1
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
2
|
Meng K, Shi YC, Li WX, Wang J, Cheng BJ, Li TL, Li H, Jiang N, Liu R. Testosterone Mediates Reproductive Toxicity in Caenorhabditis elegans by Affecting Sex Determination in Germ Cells through nhr-69/ mpk-1/ fog-1/ 3. TOXICS 2024; 12:502. [PMID: 39058154 PMCID: PMC11281075 DOI: 10.3390/toxics12070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Testosterone (T), an environmental androgen, significantly disrupts endocrine systems in wildlife and ecosystems. Despite growing concern over its high levels in aquatic environments, the reproductive toxicity of testosterone and its mechanisms are not well understood. In this study, we investigated the reproductive toxicity and mechanisms of testosterone using Caenorhabditis elegans (C. elegans) and assessed its ecological toxicity through the benchmark dose (BMD) method. Our results indicate that T concentrations exceeding 0.01 μg/L significantly reduce the brood size, decrease germ cell counts, and prolong the generation time in C. elegans as T concentrations increase. Furthermore, to elucidate the specific mechanisms, we analyzed the expression of nhr-69, mpk-1, and other genes involved in sex determination. These findings suggest that the nhr-69-mediated reproductive toxicity of T primarily affects sperm formation and the offspring number by influencing its downstream targets, mpk-1 and fog-1/3, which are critical in the germ cell sex-determining pathway. Additionally, this study determined that the 10% lower boundary of the baseline dose (BMDL10) is 1.160 ng/L, offering a more protective reference dose for the ecological risk assessment of T. The present study suggests that nhr-69 mediates the reproductive toxicity of T by influencing mpk-1 and fog-1/3, critical genes at the end of the germ cell sex-determining pathway, thereby providing a basis for establishing reproductive toxicity thresholds for T.
Collapse
Affiliation(s)
- Ke Meng
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Ying-Chi Shi
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Wei-Xi Li
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Jia Wang
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Bei-Jing Cheng
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Tian-Lin Li
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Hui Li
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Nan Jiang
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Ran Liu
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| |
Collapse
|
3
|
Lin H, Zhou L, Lu S, Yang H, Li Y, Yang X. Occurrence and spatiotemporal distribution of natural and synthetic steroid hormones in soil, water, and sediment systems in suburban agricultural area of Guangzhou City, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134288. [PMID: 38626685 DOI: 10.1016/j.jhazmat.2024.134288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Steroid hormones are highly potent compounds that can disrupt the endocrine systems of aquatic organisms. This study explored the spatiotemporal distribution of 49 steroid hormones in agricultural soils, ditch water, and sediment from suburban areas of Guangzhou City, China. The average concentrations of Σsteroid hormones in the water, soils, and sediment were 97.7 ng/L, 4460 ng/kg, and 9140 ng/kg, respectively. Elevated hormone concentrations were notable in water during the flood season compared to the dry season, whereas an inverse trend was observed in soils and sediment. These observations were attributed to illegal wastewater discharge during the flood season, and sediment partitioning of hormones and manure fertilization during the dry season. Correlation analysis further showed that population, precipitation, and number of slaughtered animals significantly influenced the spatial distribution of steroid hormones across various districts. Moreover, there was substantial mass transfer among the three media, with steroid hormones predominantly distributed in the sediment (60.8 %) and soils (34.4 %). Risk quotients, calculated as the measured concentration and predicted no-effect concentration, exceeded 1 at certain sites for some hormones, indicating high risks. This study reveals that the risk assessment of steroid hormones requires consideration of their spatiotemporal variability and inter-media mass transfer dynamics in agroecosystems.
Collapse
Affiliation(s)
- Hang Lin
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Liangzhuo Zhou
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Shudong Lu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Han Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Key Laboratory of Arable Land Conservation (South China), MOA, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Key Laboratory of Arable Land Conservation (South China), MOA, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Makwakwa TA, Moema DE, Msagati TAM. Multi-criteria decision analysis: technique for order of preference by similarity to ideal solution for selecting greener analytical method in the determination of mifepristone in environmental water samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29460-29471. [PMID: 38578593 PMCID: PMC11058867 DOI: 10.1007/s11356-024-32961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
This work proposes the use of multi-criteria decision analysis (MCDA) to select a more environmentally friendly analytical procedure. TOPSIS, which stands for Technique for Order of Preference by Similarity to Ideal Solution, is an example of a MCDA method that may be used to rank or select best alternative based on various criteria. Thirteen analytical procedures were used in this study as TOPSIS input choices for mifepristone determination in water samples. The input data, which consisted of these choices, was described using assessment criteria based on 12 principles of green analytical chemistry (GAC). Based on the objective mean weighting (MW), the weights for each criterion were assigned equally. The most preferred analytical method according to the ranking was solid phase extraction with micellar electrokinetic chromatography (SPE-MEKC), while solid phase extraction combined with ultra-high performance liquid chromatography tandem mass spectrometry (SPE-UHPLC-MS/MS) was ranked last. TOPSIS ranking results were also compared to the green metrics NEMI, Eco-Scale, GAPI, AGREE, and AGREEprep that were used to assess the greenness of thirteen analytical methods for mifepristone determination. The results demonstrated that only the AGREE metric tool correlated with TOPSIS; however, there was no correlation with other metric tools. The analysis results suggest that TOPSIS is a very useful tool for ranking or selecting the analytical procedure in terms of its greenness and that it can be easily integrated with other green metrics tools for method greenness assessment.
Collapse
Affiliation(s)
- Tlou A Makwakwa
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, Florida, South Africa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, Florida, South Africa
| | - Dineo E Moema
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, Florida, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, Florida, South Africa.
| |
Collapse
|
5
|
Stavreva DA, Varticovski L, Raziuddin R, Pegoraro G, Schiltz RL, Hager GL. Novel biosensor for high-throughput detection of progesterone receptor-interacting endocrine disruptors. Sci Rep 2024; 14:5567. [PMID: 38448539 PMCID: PMC10917811 DOI: 10.1038/s41598-024-55254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
Progesterone receptor (PR)-interacting compounds in the environment are associated with serious health hazards. However, methods for their detection in environmental samples are cumbersome. We report a sensitive activity-based biosensor for rapid and reliable screening of progesterone receptor (PR)-interacting endocrine disrupting chemicals (EDCs). The biosensor is a cell line which expresses nuclear mCherry-NF1 and a green fluorescent protein (GFP)-tagged chimera of glucocorticoid receptor (GR) N terminus fused to the ligand binding domain (LBD) of PR (GFP-GR-PR). As this LBD is shared by the PRA and PRB, the biosensor reports on the activation of both PR isoforms. This GFP-GR-PR chimera is cytoplasmic in the absence of hormone and translocates rapidly to the nucleus in response to PR agonists or antagonists in concentration- and time-dependent manner. In live cells, presence of nuclear NF1 label eliminates cell fixation and nuclear staining resulting in efficient screening. The assay can be used in screens for novel PR ligands and PR-interacting contaminants in environmental samples. A limited screen of river water samples indicated a widespread, low-level contamination with PR-interacting contaminants in all tested samples.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA.
| | - Lyuba Varticovski
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA
| | - Razi Raziuddin
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA
| | - R Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA.
| |
Collapse
|
6
|
Xu R, Liu S, Pan YF, Wu NN, Huang QY, Li HX, Lin L, Hou R, Xu XR, Cheng YY. Steroid metabolites as overlooked emerging contaminants: Insights from multimedia partitioning and source-sink simulation in an estuarine environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132673. [PMID: 37793261 DOI: 10.1016/j.jhazmat.2023.132673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Steroids have been attracting global attention given potential carcinogenic and endocrine-disrupting effects, yet the environmental status of steroids, especially their metabolites, in estuarine environment remain largely unexplored. This study investigated 31 steroids and metabolites in suspended particulate matter (SPM), water phase and sediments of the Pearl River Estuary (PRE) during the dry and wet seasons to elucidate their spatiotemporal patterning, partitioning behavior, and environmental fate. The results showed that natural steroids predominated in SPM and sediments while the metabolites predominated in water. The spatial distribution of steroids and metabolites varied seasonally, with hydrophobicity and environmental factors influencing phase partitioning in the estuary. Furthermore, a natural steroid, progesterone (P) could serve as a trustworthy chemical indicator to estimate the concentrations of steroids and metabolites in the PRE. Importantly, the mass budget of P was estimated using an improved multi-box mass balance model, revealing that outflow to the South China Sea was the primary sink of P in water (∼87%) and degradation was the primary sink of P in sediments (∼68%) of the PRE. Overall, this study offers insightful information about the distribution and environmental fate of steroids and metabolites in estuarine environment, with implications for future management strategies.
Collapse
Affiliation(s)
- Ru Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yun-Feng Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nian-Nian Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Yi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yuan-Yue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
7
|
Jenila JS, Issac PK, Lam SS, Oviya JC, Jones S, Munusamy-Ramanujam G, Chang SW, Ravindran B, Mannacharaju M, Ghotekar S, Khoo KS. Deleterious effect of gestagens from wastewater effluent on fish reproduction in aquatic environment: A review. ENVIRONMENTAL RESEARCH 2023; 236:116810. [PMID: 37532209 DOI: 10.1016/j.envres.2023.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Gestagens are common pollutants accumulated in the aquatic ecosystem. Gestagens are comprised of natural gestagens (i.e. progesterone) and synthetic gestagens (i.e. progestins). The major contributors of gestagens in the environment are paper plant mill effluent, wastewater treatment plants, discharge from pharmaceutical manufacturing, and livestock farming. Gestagens present in the aquatic environment interact with progesterone receptors and other steroid hormone receptors, negatively influencing fish reproduction, development, and behavior. In fish, the gonadotropin induces 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) production, an important steroid hormone involved in gametogenesis. DHP interacts with the membrane progestin receptor (mPR), which regulates sperm motility and oocyte maturation. Gestagens also interfere with the hypothalamic-pituitary-gonadal (HPG) axis, which results in altered hormone levels in fish. Moreover, recent studies showed that even at low concentrations exposure to gestagens can have detrimental effects on fish reproduction, including reduced egg production, masculinization, feminization in males, and altered sex ratio, raising concerns about their impact on the fish population. This review highlights the hormonal regulation of sperm motility, oocyte maturation, the concentration of environmental gestagens in the aquatic environment, and their detrimental effects on fish reproduction. However, the long-term and combined impacts of multiple gestagens, including their interactions with other pollutants on fish populations and ecosystems are not well understood. The lack of standardized regulations and monitoring protocols for gestagens pollution in wastewater effluent hampers effective control and management. Nonetheless, advancements in analytical techniques and biomonitoring methods provide potential solutions by enabling better detection and quantification of gestagens in aquatic ecosystems.
Collapse
Affiliation(s)
- J S Jenila
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - J Christina Oviya
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India; Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, BIHER, Chennai, India
| | - Ganesh Munusamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM-IST, Kattankulathur, Tamil Nadu, 603203, India.
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Balasubramani Ravindran
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India; Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Mahesh Mannacharaju
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science (University of Mumbai), Silvassa, 396 230, Dadra and Nagar Haveli (UT), India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
8
|
Mirmont E, Bœuf A, Charmel M, Lalère B, Lardy-Fontan S. Validation of an isotope dilution mass spectrometry (IDMS) measurement procedure for the reliable quantification of steroid hormones in waters. Anal Bioanal Chem 2023:10.1007/s00216-023-04698-4. [PMID: 37120618 DOI: 10.1007/s00216-023-04698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
Reliable data are compulsory to efficiently monitor pollutants in aquatic environments, particularly steroid hormones that can exert harmful effects at challenging analytical levels below the ng L-1. An isotope dilution two-step solid-phase extraction followed by an ultra-performance liquid chromatography separation coupled to tandem mass spectrometry (UPLC-MS/MS) detection method was validated for the quantification of 21 steroid hormones (androgens, estrogens, glucocorticoids, and progestogens) in whole waters. To achieve a realistic and robust assessment of the performances of this method, the validation procedure was conducted using several water samples representative of its intended application. These samples were characterized in terms of concentration of ionic constituents, suspended particulate matter (SPM), and dissolved organic carbon contents (DOC). For estrogens that are part of the European Water Framework Directive Watchlist (17beta-estradiol and estrone), the performances met the European requirements (decision 2015/495/EU) in terms of limit of quantification (LQ) and measurement uncertainty. For 17alpha-ethinylestradiol, the challenging LQ of 0.035 ng L-1 was reached. More generally, for 15 compounds out of 21, the accuracy, evaluated in intermediate precision conditions at concentrations ranging between 0.1 and 10 ng L-1, was found to be within a 35% tolerance. The evaluation of the measurement uncertainty was realized following the Guide to the expression of Uncertainty in Measurement. Finally, a water monitoring survey demonstrated the suitability of the method and pointed out the contamination of Belgium rivers by five estrogens (17alpha-ethinylestradiol, estriol, 17alpha-estradiol, 17beta-estradiol, and estrone) and three glucocorticoids (betamethasone, cortisol, and cortisone) which have been up to now poorly documented in European rivers.
