274-024-04106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Bacterial antibiotic resistance has been recognized as a global threat to public health. It challenges the antibiotics currently used in clinical practice and causes severe and often fatal infectious diseases. Fighting against antibiotic-resistant bacteria (ARB) is growing more urgent. While understanding the molecular mechanisms that underlie resistance is a prerequisite, several major mechanisms have been previously proposed including bacterial efflux systems, reduced cell membrane permeability, antibiotic inactivation by enzymes, target modification, and target protection. In this context, this review presents a panel of promising and potential strategies to combat antibiotic resistance/resistant bacteria. Different types of direct-acting and indirect resistance breakers, such as efflux pump inhibitors, antibiotic adjuvants, and oxidative treatments are discussed. In addition, the emerging multi-omics approaches for rapid resistance identification and promising alternatives to existing antibiotics are highlighted. Overall, this review suggests that continued effort and investment in research are required to develop new antibiotics and alternatives to existing antibiotics and translate them into environmental and clinical applications.
Collapse
Affiliation(s)
- Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xueyingzi Chen
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
6
|
Zhang S, Yao Z, Wang S, Zhang Y, Liu T, Zuo X. Dissolved oxygen facilitates efficiency of chlorine disinfection for antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173210. [PMID: 38750753 DOI: 10.1016/j.scitotenv.2024.173210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Controlling the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is a global concern. While commonly used chlorine disinfectants can damage or even kill ARB, dissolved oxygen (DO) may affect the formation of reactive chlorine species. This leads to the hypothesis that DO may play roles in mediating the effectiveness of chlorine disinfection for antibiotic resistance. To this end, this study investigated the impacts of DO on the efficiency of chlorine disinfection for antibiotic resistance. The results revealed that DO could increase the inactivation efficiency of ARB under chloramine and free chlorine exposure at practically relevant concentrations. Reactive species induced by DO, including H2O2, O2-, and OH, inactivated ARB strains by triggering oxidative stress response and cell membrane damage. In addition, the removal efficiency of extracellular ARGs (i.e. tetA and blaTEM) was enhanced with increasing dosage of free chlorine or chloramine under aerobic conditions. DO facilitated the fragmentation of plasmids, contributing to the degradation of extracellular ARGs under exposure to chlorine disinfectants. The findings suggested that DO facilitates disinfection efficiency for antibiotic resistance in water treatment systems.
Collapse
Affiliation(s)
- Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zheng Yao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shu Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xiaojun Zuo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| |
Collapse
|
7
|
Wang J, Huo L, Bian K, He H, Dodd MC, Pinto AJ, Huang CH. Efficacy and Mechanism of Antibiotic Resistance Gene Degradation and Cell Membrane Damage during Ultraviolet Advanced Oxidation Processes. ACS ES&T WATER 2024; 4:2746-2755. [PMID: 38903200 PMCID: PMC11186015 DOI: 10.1021/acsestwater.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Combinations of UV with oxidants can initiate advanced oxidation processes (AOPs) and enhance bacterial inactivation. However, the effectiveness and mechanisms of UV-AOPs in damaging nucleic acids (e.g., antibiotic resistance genes (ARGs)) and cell integrity represent a knowledge gap. This study comprehensively compared ARG degradation and cell membrane damage under three different UV-AOPs. The extracellular ARG (eARG) removal efficiency followed the order of UV/chlorine > UV/H2O2 > UV/peracetic acid (PAA). Hydroxyl radical (•OH) and reactive chlorine species (RCS) largely contributed to eARG removal, while organic radicals made a minor contribution. For intracellular ARGs (iARGs), UV/H2O2 did not remove better than UV alone due to the scavenging of •OH by cell components, whereas UV/PAA provided a modest synergism, likely due to diffusion of PAA into cells and intracellular •OH generation. Comparatively, UV/chlorine achieved significant synergistic iARG removal, suggesting the critical role of the RCS in resisting cellular scavenging and inactivating ARGs. Additionally, flow cytometry analysis demonstrated that membrane damage was mainly attributed to chlorine oxidation, while the impacts of radicals, H2O2, and PAA were negligible. These results provide mechanistic insights into bacterial inactivation and fate of ARGs during UV-AOPs, and shed light on the suitability of quantitative polymerase chain reaction (qPCR) and flow cytometry in assessing disinfection performance.
Collapse
Affiliation(s)
- Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Linxuan Huo
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kaiqin Bian
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huan He
- State
Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory
of Yangtze Water Environment, Ministry of Education, College of Environmental
Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Michael C. Dodd
- Department
of Civil and Environmental Engineering, University of Washington (UW), Seattle, Washington 98195-2700, United States
| | - Ameet J. Pinto
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Suyamud B, Lohwacharin J, Ngamratanapaiboon S. Effect of dissolved organic matter on bacterial regrowth and response after ultraviolet disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171864. [PMID: 38521274 DOI: 10.1016/j.scitotenv.2024.171864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
The effect of dissolved organic matter (DOM) on bacterial regrowth in water after disinfection using ultraviolet (UV) light emitting diodes (UVLEDs) is still unclear. Herein, the regrowth and responses of Vibrio parahaemolyticus and Bacillus cereus were investigated after being exposed to UVLEDs at combined wavelengths (265 and 280 nm) in a phosphate-buffered saline consisting of Suwannee River natural organic matter (SRNOM) and Suwannee River fulvic acid (SRFA). Low-molecular-weight (MW) organic compounds, which may form into intermediary photoproducts, and indicate bacterial repair metabolism, were characterized through non-target screening using orbitrap mass spectrometry. This study demonstrates the ability of the UVLEDs-inactivated cells to regrow. After UV exposure, a considerable upregulation of RecA was observed in two strains. With increasing the incubation time, the expression levels of RecA in V. parahaemolyticus increased, which may be attributed to the dark repair mechanism. Coexisting anionic DOM affects both the disinfection and bacterial regrowth processes. The time required for bacterial regrowth after UV exposure reflects the time needed for the individual cells to reactivate, and it differs in the presence or absence of DOM. In the presence of DOM, the cells were less damaged and required less time to grow. The UVLEDs exposure results in the occurrence of low-MW organic compounds, including carnitine or acryl-carnitine with N-acetylmuramic acid, which are associated with bacterial repair metabolism. Overall, the results of this study expand the understanding of the effects of water matrices on bacterial health risks. This can aid in the development of more effective strategies for water disinfection.
Collapse
Affiliation(s)
- Bongkotrat Suyamud
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Jenyuk Lohwacharin
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Professor Aroon Sorathesn Center of Excellence in Environmental Engineering, Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Surachai Ngamratanapaiboon
- Division of Pharmacology, Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
9
|
Ye C, Chen C, Zhang K, Feng M, Yu X. Solar/periodate inhibits ARGs transformation by degradation of DNA without damaging cell membrane. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122766. [PMID: 37865329 DOI: 10.1016/j.envpol.2023.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Antibiotic-resistant bacterial infections are a growing global threat to public health. Chlorine-based water disinfection and some advanced oxidation processes significantly increase the risk of ARGs release and transmission in the aquatic environment. Therefore, it is critical to develop or optimize disinfection methods to reduce the conversion and transmission of ARGs in natural water. This study investigated whether the solar/periodate (PI) system inhibited the natural transmission of ARGs and its mechanism. The results showed that solar/PI systems could effectively inhibit the propagation of ARGs in two simulated natural transformation systems, up to more than 100 times. By characterizing the cellular process of bacteria treated by the solar/PI system, we found that the solar/PI system could directly cause damage to DNA bases and its dual effect with almost no damage to the bacterial cell membrane, which was the main reason why this technology could inhibit natural transformation processes. Specifically, the inhibition effect of solar/PI on bacteria did not result in enhanced membrane permeability under appropriate PI dosage (<200 μM), which greatly reduced the risk of secondary contamination of eARGs released by traditional disinfection. Our findings could help improve existing disinfection strategies to ensure that antibiotic resistance is not spread in the natural water environment.
Collapse
Affiliation(s)
- Chengsong Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Chenlan Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Kaiting Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
10
|
Zhao M, Zhou X, Li Z, Xu G, Li S, Feng R, Xia D. The dynamics and removal efficiency of antibiotic resistance genes by UV-LED treatment: An integrated research on single- or dual-wavelength irradiation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115212. [PMID: 37418945 DOI: 10.1016/j.ecoenv.2023.115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/03/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Antimicrobial resistance has gained increasing attention, because of the awareness of its potential health risks. Strategies for the removal of antibiotic resistance genes (ARGs) are urgently required. In the present study, UV-LEDs at wavelength of 265 and 285 nm were integrated at five conditions, including single 265 nm UV-LED, single 285 nm UV-LED, and combined 265 nm and 285 nm UV-LED at different intensities, to remove tet A, cat 1, and amp C. The ARGs removal efficiency, gene behavior, and possible cellular mechanism were analyzed using real-time quantitative PCR, flow cytometry, and transmission electron microscopy (TEM). The 265 nm UV-LED is more effective than the 285 nm UV-LED and their combinations in terms of ARGs control, in which 1.91, 1.71, and 1.45 log were removed for tet A, cat 1, and amp C, respectively, at a UV dosage of 500 mJ/cm2. The intracellular gene leakage was detected in all five UV-LED experiment scenarios even when the cell membrane damage was insignificant with the highest increase of 0.69 log ARGs. ROS was generated during the irradiation, and the ROS was strongly negative correlated with intracellular ARGs, which could promote the degradation and removal of ARGs. This study provides a new insight of intracellular ARGs removal, because direct irradiation, ROS oxidation, and leakage to the extracellular serve as the three main pathways under high-dosage UV-LED irradiation. Further research should be focused on the mechanism and optimization of UV technology with 265 nm UV-LED for ARG control.