Collapse
Affiliation(s)
- Elodie Mirmont
- Laboratoire National de métrologie et d'Essai (LNE), 1 rue Gaston Boissier, 75015, Paris, France
| | - Amandine Bœuf
- Laboratoire National de métrologie et d'Essai (LNE), 1 rue Gaston Boissier, 75015, Paris, France.
| | - Mélissa Charmel
- Laboratoire National de métrologie et d'Essai (LNE), 1 rue Gaston Boissier, 75015, Paris, France
| | - Béatrice Lalère
- Laboratoire National de métrologie et d'Essai (LNE), 1 rue Gaston Boissier, 75015, Paris, France
| | - Sophie Lardy-Fontan
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54 000, Nancy, France
| |
Collapse
|
9
|
Ke Y, Jiang J, Mao X, Qu B, Li X, Zhao H, Wang J, Li Z. Photochemical reaction of glucocorticoids in aqueous solution: Influencing factors and photolysis products. CHEMOSPHERE 2023; 331:138799. [PMID: 37119927 DOI: 10.1016/j.chemosphere.2023.138799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023]
Abstract
Glucocorticoids (GCs), as endocrine disruptors, have attracted widespread attention due to their impacts on organisms' growth, development, and reproduction. In the current study, the photodegradation of budesonide (BD) and clobetasol propionate (CP), as targeted GCs, was investigated including the effects of initial concentrations and typical environmental factors (Cl-, NO2-, Fe3+, and fulvic acid (FA)). The results showed that the degradation rate constants (k) were 0.0060 and 0.0039 min-1 for BD and CP at concentration of 50 μg·L-1, and increased with the initial concentrations. Under the addition of Cl-, NO2-, and Fe3+ to the GCs/water system, the photodegradation rate was decreased with increasing Cl-, NO2-, and Fe3+ concentrations, which were in contrast to the addition of FA. Electron resonance spectroscopy (EPR) analysis and the radical quenching experiments verified that GCs could transition to the triplet excited states of GCs (3GCs*) for direct photolysis under irradiation to undergo, while NO2-, Fe3+, and FA could generate ·OH to induce indirect photolysis. According to HPLC-Q-TOF MS analysis, the structures of the three photodegradation products of BD and CP were elucidated, respectively, and the phototransformation pathways were inferred based on the product structures. These findings help to grasp the fate of synthetic GCs in the environment and contribute to the understanding of their ecological risks.
Collapse
Affiliation(s)
- Yifan Ke
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingqiu Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, No.12 South Zhongguancun Ave., Haidian District, Beijing, 100081, China
| | - Xiqin Mao
- Dalian Institute for Drug Control, Dalian Food and Drug Administration, Dalian, 116024, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116024, China
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jingyao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
10
|
Tan J, Liang C, Guo Y, Zou H, Guo Y, Ye J, Hou L, Wang X. Thyroid endocrine disruption and neurotoxicity of gestodene in adult female mosquitofish (Gambusia affinis). CHEMOSPHERE 2023; 313:137594. [PMID: 36538954 DOI: 10.1016/j.chemosphere.2022.137594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The frequent detection of progestins in various aquatic environments and their potential endocrine disruptive effects in fish have attracted increasing attention worldwide. However, data on their effects on thyroid function and neurotoxicity in fish are limited, and the underlying mechanisms remain unclear. Here, the effects of gestodene (GES, a common progestin) on the thyroid endocrine and nervous systems of mosquitofish (Gambusia affinis) were studied. Adult female fish were exposed to GES at environmentally relevant concentrations (4.4-378.7 ng/L) for 60 days. The results showed that exposure to 378.7 ng/L GES caused a significant decrease in fish growth compared with the control and a marked reduction in the total distance traveled (50.6%) and swimming velocity (40.1-61.9%). The triiodothyronine (T3) levels were significantly increased by GES in a dose-dependent manner, whereas those of tetraiodothyronine (T4) were significantly decreased only at the G500 concentration. The acetylcholinesterase (AChE) activity was decreased significantly in the 4.42 ng/L GES treatments, but increased significantly at 378.67 ng/L. In the brain, a strong increase in the transcriptional levels of bdnf, trh, and dio2 was observed in fish after the 378.7 ng/L treatment. In addition, chronic exposure to GES caused colloid depletion with a concentration-dependent manner in the thyroid, and angiectasis, congestion, and vacuolar necrosis in the brain. These findings provide a better understanding of the effects of GES and associated underlying mechanisms in G. affinis.
Collapse
Affiliation(s)
- Jiefeng Tan
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China; School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Chuyan Liang
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Yanfang Guo
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Hong Zou
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Yuqi Guo
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Jiahui Ye
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China.
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China.
| |
Collapse
|
11
|
Ciślak M, Kruszelnicka I, Zembrzuska J, Ginter-Kramarczyk D. Estrogen pollution of the European aquatic environment: A critical review. WATER RESEARCH 2023; 229:119413. [PMID: 36470046 DOI: 10.1016/j.watres.2022.119413] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Among the plethora of chemicals released into the environment, much attention is paid to endocrine disrupting compounds (EDCs). Natural estrogens, such as estrone (E1), 17β-estradiol (E2), estriol (E3) are excreted by humans as well as animals, and can enter the environment as a result of discharging domestic sewage and animal waste. These compounds can cause deleterious effects such as feminization, infertility and hermaphroditism in organisms that inhabit water bodies. This study provides an overview of the level of estrogen exposures in surface waters, groundwater and river sediments in European countries. The conducted review shows that estrogen concentrations were within the range of 0.1 ng L - 10 ng /L in the majority of the tested environmental samples. However, the authors of the study point out that there are still many unexplored areas and a limited amount of data that mainly concerns Eastern European countries. The study also analysed the factors that influence the increased emissions of estrogens to the environment, which may be helpful for identifying particularly polluted areas.
Collapse
Affiliation(s)
- Marianna Ciślak
- Poznan University of Technology, Faculty of Environmental Engineering and Energy, Department of Water Supply and Bioeconomy, Berdychowo 4, 60-965 Poznan, Wielkopolska, Poland.
| | - Izabela Kruszelnicka
- Poznan University of Technology, Faculty of Environmental Engineering and Energy, Department of Water Supply and Bioeconomy, Berdychowo 4, 60-965 Poznan, Wielkopolska, Poland
| | - Joanna Zembrzuska
- Poznan University of Technology, Faculty of Chemical Technology Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznan
| | - Dobrochna Ginter-Kramarczyk
- Poznan University of Technology, Faculty of Environmental Engineering and Energy, Department of Water Supply and Bioeconomy, Berdychowo 4, 60-965 Poznan, Wielkopolska, Poland
| |
Collapse
|
12
|
Huanyu T, Jianghong S, Wei G, Jiawei Z, Hui G, Yunhe W. Environmental fate and toxicity of androgens: A critical review. ENVIRONMENTAL RESEARCH 2022; 214:113849. [PMID: 35843282 DOI: 10.1016/j.envres.2022.113849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Androgens are released by humans and livestock into the environment and which cause potent endocrine disruptions even at nanogram per liter levels. In this article, we reviewed updated research results on the structure, source, distribution characteristics and the fate of androgens in ecological systems; and emphasized the potential risk of androgens in aquatic organism. Androgens have moderately solubility in water (23.6-58.4 mg/L) and moderately hydrophobic (log Kow 2.75-4.40). The concentration of androgens in surface waters were mostly in ng/L ranges. The removal efficiencies of main wastewater treatment processes were about 70-100%, except oxidation ditch and stabilization ponds. Sludge adsorption and microbial degradation play important role in the androgens remove. The conjugated androgens were transformed into free androgens in environmental matrices. Global efforts to provide more toxicity data and establish standard monitoring methods need a revisit. Of the day available, there is an urgent need for comprehensive consideration of the impact of androgens on the environment and ecology.
Collapse
Affiliation(s)
- Tao Huanyu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, China
| | - Shi Jianghong
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Guo Wei
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Zhang Jiawei
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, China
| | - Ge Hui
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wang Yunhe
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
13
|
Miao W, He L, Zhang Y, Zhu X, Jiang Y, Liu P, Zhang T, Li C. Ferroptosis is partially responsible for dexamethasone-induced T cell ablation, but not osteoporosis in larval zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113872. [PMID: 35835076 DOI: 10.1016/j.ecoenv.2022.113872] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Glucocorticoids (GCs) have been widely detected in the aquatic system. However, the hazardous effects of GCs on aquatic organisms were underestimated, and the mechanisms of GCs-induced toxic effects in fish were largely unknown. The zebrafish larvae at 3 dpf were exposed to dexamethasone (DEX) for 48 h, and the toxic effects and the underlying mechanisms were investigated in the current study. The T cells were ablated in zebrafish larvae after being treated with 1, 3, 10, 30 and 100 μM of DEX for 48 h. In addition, osteoporosis was induced and the regeneration of the caudal fin was inhibited, by 48 h-exposure to 10, 30 and 100 μM of DEX. The transcriptomic analysis, biochemical parameters and gene expression profiles revealed that ferroptosis possibly contributed to the DEX-induced toxic effects in zebrafish larvae. Finally, Fer-1 treatment partially attenuated the DEX-induced T cell ablation, but not osteoporosis in zebrafish larvae. Taken together, the current study proved the toxic effects of DEX on zebrafish larvae, and elucidated that ferroptosis was involved in DEX-induced toxicity, providing strong evidence for the toxic effects of GCs on aquatic organisms.
Collapse
Affiliation(s)
- Wenyu Miao
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Hunter Biotechnology, Inc., Hangzhou, Zhejiang 310051, China.
| | - Lingling He
- Hunter Biotechnology, Inc., Hangzhou, Zhejiang 310051, China
| | - Yong Zhang
- Hunter Biotechnology, Inc., Hangzhou, Zhejiang 310051, China
| | - Xiaoyu Zhu
- Hunter Biotechnology, Inc., Hangzhou, Zhejiang 310051, China
| | - Yangming Jiang
- Zhejiang Provincial Key Laboratory of Biosafety Detection for Market Regulation, Hangzhou, Zhejiang 310018, China; Zhejiang Fangyuan Test Group Co., Ltd, Hangzhou, Zhejiang 310018, China
| | - Pengpeng Liu
- Zhejiang Provincial Key Laboratory of Biosafety Detection for Market Regulation, Hangzhou, Zhejiang 310018, China; Zhejiang Fangyuan Test Group Co., Ltd, Hangzhou, Zhejiang 310018, China
| | - Tao Zhang
- Hunter Biotechnology, Inc., Hangzhou, Zhejiang 310051, China
| | - Chunqi Li
- Hunter Biotechnology, Inc., Hangzhou, Zhejiang 310051, China
| |
Collapse
|
14
|
Yu Q, Yang X, Zhao F, Hu X, Guan L, Ren H, Geng J. Spatiotemporal variation and removal of selected endocrine-disrupting chemicals in wastewater treatment plants across China: Treatment process comparison. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155374. [PMID: 35461936 DOI: 10.1016/j.scitotenv.2022.155374] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
In this study, the spatiotemporal variation in the occurrence of 19 endocrine-disrupting chemicals (EDCs) spanning four seasons in wastewater treatment plants (WWTPs) located in 17 Chinese cities was investigated. Removal efficiencies for selected EDCs in 17 WWTPs over four seasons were analyzed. Contributions of conventional and advanced process segments to the removal efficiency of EDCs were explored, which compared the removal efficacies of a variety of secondary and advanced processes for EDCs. Results showed that EDCs were extensively detected in WWTPs, with bisphenol A (BPA), dehydroepiandrosterone (DHRD), androstenedione (ADD), and pregnanediol (PD) being dominant in excess sludge and wastewater. Seasonally, the greatest seasonal differences were observed in the influent, with the concentrations of 12 EDCs varying significantly between seasons. Spatially, concentrations of BPA, DHRD, testosterone (TTR), and estriol (E3) in the influent significantly varied between the northern and southern WWTPs. Fourteen EDCs were removed steadily among the four seasons, while most EDCs had considerable removal differences between WWTPs. Contribution of the conventional process segment to the removal of individual EDCs was higher than that of the advanced process segment in WWTPs. Quantitative meta-analysis indicated that the anaerobic-anoxic-anaerobic (AAO) process in the various secondary processes had the highest removal of the target EDCs. Mass balance analysis further suggested that biodegradation in the aerobic tank of the AAO process was the major pathway for most EDCs removal. This study systematically depicts the spatiotemporal distribution of EDCs in WWTPs located across China and deepens the comprehension of EDCs removal in Chinese WWTPs from a treatment process perspective.
Collapse
Affiliation(s)
- Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xudong Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Fuzheng Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Anning West Road No. 88, Lanzhou 730070, PR China
| | - Xianda Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Linchang Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
15
|
Occurrence, analysis and removal of pesticides, hormones, pharmaceuticals, and other contaminants in soil and water streams for the past two decades: a review. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Guo W, Li J, Luo M, Mao Y, Yu X, Elskens M, Baeyens W, Gao Y. Estrogenic activity and ecological risk of steroids, bisphenol A and phthalates after secondary and tertiary sewage treatment processes. WATER RESEARCH 2022; 214:118189. [PMID: 35184019 DOI: 10.1016/j.watres.2022.118189] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Effluents of sewage treatment plants (STPs) are an important source of estrogenic substances to the receiving water bodies affecting their ecological safety. In this study, steroids, bisphenol A (BPA) and phthalates were assessed in the secondary (SE) and tertiary effluent (TE) of three typical urban STPs in Beijing (China). In addition, the overall estrogenic activity in these effluents was assessed by an in-vitro bioassay (ERE-CALUX). Results showed that the concentrations and activities of estrogenic compounds in TE were lower than those in SE. The residual concentration of 17β-estradiol (E2) was the highest among the detected steroids, accounting for 51.6 ± 5.1% in SE and 57.5 ± 24.8% in TE. The residual level (25.2-41.6 ng/L) of BPA in effluents was significantly higher than that of steroids (0.2-28.8 ng/L). The residual concentration of diethyl phthalate was the highest among the detected phthalates accounting for 47.1 ± 5.1% in SE and 37.6 ± 11.5% in TE. Steroids and BPA had a higher removal rate (83.5% and 96.7%) in secondary and tertiary treatment than phthalates (68.8% and 83.1%). The hydrophobic characteristics of these estrogenic compounds determined the removal mechanism. The removal of steroids, BPA, dimethyl phthalate and diethyl phthalate (LogKow= 1.61-4.15) mainly occurred through biodegradation in the water phase, while the removal of dibutyl phthalate, butylbenzyl phthalate and di(2-ethylhexyl) phthalate (LogKow= 4.27-7.50) mainly occurred in the solid phase after adsorption on and sedimentation of the suspended particulate matter. According to ERE-CALUX, the estrogenic activity in the final STP effluents was 3.2-45.6 ng E2-equivalents/L, which is higher than reported levels in the effluents of European STPs. Calculation of estrogenic equivalents by using substance specific chemical analysis indicated that the dominant contributor was E2 (56.4-88.4%), followed by 17α-ethinylestradiol (EE2) (4.1-34.8%), both also exerting a moderate risk to the aquatic ecosystem. While the upgrade of treatment processes in STPs has efficiently reduced the emission of estrogenic substances, their ecological risk was not yet phased out.
Collapse
Affiliation(s)
- Wei Guo
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium; College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jun Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Mingyue Luo
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium
| | - Yan Mao
- Solid Waste and Chemicals Management Center of MEE, Beijing, 100029, China
| | - Xiangyi Yu
- Solid Waste and Chemicals Management Center of MEE, Beijing, 100029, China
| | - Marc Elskens
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium
| | - Willy Baeyens
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium
| | - Yue Gao
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium.
| |
Collapse
|
17
|
Comparison of 17β-Estradiol Adsorption on Corn Straw- and Dewatered Sludge-Biochar in Aqueous Solutions. Molecules 2022; 27:molecules27082567. [PMID: 35458764 PMCID: PMC9030855 DOI: 10.3390/molecules27082567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Removal of steroid hormones from aqueous environment is of prevailing concern because of their adverse impact on organisms. Using biochar derived from biomass as adsorbent to remove pollutants has become more popular due to its low cost, effectiveness, and sustainability. This study evaluated the feasibility of applying corn straw biochar (CSB) and dewatered sludge biochar (DSB) to reduce 17β-estradiol (E2) from aquatic solutions by adsorption. The experimental results showed that the adsorption kinetics and isotherm behavior of E2 on the two biochars were well described by the pseudo-second-order (R2 > 0.93) and Langmuir models (R2 > 0.97). CSB has higher E2 adsorption capacity than DSB, and the maximum adsorption capacity was 99.8 mg/g obtained from Langmuir model at 298 K, which can be attributed to the higher surface area, porosity, and hydrophobicity of this adsorbent. Higher pH levels (>10.2) decreased the adsorption capacities of biochar for E2, while the ionic strength did not significantly affect the adsorption process. The regeneration ability of CSB was slightly better than that of DSB. The possible adsorption mechanism for E2 on biochar is suggested as π−π interactions, H−bonding, and micropores filling. These results indicated that CSB has more potential and application value than DSB on reducing E2 from aqueous solutions when considering economy and removal performance.
Collapse
|
18
|
Zhang J, Wan YP, Liu ZH, Wang H, Dang Z, Liu Y. Stability properties of natural estrogen conjugates in different aqueous samples at room temperature and tips for sample storage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24589-24598. [PMID: 34825329 DOI: 10.1007/s11356-021-17377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
It is important to keep natural estrogen conjugates (C-NEs) intact in aqueous environmental sample before sample preparation; otherwise, this may influence the accurate determination of NEs. Therefore, this work thoroughly investigated the stability of C-NEs in three different aqueous environmental samples under four different storage conditions, room temperature, low temperature of 4 °C, low pH of 3, and addition of HgCl2 at 2 g/L. Results showed that C-NEs in aqueous sample were easily deconjugated under low temperature of 4 °C, which has been widely used in sample collection and storage. Both the low pH of 3 and addition of HgCl2 at 2 g/L under room temperature could keep C-NEs intact in domestic wastewaters and river water within 36 h, but the latter could keep C-NEs stable longer. This work is the first to show that low pH of 3 alone could keep C-NEs intact, which suggested that the combined condition at low temperature of 4 °C that has been widely used could be omitted. Meanwhile, compared to pH adjustment, addition of 2 g/L HgCl2 into aqueous sample is more convenient and practical for 24-h composite sampling, which may be widely applied.
Collapse
Affiliation(s)
- Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yi-Ping Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
19
|
Synthetic Progestins in Waste and Surface Waters: Concentrations, Impacts and Ecological Risk. TOXICS 2022; 10:toxics10040163. [PMID: 35448424 PMCID: PMC9026682 DOI: 10.3390/toxics10040163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023]
Abstract
Synthetic progestins (PGs) are a large family of hormones used in continuously growing amounts in human and animal contraception and medicinal therapies. Because wastewater treatment plants (WWTPs) are unable to eradicate PGs after excretion, they are discharged into aquatic systems, where they can also be regenerated from conjugated PG metabolites. This review summarises the concentrations of 12 PGs in waters from 2015 to 2021. The selected PGs were considered of particular interest due to their wide use, activity, and hormonal derivation (from testosterone, progesterone, and spirolactone). We concluded that PGs had been analysed in WWTPs influents and effluents and, to a lesser extent, in other matrices, including surface waters, where their concentrations range from ng/L to a few µg/L. Because of their high affinity for cell hormone receptors, PGs are endocrine disruptor compounds that may alter the reproductive fitness and development of biota. This review focused on their biological effects in fish, which are the most used aquatic model organisms to qualify the impacts of PGs, highlighting the risks that environmental concentrations pose to their health, fecundity, and fertility. It is concluded that PGs research should be expanded because of the still limited data on their environmental concentrations and effects.
Collapse
|
20
|
Yu Q, Yang X, Zhao F, Hu X, Ren H, Geng J. Occurrence and removal of progestogens from wastewater treatment plants in China: Spatiotemporal variation and process comparison. WATER RESEARCH 2022; 211:118038. [PMID: 35045367 DOI: 10.1016/j.watres.2022.118038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
This study investigated the overall occurrence and spatiotemporal variation of 19 progestogens in 608 samples collected from 17 wastewater treatment plants (WWTPs) distributed across China during four seasons. The aqueous removal efficiencies of progestogens were calculated and the efficacies of process segments, secondary and advanced processes, and process units in the removal of progestogens were explored. The results indicated that progestogens were widely detected in investigating WWTPs, with the progesterone, dydrogesterone, dienogest, ethisterone, and norethindrone were always dominant in the influent, secondary effluent, final effluent, and excess sludge. Seasonally, the influent exhibited more variability than the other matrices, that 10 progestogens concentrations varied significantly during the four seasons. Spatially, the influent concentrations of progestogens were generally higher in northern WWTPs than that in southern WWTPs during spring and summer. Eight progestogens were stably removed by the WWTPs across seasons, and most progestogens varied considerably in removal in different WWTPs. The conventional process segment was the dominant contributor to progestogen removal. The anaerobic-anoxic-oxic process and a combined process consisting of densadeg and cloth media filter and ultraviolet disinfection showed the highest removal of progestogens among various secondary and advanced treatment processes, respectively. Mass balance analysis showed that most progestogens were effectively eliminated in the aerobic unit, with biodegradation being the primary removal pathway. This study presents the first picture of the spatiotemporal dynamics of the distribution of progestogens in WWTPs of China and provides valuable information for better understanding of the occurrence and removal of progestogens in WWTPs.
Collapse
Affiliation(s)
- Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Xudong Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Fuzheng Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Anning West Road No. 88, Lanzhou 730070, China
| | - Xianda Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
21
|
Liu S, Tian F, Pan YF, Li HX, Lin L, Hou R, Zhang LB, Zhang Z, Liu SS, Xu XR, Cheng YY, Chen HG. Contamination and ecological risks of steroid metabolites require more attention in the environment: Evidence from the fishing ports. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150814. [PMID: 34626635 DOI: 10.1016/j.scitotenv.2021.150814] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Due to strong endocrine disrupting effects, steroids in the environment have attracted substantial attention, with studies mostly focusing on the parent steroids. Here, we conducted the first investigation on the contamination profiles, possible sources, mass inventories, and ecological risks of 27 steroids and their metabolites in 15 typical fishing ports in Southeast China. Twelve steroids were detectable in the sediment samples with the total mean concentrations of 4.6-35 ng/g. High proportions of steroid metabolites were measured in the sediments and five metabolites were newly observed. Untreated municipal sewage and aquaculture wastes constitute the possible steroid sources in the studied fishing ports. The total inventories of steroids in fishing ports ranged from 2.1-16 mg/m2, with their metabolites being important contributors. The ecological risk analysis indicated high risks across all sampling sites mainly due to the contributions of parent steroids. Furthermore, our results found that progesterone is an acceptable chemical indicator for various steroids in sediments. This study provides the first evidence of steroid metabolites in the marine environment, calling for more studies in environmental behavior and ecotoxicology of steroid metabolites.