Collapse
Affiliation(s)
- Meijuan Zhao
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China
| | - Xiaoqin Zhou
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), PR China.
| | - Zifu Li
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China.
| | - Guotao Xu
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China
| | - Songwei Li
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China
| | - Rui Feng
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China
| | - Dehua Xia
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), PR China
| |
Collapse
|
11
|
Hu S, Fu Y, Xue M, Lan Y, Xi W, Xu Z, Han W, Wu D, Cheng C. Simultaneous removal of antibiotic-resistant Escherichia coli and its resistance genes by dielectric barrier discharge plasma. ENVIRONMENTAL RESEARCH 2023; 231:116163. [PMID: 37217128 DOI: 10.1016/j.envres.2023.116163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
As emerging contaminants, antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been widely detected in various aqueous environments. For antibiotic resistance to be inhibited in the environment, it is essential to control ARB and ARGs. In this study, dielectric barrier discharge (DBD) plasma was used to inactivate antibiotic resistant Escherichia coli (AR E. coli) and remove ARGs simultaneously. Within 15 s of plasma treatment, 108 CFU/mL of AR E. coli were inactivated by 97.9%. The rupture of the bacterial cell membrane and the increase of intracellular ROS are the main reasons for the rapid inactivation of bacteria. Intracellular ARGs (i-qnrB, i-blaCTX-M, i-sul2) and integron gene (i-int1) decreased by 2.01, 1.84, 2.40, and 2.73 log after 15 min of plasma treatment, respectively. In the first 5 min of discharge, extracellular ARGs (e-qnrB, e-blaCTX-M, e-sul2) and integron gene (e-int1) decreased by 1.99, 2.22, 2.66, and 2.80 log, respectively. The results of the ESR and quenching experiments demonstrated that ·OH and 1O2 played important roles in the removal of ARGs. This study shows that DBD plasma is an effective technique to control ARB and ARGs in waters.
Collapse
Affiliation(s)
- Shuheng Hu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Yuhang Fu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Muen Xue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Yan Lan
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, People's Republic of China
| | - Wenhao Xi
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Zimu Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China.
| | - Wei Han
- Institute of Health and Medical Technology/Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Danzhou Wu
- Anhui Engineering Consulting Institute, Hefei 230001, People's Republic of China
| | - Cheng Cheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, People's Republic of China.
| |
Collapse
|
12
|
Yin W, Yang L, Zhou X, Liu T, Zhang L, Xu Y, Li N, Chen J, Zhang Y. Peracetic acid disinfection induces antibiotic-resistant E. coli into VBNC state but ineffectively eliminates the transmission potential of ARGs. WATER RESEARCH 2023; 242:120260. [PMID: 37392507 DOI: 10.1016/j.watres.2023.120260] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The occurrence of a viable but nonculturable (VBNC) state in antibiotic-resistant E. coli (AR E. coli) and inefficient degradation of their antibiotic resistance genes (ARGs) may cause potential health risks during disinfection. Peracetic acid (PAA) is an alternative disinfectant for replacing chlorine-based oxidants in wastewater treatment, and the potential of PAA to induce a VBNC state in AR E. coli and to remove the transformation functionality of ARGs were investigated for the first time. Results show that PAA exhibits excellent performance in inactivating AR E. coli (over 7.0-logs) and persistently inhibiting its regeneration. After PAA disinfection, insignificant changes in the ratio of living to dead cells (∼4%) and the level of cell metabolism, indicating that AR E. coli were induced into VBNC states. Unexpectedly, PAA was found to induce AR E. coli into VBNC state by destroying the proteins containing reactive amino acids at thiol, thioether and imidazole groups, rather than the result of membrane damage, oxidative stress, lipid destruction and DNA disruption in the conventional disinfection processes. Moreover, the result of poor reactivity between PAA and plasmid strands and bases confirmed that PAA hardly reduced the abundance of ARGs and damaged the plasmid's integrity. Transformation assays and real environment validation indicated that PAA-treated AR E. coli could release large abundance of naked ARGs with high-efficiency transformation functionality (∼5.4 × 10-4 - ∼8.3 × 10-6) into the environment. This study has significant environmental implications for assessing the transmission of antimicrobial resistance during PAA disinfection.
Collapse
Affiliation(s)
- Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Longlong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Wang X, Du G, Qiao Z, Yang Y, Shi H, Zhang D, Pan X. Environmental concentrations of surfactants as a trigger for climax of horizonal gene transfer of antibiotic resistance. Heliyon 2023; 9:e17034. [PMID: 37484423 PMCID: PMC10361096 DOI: 10.1016/j.heliyon.2023.e17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023] Open
Abstract
Ubiquitous antibiotic resistance genes (ARGs) is a significant global human health concern. Surfactants have been extensively used worldwide, and the consumption of surfactants containing hygiene, cleaning agents and disinfectants was multiplied during COVID-19 pandemic, which have caused significantly increased pollution of surfactants in aquatic environment. Whether such ever-increasing surfactant concentration boost dissemination risk of ARGs still remains unknown. Here the effects of three typical surfactants such as sodium dodecyl sulfate, cetyltrimethylammonium bromide and benzalkonium chloride on the transformation of pUC19 plasmid (2686 bp)-borne ARGs to recipient bacteria E. coli DH5ɑ were investigated. It was found that these surfactants at environmental concentrations facilitated horizonal gene transfer (HGT) via transformation. The transformation triggering concentrations for the three surfactants were 0.25-0.34 mg/L with a maximum increased transformation frequency of 13.51-22.93-fold. The mechanisms involved in activated HGT of ARGs via transformation triggered by surfactants could be mainly attributed to the increased production of reactive oxygen species, which further enhanced cell membrane permeability. These findings provide new sights for understanding of ARG propagation and also imply that the drastic rise of surfactant concentration in aquatic environment may significantly increase the dissemination risk of antibiotic resistance.
Collapse
Affiliation(s)
- Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- School of Environment Science and Spatial Information, China University of Mining and Technology, Xuzhou, 221116, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou, 310015, China
- Shaoxing Research Institute of Zhejiang University of Technology, Shaoxing, 312000, China
| | - Gaoquan Du
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhuang Qiao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yixuan Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huimin Shi
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
14
|
Peng J, Pan Y, Zhou Y, Kong Q, Lei Y, Lei X, Cheng S, Zhang X, Yang X. Triplet Photochemistry of Effluent Organic Matter in Degradation of Extracellular Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7230-7239. [PMID: 37114949 DOI: 10.1021/acs.est.2c08036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Wastewater effluent is a major source of extracellular antibiotic resistance genes (eArGs) in the aquatic environment, a threat to human health and biosecurity. However, little is known about the extent to which organic matter in the wastewater effluent (EfOM) might contribute to photosensitized oxidation of eArGs. Triplet states of EfOM were found to dominate the degradation of eArGs (accounting for up to 85%). Photo-oxidation proceeded mainly via proton-coupled electron transfer reactions. They broke plasmid strands and damaged bases. O2•- was also involved, and it coupled with the reactions' intermediate radicals of eArGs. The second-order reaction rates of blaTEM-1 and tet-A segments (209-216 bps) with the triplet state of 4-carboxybenzophenone were calculated to be (2.61-2.75) × 108 M-1 s-1. Besides as photosensitizers, the antioxidant moieties in EfOM also acted as quenchers to revert intermediate radicals back to their original forms, reducing the rate of photodegradation. However, the terrestrial origin natural organic matter was unable to photosensitize because it formed less triplets, especially high-energy triplets, so its inhibitory effects predominated. This study advances our understanding of the role of EfOM in the photo-oxidation of eArGs and the difference between EfOM and terrestrial-origin natural organic matter.
Collapse
Affiliation(s)
- Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
15
|
He Y, Zhao X, Zhu S, Yuan L, Li X, Feng Z, Yang X, Luo L, Xiao Y, Liu Y, Wang L, Deng O. Conversion of swine manure into biochar for soil amendment: Efficacy and underlying mechanism of dissipating antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162046. [PMID: 36758702 DOI: 10.1016/j.scitotenv.2023.162046] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Livestock manure amendment, a common fertilization method for agricultural practice, can exacerbate antibiotic resistance gene (ARG) pollution, thus threatening food safety and human health. On the other hand, manure can also be produced as biochar to improve soil quality, which may reduce ARGs inside manure. However, it is unclear how and why shifting manure to biochar for soil amendment reduces ARG pollution. Thus, this study investigated the variations of ARGs and microbial communities in soil amended with swine manure (2 % and 5 %) and its biochar (2 % and 5 %) and then explored how shifting swine manure to biochar reduced ARG contamination. After 28 d incubation, ARG number in soil without amendment, manure-amended soils, and biochar-amended soils were 47, 112-136, and 43-52, respectively. ARG abundance in soil without amendment, manure-amended soils, and biochar-amended soils were 7.66 × 107, 4.32 × 109 - 1.42 × 1011, and 8.44 × 107-9.67 × 107 copies g-1 dry soil, respectively. Compared to manure-amended soils, its biochar amendments reduced ARG abundance by 2-4 orders of magnitude and ARG number by 70-93 in soil. Besides, manure amendment altered while biochar did not alter bacterial diversity and composition. The changed soil properties and mobile genetic elements (MGEs) could explain the changes in ARGs. Relative to manure amendments, its biochar amendments reduced mobile genetic elements (MGEs), Proteobacteria and Bacteroidetes in soil, which explained the reduced abundance and diversity of ARGs; however, the multidrug-resistance genes harbored in Proteobacteria and Bacteroidetes were still abundant in biochar-amended soil. This study suggests that converting manure to biochar as a soil amendment can help control the spread of manure ARGs.