Collapse
Affiliation(s)
- Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Fei Tian
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observation and Research Field Station of Zhujiang Estuary Ecosystem, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yun-Feng Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lin-Bao Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observation and Research Field Station of Zhujiang Estuary Ecosystem, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observation and Research Field Station of Zhujiang Estuary Ecosystem, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shuang-Shuang Liu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observation and Research Field Station of Zhujiang Estuary Ecosystem, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yuan-Yue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hai-Gang Chen
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observation and Research Field Station of Zhujiang Estuary Ecosystem, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
22
|
ZHOU Y, GONG J, YANG K, LIN C, WU C, ZHANG S. [Simultaneous determination of 24 corticosteroids in sediments based on ultrasonic extraction, solid-phase extraction, liquid chromatography, and tandem mass spectrometry]. Se Pu 2022; 40:165-174. [PMID: 35080163 PMCID: PMC9404236 DOI: 10.3724/sp.j.1123.2021.03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 12/01/2022] Open
Abstract
Corticosteroids (CSs) are widely used to treat various inflammatory and immune diseases in humans and animals, such as arthritis and lupus. Thus far, CSs have been frequently detected in diverse pollution sources, such as in the influent and effluent of traditional wastewater treatment plants, livestock farms, and aquaculture. Owing to incomplete removal or limited treatment, CSs can enter the water environment and eventually be adsorbed in the sediment. Due to hydrodynamic effects, CSs can re-enter the surface water through the resuspension of sediments, and pose a hazard to the ecosystem and human health via the enrichment of aquatic organisms and transmission through the food chain. Therefore, trace analysis of CSs in sediments is significant for exploring their prevalence and behavior in multiple environments. However, existing research mainly focuses on the determination of glucocorticoids in water samples, and studies on the systematic quantitative analysis of CSs in environmental solid samples with more complex matrices are scarce. Moreover, majority of previous investigations focused on a limited number of glucocorticoids, making it important to widen the range of target compounds to be studied, including mineralocorticoids. In this study, the main factors which could influence the accuracy and sensitivity in the determination of 24 target CSs were systematically optimized in the sample pretreatment and instrument analysis. A novel method based on ultrasonic extraction coupled with solid phase extraction (SPE) for sample pretreatment was developed for the simultaneous determination of the 24 CSs in sediments using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The sediment sample was ground to homogenize the particle sizes after freeze-drying. The analytes from 2.0 g of the sample were ultrasonicated and extracted with methanol-acetone (1∶1, v/v). After concentrating and diluting each extract, SPE was performed. The water sample was extracted and purified using hydrophile-lipophile balance (HLB) cartridges, following which the extract was further purified with LC-NH2 cartridges. The extracts were concentrated using a rotary evaporator, dried under a gentle stream of nitrogen, and re-dissolved in methanol for instrumental analysis. Chromatographic separation was conducted on an Agilent ZORBAX Eclipse Plus C8 column (100 mm×2.1 mm, 1.8 μm), with a column flow rate of 0.3 mL/min and a gradient of mobile phases A (water with 0.1% acetic acid) and B (acetonitrile). The column temperature was set to 30 ℃ and the injection volume was fixed at 5 μL. Electrospray ionization MS in the dynamic multiple reaction monitoring (DMRM) and selected ion monitoring (SIM) modes were performed in the positive mode for the qualitative and quantitative analysis of the target compounds. Quantitation of the target compounds was carried out using the internal standard method. The effects of different extraction solvents, purification conditions, and MS conditions on the recoveries of the target compounds were investigated. The limits of detection (LODs) (S/N≥3) and limits of quantification (LOQs) (S/N≥10) of all 24 compounds were in the ranges of 0.14-1.25 μg/kg and 0.26-2.26 μg/kg, respectively. The correlation coefficients of linear calibration curves were higher than 0.995 in the range of 1.0-100 μg/L. The recoveries of the 24 CSs at 5, 20, and 50 μg/kg spiked levels ranged from 64.9% to 125.1% with relative standard deviations of 0.4%-12.6% (n=5). The developed method was applied to analyze the CSs in three sediment samples from the rivers of the Pearl River Delta. In all, 11 target compounds were detected in these samples, with contents in the range of 1.25-29.38 μg/kg. The characteristic of this method is efficient, sensitive, reliable, and suitable for the trace determination of varieties of natural and synthesized CSs in environmental sediments.
Collapse
Affiliation(s)
- Yongshun ZHOU
- 广州大学环境科学与工程学院, 珠江三角洲水质安全与保护教育部重点实验室, 广东省放射性核素污染控制与资源化重点实验室, 广东 广州 510006
- School of Environmental Science and Engineering, Guangzhou University, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China
| | - Jian GONG
- 广州大学环境科学与工程学院, 珠江三角洲水质安全与保护教育部重点实验室, 广东省放射性核素污染控制与资源化重点实验室, 广东 广州 510006
- School of Environmental Science and Engineering, Guangzhou University, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China
| | - Kexin YANG
- 广州大学环境科学与工程学院, 珠江三角洲水质安全与保护教育部重点实验室, 广东省放射性核素污染控制与资源化重点实验室, 广东 广州 510006
- School of Environmental Science and Engineering, Guangzhou University, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China
| | - Canyuan LIN
- 广州大学环境科学与工程学院, 珠江三角洲水质安全与保护教育部重点实验室, 广东省放射性核素污染控制与资源化重点实验室, 广东 广州 510006
- School of Environmental Science and Engineering, Guangzhou University, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China
| | - Cuiqin WU
- 广州大学环境科学与工程学院, 珠江三角洲水质安全与保护教育部重点实验室, 广东省放射性核素污染控制与资源化重点实验室, 广东 广州 510006
- School of Environmental Science and Engineering, Guangzhou University, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China
| | - Shuhan ZHANG
- 广州大学环境科学与工程学院, 珠江三角洲水质安全与保护教育部重点实验室, 广东省放射性核素污染控制与资源化重点实验室, 广东 广州 510006
- School of Environmental Science and Engineering, Guangzhou University, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China
| |
Collapse
|
23
|
Tan J, Chen H, Chen S, Hu J, Wang X, Wang Y, Liao S, Chen P, Liang C, Dai M, Du Q, Hou L. The interactive effects of ethinylestradiol and progesterone on transcriptional expression of genes along the hypothalamus-pituitary-thyroid axis in embryonic zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150371. [PMID: 34818814 DOI: 10.1016/j.scitotenv.2021.150371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Progestins and estrogens are widespread in various aquatic environments and their potential endocrine disruption effects to aquatic organisms have drawn growing concern. However, their combined effects in aquatic organisms remain elusive. The aim of the present study was to assess the effects of the binary mixtures of gestodene (GES) and 17α-ethinylestradiol (EE2) on the hypothalamic-pituitary-thyroid (HPT) axis of zebrafish (Danio rerio) using the eleuthero-embryos. Embryos were exposed to GES and EE2 alone or in combination at concentrations ranging from 41 to 5329 ng L-1 (nominal ones from 50 to 5000 ng L-1) for 48 h, 96 h and 144 h post fertilization (hpf). The results showed that the transcripts of the genes along the HPT axis displayed pronounced alterations. There was no clear pattern in the change of the transcripts of these genes over time and with concentrations. However, in general, the transcripts of the genes were inversely affected by EE2 (increase 0.5 to 4.2-folds) and GES (inhibition 0.4 to 4.9-folds), and their mixtures showed interactive effects in embryonic zebrafish. In addition, physiological data (mortality, malformation, body length and heart rate etc.) denoted higher toxicity of the two chemicals in combination than alone based on the developmental toxicity and neurotoxicity (locomotor behavior). These results indicated that the interactive effects of these two chemicals might be different between at the transcriptional level and at the whole organismal level. In summary, GES and EE2 affect the HPT axis (related genes expression and thyroid hormones (THs) levels) and exhibit developmental toxicity and neurotoxicity.
Collapse
Affiliation(s)
- Jiefeng Tan
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Shanduo Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Junjie Hu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yifan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Shuling Liao
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Peixian Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Chuyan Liang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Menglin Dai
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Qianping Du
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| |
Collapse
|
24
|
Yusuf A, O'Flynn D, White B, Holland L, Parle-McDermott A, Lawler J, McCloughlin T, Harold D, Huerta B, Regan F. Monitoring of emerging contaminants of concern in the aquatic environment: a review of studies showing the application of effect-based measures. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5120-5143. [PMID: 34726207 DOI: 10.1039/d1ay01184g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water scarcity is increasingly a global cause of concern mainly due to widespread changes in climate conditions and increased consumptive water use driven by the exponential increase in population growth. In addition, increased pollution of fresh water sources due to rising production and consumption of pharmaceuticals and organic chemicals will further exacerbate this concern. Although surface water contamination by individual chemicals is often at very low concentration, pharmaceuticals for instance are designed to be efficacious at low concentrations, creating genuine concern for their presence in freshwater sources. Furthermore, the additive impact of multiple compounds may result in toxic or other biological effects that otherwise will not be induced by individual chemicals. Globally, different legislative frameworks have led to pre-emptive efforts which aim to ensure good water ecological status. Reports detailing the use and types of effect-based measures covering specific bioassay batteries that can identify specific mode of actions of chemical pollutants in the aquatic ecosystem to evaluate the real threat of pollutants to aquatic lives and ultimately human lives have recently emerged from monitoring networks such as the NORMAN network. In this review, we critically evaluate some studies within the last decade that have implemented effect-based monitoring of pharmaceuticals and organic chemicals in aquatic fauna, evaluating the occurrence of different chemical pollutants and the impact of these pollutants on aquatic fauna with special focus on pollutants that are contaminants of emerging concern (CEC) in urban wastewater. A critical discussion on studies that have used effect-based measures to assess biological impact of pharmaceutical/organic compound in the aquatic ecosystem and the endpoints measurements employed is presented. The application of effect-based monitoring of chemicals other than assessment of water quality status is also discussed.
Collapse
Affiliation(s)
- Azeez Yusuf
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Dylan O'Flynn
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Blanaid White
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Linda Holland
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Anne Parle-McDermott
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Jenny Lawler
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha, Qatar
| | - Thomas McCloughlin
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Denise Harold
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
| | - Belinda Huerta
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Fiona Regan
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| |
Collapse
|
25
|
Cui X, Shu H, Wang L, Chen G, Han J, Hu Q, Bashir K, Luo Z, Chang C, Zhang J, Fu Q. Methacrylic functionalized hybrid carbon nanomaterial for the selective adsorption and detection of progesterone in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62306-62320. [PMID: 34191263 DOI: 10.1007/s11356-021-15056-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Progesterone, an endocrine-disrupting chemical, has been frequently detected in wastewater for decades, posing a serious threat to ecological and human health. However, it is still a challenge to achieve the effective detection of progesterone in complex matrices water samples. In this study, a novel adsorbent CNT@CS/P(MAA) was prepared by grafting methacrylic polymers on the surface of modified carbon nanomaterials. Compared with other reported materials, the hybrid carbon nanomaterial could selectively identify the progesterone in the complex industrial pharmaceutical wastewater, and its adsorption performance is almost independent of the pH and environmental temperature. In addition, this nanomaterial could be reused with a good recovery rate. The prepared nanomaterials were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, nitrogen adsorption and desorption experiments, and thermogravimetric analysis. The results confirmed that the methacrylic polymers and chitosan layer were successfully grafted on the surface of carbon nanotubes. Adsorption isotherms, adsorption kinetics, and selectivity tests showed that CNT@CS/P(MAA) had a high adsorption capacity (44.45 mg·g-1), a fast adsorption rate and a satisfied selectivity for progesterone. Then, CNT@CS/P(MAA) was used as solid phase extraction sorbent and combined with HPLC to enrich progesterone from the wastewater samples. Under the optimum conditions, a good linearity was obtained with the correlation coefficient was 0.9998, and the limit of detection was 0.003 ng·mL-1. Therefore, this method could be used for the selective and effective detection of progesterone in industrial wastewater with complex substrates and provided a new method for the detection of progesterone in other environmental waters.
Collapse
Affiliation(s)
- Xia Cui
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hua Shu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lu Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jili Han
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qianqian Hu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kamran Bashir
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhimin Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chun Chang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jia Zhang
- Shaanxi Hanjiang Pharmaceutical Group Co., Ltd, Hanzhong, 723000, China
| | - Qiang Fu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
- Department of Pharmaceutical Analysis, College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China.
- Shaanxi Hanjiang Pharmaceutical Group Co., Ltd, Hanzhong, 723000, China.
| |
Collapse
|
26
|
García-Cambero JP, Corpa C, Lucena MA, Méndez P, Sierra P, Galán-Madruga D, Aguayo S. Presence of diclofenac, estradiol, and ethinylestradiol in Manzanares River (Spain) and their toxicity to zebrafish embryo development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49921-49935. [PMID: 33948840 DOI: 10.1007/s11356-021-14167-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Diclofenac (DCF), 17-β-estradiol (E2), and 17-α-ethinylestradiol (EE2) are emerging pollutants included in the first watch list agreed by European countries and set in the EU Water Directive. The objective of the present study was the analytical monitoring of DCF, E2, and EE2 in surface water and sediment of the Manzanares River in a stretch that crosses the city of Madrid, Spain, and to assess whether such environmental levels could affect the development of aquatic vertebrates through a zebrafish embryo-larval assay. Samples taken during two campaigns in the spring of 2015 were analyzed for DCF, E2, and EE2 by LC-MS or GC-MS. The levels of E2 and EE2 measured in surface water and sediments of the Manzanares were within the ranges reported in other Spanish and European studies; however, DCF levels were higher in the present study. The zebrafish embryos exposed to the Manzanares River water (0-144h) showed lethal effects and sublethal effects (developmental delay, bradycardia, and reduced locomotion). Nevertheless, these effects were not primarily associated with the levels of DCF, E2, and EE2 present in the Manzanares River, because representative mixtures of the field study prepared in the laboratory did not exhibit such toxicity to the zebrafish embryos.
Collapse
Affiliation(s)
- Jesús Pablo García-Cambero
- Area of Environmental Toxicology, National Centre for Environmental Health, Institute of Health Carlos III, Majadahonda, Spain
| | - Cristina Corpa
- Unity of Antibacterial Resistance, Spanish Food Safety and Nutrition Agency, Madrid, Spain
| | - Miguel Angel Lucena
- Quality Assurance Programme, National Centre for Environmental Health, Institute of Health Carlos III, Majadahonda, Spain
| | - Paloma Méndez
- Unity of Antibacterial Resistance, Spanish Food Safety and Nutrition Agency, Madrid, Spain
| | - Pilar Sierra
- Unity of Antibacterial Resistance, Spanish Food Safety and Nutrition Agency, Madrid, Spain
| | - David Galán-Madruga
- Department of Atmospheric Pollution, National Environment Health Center, Carlos III Health Institute, 28220, Madrid, Spain.
- Centro Nacional de Sanidad Ambiental, Instituto de Salud Carlos III, Carretera de Majadahonda a Pozuelo, km 2, 28220 Majadahonda, Madrid, Spain.
| | - Sonia Aguayo
- Unity of Antibacterial Resistance, Spanish Food Safety and Nutrition Agency, Madrid, Spain
| |
Collapse
|
27
|
Mirmont E, Bœuf A, Charmel M, Vaslin-Reimann S, Lalère B, Laprévote O, Lardy-Fontan S. Development and implementation of an analytical procedure for the quantification of natural and synthetic steroid hormones in whole surface waters. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1175:122732. [PMID: 33992977 DOI: 10.1016/j.jchromb.2021.122732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/25/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Natural and synthetic steroid hormones are chronically released into aquatic spheres. Whereas knowledge on their combined mode of action and the cocktail effect are needed, only few multi-class methods address the challenge of their trace quantification in surface waters. The current study describes a sensitive multi-residue analytical strategy aiming to quantify 23 steroid hormones belonging to androgens, estrogens, glucocorticoids and progestogens in whole surface waters. The procedure relies on a two-step solid-phase extraction followed by an ultra-performance liquid chromatography separation coupled to tandem mass spectrometry detection (UPLC-MS/MS). Isotope dilution was implemented when possible in order to ensure the reliability of the measurement. The procedure was optimized toward the reliable quantification of the 23 target compounds at the predicted no-effect concentrations when existing or below the ng L-1 level. Satisfactory absolute global recoveries ≥ 77% were obtained for almost all compounds (21 out of 23) in intermediate precision conditions. Measurement errors were comprised between -27% and +17% for the great majority of compounds (21 out of 23) with standard deviations < 20% in intermediate precision conditions. Despite signal suppression was observed in water samples, satisfactory limits of quantification were achieved, ranging from 0.035 ng L-1 for 17alpha-ethinylestradiol to 1 ng L-1 for 6beta-hydroxycortisol and 6beta-hydroxydexamethasone. Abiotic stability was demonstrated for the great majority of target compounds (22 out of 23) in reference water samples stored at 4 ± 3 °C during 48 h, driving our sampling strategy. To demonstrate its fitness for purpose, the procedure was implemented in a preliminary monitoring survey of Belgian surface waters. As a result, 6 out of 23 target compounds were detected or quantified, showing a contamination by some estrogens and glucocorticoids at levels ranging from 0.1 to 0.9 ng L-1.
Collapse
Affiliation(s)
- E Mirmont
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France; UMR CNRS 8038 CiTCoM, Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France
| | - A Bœuf
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - M Charmel
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - S Vaslin-Reimann
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - B Lalère
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - O Laprévote
- UMR CNRS 8038 CiTCoM, Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 24 rue Leblanc, 75015 Paris, France
| | - S Lardy-Fontan
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France.
| |
Collapse
|
28
|
Capillary electrophoresis and liquid chromatography for determining steroids in concentrates of purified water from Päijänne Lake. J Chromatogr A 2021; 1649:462233. [PMID: 34038782 DOI: 10.1016/j.chroma.2021.462233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/11/2021] [Accepted: 04/30/2021] [Indexed: 11/21/2022]
Abstract
The research was done with partial filling micellar electrokinetic chromatography, microemulsion electrokinetic chromatography, and ultra-high performance liquid chromatography. The study focuses on determination of male and female steroids from cold and hot tap water of households in Helsinki City. The district´s raw water is made run from Päijänne Lake through a water tunnel to the purification plants in Helsinki area. The effluents delivered from the plants to households as tap water were sampled and used for the study. They were concentrated with solid phase extraction to exceed the detection limits of the three methods. With partial filling method the limits were 0.50, 0.48, 0.33, and 0.50 mg/L for androsterone, testosterone, progesterone, and testosterone-glucuronide, respectively. In microemulsion method the limit values were 1.33, 1.11, and 0.40 mg/L for androsterone, testosterone, and progesterone, respectively, and 0.83, 0.45, and 0.50 mg/L for hydrocortisone, 17-α-hydroxyprogesterone, and 17-α-methyltestosterone, respectively. In the tap water samples, progesterone concentrations represented the highest values being 0.22 and 1.18 ng/L in cold and hot water, respectively. They also contained testosterone (in all samples), its glucuronide metabolite (in 25% of the samples), and androstenedione (in 75% of the samples). The ultra-high liquid chromatographic method with mass spectrometric detection was used for identification of the steroids at µg/L level.
Collapse
|
29
|
Weizel A, Schlüsener MP, Dierkes G, Wick A, Ternes TA. Fate and behavior of progestogens in activated sludge treatment: Kinetics and transformation products. WATER RESEARCH 2021; 188:116515. [PMID: 33125988 DOI: 10.1016/j.watres.2020.116515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have shown the high ecotoxicological potential of progestogens (PGs) on the reproductive system of aquatic organisms. Yet the ubiquitous presence of several PGs in wastewater treatment plant (WWTP) effluents indicates an incomplete removal during treatment. To investigate the fate and behavior of PGs during biological wastewater treatment, nine commonly used PGs were incubated in aerobic lab-scale degradation experiments with activated sludge taken from a municipal WWTP. The degradation kinetics revealed a fast removal after 48 h for most of the compounds. Cyproterone acetate and dienogest were the most recalcitrant of the analyzed steroids with half-lives of 8.65 h and 4.55 h, respectively. Thus, only moderate removals of these PGs can be predicted in full-scale WWTPs. Moreover, numerous transformation products (TPs) were detected via high-resolution mass spectrometry. Hydrogenation or dehydrogenation of ring A and non-selective hydroxylations of 17α-hydroxyprogesterone derivatives (medroxyprogesterone acetate, chlormadinone acetate, cyproterone acetate) as well as for 19-nortestosterone derivatives (dienogest, norethisterone acetate, etonogestrel) were observed as major transformation reactions. Seven of the identified TPs were confirmed by reference standards. The biodegradation of cyproterone acetate revealed an almost quantitative transformation to 3α‑hydroxy cyproterone acetate which is reported to be genotoxic. In a comparative evaluation of the TPs formed and the steroid structure, it was observed that molecular structure played a role in the inhibition of several transformation reactions, explaining the increased recalcitrance of these compounds. In addition, aromatization of the steroid ring A was identified for the 19-nortestosterone derivatives leading to the formation of estrogen-like TPs. For instance, the degradation of norethisterone acetate led to the formation of 17α-ethinylestradiol, a well-known and very potent synthetic estrogen. The evidence of the conversion of progestogenic to estrogenic compounds and the formation of potentially hazardous TPs indicates the need of a more comprehensive environmental risk assessment for synthetic steroids. Two of the newly identified TPs (3α-hydroxy cyproterone acetate and ∆9,11-dehydro-17α-cyanomethyl estradiol) were detected in WWTP effluents for the first time.
Collapse
Affiliation(s)
- Alexander Weizel
- Federal Institute of Hydrology, Department of Aquatic Chemistry, 56068, Koblenz, Germany
| | - Michael P Schlüsener
- Federal Institute of Hydrology, Department of Aquatic Chemistry, 56068, Koblenz, Germany
| | - Georg Dierkes
- Federal Institute of Hydrology, Department of Aquatic Chemistry, 56068, Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Department of Aquatic Chemistry, 56068, Koblenz, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology, Department of Aquatic Chemistry, 56068, Koblenz, Germany.
| |
Collapse
|
30
|
Li Y, Yao C, Zheng Q, Yang W, Niu X, Zhang Y, Lu G. Occurrence and ecological implications of organophosphate triesters and diester degradation products in wastewater, river water, and tap water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113810. [PMID: 31884214 DOI: 10.1016/j.envpol.2019.113810] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The occurrence and composition profiles of 13 triester organophosphate flame retardants and their three diester metabolites in river water, wastewater, and tap water in China were studied. Most target organophosphate esters (OPEs) were found in water samples, with average concentrations of 787 ng/L for triethyl phosphate (TEP) and 0.1 ng/L for tripropyl phosphate (TPP) in wastewater, 1.48 × 103 ng/L for TEP and 0.12 ng/L for tripentyl phosphate (TPeP) in river water, and 15.5 ng/L for tris(2-chloroethyl) phosphate (TCEP) and 0.08 ng/L for tritolyl phosphate (TMPP) in tap water. TEP was the most abundant compound among the detected OPEs in all water types. The exposure of zebrafish embryos showed negligible effects of TEP, triphenyl phosphate (TPHP), and diphenyl phosphate (DPHP), while mixed solutions that mimic river water and wastewater composition disturbed the development of embryos and led to the altered transcription of genes relating to the hypothalamic-pituitary-thyroid (HPT) axis. In addition, the binding affinity between OPEs and a thyroid hormone receptor (TRβ) protein was further investigated by molecular docking modeling, which helped to estimate the effects of OPEs on TRβ. This research provides experimental and theoretical evidence for the ecotoxicological effects of OPEs in aquatic environments.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China.
| | - Chi Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Qiangxi Zheng
- Anhui Academy of Environmental Sciences Research, Hefei, 230022, China
| | - Wen Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Xiangming Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Yichun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China.
| |
Collapse
|
31
|
Lin C, Gong J, Zhou Y, Chen D, Chen Y, Yang J, Li Q, Wu C, Tang H. Spatiotemporal distribution, source apportionment, and ecological risk of corticosteroids in the urbanized river system of Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135693. [PMID: 31791762 DOI: 10.1016/j.scitotenv.2019.135693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
We investigated the occurrence and distribution of 24 selected corticosteroids (CSs) in the surface water of the Zhujiang River (ZR) system in Guangzhou, a highly urbanized river system receiving both treated and untreated municipal wastewater effluents. Twenty-two and sixteen CSs were detected in the tributaries and the main stream of the ZR system, and their concentrations ranged from less than the method quantification limit (fluticasone propionate) to 94 ng/L (clobetasone butyrate) and from 0.24 ng/L (cortisol) to 7.2 ng/L (clobetasone butyrate), respectively. We observed higher total CSs (∑CSs) concentrations in the tributaries (11-396 ng/L) relative to the main stream (5.5-33 ng/L) due to their proximity to densely populated residential areas. ∑CSs concentrations in the dry season were generally higher than those in the wet season due to low dilution from decreased river discharge. Principal component analysis and multiple linear regression analysis identified untreated domestic sewage to be the dominant source of CSs (t2, contribution rate: 42.7%) in the urban rivers. Additional source contributions were from naturally attenuated treated and/or raw sewage (t1, 21.5%) and effluents from wastewater treatment plants (t3, 26.7%). CSs contribution was dominated by t2 in the dry season, and the contributions from t1, t2, and t3 showed no significant difference in the wet season. Risk assessment inferred that the ZR system is at medium to high ecological risk from CSs and is therefore a potential threat to the health of aquatic ecosystems. To prevent CSs pollution, our results demonstrate the need to develop effective control strategies to minimize the discharge of untreated waste to nearby rivers and to improve the capacity of wastewater treatment plants in Guangzhou. Further, we demonstrate that the concentrations of cortisone and fludrocortisone acetate are effective chemical indicators to estimate the level of natural and synthetic CSs contamination in urban rivers.