Collapse
Affiliation(s)
- Yan He
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Xin Zhao
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China; College of Environmental & Resource Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Siman Zhu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Long Yuan
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Xinyi Li
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Zhihan Feng
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Xuan Yang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China.
| | - Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Lilin Wang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| |
Collapse
|
16
|
Zheng Q, Zhang Y, Wang Y, Yu G. Removal of antibiotic resistant bacteria and plasmid-encoded antibiotic resistance genes in water by ozonation and electro-peroxone process. CHEMOSPHERE 2023; 319:138039. [PMID: 36738938 DOI: 10.1016/j.chemosphere.2023.138039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The electro-peroxone (EP) process is an electricity-based oxidation process enabled by electrochemically generating hydrogen peroxide (H2O2) from cathodic oxygen (O2) reduction during ozonation. In this study, the removal of antibiotic resistant bacteria (ARB) and plasmid-encoded antibiotic resistance genes (ARGs) during groundwater treatment by ozonation alone and the EP process was compared. Owing to the H2O2-promoted ozone (O3) conversion to hydroxyl radicals (•OH), higher •OH exposures, but lower O3 exposures were obtained during the EP process than ozonation alone. This opposite change of O3 and •OH exposures decreases the efficiency of ARB inactivation and ARG degradation moderately during the EP process compared with ozonation alone. These results suggest that regarding ARB inactivation and ARG degradation, the reduction of O3 exposures may not be fully counterbalanced by the rise of •OH exposures when changing ozonation to the EP process. However, due to the rise of •OH exposure, plasmid DNA was more effectively cleaved to shorter fragments during the EP process than ozonation alone, which may decrease the risks of natural transformation of ARGs. These findings highlight that the influence of the EP process on ARB and ARG inactivation needs to be considered when implementing this process in water treatment.
Collapse
Affiliation(s)
- Quan Zheng
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yinqiao Zhang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Recent Approaches for Downplaying Antibiotic Resistance: Molecular Mechanisms. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5250040. [PMID: 36726844 PMCID: PMC9886476 DOI: 10.1155/2023/5250040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023]
Abstract
Antimicrobial resistance (AMR) is a ubiquitous public health menace. AMR emergence causes complications in treating infections contributing to an upsurge in the mortality rate. The epidemic of AMR in sync with a high utilization rate of antimicrobial drugs signifies an alarming situation for the fleet recovery of both animals and humans. The emergence of resistant species calls for new treatments and therapeutics. Current records propose that health drug dependency, veterinary medicine, agricultural application, and vaccination reluctance are the primary etymology of AMR gene emergence and spread. Recently, several encouraging avenues have been presented to contest resistance, such as antivirulent therapy, passive immunization, antimicrobial peptides, vaccines, phage therapy, and botanical and liposomal nanoparticles. Most of these therapies are used as cutting-edge methodologies to downplay antibacterial drugs to subdue the resistance pressure, which is a featured motive of discussion in this review article. AMR can fade away through the potential use of current cutting-edge therapeutics, advancement in antimicrobial susceptibility testing, new diagnostic testing, prompt clinical response, and probing of new pharmacodynamic properties of antimicrobials. It also needs to promote future research on contemporary methods to maintain host homeostasis after infections caused by AMR. Referable to the microbial ability to break resistance, there is a great ultimatum for using not only appropriate and advanced antimicrobial drugs but also other neoteric diverse cutting-edge therapeutics.
Collapse
|
18
|
Wang J, Qu D, Bu L, Zhu S. Inactivation efficiency of P. Aeruginosa and ARGs removal in UV/NH2Cl process: Comparisons with UV and NH2Cl. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Zhang X, Yao MC, Chen L, Sheng GP. Lewis Acid-Base Interaction Triggering Electron Delocalization to Enhance the Photodegradation of Extracellular Antibiotic Resistance Genes Adsorbed on Clay Minerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17684-17693. [PMID: 36455257 DOI: 10.1021/acs.est.2c05785] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The transformation of extracellular antibiotic resistance genes (eARGs) is largely influenced by their inevitable photodegradation in environments where they tend to be adsorbed by ubiquitous clay minerals instead of being in a free form. However, the photodegradation behaviors and mechanisms of the adsorbed eARGs may be quite different from those of the free form and still remain unclear. Herein, we found that kaolinite, a common 1:1-type clay, markedly enhanced eARG photodegradation and made eARGs undergo direct photodegradation under UVA. The decrease in the transformation efficiency of eARGs caused by photodegradation was also promoted. Spectroscopy methods combined with density functional theory calculations revealed that the Lewis acid-base interaction between P-O in eARGs and Al-OH on kaolinite delocalized electrons of eARGs, thus resulting in increased photon absorption ability of eARGs. This ultimately led to enhanced photodegradation of kaolinite-adsorbed eARGs. Additionally, divalent Ca2+ could reduce the Lewis acid-base interaction-mediated adsorption of eARGs by kaolinite, thereby weakening the enhanced photodegradation of eARGs caused by electron delocalization. In contrast, the 2:1-type clay montmorillonite without strong Lewis acid sites was unable to delocalize the electrons to enhance the photodegradation of eARGs. This work allowed us to better evaluate eARGs' fate and risk in real aqueous environments.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Mu-Cen Yao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Lin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
20
|
Yuan Q, Wang Y, Wang S, Li R, Ma J, Wang Y, Sun R, Luo Y. Adenine imprinted beads as a novel selective extracellular DNA extraction method reveals underestimated prevalence of extracellular antibiotic resistance genes in various environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158570. [PMID: 36075418 DOI: 10.1016/j.scitotenv.2022.158570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Despite severe threats of extracellular antibiotic resistance genes (eARGs) towards public health in various environments, advanced studies have been hindered mainly by ineffective extracellular DNA (exDNA) extraction methods, which is challenged by trace levels of exDNA and inference from abundant coexisting compounds. This study developed a highly selective exDNA extraction method based on molecular imprinting technology (MIT) by using adenine as the template for the first time. Results suggested that adenine imprinted beads were rough spheres at an average size of 0.39 ± 0.07 μm. They effectively adsorbed DNA in the absence of chaotropic agents, with superior capacity (796.2 mg/g), rate (0.0066/s) and regarding DNA of variable lengths, even the ultra-short DNA (<100 bp). They were also highly selective towards DNA, circumventing the interference of competitive compounds' interference. These properties contribute to efficient exDNA extraction (71 %-119 %) from various environmental samples. Specifically, adenine imprinted beads enabled significantly higher extraction rates of eARGs from river, air and vegetable samples (69 %-95 %) compared to that by commercial DNA extraction products (16 %-62 %). The adenine imprinted beads-based method reveals underestimated eARG levels in the environment and the corresponding risks, and thus will thus be a powerful tool for advanced exDNA research.
Collapse
Affiliation(s)
- Qingbin Yuan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yi Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shangjie Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruiqing Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junlu Ma
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yijing Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruonan Sun
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, USA
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Chen X, Han W, Patel M, Wang Q, Li Q, Zhao S, Jia W. Inactivation of a pathogenic NDM-1-positive Escherichia coli strain and the resistance gene bla NDM-1 by TiO 2/UVA photocatalysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157369. [PMID: 35842147 DOI: 10.1016/j.scitotenv.2022.157369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/06/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Proliferation of blaNDM-1 in water and wastewater is particularly concerning because of multidrug-resistance and horizontal transfer of the gene. In the present study, a pathogenic NDM-1-positive Escherichia coli strain (named E. coli NDM-1) and the blaNDM-1 gene were treated with titanium dioxide (TiO2)/ultraviolet A (UVA) photocatalysis. Effects of catalyst dose, UVA intensity, and phosphate on bacteria and intracellular and extracellular blaNDM-1 genes were determined. With increases in TiO2 dose and UVA intensity, the inactivation rate of E. coli NDM-1 increased greatly in saline solution. However, phosphate in water hindered adsorption of bacteria to TiO2 and partly changed the TiO2 photocatalytic pathway, resulting in low degradation efficiency. Although inactivation of E. coli NDM-1 was highly efficient, TiO2/UVA photocatalysis had little effect on removal of the blaNDM-1 gene. During the 2-h photocatalytic experiments, E. coli cells decreased by 4.7-log, while the blaNDM-1 gene decreased by 0.7- ~ 1.5-log. Moreover, the degradation rate of extracellular blaNDM-1 was ~2.7 times higher than that of intracellular genes. Abundance and transformation frequency of residual blaNDM-1 genes remained high, even when bacteria were completely inactivated, indicating potential health risks. Increases in treatment time and UVA irradiation intensity are needed to remove the blaNDM-1 gene to sufficiently low levels.
Collapse
Affiliation(s)
- Xi Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Wenxuan Han
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Manisha Patel
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States
| | - Qian Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States
| | - Shuang Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Wenlin Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
22
|
He H, Choi Y, Wu SJ, Fang X, Anderson AK, Liou SY, Roberts MC, Lee Y, Dodd MC. Application of Nucleotide-Based Kinetic Modeling Approaches to Predict Antibiotic Resistance Gene Degradation during UV- and Chlorine-Based Wastewater Disinfection Processes: From Bench- to Full-Scale. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15141-15155. [PMID: 36098629 DOI: 10.1021/acs.est.2c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study investigated antibiotic resistance gene (ARG) degradation kinetics in wastewaters during bench- and full-scale treatment with UV light and chlorine─with the latter maintained as free available chlorine (FAC) in low-ammonia wastewater and converted into monochloramine (NH2Cl) in high-ammonia wastewater. Twenty-three 142-1509 bp segments (i.e., amplicons) of seven ARGs (blt, mecA, vanA, tet(A), ampC, blaNDM, blaKPC) and the 16S rRNA gene from antibiotic resistant bacteria (ARB) strains Bacillus subtilis, Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae were monitored as disinfection targets by qPCR. Rate constants for ARG and 16S rRNA gene amplicon degradation by UV, FAC, and NH2Cl were measured in phosphate buffer and used to expand and validate several recently developed approaches to predict DNA segment degradation rate constants based solely on their nucleotide contents, which were then applied to model ARG degradation during bench-scale treatment in buffer and wastewater matrixes. Kinetics of extracellular and intracellular ARG degradation by UV and FAC were well predicted up to ∼1-2-log10 elimination, although with decreasing accuracy at higher levels for intracellular genes, while NH2Cl yielded minimal degradation under all conditions (agreeing with predictions). ARB inactivation kinetics varied substantially across strains, with intracellular gene degradation lagging cell inactivation in each case. ARG degradation levels observed during full-scale disinfection at two wastewater treatment facilities were consistent with bench-scale measurements and predictions, where UV provided ∼1-log10 ARG degradation, and chlorination of high-ammonia wastewater (dominated by NH2Cl) yielded minimal ARG degradation.