Collapse
Affiliation(s)
- Canyuan Lin
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jian Gong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Yongshun Zhou
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yongheng Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Juan Yang
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China.
| | - Qiang Li
- School of life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Cuiqin Wu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongmei Tang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
32
|
Zhang J, Liu ZH, Zhong SS, Wang H, Caidan B, Yin H, Dang Z. Strategy for effective inhibition of arylsulfatase/β-glucuronidase to prevent deconjugation of sulfate and glucuronide conjugates in wastewater during sample collection and storage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135536. [PMID: 31759726 DOI: 10.1016/j.scitotenv.2019.135536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 05/20/2023]
Abstract
Arylsulfatase and β-glucuronidase are two important enzymes that are responsible for deconjugation of estrogen conjugates. It is important to keep estrogen conjugates intact during sample collection and storage, while the effective inhibition conditions for arylsulfatase and β-glucuronidase remain unknown. To elucidate these conditions, inhibition experiments were performed by adding several inhibitors or by introducing extreme pH conditions. This work confirms that arylsulfatase and β-glucuronidase can tolerate some extremes, including high concentrations of mercury dichloride, ethanol, and EDTA, while low pH (<3) or high pH (>11) can effectively inhibit their activities. The high tolerance of arylsulfatase and β-glucuronidase for mercury dichloride explains why estrogen conjugates in wastewater samples were deconjugated, even in the extremely unfavorable condition with a high concentration of mercury dichloride. Although low pH (<3) can effectively inhibit arylsulfatase/β-glucuronidase, deconjugation of sulfate conjugates by acid hydrolysis readily occurs; thus, a high pH of 11 is an appropriate storage condition for the effective inhibition of arylsulfatase/β-glucuronidase. This appropriate storage condition was confirmed and validated with diluted and sterilized activated sludge samples in which arylsulfatase/β-glucuronidase inhibition was effective for 48 h at room temperature and with a high pH of 11. The developed appropriate storage condition for effective inhibition of arylsulfatase/β-glucuronidase has wide application potential not only for estrogen conjugates but also for all conjugates of other organic micropollutants.
Collapse
Affiliation(s)
- Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, Guangdong, China; Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Shu-Shu Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Bamu Caidan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
33
|
Willi RA, Castiglioni S, Salgueiro-González N, Furia N, Mastroianni S, Faltermann S, Fent K. Physiological and Transcriptional Effects of Mixtures of Environmental Estrogens, Androgens, Progestins, and Glucocorticoids in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1092-1101. [PMID: 31829580 DOI: 10.1021/acs.est.9b05834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fishes are exposed to mixtures of different classes of steroids, but ecotoxicological implications are not sufficiently known. Here, we systematically analyze effects of different combinations of steroid mixtures in zebrafish embryos to assess their joint activities on physiology and transcriptional alterations of steroid-specific target genes at 96 and 120 h post fertilization. In binary mixtures of clobetasol propionate (CLO) with estradiol (E2) or androstenedione (A4), each steroid exhibited its own expression profile. This was also the case in mixtures of 5-, 8-, and 13-different classes of steroids in exposure concentrations of 10-10,000 ng/L. The transcriptional expression of most genes in different mixtures was steroid-specific except for genes encoding aromatase (cyp19b), sulfotransferase (sult2st3), and cyp2k22 that were induced by androgens, progestins, and glucocorticoids. Marked alterations occurred for sult2st3 in binary mixtures of CLO + E2 and CLO + A4. Glucocorticoids increased the heart rate and muscle contractions. In mixtures containing estrogens, induction of the cyp19b transcript occurred at 10 ng/L and protc from the anticoagulation system at 100 ng/L. Our study demonstrates that steroids can act independently in mixtures; the sum of individual steroid profiles is expressed. However, some genes, including cyp19b, sult2st3, and cyp2k22, are regulated by several steroids. This joint effect on different pathways may be of concern for fish development.
Collapse
Affiliation(s)
- Raffael Alois Willi
- School of Life Sciences , University of Applied Sciences and Arts Northwestern Switzerland , Hofackerstrasse 30 , CH-4132 Muttenz , Switzerland
| | - Sara Castiglioni
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri, IRCCS , Via Mario Negri 2 , 20156 Milan , Italy
| | - Noelia Salgueiro-González
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri, IRCCS , Via Mario Negri 2 , 20156 Milan , Italy
| | - Nathan Furia
- School of Life Sciences , University of Applied Sciences and Arts Northwestern Switzerland , Hofackerstrasse 30 , CH-4132 Muttenz , Switzerland
| | - Sarah Mastroianni
- School of Life Sciences , University of Applied Sciences and Arts Northwestern Switzerland , Hofackerstrasse 30 , CH-4132 Muttenz , Switzerland
| | - Susanne Faltermann
- School of Life Sciences , University of Applied Sciences and Arts Northwestern Switzerland , Hofackerstrasse 30 , CH-4132 Muttenz , Switzerland
| | - Karl Fent
- School of Life Sciences , University of Applied Sciences and Arts Northwestern Switzerland , Hofackerstrasse 30 , CH-4132 Muttenz , Switzerland
- Department of Environmental Systems Science , Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics , CH-8092 Zürich , Switzerland
| |
Collapse
|
34
|
Faltermann S, Hettich T, Küng N, Fent K. Effects of the glucocorticoid clobetasol propionate and its mixture with cortisol and different class steroids in adult female zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105372. [PMID: 31812088 DOI: 10.1016/j.aquatox.2019.105372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 05/27/2023]
Abstract
Ecotoxicological effects of glucocorticoids and steroid mixtures in the environment are not sufficiently known. Here we investigate effects of 11-14 days exposure of female zebrafish to the glucocorticoid clobetasol propionate (Clo), cortisol (Cs), their mixture and mixtures with five different class steroids (Clo + triamcinolone + estradiol + androstenedione + progesterone) in liver, brain and gonads. Cs showed little activity, while Clo reduced the condition factor at 0.57 and 6.35 μg/L. Clo induced differential expression of genes in the liver at 0.07-6.35 μg/L, which were related to circadian rhythm (per1, nr1d2), glucose metabolism (g6pca, pepck1), immune system response (fkbp 5, socs3, gilz), nuclear steroid receptors (pgr and pxr), steroidogeneses and steroid metabolism (hsd11b2, cyp2k22). Clo caused strong transcriptional down-regulation of vtg. Similar upregulations occurred in the brain for pepck1, fkbp5, socs3, gilz, hsd11b2, and nr1d2a, while cyp19b was down-regulated. Effects of Clo + Cs mixtures were similar to Clo alone. Transcriptional alterations were different in mixtures of five steroids with no alteration of vtg in the liver due to counteraction of Clo and estradiol. Induction of fkbp5 (brain) and sult2st3 (liver) and downregulation of cyp19a (gonads) occurred at 1 μg/L. Histological effects of the five steroids mixture in gonads were characterized by a decrease of mature oocytes. Our data indicate that effects of steroids of different classes sum up to an overall joint effect driven by the most potent steroid Clo.
Collapse
Affiliation(s)
- Susanne Faltermann
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Timm Hettich
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Noemi Küng
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092, Zürich, Switzerland.
| |
Collapse
|
35
|
Hashmi MAK, Krauss M, Escher BI, Teodorovic I, Brack W. Effect-Directed Analysis of Progestogens and Glucocorticoids at Trace Concentrations in River Water. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:189-199. [PMID: 31614391 DOI: 10.1002/etc.4609] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 05/07/2023]
Abstract
Effect-based monitoring is increasingly applied to detect and-in conjunction with chemical analysis-to identify endocrine-disrupting compounds (EDCs) in the environment. Although this approach of effect-directed analysis has been successfully demonstrated for estrogenicity and androgenicity, data on progestogens and glucocorticoids driving endocrine disruption are quite limited. We investigated progestogenic and glucocorticoid activities in Danube River water receiving untreated wastewater from Novi Sad, Serbia. After a 2-step fractionation, all fractions were tested with reporter gene bioassays for agonistic and antagonistic hormonal responses at progestogenic and glucocorticoid hormone receptors as well as with target and nontarget analytical screening of active fractions by liquid chromatography-high-resolution mass spectrometry. Due to masking by cytotoxic mixture components, the effects could not be detected in the raw water extract but were unraveled only after fractionation. Target chemical screening of the fraction that was active in the progesterone receptor (PR) assay revealed that progesterone and megestrol acetate were predominant drivers of PR-mediated activity along with medroxyprogesterone, dihydrotestosterone, androsterone, and epiandrosterone. Hydrocortisone was detected at sub-ng/L concentration in the active fraction in the glucocorticoid receptor (GR) assay but could not explain a significant fraction of the observed GR activity. The present study indicates that effect-based monitoring is a powerful tool to detect EDCs in the aquatic environment but that fractionation may be required to avoid masking effects of mixture components. Future effect-directed analysis studies are required to better understand the occurrence of EDCs and masking compounds in different lipophilicity windows, to finally reduce fractionation requirements for monitoring to a smart clean-up. Environ Toxicol Chem 2019;39:189-199. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Muhammad Arslan Kamal Hashmi
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), RWTH Aachen University Aachen, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Beate I Escher
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Werner Brack
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), RWTH Aachen University Aachen, Germany
| |
Collapse
|
36
|
Yu Q, Geng J, Ren H. Occurrence and fate of androgens in municipal wastewater treatment plants in China. CHEMOSPHERE 2019; 237:124371. [PMID: 31369902 DOI: 10.1016/j.chemosphere.2019.124371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/08/2019] [Accepted: 07/13/2019] [Indexed: 05/04/2023]
Abstract
Public concerns about potential ecological risks of androgens discharged to the environment through wastewater treatment plants (WWTPs) has resulted in an increased interest regarding the occurrence and fate of androgens in WWTPs. In this study, the occurrence and removal of eight androgens from 12 municipal WWTPs distributed in eleven cities in China were investigated. The composition profiles of eight androgens in influent, effluent, and excess sludge were studied. Multiple factor analyses were performed to reveal the factors affecting the distribution of androgens in WWTP influent. Results showed similar composition profiles of androgens in the studied WWTPs, with androsterone and dehydroepiandrosterone confirmed as the dominant androgens. The distributions of androgens in WWTP influent were related to the chemical oxygen demand in influent and the gross domestic product (GDP) of WWTP-associated cities. The target androgens have high aqueous removal rates, with a mean removal rate of >90%. Additionally, the behaviors of androgens were evaluated by mass balance along anaerobic-anoxic-oxic (AAO) processes in a WWTP, in which many of the androgens were eliminated mainly in the anaerobic tank. Further, 15 biotransformation products of testosterone were identified under anaerobic, anoxic, and aerobic sludge, respectively. Based on these metabolites, a general biotransformation pathway of testosterone under anaerobic, anoxic, and aerobic sludge is presented.
Collapse
Affiliation(s)
- Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
37
|
Kasambala HR, Rwiza MJ, Mdegela RH. Levels and distribution of progesterone in receiving waters and wastewaters of a growing urban area. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1107-1117. [PMID: 31799954 DOI: 10.2166/wst.2019.350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed at investigating the levels and distribution of progesterone in receiving waters and wastewaters in Arusha, a fast-growing urban area and the third largest city in Tanzania. Specifically, the study was conducted along the Themi River and the adjacent waste stabilization ponds (WSPs). Progesterone was detected and quantified by using an enzyme-linked immunosorbent assay (ELISA) kit. For Themi River samples, the level of progesterone obtained ranged from 'no detection' to 439 ng/L with a mean value of 120.3 ng/L. The levels detected were significantly higher in the midstream than the upstream and downstream sections of the river (P<0.05). The higher values at the midstream were attributable to livestock, WSPs and household effluents; agricultural activities; and sewage infiltration. Progesterone levels in the present study, although not extremely high, correspond to those associated with harmful effects in other studies. Results for samples collected from the WSPs indicated a release of 215 ng progesterone per L of the receiving waters. Although progesterone removal efficiency by the WSPs was 75%, the amount released was still high enough to cause harm to aquatic organisms. Thus, more efficient techniques are required to adequately remove progesterone to the recommended levels.