Collapse
Affiliation(s)
- Huan He
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Yegyun Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sean J Wu
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Xuzhi Fang
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Annika K Anderson
- Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sin-Yi Liou
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Marilyn C Roberts
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| |
Collapse
|
23
|
Li J, Ren S, Qiu X, Zhao S, Wang R, Wang Y. Electroactive Ultrafiltration Membrane for Simultaneous Removal of Antibiotic, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes from Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15120-15129. [PMID: 35613365 DOI: 10.1021/acs.est.2c00268] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
To combat the spread of antibiotic resistance into the environment, we should adequately manage wastewater effluent treatment to achieve simultaneous removal of antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). Herein, we fabricate a multifunctional electroactive poly(vinylidene fluoride) ultrafiltration membrane (C/PVDF) by phase inversion on conductive carbon cloth. The membrane possesses not only excellent retention toward ARB and ARGs but also exhibits high oxidation capacity as an electrode. Notably, sulfamethoxazole degradation involving hydroxylation and hydrolysis by the anode membrane is predominant, and the degradation efficiency is up to 81.5% at +4 V. Both electro-filtration processes exhibit significant ARB inactivation, anode filtration is superior to cathode filtration. Moreover, the degradation of intracellular ARGs (iARGs) located in the genome is more efficient than those located in the plasmid, and these degradation efficiencies at -2 V are higher than +2 V. The degradation efficiencies of extracellular ARGs (eARGs) are opposite and are lower than iARGs. Compared with regular filtration, the normalized flux of electroactive ultrafiltration membrane is improved by 18.0% at -2 V, 15.9% at +2 V, and 30.4% at +4 V during treating wastewater effluent, confirming its antifouling properties and feasibility for practical application.
Collapse
Affiliation(s)
- Jiahuan Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shaojie Ren
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiao Qiu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Rui Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Yunkun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Li W, Zhang G. Detection and various environmental factors of antibiotic resistance gene horizontal transfer. ENVIRONMENTAL RESEARCH 2022; 212:113267. [PMID: 35413299 DOI: 10.1016/j.envres.2022.113267] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 05/25/2023]
Abstract
Bacterial antibiotic resistance in water environments is becoming increasingly severe, and new antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have also attracted the attention of researchers. The horizontal transfer of ARGs in water environments is considered one of the main sources of bacterial resistance in the natural environment. Horizontal gene transfer (HGT) mainly includes conjugation, natural transformation, and transduction, and conjugation has been investigated most. Several studies have shown that there are a large number of environmental factors that might affect the horizontal transfer of ARGs in water environments, such as nanomaterials, various oxidants, and light; however, there is still a lack of systematic and comprehensive reviews on the detection and the effects of the influence factors of on ARG horizontal transfer. Therefore, this study introduced three HGT modes, analysed the advantages and disadvantages of current methods for monitoring HGT, and then summarized the influence and mechanism of various factors on ARG horizontal transfer, and the possible reasons for the different effects caused by similar factors were mainly critically discussed. Finally, existing research deficiencies and future research directions of ARG horizontal transfer in water environments were discussed.
Collapse
Affiliation(s)
- Weiying Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China.
| | - Guosheng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| |
Collapse
|
25
|
Zhang T, Cheng F, Yang H, Zhu B, Li C, Zhang YN, Qu J, Peijnenburg WJGM. Photochemical degradation pathways of cell-free antibiotic resistance genes in water under simulated sunlight irradiation: Experimental and quantum chemical studies. CHEMOSPHERE 2022; 302:134879. [PMID: 35551936 DOI: 10.1016/j.chemosphere.2022.134879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The presence of antibiotic resistance genes (ARGs) in the environment poses a threat to human health and therefore their environmental behavior needs to be studied urgently. A systematic study was conducted on the photodegradation pathways of the cell-free tetracycline resistance gene (Tc-ARG) under simulated sunlight irradiation. The results showed that Tc-ARG can undergo direct photodegradation, which significantly reduces its horizontal transfer efficiency. Suwannee River fulvic acid (SRFA) promoted the photodegradation of Tc-ARG and further inhibited its horizontal transfer by generating reactive intermediates. The photodegradation of Tc-ARG was attributed to degradation of the four bases (G, C, A, T) and the deoxyribose group. Quantum chemical calculations showed that the four bases could be oxidized by the hydroxyl radical (HO) through addition and H-abstraction reactions. The main oxidative product 8-oxo-dG was detected. This product was generated through the addition reaction of G-C with HO, subsequent to dissolved oxygen initiated H-abstraction and H2O catalyzed H-transfer reactions. The predicted maximum photodegradation rates of Tc-ARG in the Yellow River estuary were 0.524, 0.937, and 0.336 h-1 in fresh water, estuary water, and seawater, respectively. This study furthermore revealed the microscopic photodegradation pathways and obtained essential degradation parameters of Tc-ARG in sunlit surface water.
Collapse
Affiliation(s)
- Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Hao Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Boyi Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
26
|
Felis E, Buta-Hubeny M, Zieliński W, Hubeny J, Harnisz M, Bajkacz S, Korzeniewska E. Solar-light driven photodegradation of antimicrobials, their transformation by-products and antibiotic resistance determinants in treated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155447. [PMID: 35469868 DOI: 10.1016/j.scitotenv.2022.155447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 05/23/2023]
Abstract
This study aimed to assess the possibility of using solar light-driven photolysis and TiO2-based photocatalysis to remove (1) antibiotic residues, (2) their transformation products (TPs), (3) antibiotic resistance determinants, and (4) genes identifying the indicator bacteria in a treated wastewater (secondary effluent). 16 antimicrobials belonging to the different classes and 45 their transformation by-products were selected for the study. The most susceptible to photochemical decomposition was tetracycline, which was completely removed in the photocatalysis process and in more than 80% in the solar light-driven photolysis. 83.8% removal (on average) was observed using photolysis and 89.9% using photocatalysis in the case of the tested genes, among which the genes sul1, uidA, and intI1 showed the highest degree of removal by both methods. The study revealed that applied methods promisingly remove the tested antibiotics, their TPs and genes even in such a complex matrix including treated wastewater and photocatalysis process had a higher removal efficiency of antibiotics, TPs and genes tested. Moreover, the high percentage removal of the intI1 gene (>93%) indicates the possibilities of use of the solar light-driven photolysis and TiO2-based photocatalysis in minimizing the antibiotic resistance genes transfer by mobile genetic elements.
Collapse
Affiliation(s)
- Ewa Felis
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland; Silesian University of Technology, Centre for Biotechnology, ul. B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Sylwia Bajkacz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland; Silesian University of Technology, Centre for Biotechnology, ul. B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| |
Collapse
|
27
|
Das D, Bordoloi A, Achary MP, Caldwell DJ, Suri RPS. Degradation and inactivation of chromosomal and plasmid encoded resistance genes/ARBs and the impact of different matrices on UV and UV/H 2O 2 based advanced oxidation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155205. [PMID: 35421486 DOI: 10.1016/j.scitotenv.2022.155205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
This study reports a structured investigation on the degradation kinetics of different types (gyrAR,tetAR, qnrSR) and conformational forms (chromosomal, plasmids) of ARGs and mobile genetic elements (intl-1, plasmids) as a function of water matrix (DI water, phosphate buffer, wastewater) with UV and UV/H2O2 treatments. Extracellular, intracellular and the free-ARGs fate were tracked to infer the impact of various parameters on the degradation efficacy of the treatment process. The degradation profile of e-ARGs (118-454 bp) showed 1-4 log reductions but did not correlate strongly to amplicon size indicating the importance of active sites distribution and/or types of ARGs for UV induced gene damage. The i-ARGs showed similar degradation rates compared to e-ARGs for UV in phosphate buffer (PBS) but showed (1.3-2 times) slower rates for i-ARGs with UV/H2O2 due to scavenging of OH radicals by the cellular components. While the ARB inactivation was effective, but ARG damage was not supplemental as i-ARGs and f-ARGs persisted. In the wastewater matrix, generation of radical species was contributing to improved degradation rates from UV/H2O2 treatment, specifically for f-ARGs resulting in significantly improved degradation (p<0.05) compared to PBS. These indicates a non-selective nature of attack from radical species generated from UV irradiation on the effluent organic matter (EfOM) than sequenced based damage to the genes from UV. For the plasmid degradation, conformational differences pertaining to the supercoiled structures and intracellular forms influenced slower (1.2-2.8 times) UV mediated gene damage rate as opposed to chromosomal ARGs. These results can be useful for better assessing UV based treatment processes for effective ARG removal.
Collapse
Affiliation(s)
- Dabojani Das
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Achinta Bordoloi
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Mohan P Achary
- Department of Radiation Oncology, Temple University School of Medicine, 3307 N. Broad Street, Philadelphia, PA 19140, USA
| | - Daniel J Caldwell
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Rominder P S Suri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
28
|
Zhang S, Liu X, Qiu P, Chen B, Xu C, Dong W, Liu T. Microplastics can selectively enrich intracellular and extracellular antibiotic resistant genes and shape different microbial communities in aquatic systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153488. [PMID: 35101514 DOI: 10.1016/j.scitotenv.2022.153488] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs), as emerging contaminants, are posing potential risks to environment, and animal and human health. The ubiquitous presence of MPs in natural ecosystems provides favorable platform to selectively adsorb antibiotic resistant genes (ARGs) and bacteria (ARB) and bacterial assemblages, especially in wastewater which is hotspot for MPs, ARGs and ARB. In this study, the selective capture of intracellular ARGs (iARGs), extracellular ARGs (eARGs), and bacterial assemblages by MPs with different materials (i.e. polyethylene, polyvinylchloride, and polyethylene terephthalate) and sizes (200 μm and 100 μm) was investigated. The results showed that iARGs (i.e. i-TetA, i-TetC, i-TetO, i-sul1), integron-integrase gene (intI1), and eARGs (i.e. e-TetA and e-blaTEM) were selectively enriched on MPs. Relative abundances of i-sul1, i-TetA, and intI1 were generally higher than that of i-TetC and i-TetO on all MPs. Moreover, MPs also have strong effects on the formation of microflora in wastewater, which resulted in different bacterial communities and functions in the wastewater and on the MPs. These findings suggested that MPs could affect the selective enrichment of ARB and ARGs in water environment.
Collapse
Affiliation(s)
- Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xingxiang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Bin Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chenmin Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, China.
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
29
|
Meng X, Li F, Yi L, Dieketseng MY, Wang X, Zhou L, Zheng G. Free radicals removing extracellular polymeric substances to enhance the degradation of intracellular antibiotic resistance genes in multi-resistant Pseudomonas Putida by UV/H 2O 2 and UV/peroxydisulfate disinfection processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128502. [PMID: 35183053 DOI: 10.1016/j.jhazmat.2022.128502] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
UV-based advanced oxidation processes (UV-AOPs) have been recommended to disinfect wastewater treatment plant (WWTP) effluents to control the dissemination of antibiotic resistance, but the mechanism of intracellular antibiotic resistance genes (i-ARGs) degradation by UV-AOPs is still poorly understood. Here we compared the efficacies of UV, UV/H2O2, and UV/PDS in degrading seven i-ARGs carried by a multi-drug resistant P. putida MX-2 isolated from sewage sludge and investigated the roles of free radicals and UV irradiation in degrading the carried i-ARGs in UV-AOPs. The results suggested that although UV/H2O2 and UV/PDS were only slightly superior to UV to inactivate P. putida MX-2, they significantly promoted the degradation of i-ARGs. The generated free radicals mainly reacted with the bacterial extracellular polymeric substances (EPS), increased the cell membrane permeability of bacteria, and consequently facilitated UV irradiation enter into the intracellular environment to damage the i-ARGs, thus enhancing their degradation during UV-AOPs processes. Our findings suggested that the removal of bacterial EPS by free radicals greatly contributed to the degradation of i-ARGs by UV irradiation in UV-AOPs, and more efficient approaches that are capable of removing EPS should be further developed to effectively control the dissemination of antibiotic resistance by UV treatment of wastewater effluent.
Collapse
Affiliation(s)
- Xiaoqing Meng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangjuan Li
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Yi
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mahlatsi Yorgan Dieketseng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| |
Collapse
|
30
|
Ahmed Y, Zhong J, Yuan Z, Guo J. Roles of reactive oxygen species in antibiotic resistant bacteria inactivation and micropollutant degradation in Fenton and photo-Fenton processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128408. [PMID: 35150997 DOI: 10.1016/j.jhazmat.2022.128408] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species play a critical role in degrading chemical or biological contaminants in advanced oxidation processes. However, it is still not clear whether conventional Fenton and photo-Fenton processes generate different reactive oxygen species, respectively. This study revealed the roles of reactive oxygen species (ROS) for simultaneous removal of antibiotic resistant bacteria (ARB) and recalcitrant micropollutant using three processes, i.e., conventional Fenton, photo-Fenton, and ethylenediamine-N, N'-disuccinic acid (EDDS) modified photo-Fenton. Both chemical scavengers and electron paramagnetic resonance spectroscopy confirmed the generation of various ROS and their contribution towards bacterial inactivation and micropollutant degradation. Results showed ARB and carbamazepine (CBZ) elimination efficiency in the order: EDDS modified photo-Fenton process > photo-Fenton process > Fenton process. The ARB detection limit (6-log ARB) was observed within 10 min at lower doses of 0.1 mM Fe3+, 0.2 mM EDDS, and 0.5 mM hydrogen peroxide (H2O2). With the same dose, it took longer (60 min) to remove CBZ, while 2.5 times higher H2O2 dose (1.25 mM) removed around 99% of CBZ within 10 min treatment. The present study highlighted that the hydroxyl radical (HO•) plays a dominant role, while singlet oxygen (1O2) and superoxide radical anion (O2•-) exhibit moderate effects to remove the hazards. Our findings provide mechanistic insights into the role of various reactive oxygen species on degrading micropollutants and inactivating ARB.
Collapse
Affiliation(s)
- Yunus Ahmed
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jiexi Zhong
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
31
|
Liu L, Meng G, Laghari AA, Chen H, Wang C, Xue Y. Reducing the risk of exposure of airborne antibiotic resistant bacteria and antibiotic resistance genes by dynamic continuous flow photocatalytic reactor. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128311. [PMID: 35074752 DOI: 10.1016/j.jhazmat.2022.128311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
In this study, based on the dynamic photocatalytic reactor constructed by the new photocatalyst TiO2/MXene, the purification process of different biological particles in aerosol was systematically studied. Multidrug resistant bacteria were easier to inactivate than common bacteria of the same kind, whether under UV conditions or photocatalysis. Photocatalyst was loaded on porous polyurethane sponge filler so that the combined effect of adsorption and advanced oxidation significantly improved the antibiotic resistant bacteria (ARB) disinfection effect. The inactivation efficiency of two ARBs under UV254 increased by 1.2 lg and 2.1 lg. In addition, it was found that the microorganisms treated by UV had slight self-repair phenomenon in a short time, while the microbial activity decreased continuously after photocatalysis. With the addition of photocatalyst, the particle size distribution of airborne Escherichia coli decreased and the micro morphology of cells was more seriously damaged. Antibiotic resistance genes (ARGs) carried by ARB can be dissociated into the environment after cell destruction, but it can be removed at a high level (sul2 can achieve 2.11 lg) in the continuous reactor at the same time. While avoiding secondary pollution, it also provides a powerful solution for airborne ARGs control.
Collapse
Affiliation(s)
- Liming Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300350, PR China
| | - Ge Meng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300350, PR China
| | - Azhar Ali Laghari
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300350, PR China
| | - Hong Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300350, PR China.
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300350, PR China.
| | - Yimei Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300350, PR China
| |
Collapse
|
32
|
Wu C, Fu L, Li H, Liu X, Wan C. Using biochar to strengthen the removal of antibiotic resistance genes: Performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151554. [PMID: 34774630 DOI: 10.1016/j.scitotenv.2021.151554] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
In this study, the excess activated sludge was used for pyrolysis to produce biochar with Ce modification. The removal process and mechanism of ampicillin resistance gene (ARGAmp) by biochar was investigated. The results showed that when pyrolyzing the excess sludge at 400 °C, the organic components in the sludge could be partially pyrolyzed and complexed with Ce. By accepting electrons from phenol or quinone, persistent free radicals (PFRs) were formed on the surface of biochar. On the optimized conditions with the initial ARGAmp concentration of 41.43 mg/L, the removal ratios of ARGAmp by adsorption, PFRs, hydroxyl free radicals (·OH) by adding H2O2 were 28.37%, 8.26%, and 27.56%. No melted DNA was detected in the treated samples. The oxidation process by PFRs and ·OH can directly destroy the ARGAmp structure. The phosphodiester bond in the base stacking structure and the phosphate bond in the nucleotide are the possible action sites of PFRs. Treated ARGAmp products were in the form of base pair residues or short-chain double helix structures. ·OH can be added to the bases of nucleotide molecules to form highly active free radical adducts. They can initiate molecular dehydrogenation and intermolecular proton transfer, resulting in oxidation of the base to the scission of the phosphate sugar backbone.
Collapse
Affiliation(s)
- Changyong Wu
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liya Fu
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huiqi Li
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiang Liu
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
33
|
Laghari AA, Liu L, Kalhoro DH, Chen H, Wang C. Mechanism for Reducing the Horizontal Transfer Risk of the Airborne Antibiotic-Resistant Genes of Escherichia coli Species through Microwave or UV Irradiation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074332. [PMID: 35410010 PMCID: PMC8998220 DOI: 10.3390/ijerph19074332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023]
Abstract
Antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs) as new types of contaminants are discharged into the environment, increasing the risk of horizontal gene transfer (HGT). However, few researchers have examined the impacts of airborne ARB deactivation on HGT risk. The deactivation of airborne Escherichia coli 10667 (carrying sul genes) and the emission and removal of ARGs were mainly investigated in this study. Moreover, the potential mechanisms of HGT and transfer frequencies under microwave (MW) and ultraviolet (UV) irradiation were investigated using the nonresistant E. coli GMCC 13373 and E. coli DH5α with plasmid RP4 as the recipient and donor, respectively. E. coli CICC 10667 and E. coli DH5α with RP4 plasmid achieve log inactivation values as high as 5.5-log and 5.0-log, respectively, which were quite different from the antibiotic-sensitive strain E. coli CGMCC 13373 (3.4-log) subjected to MW irradiation. For UV disinfection, E. coli DH5α with the RP4 plasmid was reduced at 4.4-log, E. coli CGMCC 13373 was reduced at 2.3-log, and E. coli CICC 10667 was inactivated at 2.1-log. The removal rates of ARGs and HGT frequencies under MW irradiation were compared with those under UV irradiation. The ARGs removal efficiency (85.5%) obtained by MW was higher than that obtained by UV (48.2%). Consequently, the HGT frequency (0.008) of airborne ARGs released to the recipient (forward transfer) decreased and was lower than that under UV irradiation (0.014). Moreover, the plasmid RP4 was transferred from the donor to the surviving damaged E. coli 10667 as cell permeability (reverse transfer) was increased at a high HGT frequency (0.003) by MW, which was close to the value by UV (0.002). Additionally, sul1 and sul2 genes were confirmed to be more resistant to MW than the sul3 gene. These findings reveal the mechanism of HGT between damaged E. coli 10667 and surrounding environmental microbes. Microwave is a promising technology for disinfecting airborne microbes and preventing the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Azhar Ali Laghari
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (A.A.L.); (L.L.)
| | - Liming Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (A.A.L.); (L.L.)