Collapse
Affiliation(s)
- Hildegard R Kasambala
- School of Materials, Energy, Water and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), P. O. Box 447, Arusha, Tanzania E-mail:
| | - Mwemezi J Rwiza
- School of Materials, Energy, Water and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), P. O. Box 447, Arusha, Tanzania E-mail:
| | - Robinson H Mdegela
- Faculty of Veterinary Medicine, Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture (SUA), P. O. Box 3021, Morogoro, Tanzania
| |
Collapse
|
38
|
Willi RA, Salgueiro-González N, Carcaiso G, Fent K. Glucocorticoid mixtures of fluticasone propionate, triamcinolone acetonide and clobetasol propionate induce additive effects in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:101-109. [PMID: 30981015 DOI: 10.1016/j.jhazmat.2019.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Many synthetic glucocorticoids from medical applications occur in the aquatic environment. Whether they pose a risk for fish health is poorly known. Here we investigate effects of glucocorticoids fluticasone propionate (FLU) and triamcinolone acetonide (TRI) as single steroids and as ternary mixtures with clobetasol propionate (CLO) in zebrafish embryos. Exposure to FLU and TRI in a range of concentrations between 0.099 and 120.08 μg/L led to concentration-related decrease in muscle contractions and increase in heart rate at 0.98 and 1.05 μg/L, respectively, and higher. Genes encoding for proteins related to glucose metabolism (g6pca, pepck1), immune system regulation (fkbp5, irg1l, socs3, gilz) and matrix metalloproteinases mmp-9 and mmp-13 showed expressional alterations, as well as genes encoding for the progestin receptor (pgr) and corticosteroid dehydrogenase (hsd11b2). FLU accelerated hatching and led to embryotoxicity (immobilization and edema). Ternary mixtures (FLU + TRI + CLO) induced the same physiological and toxicological effects at concentrations of individual glucocorticoids of 11.1-16.37 μg/L and higher. Heart rate was increased in the mixture at concentrations as low as 0.0885-0.11 μg/L of each steroid. Glucocorticoids in mixtures showed additive activity; the fold-changes of transcripts of 19 target genes were additive. Together, our data show that glucocorticoids act additively and their joint activity may be of concern for developing fish in contaminated environments.
Collapse
Affiliation(s)
- Raffael Alois Willi
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, Via La Masa 19, 20156 Milan, Italy
| | - Giulia Carcaiso
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland.
| |
Collapse
|
39
|
Willi RA, Salgueiro-González N, Faltermann S, Hettich T, Fent K. Environmental glucocorticoids corticosterone, betamethasone and flumethasone induce more potent physiological than transcriptional effects in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:183-191. [PMID: 30954817 DOI: 10.1016/j.scitotenv.2019.03.426] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Many glucocorticoids occur in the aquatic environments but their adverse effects to fish are poorly known. Here we investigate effects of the natural glucocorticoid corticosterone and the synthetic glucocorticoids betamethasone and flumethasone in zebrafish embryos. Besides studying the effects of each steroid, we compared effects of natural with synthetic glucocorticoids, used as drugs. Exposure at concentrations of 1 μg/L and higher led to concentration-related decrease in spontaneous muscle contractions at 24 h post fertilization (hpf) and increase in heart rate at 48 hpf. Betamethasone showed a significant increase at 0.11 μg/L in heart rate. Corticosterone also accelerated hatching at 60 hpf at 0.085 μg/L. Transcription of up to 24 genes associated with different pathways showed alterations at 96 and 120 hpf for all glucocorticoids, although with low potency. Corticosterone caused transcriptional induction of interleukin-17, while betamethasone caused transcriptional down-regulation of the androgen receptor, aromatase and hsd11b2, indicating an effect on the sex hormone system. Furthermore, transcripts encoding proteins related to immune system regulation (irg1l, gilz) and fkbp5 were differentially expressed by corticosterone and betamethasone, while flumethasone caused only little effects, mainly alteration of the irg1l transcript. Our study shows that these glucocorticoids caused more potent physiological effects in early embryos than transcriptional alterations in hatched embryos, likely due to increased metabolism in later developmental stages. Thus, these glucocorticoids may be of concern for early stages of fish embryos in contaminated aquatic environments.
Collapse
Affiliation(s)
- Raffael Alois Willi
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH -4132 Muttenz, Switzerland
| | - Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, Via La Masa 19, 20156 Milan, Italy
| | - Susanne Faltermann
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH -4132 Muttenz, Switzerland
| | - Timm Hettich
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH -4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH -4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences, CH -8092 Zürich, Switzerland.
| |
Collapse
|
40
|
Yu Q, Geng J, Zong X, Zhang Y, Xu K, Hu H, Deng Y, Zhao F, Ren H. Occurrence and removal of progestagens in municipal wastewater treatment plants from different regions in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:1191-1199. [PMID: 31018459 DOI: 10.1016/j.scitotenv.2019.02.327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Progestagens discharged from municipal wastewater treatment plants (WWTPs) have increasingly gained attention due to their potential risks to the aquatic organisms. However, limited information is available on the occurrence and removal of various progestagens in WWTPs in different cities of China. This work investigated the occurrence and removal of 11 progestagens in 21 WWTPs from 19 Chinese cities. Results showed that progestagens are widely distributed in the investigated WWTPs, with higher influent concentrations of total progestagens in northern WWTPs. The concentration of progestagens in WWTP influent were closely correlated with influent quality, service population and daily service volume of the WWTPs. Additionally, progesterone (PGT) and dydrogesterone (DDT) were two predominant progestagens in influent, effluent and excess sludge. Up to 5 of 11 progestagens showed high aqueous removal efficiencies (median removal efficiency >90%), whereas megestrol acetate (MTA), chlormadinone acetate (CMA), drospirenone (DSP) and levonorgestrel (LNG) had a removal efficiency of below 50%. Specially, the behaviors of progestagens along the anaerobic-anoxic-oxic of a WWTP were further explored and the aerobic tank is the main contributor to the removal of progestagens. Finally, in the effluent of these 21 WWTPs, daily mass loadings of the total progestagens ranged from 0.51 to 10.4 g d-1. Notably, LNG exhibited high potential risk to the fish base on risk quotient.
Collapse
Affiliation(s)
- Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xueying Zong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yongfeng Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Fuzheng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
41
|
Cipoletti N, Jorgenson ZG, Banda JA, Hummel SL, Kohno S, Schoenfuss HL. Land Use Contributions to Adverse Biological Effects in a Complex Agricultural and Urban Watershed: A Case Study of the Maumee River. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1035-1051. [PMID: 30883853 DOI: 10.1002/etc.4409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 05/24/2023]
Abstract
Agricultural and urban contaminants are an environmental concern because runoff may contaminate aquatic ecosystems, resulting in stress for exposed fish. The objective of the present controlled, field-based study was to assess the impacts of high-intensity agriculture and urban land use on multiple life stages of the fathead minnow (Pimephales promelas), using the Maumee River (Toledo, OH, USA) as a case study. Laboratory cultured adult and larval fathead minnows were exposed for 21 d, and embryos were exposed until hatching to site-specific water along the lower reach of the Maumee River. Adult minnows were analyzed for reproduction and alterations to hematologic characteristics (vitellogenin, glucose, estradiol, 11-ketotestosterone). Water and fish tissue samples were analyzed for a suite of multiresidue pesticides, hormones, and pharmaceuticals. Contaminants were detected in every water and tissue sample, with 6 pesticides and 8 pharmaceuticals detected in at least 82% of water samples and at least half of tissue samples. Effects differed by exposed life stage and year of exposure. Fecundity was the most sensitive endpoint measured and was altered by water from multiple sites in both years. Physiological parameters associated with fecundity, such as plasma vitellogenin and steroid hormone concentrations, were seldom impacted. Larval fathead minnows appeared to be unaffected. Embryonic morphological development was delayed in embryos exposed to site waters collected in 2016 but not in 2017. A distinction between agricultural and urban influences in the Maumee River was not realized due to the great overlap in contaminant presence and biological effects. Differences in precipitation patterns between study years likely contributed to the observed biological differences and highlight the need for environmental exposure studies to assess the environmental risk of contaminants. Environ Toxicol Chem 2019;00:1-17. © 2019 SETAC.
Collapse
Affiliation(s)
- Nicholas Cipoletti
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Zachary G Jorgenson
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Jo A Banda
- US Fish & Wildlife Service, Columbus, Ohio, USA
| | | | - Satomi Kohno
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| |
Collapse
|
42
|
Gao P, Yang C, Liang Z, Wang W, Zhao Z, Hu B, Cui F. N-propyl functionalized spherical mesoporous silica as a rapid and efficient adsorbent for steroid estrogen removal: Adsorption behaviour and effects of water chemistry. CHEMOSPHERE 2019; 214:361-370. [PMID: 30267909 DOI: 10.1016/j.chemosphere.2018.09.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 05/24/2023]
Abstract
To achieve an enhanced and selective adsorption of steroid estrogens, the n-propyl functionalization was applied to the mesoporous silica material (MCM-41) according to the physico-chemical property analysis of steroid estrogens. Adsorption behaviour and water chemistry effects were evaluated with the most concerned steroid estrogens: estrone (E1), 17β-estradiol (E2) and 17α-ethinyl estradiol (EE2) based on the materials characterization. The results showed the uptakes of E1, E2, and EE2 onto the modified MCM-41 were enhanced and accelerated by the n-propyl functionalization, which was positively correlated with the hydrophobicity of the synthesized materials. Kinetic data fitted the pseudo-second-order model well. Based on the Langmuir model, the maximum adsorption capacities of the n-propyl modified MCM-41 were up to 119.87, 88.38, and 86.91 mg g-1 for EE2, E1, and E2, respectively. Importantly, both acid and neutral solutions were beneficial to estrogen removal, but ionic strength and humic acid did not affect the estrogen adsorption. The above results suggested that the n-propyl functionalized MCM-41 would be a promising adsorbent for the rapid and efficient removal of estrogens with the selectivity from natural organic matter like humic acid. Mechanism analysis showed the key role of hydrophobic interaction, and it also confirmed the contribution of the carbonylic lone pair electrons of E1, which helped the formation of stronger hydrogen bonds with silicon hydroxyls and enhanced the dipole-dipole interaction between E1 and the synthesized materials.
Collapse
Affiliation(s)
- Pei Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Chun Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Zhijie Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Wenhao Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Zhiwei Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Bibo Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Fuyi Cui
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
43
|
Hua J, Han J, Guo Y, Zhou B. Endocrine disruption in Chinese rare minnow (Gobiocypris rarus) after long-term exposure to low environmental concentrations of progestin megestrol acetate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:289-297. [PMID: 30056343 DOI: 10.1016/j.ecoenv.2018.07.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Synthetic progestins are widely used pharmaceutical agents that have become common contaminants in the aquatic environment. The potential adverse effects of long-term exposure on aquatic wildlife, however, are not fully understood. The aim of this study was to investigate the endocrine disruption in Chinese rare minnow (Gobiocypris rarus) in response to megestrol acetate (MTA) exposure. Newly-hatched Chinese rare minnow larvae were exposed to MTA at a nominal concentration of either 1 ng/L (detected concentrations ranged from 0.18 to 0.93 ng/L) or 10 ng/L (detected concentrations ranged from 4.27 to 9.64 ng/L) for 6 months and the effects on growth, sex steroid hormones, gonadal histology, and steroidogenic genes expression were determined. After 6 months of exposure to a nominal concentration of 10 ng/L MTA, the body weight and condition factors were significantly increased in fish of both sexes. Exposure to a nominal concentration of 10 ng/L MTA significantly reduced plasma concentrations of estradiol and 11-ketotestosterone in female fish while also reducing testosterone and 11-ketotestosterone in male fish. Gonad histology revealed significantly reduced proportions of vitellogenic oocytes in female fish exposed to a nominal concentration of 10 ng/L MTA and induction of atretic follicles in female fish exposed to both nominal concentrations of MTA. The expression of cyp19a1a and cyp17a1 in the gonads was up-regulated in the ovaries while down-regulated in the testes. Our results indicate that MTA can induce endocrine disruption in Chinese rare minnow at the low concentrations found in contaminated environments. This indicates a potentially high ecological risk from MTA to fish populations in MTA-contaminated aquatic environments in China and may also in other regions.