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tandojam, Hyderabad 70050, Pakistan;
| | - Hong Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (A.A.L.); (L.L.)
- Correspondence: (H.C.); (C.W.)
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (A.A.L.); (L.L.)
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin 300350, China
- Correspondence: (H.C.); (C.W.)
| |
Collapse
|
34
|
Zhang C, Zhao X, Wang C, Hakizimana I, Crittenden JC, Laghari AA. Electrochemical flow-through disinfection reduces antibiotic resistance genes and horizontal transfer risk across bacterial species. WATER RESEARCH 2022; 212:118090. [PMID: 35085844 DOI: 10.1016/j.watres.2022.118090] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), as emerging pollutants, are released into environment, increasing the risk of horizontal gene transfer (HGT). However, a limited number of studies quantified the effects of ARB disinfection on the HGT risk. This study investigated the inactivation of E. coli 10667 (sul) and the release and removal of ARGs using an electrochemical flow-through reactor (EFTR). Furthermore, the transfer frequencies and potential mechanisms of HGT after disinfection were explored using non-resistant E. coli GMCC 13373 as the recipient and E. coli DH5α carrying plasmid RP4 as the donor. A threshold of current density (0.25 mA/cm2) was observed to destroy cells and release intracellular ARGs (iARGs) to increase extracellular ARGs (eARGs) concentration. The further increase in the current density to 1 mA/cm2 resulted in the decline of eARGs concentration due to the higher degradation rate of eARGs than the release rate of iARGs. The performance of ARGs degradation and HGT frequency by EFTR were compared with those of conventional disinfection processes, including chlorination and ultraviolet radiation (UV). A higher ARGs degradation (83.46%) was observed by EFTR compared with that under chlorination (10.23%) and UV (27.07%). Accordingly, EFTR reduced the HGT frequency (0.69) of released ARGs into the recipient (Forward transfer), and the value was lower than that by chlorination (2.69) and UV (1.73). Meanwhile, the surviving injured E. coli 10667 (sul) with increased cell permeability was transferred by plasmid RP4 from the donor (Reverse transfer) with a higher frequency of 0.33 by EFTR compared with that under chlorination (0.26) and UV (0.16). In addition, the sul3 gene was the least resistant to EFTR than sul1 and sul2 gene. These findings provide important insights into the mechanism of HGT between the injured E. coli 10667 (sul) and environmental bacteria. EFTR is a promising disinfection technology for preventing the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Cong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Israel Hakizimana
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Azhar Ali Laghari
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
35
|
Sun S, Geng J, Ma L, Sun X, Qi H, Wu Y, Zhang R. Changes in antibiotic resistance genotypes and phenotypes after two typical sewage disposal processes. CHEMOSPHERE 2022; 291:132833. [PMID: 34762888 DOI: 10.1016/j.chemosphere.2021.132833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/10/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistome is a growing concern around the world. Wastewater treatment plants (WWTPs) have been identified as hotspots for antibiotic resistance gene (ARG) research. However, the distribution of antibiotic resistance genotypes and phenotypes in biofilm wastewater treatment system is poorly understood. In this study, the abundance and fate of antibiotic resistance genotypes and phenotypes in two typical wastewater treatment processes [biological aerated filter (BAF), anaerobic-oxic (A/O)] were quantitatively studied. The average removal rate of total ARGs was greater than 90%. In the biological treatment unit, the abundance of ARGs increased in the A/O unit and decreased in the biofilm unit. In addition, the resistance of tetracycline resistant bacteria changed after sewage disposal, which was closely related to the evolution of bacterial community. In total, the removal rate of resistance bacteria in A/O system was lower than that in BAF system. Genotypes were the basis of determining the phenotypes of microbial resistance. But it is necessary to pay close attention to antibiotic resistance phenotype due to its high variability. More specifically, antibiotic resistance mitigation in WWTPs should focus more on removing bacterial hosts to reduce the release of ARGs into the environment.
Collapse
Affiliation(s)
- Shaojing Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jialu Geng
- The Engineering Technology Center of Pollution Control in Taizhou, Taizhou, 318000, China
| | - Lixin Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiazhong Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yining Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Rui Zhang
- Heilongjiang Metrology Institute of Measurement & Verification, Harbin, 150036, China
| |
Collapse
|
36
|
Jiang Q, Feng M, Ye C, Yu X. Effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of antibiotic resistance genes in water environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150568. [PMID: 34627113 DOI: 10.1016/j.scitotenv.2021.150568] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 05/17/2023]
Abstract
Antibiotic resistance has created obstacles in the treatment of infectious diseases with antibiotics. The horizontal transfer of antibiotic resistance genes (ARGs) can exacerbate the dissemination of antibiotic resistance in water environments. In addition to antibiotic selective pressure, multiple non-antibiotic factors can affect the horizontal transfer of ARGs. Herein, we seek to comprehensively review the effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of ARGs in water environments, especially contaminants from human activities and water treatment processes. Four pathways have been identified to accomplish horizontal gene transfer (HGT), i.e., conjugation, transformation, transduction, and vesiduction. Changes in conjugative frequencies by non-antibiotic factors are mainly related to their concentrations, which conform to hormesis. Relevant mechanisms involve the alteration in cell membrane permeability, reactive oxygen species, SOS response, pilus, and mRNA expression of relevant genes. Transformation induced by extracellular DNA may be more vulnerable to non-antibiotic factors than other pathways. Except bacteriophage infection, the effects of non-antibiotic factors on transduction exhibit many similarities with that of conjugation. Given the secretion of membrane vesicles stimulated by non-antibiotic factors, their effects on vesiduction can be inferred. Furthermore, contaminants from human activities at sub-inhibitory or environmentally relevant concentrations usually promote HGT, resulting in further dissemination of antibiotic resistance. The horizontal transfer of ARGs is difficult to be inhibited by individual water treatment processes (e.g., chlorination, UV treatment, and photocatalysis) unless they attain sufficient intensity. Accordingly, the synergistic application containing two or more water treatment processes is recommended. Overall, we believe this review can elucidate the significance for risk assessments of contaminants from human activities and provide insights into the development of environment-friendly and cost-efficient water treatment processes to inhibit the horizontal transfer of ARGs.
Collapse
Affiliation(s)
- Qi Jiang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
37
|
From Conventional Disinfection to Antibiotic Resistance Control-Status of the Use of Chlorine and UV Irradiation during Wastewater Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031636. [PMID: 35162659 PMCID: PMC8834887 DOI: 10.3390/ijerph19031636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022]
Abstract
Extensive use of antibiotics for humans and livestock has led to an enhanced level of antibiotic resistance in the environment. Municipal wastewater treatment plants are regarded as one of the main sources of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the aquatic environment. A significant amount of research has been carried out to understand the microbiological quality of wastewater with respect to its antibiotic resistance potential over the past several years. UV disinfection has primarily been used to achieve disinfection, including damaging DNA, but there has been an increasing use of chlorine and H2O2-based AOPs for targeting genes, including ARGs, considering the higher energy demands related to the greater UV fluences needed to achieve efficient DNA damage. This review focuses on some of the most investigated processes, including UV photolysis and chlorine in both individual and combined approaches and UV advanced oxidation processes (AOPs) using H2O2. Since these approaches have practical disinfection and wastewater treatment applications globally, the processes are reviewed from the perspective of extending their scope to DNA damage/ARG inactivation in full-scale wastewater treatment. The fate of ARGs during existing wastewater treatment processes and how it changes with existing treatment processes is reviewed with a view to highlighting the research needs in relation to selected processes for addressing future disinfection challenges.
Collapse
|
38
|
Liu H, Hua X, Zhang YN, Zhang T, Qu J, Nolte TM, Chen G, Dong D. Electrocatalytic inactivation of antibiotic resistant bacteria and control of antibiotic resistance dissemination risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118189. [PMID: 34543954 DOI: 10.1016/j.envpol.2021.118189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance in environmental matrices becomes urgently significant for public health and has been considered as an emerging environmental contaminant. In this work, the ampicillin-resistant Escherichia coli (AR E. coli) and corresponding resistance genes (blaTEM-1) were effectively eliminated by the electrocatalytic process, and the dissemination risk of antibiotic resistance was also investigated. All the AR E. coli (∼8 log) was inactivated and 8.17 log blaTEM-1 was degraded by the carbon nanotubes/agarose/titanium (CNTs/AG/Ti) electrode within 30 min. AR E. coli was inactivated mainly attributing to the damage of cell membrane, which was attacked by reactive oxygen species and subsequent leakage of intracellular cytoplasm. The blaTEM-1 was degraded owing to the strand breaking in the process of electrocatalytic degradation. Furthermore, the dissemination risk of antibiotic resistance was effectively controlled after being electrocatalytic treatment. This study provided an effective electrocatalytic technology for the inactivation of antibiotic resistant bacteria and control of antibiotic resistance dissemination risk in the aqueous environment.
Collapse
Affiliation(s)
- Haiyang Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China; School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Tingting Zhang
- School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin, 130117, China.
| | - Tom M Nolte
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, 6500, GL Nijmegen, the Netherlands
| | - Guangchao Chen
- Institute of Environmental Sciences, Leiden University, 2300, RA Leiden, the Netherlands
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| |
Collapse
|
39
|
Grimes KL, Dunphy LJ, Kolling GL, Papin JA, Colosi LM. Algae-mediated treatment offers apparent removal of a model antibiotic resistance gene. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress. THE ISME JOURNAL 2021; 15:2969-2985. [PMID: 33941886 PMCID: PMC8091644 DOI: 10.1038/s41396-021-00980-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/08/2021] [Indexed: 02/01/2023]
Abstract
The bacterial infection that involves antimicrobial resistance is a rising global threat to public health. Chlorine-based water disinfection processes can inactivate antibiotic resistant bacteria. However, at the same time, these processes may cause the release of antibiotic resistance genes into the water as free DNA, and consequently increase the risk to disseminate antibiotic resistance via natural transformation. Presently, little is known about the contribution of residual chlorine affecting the transformation of extracellular antibiotic resistance genes (ARGs). This study investigates whether chloramine and free chlorine promote the transformation of ARGs and how this may occur. We reveal that both chloramine and free chlorine, at practically relevant concentrations, significantly stimulated the transformation of plasmid-encoded ARGs by the recipient Acinetobacter baylyi ADP1, by up to a 10-fold increase. The underlying mechanisms underpinning the increased transformations were revealed. Disinfectant exposure induced a series of cell responses, including increased levels of reactive oxygen species (ROS), bacterial membrane damage, ROS-mediated DNA damage, and increased stress response. These effects thus culminated in the enhanced transformation of ARGs. This promoted transformation was observed when exposing disinfectant-pretreated A. baylyi to free plasmid. In contrast, after pretreating free plasmid with disinfectants, the transformation of ARGs decreased due to the damage of plasmid integrity. These findings provide important insight on the roles of disinfectants affecting the horizontal transfer of ARGs, which could be crucial in the management of antibiotic resistance in our water systems.
Collapse
|
41
|
Yoon Y, He H, Dodd MC, Lee Y. Degradation and deactivation of plasmid-encoded antibiotic resistance genes during exposure to ozone and chlorine. WATER RESEARCH 2021; 202:117408. [PMID: 34325102 DOI: 10.1016/j.watres.2021.117408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Degradation and deactivation kinetics of an antibiotic resistance gene (ARG) by ozone (O3) and free available chlorine (FAC) were investigated in phosphate-buffered solutions at pH 7 for O3 (in the presence of tert‑butanol), and pH 6.8 or 8.1 for FAC. We used a plasmid (pUC19)-encoded ampicillin resistance gene (ampR) in both extracellular (e-) and intracellular (i-) forms. The second-order rate constant (kO3) for degradation of 2686 base pair (bp) long e-pUC19 toward O3, which was determined by quantitative polymerase chain reaction assay, was calculated to be ~2 × 105 M-1s-1. The deactivation rate constants of e-pUC19 by O3 measured with various recipient E. coli strains were within a factor of 2 compared with the degradation rate constant for e-pUC19. The degradation/deactivation kinetics of i-pUC19 were similar to those of e-pUC19, indicating only a minor influence of cellular components on O3 reactivity toward i-pUC19. For FAC, the degradation and deactivation rates of e-pUC19 were decreased in the presence of tert‑butanol, implying involvement of direct FAC as well as some radical (e.g., •OH) reactions. The degradation rates of e-ampR segments by direct FAC reaction could be explained by a previously-reported two-step sequential reaction model, in which the rate constants increased linearly with e-ampR segment length. The deactivation rate constants of e-pUC19 during exposure to FAC were variable by a factor of up to 4.3 for the different recipient strains, revealing the role of DNA repair in the observed deactivation efficiencies. The degradation/deactivation of e-pUC19 were significantly faster at pH 6.8 than at pH 8.1 owing to pH-dependent FAC speciation variation, whereas i-pUC19 kinetics exhibited much smaller dependence on pH, demonstrating intracellular plasmid DNA reactions with FAC occurred at cytoplasmic pH (~7.5). Our results are useful for predicting and/or measuring the degradation/deactivation efficiency of plasmid-encoded ARGs by water treatment with ozonation and chlorination.
Collapse
Affiliation(s)
- Younggun Yoon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Huan He
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, United States
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, United States.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
42
|
Artificial sweeteners stimulate horizontal transfer of extracellular antibiotic resistance genes through natural transformation. ISME JOURNAL 2021; 16:543-554. [PMID: 34465899 PMCID: PMC8776823 DOI: 10.1038/s41396-021-01095-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022]
Abstract
Antimicrobial resistance has emerged as a global threat to human health. Natural transformation is an important pathway for horizontal gene transfer, which facilitates the dissemination of antibiotic resistance genes (ARGs) among bacteria. Although it is suspected that artificial sweeteners could exert antimicrobial effects, little is known whether artificial sweeteners would also affect horizontal transfer of ARGs via transformation. Here we demonstrate that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) promote transfer of ARGs via natural transformation in Acinetobacter baylyi ADP1, a model organism for studying competence and transformation. Such phenomenon was also found in a Gram-positive human pathogen Bacillus subtilis and mice faecal microbiome. We reveal that exposure to these sweeteners increases cell envelope permeability and results in an upregulation of genes encoding DNA uptake and translocation (Com) machinery. In addition, we find that artificial sweeteners induce an increase in plasmid persistence in transformants. We propose a mathematical model established to predict the long-term effects on transformation dynamics under exposure to these sweeteners. Collectively, our findings offer insights into natural transformation promoted by artificial sweeteners and highlight the need to evaluate these environmental contaminants for their antibiotic-like side effects.
Collapse
|
43
|
Dunn FB, Silverman AI. Sunlight Photolysis of Extracellular and Intracellular Antibiotic Resistance Genes tetA and sul2 in Photosensitizer-Free Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11019-11028. [PMID: 34346694 DOI: 10.1021/acs.est.1c00732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Antibiotic resistance genes (ARGs; the genetic material in bacteria that encode for resistance to antibiotics) have been found in the aquatic environment, raising concerns of an environmental transmission route. In an effort to contribute to models predicting the fate of ARGs in the environment-to design control measures, predict health risks, inform ARG surveillance activities, and prioritize policy interventions-and given the importance of sunlight in damaging DNA, we evaluated the sunlight photolysis kinetics of antibiotic-resistant bacteria (ARB) and ARGs under laboratory conditions, focusing on Escherichia coli SMS-3-5 and its ARGs tetA and sul2. Experiments were conducted in the absence of photosensitizers, and ARG decay rates were quantified by quantitative polymerase chain reaction (qPCR) with short and long amplicon targets. Long amplicon qPCR targets quantified greater photolysis rate constants, due to greater ARG coverage. After a lag phase, intracellular ARG had faster decay rates than extracellular ARG, likely due to the contribution of intracellular indirect photolysis processes. Furthermore, all ARG decay rates were significantly slower than those of E. coli. Decay rate constants and quantum yields are presented as foundational work in the development of models to describe the persistence of ARGs in sunlit, environmental waters.
Collapse
Affiliation(s)
- Fiona B Dunn
- Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Andrea I Silverman
- Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
- School of Global Public Health, New York University, New York, New York 10003, United States
| |
Collapse
|
44
|
Ding Y, Liang B, Jiang W, Han J, Guadie A, Yun H, Cheng H, Yang R, Liu SJ, Wang A, Ren N. Effect of preferential UV photolysis on the source control of antibiotic resistome during subsequent biological treatment systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125484. [PMID: 33647609 DOI: 10.1016/j.jhazmat.2021.125484] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The environmental spread of antibiotic resistance genes (ARGs) from the direct application of traditional biological treatment systems for antibiotics in water is a potential public health threat. UV photolysis has been proved to be an efficient pretreatment method for antibacterial activity elimination, but the fate of antibiotic resistome in subsequent bioreactors fed with pretreated florfenicol (FLO) in synthetic wastewater is still unknown. Antibacterial activity in synthetic wastewater was effectively eliminated by UV irradiation pretreatment, and the diversity and abundance of detected ARGs in both aerobic and anaerobic bioreactors were significantly lower than those without pretreatment. Meanwhile, UV irradiation pretreatment shaped the structure and composition of sludge microbial communities in the subsequent bioreactors closer to those of the FLO-free groups. The relative abundances of Pseudomonas and Escherichia-Shigella working as the potential hosts of ARGs were significantly reduced in aerobic and anaerobic bioreactors, respectively. The significantly positive correlation between floR and intI1 and the decrease of intI1 abundance in UV photolytic pretreatment groups indicated that the horizontal transfer of floR was decreased. The study provides new insights into the effect of preferential UV photolysis as a pretreatment method on the source control of antibiotic resistome in subsequent biological treatment process.
Collapse
Affiliation(s)
- Yangcheng Ding
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Wenli Jiang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jinglong Han
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Awoke Guadie
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, PR China
| | - Haoyi Cheng
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Renjun Yang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Nanqi Ren
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
45
|
Lu X, Hou J, Yang K, Zhu L, Xing B, Lin D. Binding Force and Site-Determined Desorption and Fragmentation of Antibiotic Resistance Genes from Metallic Nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9305-9316. [PMID: 34138538 DOI: 10.1021/acs.est.1c02047] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interfacial interactions between antibiotic resistance genes (ARGs) and metallic nanomaterials (NMs) lead to adsorption and fragmentation of ARGs, which can provide new avenues for selecting NMs to control ARGs. This study compared the adsorptive interactions of ARGs (tetM-carrying plasmids) with two metallic NMs (ca. 20 nm), i.e., titanium dioxide (nTiO2) and zero-valent iron (nZVI). nZVI had a higher adsorption rate (0.06 min-1) and capacity (4.29 mg/g) for ARGs than nTiO2 (0.05 min-1 and 2.15 mg/g, respectively). No desorption of ARGs from either NMs was observed in the adsorptive background solution, isopropanol or urea solutions, but nZVI- and nTiO2-adsorbed ARGs were effectively desorbed in NaOH and NaH2PO4 solutions, respectively. Molecular dynamics simulation revealed that nTiO2 mainly bound with ARGs through electrostatic attraction, while nZVI bound with PO43- of the ARG phosphate backbones through Fe-O-P coordination. The ARGs desorbed from nTiO2 remained intact, while the desorbed ARGs from nZVI were splintered into small fragments irrelevant to DNA base composition or sequence location. The ARG removal by nZVI remained effective in the presence of PO43-, natural organic matter, or protein at environmentally relevant concentrations and in surface water samples. These findings indicate that nZVI can be a promising nanomaterial to treat ARG pollution.