Collapse
Affiliation(s)
- Jianghuan Hua
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
44
|
Rucins M, Baron D, Plotniece A, Petr J. Determination of Hormone Antagonists in Waste-Water Samples by Micellar Electrokinetic Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3631-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Willi RA, Fent K. Interaction of environmental steroids with organic anion transporting polypeptide (Oatp1d1) in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2670-2676. [PMID: 30055005 DOI: 10.1002/etc.4231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/24/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Steroid hormones in the aquatic environment may pose a risk to fish health due to their ubiquitous presence and high biological activity. At present, the uptake process and toxicokinetics of steroids in fish are poorly known, in particular the role of cell membrane transporters. We investigated the interaction of 17 endogenous and environmental steroids with the zebrafish organic anion transporting peptide (Oatp1d1) uptake transporter, which is prominently expressed in liver and kidneys. We selected steroids of different classes including androstenedione (A4), progesterone (P4), and its metabolites, as well as glucocorticoids and spironolactone, and analyzed their interaction with Oatp1d1 by competitive inhibition of the uptake of the fluorescent substrate Lucifer Yellow. The half-maximal inhibition (IC50) values derived from sigmoid inhibition curves were lowest for P4, and the order of increasing IC50 values was as follows: 17α-hydroxyprogesterone > clobetasol propionate > spironolactone > 21α-hydroxyprogesterone > fludrocortisone acetate and additional glucocorticoids. The interaction activity showed a positive correlation with the lipophilicity of the steroids. Our data show that different classes of steroids interact with Oatp1d1 with different activity (either by uptake or inhibition, or both). This is of importance, because in consequence, steroids may interfere with the transport of endogenous substrates, and thus physiological processes. Moreover, steroids may alter cellular trafficking of environmental contaminants by competitive inhibition of this transporter. Environ Toxicol Chem 2018;37:2670-2676. © 2018 SETAC.
Collapse
Affiliation(s)
- Raffael Alois Willi
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Karl Fent
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollution Dynamics, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| |
Collapse
|
46
|
Fent K, Siegenthaler PF, Schmid AA. Transcriptional effects of androstenedione and 17α-hydroxyprogesterone in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 202:1-5. [PMID: 29960009 DOI: 10.1016/j.aquatox.2018.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Steroid hormones in the aquatic environment may pose a risk to fish health. Here we evaluated effects of two different class steroids that frequently occur in the aquatic environment, the androgen androstenedione (A4) and the progestin 17α-hydroxyprogesterone (17-OHP4). Zebrafish embryos were exposed to four concentrations of A4 and the positive control testosterone and to 17-OHP4, and transcriptional changes were determined at 96 h post fertilization (hpf) and 120 hpf. Transcriptional changes of 18 selected genes were assessed upon exposure to measured concentrations of 0.004, 0.046, 0.62 and 6.56 μg/L A4. Significant induction of the genes encoding sulfotransferase (sult2st3) and aromatase (cyp19b) occurred in 120 hpf embryos at 6.56 μg/L A4 and 1 μg/L testosterone. Additionally, cyp2k7 was significantly induced in two of three independent experiments. 17-OHP4 did not induce physiological effects (muscle contraction, heart rate, hatching success, swimming activity) at concentrations between 0.01 and 10 μg/L. Of the analyzed 15 genes, slight transcriptional alterations occurred for the genes encoding progesterone receptor, aromatases (cyp19a) and (cyp19b) and cyp2k7 at 10 μg/L. Our study highlights sult2st3, cyp19b and cyp2k7 as potential markers of androgen exposure in fish and indicates that 17-OHP4 is not likely to pose a risk for fish at environmental concentrations.
Collapse
Affiliation(s)
- Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland.
| | - Patricia Franziska Siegenthaler
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Andreas Alexandre Schmid
- Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland
| |
Collapse
|
47
|
Hou LP, Chen H, Tian CE, Liang Y, Wu RR, Zhang XM, Fang XW, Zhang CP, Hu JJ, Song LY, Liang YQ, Schlenk D, Xie L. Alterations of secondary sex characteristics, reproductive histology and behaviors by norgestrel in the western mosquitofish (Gambusia affinis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:224-230. [PMID: 29558707 DOI: 10.1016/j.aquatox.2018.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/10/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Synthetic hormones in wastewater effluents released into the aquatic environments may interfere with the normal endocrine systems of fish in receiving streams. Norgestrel (NGT) is a synthetic progestin widely used in oral contraceptives and frequently detected in wastewater effluents. In this study, adult female mosquitofish (Gambusia affinis) were exposed to three environmentally relevant concentrations of norgestrel (NGT) (i.e., 3.6, 35.8, and 368.0 ng L-1) for 42 d, fin morphology, histology of the ovary, and reproductive behaviors were evaluated. The results showed that NGT at all three concentrations caused an increased frequency of atretic follicular cells in ovaries and impaired mating behaviors exhibited by males toward the NGT-exposed females. In mosquitofish exposed to NGT at 35.8 and 368 ng L-1, the anal fin of females had an increased length ratio of ray4/ray 6, an increased width of ray 3, and increased number of segments in ray 3. The histopathological analysis showed that exposure to NGT increased the incidence of spermatogenesis in ovaries. Mating behavior was impaired 58.4%, 65.7%, and 76.4% (P < 0.01 in all cases) when mosquitofish were exposed to NGT at 3.6, 35.6 and 368.0 ng L-1, respectively. The rapid masculinization, the increased frequency of atretic follicles, the incidence of spermatogenesis in the ovary of female fish, and the altered reproductive behaviors suggest that wild populations of mosquitofish could be similarly affected inhabiting in NGT contaminated environments.
Collapse
Affiliation(s)
- Li-Ping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China
| | - Hongxing Chen
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Chang-En Tian
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China.
| | - Ye Liang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China
| | - Rong-Rong Wu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China
| | - Xing-Mei Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China
| | - Xu-Wen Fang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China
| | - Cui-Ping Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China
| | - Jun-Jie Hu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China
| | - Li-Ying Song
- School of Life Sciences, Guangzhou University, Guangzhou 510655, PR China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Lingtian Xie
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
48
|
Chen Q, Li Z, Hua X. Fate of estrogens in a pilot-scale step-feed anoxic/oxic wastewater treatment system controlling by nitrogen and phosphorus removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12981-12991. [PMID: 29479651 DOI: 10.1007/s11356-018-1584-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
The control measures for estrogens in the aquatic environment are topics of growing concern. It is a meaningful issue to finding optimal process parameters for efficient removal of estrogens with the purpose of efficient total nitrogen (TN) or total phosphorus (TP) removal in sewage treatment plants. The present paper is concerned with the relationships between the estrogen removal and TN or TP removal in a pilot-scale three-stage anoxic/oxic (A/O) system treating real municipal wastewater. The total removal efficiency for estrone (E1) and 17β-estradiol (E2) and their sulfate and glucuronide conjugates were on average 87% in the pilot-scale system. The concentrations of the sulfate and glucuronide conjugates of estrogens (E1 and E2) in the system were much lower than the estrogens, which might be caused by the rapid degradation of conjugates in the pilot-scale system. The average removal efficiencies of E1 and E2 and their sulfate and glucuronide conjugates were significantly lower under high TP removal conditions than those under high TN removal conditions that suggested that the ammonia oxidation promotes estrogen degradation. When the system achieved efficient TN removal, the concentrations of both E1 and E2 were generally lower in the aerobic zones than those in the anoxic zones. Instead, when the system achieved efficient TP removal conditions, the estrogen concentrations were higher in the aerobic zones than in the anoxic zones. However, it was thought that the variation of the concentrations of the estrogen conjugates had weak influence on concentrations of the free estrogens. The increase of the free estrogens in the aerobic zones could be attributed to the release of the estrogens adsorbed on the sludge. The variation of estrogens in a three-stage A/O system can be properly estimated and measured by a binary linear regression model with the variables of TP and TON (NO2--N and NO3--N), which is probably the important information for the improvement and optimization of wastewater treatment processes to obtain higher removal efficiency for estrogens.
Collapse
Affiliation(s)
- Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
| | - Zebing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, People's Republic of China
- State Key Laboratory of Breeding Base Nuclear Resources & Environment, East China Institute of Technology, Nanchang, 330013, People's Republic of China
| | - Xiaoyu Hua
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
49
|
Weizel A, Schlüsener MP, Dierkes G, Ternes TA. Occurrence of Glucocorticoids, Mineralocorticoids, and Progestogens in Various Treated Wastewater, Rivers, and Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5296-5307. [PMID: 29580053 DOI: 10.1021/acs.est.7b06147] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the current study a high sensitive analytical method was developed for the determination of 60 steroids including glucocorticoids (GC), mineralocorticoids (MC), and progestogens (PG) in WWTP effluents and surface water using liquid chromatography with tandem mass spectrometry detection (LC-MS/MS). The limits of quantification (LOQ) ranged between 0.02 ng/L (cortisone) to 0.5 ng/L (drospirenone) in surface water and from 0.05 ng/L (betamethasone) to 5 ng/L (chlormadinone) in treated wastewater. After optimization, the developed method was applied to WWTP effluents, rivers, and streams around Germany. Numerous steroids have been detected during the sampling campaign and predominant analytes from all steroid types were determined. Moreover, the occurrence of dienogest, mometasone furoate, flumethasone pivalate, and the metabolites 6β-hydroxy dienogest, 6β-hydroxy triamcinolone acetonide, 7α-thiomethyl spironolactone, and 11α-hydroxy canrenone is reported for the first time. In addition, this study revealed the ubiquitous presence of topically applied GC monoesters betamethasone propionate, betamethasone valerate, and 6α-methylprednisolone propionate in WWTP effluents and surface water.
Collapse
Affiliation(s)
- Alexander Weizel
- Federal Institute of Hydrology , Department of Aquatic Chemistry , 56068 Koblenz , Germany
| | - Michael P Schlüsener
- Federal Institute of Hydrology , Department of Aquatic Chemistry , 56068 Koblenz , Germany
| | - Georg Dierkes
- Federal Institute of Hydrology , Department of Aquatic Chemistry , 56068 Koblenz , Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology , Department of Aquatic Chemistry , 56068 Koblenz , Germany
| |
Collapse
|
50
|
Willi RA, Faltermann S, Hettich T, Fent K. Active Glucocorticoids Have a Range of Important Adverse Developmental and Physiological Effects on Developing Zebrafish Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:877-885. [PMID: 29190094 DOI: 10.1021/acs.est.7b06057] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glucocorticoids in aquatic systems originating from natural excretion and medical use may pose a risk to fish. Here, we analyzed physiological and transcriptional effects of clobetasol propionate (CLO), cortisol and cortisone in zebrafish embryos as single compounds and binary mixtures. CLO and cortisol, but not cortisone showed a concentration-dependent decrease in muscle contraction, increase in heart rate, and accelerated hatching. CLO also induced immobilization and edema at high concentrations. Transcription analysis covering up to 26 genes showed that mostly genes related to glucose metabolism, immune system and development were differentially expressed at 91 ng/L and higher. CLO showed stronger effects on immune system genes than cortisol, which was characterized by upregulation of fkbp5, irg1l, gilz, and socs3, and development genes, matrix metalloproteinases mmp-9 and mmp-13, while cortisol led to stronger upregulation of the gluconeogenesis genes g6pca and pepck1. CLO also induced genes regulating the circadian rhythm, nr1d1 and per1a. In contrast, cortisone led to down-regulation of vitellogenin. Binary mixtures of cortisol and CLO mostly showed a similar activity as CLO alone on physiological and transcriptional end points but additive effects in heart rate and pepck1 upregulation, which indicates that mixtures of glucocorticoids may be of concern for developing fish.
Collapse
Affiliation(s)
- Raffael Alois Willi
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Susanne Faltermann
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Timm Hettich
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
- Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences , CH-8092 Zürich, Switzerland
| |
Collapse
|