Collapse
Affiliation(s)
- Xinye Lu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Hou
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
- The Institute of Zhejiang Ecological Civilization, Anji 313300, China
| |
Collapse
|
46
|
Wang L, Ye C, Guo L, Chen C, Kong X, Chen Y, Shu L, Wang P, Yu X, Fang J. Assessment of the UV/Chlorine Process in the Disinfection of Pseudomonas aeruginosa: Efficiency and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9221-9230. [PMID: 34138551 DOI: 10.1021/acs.est.1c00645] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
UV irradiation and chlorination have been widely used for water disinfection. However, there are some limitations, such as the risk of generating viable but nonculturable bacteria and bacteria reactivation when using UV irradiation or chlorination alone. This study comprehensively evaluated the feasibility of the UV/chlorine process in drinking water disinfection, and Pseudomonas aeruginosa was selected as the target microorganism. The number of culturable cells was effectively reduced by more than 5 orders of magnitude (5-log10) after UV, chlorine, and UV/chlorine treatments. However, intact and VBNC cells were detected at 103 to 104 cells/mL after UV and chlorine treatments, whereas they were undetectable after UV/chlorine treatment due to the primary contribution of reactive chlorine species (Cl•, Cl2•-, and ClO•). After UV/chlorine treatment, the metabolic activity determined using single cell Raman spectroscopy was much lower than that after UV. The level of toxic opr gene in P. aeruginosa decreased by more than 99% after UV/chlorine treatment. Importantly, bacterial dark reactivation was completely suppressed by UV/chlorine treatment but not UV or chlorination. This study suggests that the UV/chlorine treatment can completely damage bacteria and is promising for pathogen inactivation to overcome the limitations of UV and chlorine treatments alone.
Collapse
Affiliation(s)
- Liping Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, P. R. China
| | - Lizheng Guo
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Chunyan Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xiujuan Kong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yaoqing Chen
- School of Public Health, Shenzhen, Sun Yat-Sen University, Shenzhen 510000, P. R. China
| | - Longfei Shu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Peng Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, P.R. China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, P. R. China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
47
|
Augsburger N, Zaouri N, Cheng H, Hong PY. The use of UV/H 2O 2 to facilitate removal of emerging contaminants in anaerobic membrane bioreactor effluents. ENVIRONMENTAL RESEARCH 2021; 198:110479. [PMID: 33212130 DOI: 10.1016/j.envres.2020.110479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Effluent from anaerobic membrane bioreactor (AnMBR) contains ammonia and would require post-polishing treatment before it can be disinfected by chlorine. However, additional post-treatment steps to remove nutrients offset the energetic benefits derived from anaerobic fermentation. The use of chlorine or ozone also promotes concerns associated with disinfection byproducts. This study evaluates UV/H2O2 as a potential strategy suited for the removal of pharmaceutical compounds as well as antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from AnMBR effluent. Our findings indicate that 10 mg/L H2O2 and 61.5 mJ/cm2 of UV fluence are able to achieve a 4-log removal of both Escherichia coli PI7 and Klebsiella pneumoniae L7. However, a higher fluence of 311 mJ/cm2 with the same amount of H2O2 would be required to achieve >90% removal of atenolol, carbamazepine and estrone. The removal of the pharmaceutical compounds was driven by the hydroxyl radicals generated from H2O2, while UV exposure governed the inactivation of ARB and ARGs. UV/H2O2 increased overall mutagenicity of the treated wastewater matrix but did not result in any changes to the natural transformation rates. Instead, UV significantly reduced natural transformation rates by means of DNA damage. Overall, UV/H2O2 could be the ideal final disinfection strategy for AnMBR effluent without requiring additional post-treatment prior disinfection.
Collapse
Affiliation(s)
- Nicolas Augsburger
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia; Center of Excellence for NEOM Research, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Noor Zaouri
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Hong Cheng
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia; Center of Excellence for NEOM Research, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Pei-Ying Hong
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia; Center of Excellence for NEOM Research, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
48
|
Yu Z, Rabiee H, Guo J. Synergistic effect of sulfidated nano zerovalent iron and persulfate on inactivating antibiotic resistant bacteria and antibiotic resistance genes. WATER RESEARCH 2021; 198:117141. [PMID: 33895590 DOI: 10.1016/j.watres.2021.117141] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Antimicrobial resistance continues to be a rising global threat to public health. It is well recognized that wastewater treatment plants are reservoirs of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, traditional disinfection techniques are not effective to simultaneously remove ARB and ARGs, and the dynamic analysis of ARB inactivation have also been deficient. In this study, sulfidated nano zerovalent iron (S-nZVI) coupled with persulfate (PS) was applied to simultaneously remove both ARB (E. coli K-12 with RP4 plasmid) and ARGs (extra- and intracellular ARGs). S-nZVI/PS completely inactivated ARB (~7.8-log reduction) within 10 min and degraded all extracellular ARGs (~8.0-log reduction) within 5 min. These efficiencies were significantly higher (decay rate constant, k = 0.138 min-1) than those achieved individually (S-nZVI: k = 0.076 min-1; PS: k = 0.008 min-1), implying a synergistic effect between S-nZVI and PS against ARB and ARGs. The efficient removal rate of ARB was also supported by confocal microscopy and microfluidics at a single-cell level. The complete inactivation of ARB by S-nZVI/PS was also demonstrated in real drinking water and real wastewater effluent that contained natural organic matter and suspended solids. Regrowth assays showed that the treated ARB was not observed after 72 h or longer incubation, suggesting that ARB was permanently inactivated by radicals such as SO4•- and •OH. The destruction of bacterial cells compromised the removal efficiency of the intracellular ARGs, with only ~4.0-log reduction after 60 min treatment by S-nZVI/PS. Collectively, our results suggest the feasibility of S-nZVI coupled with PS for simultaneous ARB and ARGs removal in real water matrices.
Collapse
Affiliation(s)
- Zhigang Yu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Hesamoddin Rabiee
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
49
|
Ahmed Y, Zhong J, Yuan Z, Guo J. Simultaneous removal of antibiotic resistant bacteria, antibiotic resistance genes, and micropollutants by a modified photo-Fenton process. WATER RESEARCH 2021; 197:117075. [PMID: 33819660 DOI: 10.1016/j.watres.2021.117075] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Although photo-driven advanced oxidation processes (AOPs) have been developed to treat wastewater, few studies have investigated the feasibility of AOPs to simultaneously remove antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and micropollutants (MPs). This study employed a modified photo-Fenton process using ethylenediamine-N,N'-disuccinic acid (EDDS) to chelate iron(III), thus maintaining the reaction pH in a neutral range. Simultaneous removal of ARB and associated extracellular (e-ARGs) and intracellular ARGs (i-ARGs), was assessed by bacterial cell culture, qPCR and atomic force microscopy. The removal of five MPs was also evaluated by liquid chromatography coupled with mass spectrometry. A low dose comprising 0.1 mM Fe(III), 0.2 mM EDDS, and 0.3 mM hydrogen peroxide (H2O2) was found to be effective for decreasing ARB by 6-log within 30 min, and e-ARGs by 6-log within 10 min. No ARB regrowth occurred after 48-h, suggesting that the proposed process is an effective disinfectant against ARB. Moreover, five recalcitrant MPs (carbamazepine, diclofenac, sulfamethoxazole, mecoprop and benzotriazole at an initial concentration of 10 μg/L each) were >99% removed after 30 min treatment in ultrapure water. The modified photo-Fenton process was also validated using synthetic wastewater and real secondary wastewater effluent as matrices, and results suggest the dosage should be doubled to ensure equivalent removal performance. Collectively, this study demonstrated that the modified process is an optimistic 'one-stop' solution to simultaneously mitigate both chemical and biological hazards.
Collapse
Affiliation(s)
- Yunus Ahmed
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jiexi Zhong
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
50
|
Xiao X, Ma XL, Han X, Wu LJ, Liu C, Yu HQ. TiO 2 photoexcitation promoted horizontal transfer of resistance genes mediated by phage transduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144040. [PMID: 33341633 DOI: 10.1016/j.scitotenv.2020.144040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Environmental pollution caused by antibiotic resistance genes (ARGs) has attracted wide concerns, and various approaches have been proposed to control ARGs dissemination. TiO2 photoexcitation under UV irradiation has been used for such a purpose. But the actual UV intensity is insufficient to trigger the production of reactive oxygen species (ROS) in the aqueous environment. Thus, it is interesting to know how mild photoexcitation of TiO2 with low-intensity UV affects the horizontal transfer of ARGs. In this work, the impact of TiO2 photoexcitation on the transductant efficiency of constructed filamentous phage gM13 to its host Escherichia coli TG1 was investigated. Although individual treatment with nano-TiO2 and UV irradiation both improved the phage infection, TiO2 photoexcitation exhibited a clear synergistic promotion effect. However, excessive UV irradiation resulted in a decrease in transductant formation, implying severe oxidative damage to the phage and bacterial cells. Extracellular ROS produced by moderate photoexcitation of TiO2 could increase the outer membrane permeability, which facilitated phage infection. The increase in pili synthesis induced by intracellular ROS provided more sites for phage recognition and invasion in the presence of TiO2 photoexcitation, which contributed to the transduction process. Our work provides a novel insight into the impact of TiO2 photoexcitation on ARGs diffusion and is helpful for better understanding non-toxic environmental effect of nanomaterials.
Collapse
Affiliation(s)
- Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Lin Ma
- School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xue Han
- School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li-Jun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Chang Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Han-Qing Yu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|